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Abstract

This paper presents an experiment of clustering implemented at three different lev-
els: in a hardware implementation, in a sensor-based simulation and in a probabilis-
tic model. The experiment consists of small reactive autonomous robots gathering
and clustering randomly distributed objects. It is shown that, while the behaviour
of the real robots can be faithfully reproduced in a sensor-based simulation, the
evolution of the cluster sizes is perfectly described, both qualitatively and quan-
titatively, by a simple probabilistic model. Rather than simulating robots moving
within an environment, the probabilistic model represents the clustering activity
as a sequence of probabilistic events during which cluster sizes can be modified
depending on simple geometrical considerations.
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1 Introduction

Autonomous collective robotics favours decentralised solutions, i.e. solutions
where coordination is not taken over by a special unit using private infor-
mation sources, or concentrating and redistributing most of the information
gathered by the individual robots. Inspired by the so-called collective intelli-
gence demonstrated by social insects [2], autonomous collective robotics stud-
ies robot-robot and robot-environment interactions leading to robust, goal-
oriented, and perhaps emergent group behaviours. Such a decentralized ap-
proach in collective robotics seems to be a promising way to solve problems
which are hard to tackle using classical control methods.
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Often, fully decentralized control is combined with minimal robotic skills:
robots are not able to communicate to each other, to plan their activity or to
adapt their behaviour continuously. With such simple controllers, a gathering
task becomes essentially a geometrical problem with a probabilistic nature
which is well adapted to be described by simple probabilistic models. In this
paper, we present such a model based on the probabilities of the robots to
interact with clusters and other robots, and on the probabilities of clusters to
be incremented or decremented.

The motivations for such a modelling are two-fold. Firstly, because of its min-
imalist essence, it enables the investigation and the determination of which
characteristics of the experiment are most influential on the clustering process.
It allows, for instance, the evaluation of the influence on the collective per-
formance of the number of involved robots, of parameters of the programmed
behaviours, or of the interaction geometry. Secondly, working with probabilis-
tic simulations means time saving. If modelling is reliable enough, the results
of several runs are available in a few minutes, instead of a few or several hours
required if the experiments are performed with sensor-based simulators (i.e.
simulations which reproduce, as closely as possible, the sensory and motor
capacities of a physical robot) or real robots, respectively. Probabilistic simu-
lations can then be used as a prediction tool, and, in particular, it would be
interesting to dispose of a tool which allows evaluations of critical character-
istics of an experiment before the robot final design is accomplished or before
a much more complicated sensor-based simulator is developed.

We have chosen experiments concerned with gathering and clustering of ran-
domly distributed objects as a benchmark for our modelling study. This choice
was motivated by the following considerations: first, this kind of experiments
are well-suited to autonomous collective robotics and several experimental
results are available; second, due to the robots capability of modifying the
environment with the help of their gripper, these experiments present a dou-
ble dynamics, the one of the environment (aggregation process) and the one
caused by the robots movements and interactions with each other. However,
we believe that the modelling presented in this paper is simple and general
enough to be applied to other experiments in collective autonomous robotics.

Collective decentralized clustering of spread objects is inspired from studies of
aggregation processes with social insects. Deneubourg [3] showed that a simple
mechanism involving the modulation of the probability of dropping corpses as
a function of the local density was sufficient to generate the observed sequence
of clustering of corpses. In [1,5], similar experiments were carried out with real
robots architectures based basically on reactive behaviour. In these two pa-
pers, a precise statistical analysis was carried out but neither a modelling of
the experiment nor a comparison with simulation results were presented. In [8]
we reported preliminary results on a similar experiment. However, while it was



possible to quantitatively analyse the data, difficulties for the recognition algo-
rithm to distinguish between the small objects to be clustered and other robots
led to a high rate of destructive interferences and experimenter interventions
which prevented the creation of an adequate probabilistic model which could
have generated similar results. In [9] the experiments were repeated with a
more reliable algorithm which allowed for a first attempt to develop a prob-
abilistic model. This paper presents an improved version of that model and
compares its predictions with new data delivered by the 3D-version of the
Webots simulator [11] over long experiments. The improved model has also
shown to be able to reproduce data presented in [1]. A detailed comparison at
the model level of both experiments will be published elsewhere [7].

2 Materials and Methods

This section presents the three different implementations of the clustering
experiment. The experimental set-up with the real robots and their control
program are first presented. We then explain how the same experiment is
carried out in Webots, a sensor-based simulator. Finally, we present how the
dynamics of the clustering experiment can be represented in a probabilistic
model.

c)

Fig. 1. a) Khepera equipped with gripper. b) View from the bottom of the redesigned
Khepera base module. 4 electrical contacts (rotation symmetric to the center), a
castor wheel and a battery charger have been added to the standard base module.
c) A zoom of the special electrical floor shows main bands (alternatively connected
to the plus and minus poles of a standard power supply unit) separated by thin
unconnected bands.




Fig. 2. a) Seed scattering at beginning of the experiment and b) after about 2 hours,
at the end of the longest experiment.

2.1 FExperiments with Real Robots
2.1.1 FExperimental Set-Up

Khepera is a miniature mobile robot developed to perform ”desktop” exper-
iments [12]. Its distinguishing characteristic is a small diameter of 55 mm.
Each robot can be extended with a gripper module, which can grasp and
carry objects with a maximum diameter of 50 mm (see fig. 1a). The ener-
getic autonomy of Khepera in this configuration is about between 18 and 20
minutes. In order to extend the autonomy of Khepera for performing longer
clustering experiments without battery recharging breaks, we have developped
an original device to supply the robot from the floor. Fig. 1a and b show the
two main components of this device. A more detailed description of this tool
has been presented in [6].

The experiments are carried out with a group of 1 to 10 Kheperas and 10 to
40 seeds to be clustered (see fig. 2 as an example using the special extended
autonomy tool mentioned above). The seeds have a cylindrical form, with a
diameter of 15 mm and a height of 25 mm. We use two square arenas with
different sizes, the largest having double the surface of the smallest (113 x
113 cm? and 80 x 80 cm?). The initial scattering of the seeds and the starting
position of the robots are arbitrarily predefined and differ from replication
to replication. Several experiments which differ in the number of scattered
seeds, the number of robots, and the working surface are performed and the
team performances are measured on the basis of the aggregation evolution
(see section 3).

It is worth emphasising that in all the experiments the robots operate com-
pletely autonomously and independently; all sensors, motors and controls are
on-board, and there is no explicit communication (IR or radio link) with other
robots or with the experimenters. The only possible interactions among robots
are the reciprocal avoidance of collisions and an indirect form of communica-
tion through modifications of the environment (stigmergic communication).



Fig. 3. The robot discriminating behaviour is based on a “wobble” movement, sam-
pling continuously its proximity sensors in front of the found object. The picture
shows this behaviour in front of a cluster of seeds: in case a) the robots discriminates
the cluster as an obstacle, in case b) as a single seed.
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Fig. 4. a) Geometrical representation of the cluster incrementing probability. The
ratio between the identification perimeter (arc delimiting the grey zone) and the
total detection perimeter of the cluster represents the probability to increment the
cluster size by one seed. b) Geometrical representation of the cluster decrementing
probability. The robot, in order to decrement the size of the cluster by 1 seed first
has to detect the cluster as in figure 4a and then grasp a seed (the angle from which
a seed can successfully be grasped from a cluster is slightly smaller than its detection
angle, see arc delimited by the grey zone in fig. 4b). ¢) The numerical values of both
modifying probabilities represented separately on the same plot.

2.1.2  Control Algorithm

We can summarize the robot behaviour with the following simple rules: the
robot moves on the arena looking for seeds. When its sensors are activated by
an object, the robot starts a discriminating procedure. Two cases can occur:
if the robot is in front of a large obstacle (a wall, another robot or an array
of seeds), the object is considered as an obstacle and the robot avoids it. In
the second case, the small obstacle is considered as a seed. If the robot is not
carrying a seed, it grasps the seed with the gripper; if the robot is already
carrying a seed, it drops the seed it is carrying close to the one it has found;
then, in both cases, it resumes looking for seeds. Note that, because only the 2
extreme seeds of a cluster can be identified as seeds (in opposition to obstacles)
by the robots, clusters are build in lines.
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Fig. 5. a) Example of aggregation process with 3 robots in Webots. Seed scattering
at beginning of the experiment and b) after about 4:15 h of simulated time.

The discriminating behaviour is the same to that reported in [9]. In order to
distinguish objects with the help of its proximity sensors only, the robot takes
an increased number of spatial and temporal samples (see fig. 3). A test of
reliability has shown that this algorithm correctly discriminates objects with
a probability of 0.89 [13].

Figure 4 illustrates the geometrical and numerical results considered in the cal-
culations of the size incrementing and decrementing probabilities of a cluster
once the robot has found it. These probabilities are used in the probabilistic
model.

2.2 Sensor-Based Simulations

As basis for comparison and as tool for performing systematic long experi-
ments with 1 to 10 robots, we reproduced the different clustering experiments
using the Webots simulator [11], which is at the moment only Khepera ori-
ented. Webots is based on the as realistic as possible reproduction of the sensor
capabilities as well as of the robot-robot and robot-environment interaction
kinematics. Noise is added to the data delivered by virtual sensors and actua-
tors. Algorithms implemented and tested on Webots can directly be transfered
on real robots. The mean acceleration ratio for this experiment between We-
bots and real time is about 15! on a workstation Ultra Sun 1 with 5 robots,
if the display output is disabled.

! The acceleration factor in Webots depends strongly on the number of robots
simulated simultaneously as well as from their configuration (vision turrets, gripper
turrets, and so on).
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Fig. 6. a) The first random process: the clusters are represented with their detection
area scaled with the total surface of the environment; the probability that a robot
encounters a cluster is proportional to the detection area of the cluster. b) The
second random process: the robot can modify the size of the cluster, incrementing or
decrementing it by 1 seed, only if the robot runs into the cluster from the positions
described in Fig. 4. The two bars represent the whole set of clusters scattered
at a given moment on the arena. Depending on the charge status of the robot
(uncharged or charged), a random pointer is drawn on the decrementing respectively
incrementing bar. If the random pointer falls on a grey zone, the selected cluster
will be decremented (left bar) or incremented (right bar) by 1 seed.

2.8 Probabilistic Modelling

The central idea of the probabilistic model is that instead of simulating robots
moving within an environment, the clustering process is represented as a se-
quence of probabilistic events during which cluster sizes can be increased or
decreased depending on geometrical aspects as illustrated in Figure 4. Robots
could therefore be seen as dice being thrown into the arena at each iteration,
with their random location as well as their current state (e.g. carrying or not
a seed), determining their next state and the next state of the environment
(i.e. the state of the clusters). The model takes into account the robot-robot
and robot-environment geometry, the time needed to manage them, the sen-
sor range for detecting seeds, walls or teammates,? and the reliability of the
discriminating algorithm.

There are three fundamental approximations in our simulation:

e Robots are not moving in the environment (i.e. no trajectories are calcu-
lated): the simulation calculates the global probability of finding a cluster
or another teammate based on their detection area and the arena surface.

e Boundary effects are only taken in account in a limited way: arena bound-

2 Because all robots are equiped with an infrared reflecting band, teammates are
detected at a distance of 6.5 cm while seeds and walls at 1.7 cm only.
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Fig. 7. The dynamics of the clustering experiment represented as a Markov chain.
Notice that the transition probabilities from state to state are time-dependent in
this representation. See text for further explanations.

aries are considered as obstacles which project their detection zone inside
the arena. However, due to the fact that no position is attributed to clusters,
no further interaction effect between clusters and boundaries is taken in ac-
count (for instance a possible reduced accessibility of the clusters tips, which
are the “sensitive” points for modifying a cluster, as depicted in fig. 4).

e In order to convert the number of iterations into time, we calculate a fixed
conversion factor as follows. We assume that all the seeds are scattered on
the arena (worst case hypothesis) and that one robot alone has to find all
them with probability equal to one. Furthermore, we assume that the robot
is exploring the surface in a systematic and exhaustively way so that all
the arena area has been visited once and only once till the end of explo-
ration. Dividing the arena area by the detection surface of a single seed, we
can obtain a discrete partitioning of the probability space. This problem is
therefore equivalent to establish how many trials (which means iterations
in the simulation) do we need for drawing k red balls (k = number of seeds
scattered on the arena) from an urn which contains n balls (n = arena sur-
face/detection surface of 1 seed). Notice that, to be coherent with the above
mentioned systematic exploration of the robot, we do not put the balls al-
ready drawn back in the urn. It can be shown (it is also intuitively clear)
that the answer to this problem is that we need n trials (or iterations) to



achieve with probability of one that all the red balls have been drawn (left
side of eq. 1). On the other hand, considering the robot physical size and its
mean forward velocity (right side of eq. 1), we can establish the following
equivalence:

E Aarena _ Aarena 1
e o e 1)
detseed Urobot robot

And therefore:

Adetseed

Fior = [s/iterations] (2)

Urobot D robot

With the used numerical values (Agetseea = 20.4 ¢m, Trobot = 8.0 cm/s, Dyopot
= 5.5 cm) the resulting conversion factor is Fjio;= 0.46 [s/iterations]). The
conversion factor is also used for taking in account the duration of the
actions of the robots. For instance, with the implemented discriminating
behaviour, it takes 2 s for avoiding obstacles and 10 s for modifying the
size of a cluster. The algorithm translates these time lapses in number of
iterations during which the searching behaviour is frozen.

Every robot can increment or decrement the size of a cluster by one seed at
a time. The cluster modifying probabilities are conditioned by four stochastic
processes. The first two of them are explained in Fig. 6. First, a random posi-
tion in the environment is assigned to the robot. If this position is inside the
detection area of a cluster, the second random process is started. According
to the state of the robot (carrying or not carrying a seed) the size of the found
cluster is incremented or decremented by one seed if the number delivered
by the second random process is within the construction or destruction region
(calculated with the values of Fig. 4c). The third stochastic process, related to
the 0.89 efficiency of the discriminating algorithm, is always taken in account
before each pick and drop operation. The fourth stochastic process, the inter-
ference with other teammates, is always overlapped to the first two processes:
interference can occur during the search as well as during seed pick up or drop
activity. Each random process is repeated for each robot independently before
the next iteration of the program is started.

The aggregation process can also be represented as a Markov chain (see Fig. 7).
The chain has as many states as different cluster sizes, which actually corre-
sponds to the number of seeds scattered on the arena. The transition proba-
bilities from state to state are calculated as a function of the product of the
probabilities linked with the 4 stochastic processes mentioned above. Notice
that a state of the Markov chain is represented by all the clusters with the
same size. As a consequence, the rules to calculate the transition probabilities
are pre-established by the geometrical constraints of the set-up but their val-
ues are updated every time that the number of clusters of a given size changes.
Therefore, if we wanted to obtain a Markov chain with fixed transition proba-



bilities, we would had to expand every state for all possible number of cluster
of a given size. Finally, for a cluster of size n, if there is no cluster of size n-1,
its construction probability is zero. As term of reference, the mean accelera-
tion ratio between the probabilistic simulation and real time is about 4000 on
a workstation Ultra Sun 1 with 5 robots.

3 Results and Discussion

We have carried out several sets of experiments with different number of
robots, different number of seeds and in two different sizes of arena (see Ta-
ble 1). All experiments are carried in the three different implementations (real
robots, Webots simulator and probabilistic model) except for the longest ex-
periments (20 hours) which have not been realized with the real robots.

In order to quantify the evolution of the aggregation process, we have chosen
3 kinds of measurements: the mean size of the clusters, the size of the biggest
cluster and the number of clusters. The first measurement is mainly used
for the short experiments (up to 16 minutes). Due to the discontinuities of
the mean size of cluster around the end of the longer experiments (up 1200
minutes), when for instance the number of clusters jumps from 2 to 1, we
prefer to plot the two latter measurements. In all figures, the average value
from several repetitions is plotted (see Table 1 for the number of repetitions).

In order to check whether or not there is a significant difference between data
collected from the simulations and the real experiment, we performed a Mann-
Whitney test [4] on the distributions of mean cluster size at the end of the
shorter experiments and on the time needed to gather all seeds in the longer
experiments. With the help of this non-parametric test, we compared the dis-
tributions of pairs of data sets (real robots vs. prob. model, real robots vs.
Webots, Webots vs. prob. model). The results show that there is no statisti-
cally significant difference (p<0.05) between all the data sets except for long
experiments with a single robot (Webots vs. probabilistic model).

Table 1
Characteristics of the experiments carried out.

Arena | Seeds | Robots | Duration Nb of repetitions Figures
[em?] real Webots prob. model

80x80 20 1-5 16 min 5 10 10 8,9, 10
113x113 | 40 2,6,10 16 min 5 10 10 10
80x80 20 2 120 min 2 5 10 11
80x80 20 1-10 | 20 hours | — 5 10 12, 13

10
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Fig. 8. Aggregation evolution with increasing number of robots (1 to 5) on the arena
of 80x80 c¢m? and 20 seeds to be gathered. (a) Results of the experiments with
real robots. (b) Results of the Webots simulator. (c) Results of the probabilistic
modelling.
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Fig. 9. Mean contribution to the aggregation process of single teammate within a
group composed of an increasing number of robots (1 to 5) on the arena of 80x80
em? and 20 seeds to gather. (a) Results of the experiments with real robots. (b)
Results of the Webots simulator. (c) Results of the probabilistic modelling.

Figure 8 shows the clustering evolution for a group of 1 to 5 robots. Although
the results of both simulations, Webots and probabilistic model, are slightly
smoother than those of the real ones (they are namely the average of twice
the number of the experimental replications), the three plots present a good
agreement. The main difference is that the performances of the group of 3
real robots is less rapidly saturated than the one in the simulations. Also, the
performances of the group of 4 and 5 real robots saturate in a stronger way
after 10 minutes (when the number of clusters is already reduced) than in
both simulations.

The main observation which can be made from these results is that the in-
creasing rate of the mean cluster size does not increase significantly with the
number of robots when there are more than three robots in the arena. This
is even more evident in Figure 9 which shows that in both the probabilistic
modelling and the experiments with real robots there is no superlinearity in
the team performances. On the contrary, in the experimental and probabilistic
results with 4 and 5 robots there is a substantial sublinearity because of the
destructive interferences, i.e. robots in a group contribute significantly less to

11
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Fig. 10. Aggregation evolution with an increasing number of robots (1,3 and 5) on
the arena of 80x80 cm? with 20 seeds to gather in a) and, similarly, with the double
of teammates (2,6 and 10), the double of seeds (40) and an arena twice bigger
(113x113 ¢m?) in d). The corresponding Webots results are depicted in Figures b)
and e) and the ones of the probabilistic modelling in c) and f).
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Fig. 11. Evolution of aggregation process during 2 hours. The results of real robots,
Webots simulator and probabilistic modelling are overlapped in the same plot. No-
tice that the resulting plots are the average of different sets of runs with different
sample times for each kind of experiment (2 runs and 10 minutes for real robots, 5
runs and 10 s for Webots and 10 runs and 30 s for the probabilistic modelling).

the increase of the mean cluster size than if they had worked alone. The We-
bots simulator shows a slightly better performance of the group of 2 robots.
However, we guess that this is just an artefact due to the high variance® of
this kind of measurements and the relative small set of runs.

3 The coefficient of variation (standard deviation/mean) of these short experiments
lies between 0.15 and 0.25 for simulations and real robots.
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Fig. 10 compares the team performances where the number of robots, the
surface, and the number of seeds to gather is doubled. The purpose here is to
demonstrate that robot- and seed-density (meant as amount of work to do)
are two key parameters of the experiments and that we can obtain the same
results in the team fitness with the same density of robots and seeds (this is
very important because of the rare availability of a greater number of robots).
This plots confirm the good agreement between simulations and real robots
shown in fig. 8.

As illustrated by fig. 11 which shows experimental and simulated results of 2
hours experiments with a group of 2 robots (i.e. the longest experiment realized
with the real robots), both the sensor-based simulation and the probabilistic
model provide a good prediction for the evolution of different variables used
to characterise the clustering process.

Fig. 12 shows a comparison between the Webots simulator and the probabilis-
tic modelling for 20 hours-long experiments. Three interesting points can be
outlined. First, there is no substantial acceleration of the aggregation process
with groups of 5 and 10 robots compared to a group of 3. Second, due to the
fact that there are only 20 seeds on the arena and that, on average, half the
number of robots are charged and the other half uncharged, the biggest cluster
which can be built is about 20 decreased by half the number of robots (e.g. for
10 robots 20-0.5*10 = 15 seeds). Third, since clusters of isolated seeds are in an
irreversible way eliminated during the aggregation process and since aggrega-
tion is enhanced by a positive building gradient (the incrementing probability
is consistently greater than the decrementing probability, see fig. 4), the seeds
will always be gathered in a single cluster if enough time is available.

Fig. 13 shows a comparison of Webots simulator and probabilistic model based
on mean and variance of the time needed by the robots to gather all the seeds
in a single cluster. Fig. 13a shows good agreement between both simulations
results. Fig. 13b shows that also in this experiment there is no superlinearity
with an increasing number of robots working together. With more than 3
robots, the obtained team performance is sublinear. An interesting difference
between the probabilistic model and the Webots simulator is outlined by the
performances of the groups of 7 and 10 robots. For both group sizes, in one of
the Webots runs (only 5 runs have been performed for this experiment with
Webots), one of two biggest clusters has grown in a special position, close to
an arena corner. As a consequence, it has taken much more time, due to the
access difficulty of this cluster, to destroy it and increment a second bigger
cluster which still had sufficient space to grow. This explains the larger mean
values and standard variations for these 2 sets in the Webots simulation. This
is typically a boundary effect not taken in account by the probabilistic model
because, as mentioned before, the cluster position is not considered.

13
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represent an average value over 5 runs for the Webots simulator and over 10 runs for
the probabilistic model. The standard deviation over the 5, respectively, 10 runs is
depicted by the black lines. In a) is depicted the comparison between absolute values
and in b) between the single teammate contribution to the aggregation process.

4 Conclusion

This paper has presented a comparison between a clustering experiment im-
plemented at three different levels: in real robots, in a sensor-based simulation
and in a probabilistic model.
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The good agreement of the clustering dynamics described by the probabilis-
tic model with data collected with the two other implementations shows that
that minimalist model incorporates the essential characteristics of the clus-
tering problem. These characteristics have been identified to be probabilities
of modifying the size of clusters and probabilities of having interferences with
other robots. These probabilities are essentially based on geometrical consid-
erations and can be derived from the sensory capacity of single robots. Once
these probabilities are established and interaction time lapses measured, the
probabilistic model has the interesting feature of being a prediction tool of the
same quality as a detailed sensor-based simulation, while being significantly
simpler and faster. Another interesting feature of the model is that the identi-
fication of the primary characteristics of this particular clustering problem is
a step forward towards the understanding of collective mechanisms underlying
clustering in general. In [7], we will show, for instance, that the model quan-
titatively predicts the data found in [1] once the probabilities are adapted to
that experimental setup.

The results show that in this kind of experiments, where the coordination
between robots is essentially probabilistic, the data obtained present a high
variance (see also for instance [10] as another example for segregation mech-
anisms with robots). One possible solution to increase coordination capabil-
ities of robots, while keeping the team control fully decentralised, would be
to introduce a form of explicit local communication (signalling or symbolic
communication).

Acknowledgements

We would like to thank André Guignard for the important contribution in the
redesign of Khepera basis module, Aude Billard for the reviewing of this paper, Luca
Gambardella for helpful discussions on autonomous mobile robotics, and Masakazu
Yamamoto for the improvement of the distinguishing algorithm of Khepera. Alcherio
Martinoli, Auke Jan Ijspeert and Francesco Mondada have been partially supported
by the Swiss National Research Foundation.

References

[1] R. Beckers, O.E. Holland, and J.L. Deneubourg. From local actions to global
tasks: Stigmergy and collective robotics. In R. Brooks and P. Maes, editors,
Proceedings of the Fourth Workshop on Artificial Life, pages 181-189, Boston,
MA, 1994. MIT Press.

[2] E. G. Bonabeau and G. Theraulaz. Intelligence Collective. Hermes, Paris,
France, 1994.

[3] J. C. Deneubourg, S. Goss, N. Franks, A. Sendova, A. Franks, C. Detrin, and
L. Chatier. The dynamics of collective sorting: Robot-like ant and ant-like robot.

15



In J. A. Mayer and S. W. Wilson, editors, Simulation of Adaptive Behavior:
From Animals to Animats, pages 356-365. MIT Press, 1991.

[4] W. L. Hays. Statistics. Harcourt Brace College, Orlando, US, 1991.

[6] M. Maris and R. te Boekhorst. Exploiting physical constraints: Heap formation
through behavioral error in a group of robots. In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems IR(OS-96, volume 3,
pages 1655-1660, Osaka, Japan, November 1996.

[6] A. Martinoli, E. Franzi, and O. Matthey. Towards a reliable set-up for
bio-inspired collective experiments with real robots. In A. Casals and
A. T. de Almeida, editors, Proc. of the Fifth International Symposium on
Ezperimental Robotics ISER-97, pages 597-608, Barcelona, Spain, June 1997.
Springer Verlag.

[7] A. Martinoli, A. I. Ijspeert, and L. M. Gambardella. In preparation.

[8] A. Martinoli and F. Mondada. Collective and cooperative group behaviours:
Biologically inspired experiments in robotics. In O. Khatib and J. K. Salisbury,
editors, Proceedings of the Fourth International Symposium on FExperimental
Robotics, pages 3-10, Stanford, U.S.A., June 1995. Springer Verlag.

[9] A. Martinoli and F. Mondada. Probabilistic modelling of bio-inspired collective
experiments with real robots. In T. Liith, R. Dillman, P. Dario, and H. Wérn,
editors, Proceedings of the Third International Symposium on Distributed
Autonomous Robotic Systems, pages 289-308, Karlsruhe, Germany, May 1998.
Springer Verlag.

[10] C. Melhuish, O. Holland, and S. Hoddell. Collective sorting and segregation
in robots with minimal sensing. In R. Pfeifer, B. Blumberg, J.-A. Meyer,
and S. W. Wilson, editors, From Animals to Animats V: Proceedings of the
Fifth International Conference on Simulation of Adaptive Behavior, Zirich,
Switzerland, August 1998.

[11] O. Michel. Webots: Symbiosis between virtual and real mobile robots. In
Proceedings of the First International Conference on Virtual Worlds, VW’98,
pages 254-263, Paris, France, July 1998. Springer Verlag.

[12] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization: A tool for
investigation in control algorithms. In T. Yoshikawa and F. Miyazaki, editors,
Proceedings of the Third International Symposium on FExperimental Robotics,
pages 501-513, Kyoto, Japan, 1993.

[13] M. Yamamoto. Software Development of Basic Behaviors for Autonomous
and Collective Robotics. Technical report, Microcomputing Laboratory, Swiss
Federal Institute of Technology, October 1996.

16



