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Abstract. This paper presents an experiment in collective robotics which
investigates the influence of communication, of learning and of the num-
ber of robots in a specific task, namely learning the topography of an
environment whose features change frequently. We propose a theoreti-
cal framework based on probabilistic modeling to describe the system’s
dynamics. The adaptive multi-robot system and its dynamic environ-
ment are modeled through a set of probabilistic equations which give
an explicit description of the influence of the different variables of the
system on the data collecting performance of the group. Further, we
implement the multi-robot system in experiments with a group of Khep-
era robots and in simulation using Webots, a 3-D simulator of Khepera
robots. The robots are controlled by a distributed architecture with an
associative-memory type of learning algorithm. Results show that the
algorithm allows a group of robots to keep an up-to-date account of the
environmental state when this changes regularly. Finally, the results of
the simulated and physical experiments are compared to the predictions
of the probabilistic model. It is found that the model shows both a good
qualitative and quantitative correspondence to these results. This sug-
gests that a probabilistic model can be a good first approximation of a
multi-robot system.

Keywords: Learning in a dynamic environment - multi-robot system - prob-
abilistic modeling - local and global communication



1 Introduction

Numerous works on autonomous robot systems investigate the questions of 1)
whether it is more efficient to distribute the area of expertise needed for perform-
ing a complicated task between several robots rather than designing a unique
expert robot [6,9,16]; 2) whether the use of explicit communication could im-
prove the performance of a group of robots in a collaborative task ([1], [2], [8],
[17], [22]); 3) what learning abilities should the robot(s) be provided with for
adapting to a continuously changing environment [7,14,18,21].

We address these three issues in a specific task, namely learning the topogra-
phy of an environment whose features, the locations of objects, change frequently.
The locations of objects are learned by a group of worker robots which constantly
search the environment, and which communicate to each other their knowledge
as they meet. The information gathered by each robot is also transmitted to a
static database robot which each robot visits regularly, and which keeps an up-to-
date account of the global state of the dynamic environment. The experiments
are implemented with groups of Khepera robots and in simulation using We-
bots, a 3-D simulator of the Khepera robots [13]. The robots are controlled by a
distributed architecture, with an associative-memory type of learning algorithm.
The algorithm is simple and, as such, makes no contribution to connectionist ar-
chitecture. It is however well indicated for the task and allows a group of robots
to keep an up-to-date account of an environment which changes regularly and
very frequently (we study periods of changes of a few seconds).

We propose a theoretical framework based on probabilistic modeling to de-
scribe the system’s dynamics. The aim of the model is to give an explicit de-
scription of the influence of the variables of the system, namely the number of
worker robots, the frequency of environmental changes and the environment’s
configuration, on the data collecting performance of the group. The model can
be used to analyze the experiment’s dynamics, and to predict its main charac-
teristics such as the average time necessary for a group of robots to discover all
objects in an environment.

The work presented in this paper brings three new contributions to research
in collective robotics: 1) the probabilistic model as an abstract representation of
a multi-robot system (related work can be found in [5] for the description of ant
societies, and in [11,22] for robotic systems, but without an explicit represen-
tation of the system’s dynamics), 2) the comparison of three different levels of
implementation (the theoretical model, the simulation, and the physical exper-
iment), and 3) the mapping of a dynamic (although very simple) environment,
rather than a static one (see [4,20]), for instance).

The rest of this paper is divided as follows. Section 2 describes the experi-
mental set-up and the robots’ controllers used in the experiments. Section 3 gives
the equations of the probabilistic model. Sections 4 and 5 present the results of
two sets of experiments, with local and global communication respectively, and
compare the results with the predictions of the probabilistic model. Section 6
concludes the paper with a short summary and discussion of the results.



2 The experimental set-up

2.1 Set-up for experiments with local communication
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Fig. 1. Set-up of simulations of section 4: Arenas of 2 meters (top) and 1 meter (bottom left)
of diameter with respectively 5 and 15 worker robots. The database robot stands in the center of
each arena. There are 10 and 4 objects in the big (top) and small (bottom left) arenas respectively
represented as patches of 0.1m and 0.07m diameter lying on the floor. Bottom right Division of

the small arena into 80 zones.

The experiments with local communication (section 4) are carried out in
Webots [13], a 3-D simulator of the Khepera [15] robots. The experiments are
realized in two circular arenas of 1 meter and 2 meters diameter respectively as
shown in figure 1.

The simulator gives a faithful representation of the Khepera robots [15], by in-
troducing noise in the robots’ movements and sensors measurements as measured
on the real Khepera robots. Each robot is provided with 9 infra-red (IR) sensors
(8 are used to detect other robots and the arena walls, the 9th IR is activated
only by the walls and allows to distinguish between robots and walls), a detec-
tor of ground color (used to distinguish between zones with/without objects), a



radio transceiver (418 MHz + baud rate 9600), a compass with 5° degrees preci-
sion and one odometry counter on each wheel.! Compass and odometry sensors
are used by the robots to determine their location relative to the center of the
arena. The robots reset their position to the correct one each time they meet
the database robot or hit a wall in the arena. The odometry errors are therefore
contained within a range of up to 10 percent error. The objects’ locations, given
as an angle and a distance relative to the center, are determined following a
scaling of the arena into 5-16 = 80 (small arena) and 10 * 16 = 160 (big arena)
zones, see schema of figure 1. Thus, the objects’ locations are known within a
precision of 22.5 degrees (for the angle) and 10 cm (for the distance). Note the
new object locations after each update are chosen randomly in the simulations.
The database robot is a static Khepera robot placed in the middle of the arena
(see figure 1). The robots’ controller is described below in section2.3.

2.2 Set-up for experiments with global communication

Fig. 2. Set-up of section 5: Square arena of 78 by 78 cm with 4 robots (Webots simulation (left)

and physical set-up (right)). There are 4 objects represented as square patches.

The experiments with global communication (section 5) are carried out both
with real Kheperas and in simulation, with 1 to 4 robots in a square arena of 78
by 78 cm (figure 2). In these experiments, the database robot is a workstation
connected to a radio transceiver placed on the bench which runs a C program
with the same learning algorithm as the one used by the worker robots (see
section 2.3).

Instead of using odometry and the reseting strategy described above, the
real robots use a KPS (Khepera Positioning System [10]) for determining their

1 All sensors used in the simulations exist and could be used on the real Khepera
robots.



position and orientation with precisions of 5mm and 5 to 10 degrees, respectively.
The robots are continuously powered by the arena’s floor, which is covered with
electrified copper bands [12]. Although the robots are provided with ground color
detectors and can thus distinguish between patches on the floor (the objects in
the simulation) and the rest of the arena, the objects in the physical experiments
are defined virtually (that is, the locations of the patches are predefined in each
robot’s controller), for simplicity reasons. This approach does not require the
experimenter to manually move the patches and ensures a constant frequency of
environmental update.

2.3 The robots’ controllers
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Fig. 3. The robots’ controller.

In both experiments, all worker robots have the same controller which con-
sists of five modules (see figure 3): 1) an obstacle avoidance module which consists
of a one-layer real value feed forward neural network with eight input units (one
for each infra-red sensor measurement) and two output units for the two motors
(speed proportional control of the motors); 2) a memory-based exploration mod-
ule which determines the robot’s direction of travel when crossing the border
between two zones of the arena (following the division represented in figure 1);
each robot keeps track of the number of times it has crossed each zone; when
it estimates that it has reached the border between two zones, the robot turns
towards the zone it has less visited so far with an the angle of turn randomly cho-
sen between 0 and PI, 3) a communication module for the broadcast of the object
locations; in the experiments with local communication (section 4), a robot can
communicate in two occasions: when it discovers an object, it broadcasts locally
(within a limited range) the location of the object; when it meets another robot,



it transmits (using point-to-point protocol, i.e. with acknowledgement from the
receiver robot) the location of one object chosen randomly over all locations it
knows; in the experiments on global communication (section 5), the robots com-
municate only when they discover an object (broadcast with infinite range). 4) an
odometry module which calculates the robot’s position relative to the database
(center of the arena) given the measurements of the wheels’ counters and of
the compass; 5) a learning module which consists of a bidirectional associative
memory; the robots keeps track of the objects’ locations by associating the two
outputs of the odometry module which are the angle § and the distance p, i.e. the
polar coordinates of the robot relative to the center of the arena. Each connec-
tion of the module between an angle and a distance measurement is bidirectional
and is associated with two parameters, a weight w;; = w;; and a time parameter
7;; = Tj. The associative module takes two binary (1/0) vectors as inputs; the
vectors encode the robot’s measures of angle and distance (following the arena’s
scaling, see figure 1); there is one active bit per vector at any point of time (e.g.
dist-vect= [00100] = 30[cm] and dist-vect= [00010] = 40[cm]). The weights w
and time parameters 7 are two matrices of 10 by 16 units (for simulations in the
big arena) and of 5 by 16 units (for simulations in the small arena). The exper-
iments starts with all weights w and time parameter set to zero. The learning
algorithm is a system of three rules:

1. Learning by seeing:
If the robot detects an object, then

wg,=99and 75, =1

where t is the time measured by the clock of the robot2.
2. Forgetting:
If the robot crosses a location given by 6, p such that wg , > 0 but does not
detect a object, then
we,=1and 19, =1

3. Learning by hearing:
If the robot hears the location of an object as told by another robot, then:

! ]_ ! !
If 70 o > 7y o then wy v = 3 (wy o +wy ) and gy =Ty

’

I I 7 . . .
0 .p Wer 5Ty i A€ the distance, angle, weight and time parameter trans-

mitted b’y the emitter robot.

The learning for one robot is evaluated by counting the number of correctly
memorized object locations. Learning is successful when this number is equal to
the number of different locations. An object located at the coordinates {6, p}
is considered as correctly memorized when the weight wy , is greater than a

2 The clock is incremented at each processing cycle and is set to zero when the exper-
iment starts.



threshold H. H is calculated at each time step as a function of the current value
of all the weights w: H = medlan"’>°(w)+mean‘”>°(w), where median,,~o(w) and
mean,,~o(w) are, respectively, the median and the arithmetic mean calculated
over all w > 0. The arbitrarily chosen H estimates the threshold between the
important weights (close to 99) which correspond to strong correlations and the
small weights (close to 1) which are noisy or no longer valid correlations.

The database robot’s controller consists of the same learning module as
that used in the worker robots. In the experiments on local communication
(section4), when worker and database robots meet, the worker robot transmits
to the database robot its two matrices of weights and of time parameters (all
w and 7). Following rule 3, the database robot updates its knowledge by cal-
culating an averaged value between its current set of weights and those newly
transmitted, if and only if the new information is more recent than its current
one. The database robot transmits then back to the worker robot the averaged
matrix of weights and time parameters. After a meeting with the database, a
worker robot has therefore the same global knowledge of the environment as the
database. This speeds up the forgetting process as the robot can then verify more
locations (all the locations which have been recorded by the group) than only
those it had stored itself. This exchange of matrices weights does not occur in
the experiments on global communication (section 5). In that case, the database
robot stores the locations of the newly discovered objects as soon as this one
is broadcasted by the robot which has discovered it, as the robots’ broadcast is
audible by all (unless interference). All worker robots can pick up this signal.
Thus, worker robots and database robot have almost the same knowledge at all
time (small differences exist due to the interferences) and there is no need for
the database robot to send any information in return to the one it picks up.

For a discussion of the similitude/difference this algorithm bears to other
connectionist models, the reader can refer to the description of DRAMAJ3] (a
connectionist architecture for on-line learning of spatio-temporal regularities and
of time series in autonomous robots) of which the present algorithm is a simpli-
fication.

3 The probabilistic model

In this section, we determine sets of probabilistic equations to model the learning
dynamics of the experiments using local communication (section 4) and global
communication (section 5). The model is based on the assumption that the in-
formation gathering process (learning of the locations) is essentially a stochastic
process based on simple geometrical considerations. It assumes that the exact
trajectories of the robots, the details of the learning and communication events
can be ignored and that the result of the learning can be represented as a set of
probabilities of occurrence.



3.1 Local communication

The aim is to define an equation which will allow us to determine 7' the minimal
time for the database robot to learn the locations of N objects, given that there
are N, worker robots, that the arena has size A and that an object covers a
surface S;.

We define the building blocks or fundamental probabilities of the model by
considering the geometrical configurations of the system. We define the proba-
bility of meeting the database robot (Pg) as the ratio of the surface of detec-
tion of the database robot by another robot Sy over the arena’s surface A, i.e.
Py, = S4/A. Similarly, the probabilities of meeting another robot (P, = S,/A),
of passing across a source (P; = Ss/A) or of being in the range of communication
of another worker robot (P, = S./A) are the ratios of the surfaces of each of
these objects over the arena’s surface (A = 7 - (r2), r = 0.5[m] or r = 1[m)] for
small/big arenas), Sq = 7-0.12[m?] (small arena),, Sq = 7-0.15%[m?] (big arena)
S, = m-0.12[m?], Ss = 0.0038[m?] (small arena), S; = 0.0078[m?] (big arena),
S. = - 0.3%[m?].

Let Psuccess(INr, Ns, T) be the probability that the event “the database robot
has recorded N, locations” has occurred after a time T'. This event is true if each
of the N, locations have been seen by at least one robot and been transmitted
to the database robot at least once in a time 7', i.e.:

Psuccess(Nr:N37T) =1- (]- - PL—success(NsaT))Nr

Pr,_success(Ns, T) is the probability that a first event “all N, locations have
been transmitted” has occurred within a period T —t;, and that a second event
“all N, locations have been learned” has happened in a period ¢;. This proba-
bility can be expressed as follows:

P N,,T) = P(see DB in T —t; (and) learn object in t1)

SUCCGSS(

The two events are independent, thus the probability of their co-occurrence
for a given pair {t1,T — t1} is the product of each event’s probability. The total
probability is the sum over all possible pairs {t1,T —t1} (time is discretised) of
this product:

T
diti=1 Pleaurn—objec‘c(Né‘7 t1) - Psee-database(T — 1)
T
21 Plearn—object(N37 t)

Pr. N,,T) =

SUCCGSS(

The probability of meeting the database robot, Pyae_database(Z —t1) in equation
1, is the probability of crossing the surface S; within a period T — ¢;:

P

see-database(l —t1) =1—(1— Py)t ™

Plearn—object (Ns,t1) is the probability that the event “a robot has learned N;
object locations in a time ¢;” is true. A robot learns about an object’s locations



if the robot either sees the object Ps or hears its location from another robot
B,.

Ng,t1) =1 - (P,

t
Pearn-ob ject( not-learn-ob ject) Y)

No—1
Pnot—learn—object =(1-F)-1-£1)

The probability of hearing an object’s location from another robot’s broadcast
is the probability that the three following events are true: 1) the listener robot is
within an area S, around the emitting robot (S, is the surface within which the
communication is audible) and 2) the emitting robot broadcasts the particular
location, 3) no other robot out of the Ny — 1 (excluding the emitting robot, in-
cluding the listener robot) is simultaneously emitting in that same area (P (qrf
is the probability of this event).

Pr = Pear - Piptert

— Ns-Nr—1
Prpterf = 1- PHear)

Se
PHear = (Z) -(1- PNot—emit)

Event 2 is true if the emitter robot either sees the object (it then broadcasts
the location) or if the emitter robot meets another robot which transmits it
that particular location. In the later case, the emitting robot chooses 1 location
among the 2 x N it knows, which included the N, correct and no longer valid
locations. Event 2 can occur only if the robot has seen that object within a time
t, < t1 before meeting another robot. It follows:

1 P (I-(A=P)k)-(1—(1-P)1")

_ t
PNot-emit = (1= Po)* - (1= 5 b1 (1= Pty —t,)
to=1 s 0

)

In the above equations, the unity of surface is the meter and the unity of time
corresponds to the time needed to cover the surface Ss; (which is the minimal
surface considered in the equations) In order to convert the value of time in
seconds, T has to be multiplied by 24— D , where V;. = 0.16[m/s] is the maximal
speed of the robots and D, = 0. 055[m] is the diameter of the robot.

3.2 Global communication

Experiments with global communication (section 5) are modeled by determin-
ing the probability that the event “N, locations are correctly transmitted in a
time T”. The difference with the previous model is that, in this experiment, a
robot broadcasts an object location only when it sees the object and not when
it meets another robot. The above event is true when the broadcast of each of
the N locations (made by one of the robot which was visiting the surface Ss)



has been correctly picked up by the database robot at least once (i.e. no inter-
ference occurred). Referring to the reasoning regarding the previous model, the
probability of this event is:

Psuccess(Nr;Ns;T) = (1 - (1 - (Ps ) (1 - PS)NS.(nil)))n.T)JsV (2)

P; = S;/A. An object surface is S5 = 0.35%0.35/4[m?] and the arena surface
is now A = 0.78-0.78 = 0.61[m?].

4 Experiments with local communication

This section reports on simulation experiments carried out in round arenas as
shown in figure 1. Communication is local, that is the broadcast of the robot can
be picked up only within an area S, = 2- 7 -0.3%[m?]. First, a set of simulations
studies is carried out to determine the minimal time delay T for learning all the
four and ten locations of each arena in a static environment. The results of these
experiments are compared to the prediction of the probabilistic model of section
3. We then evaluate the performance of the multi-robot system at learning a
dynamic environment.

4.1 Learning in a static environment

Webots simulations were carried out in a static environment (i.e. the locations of
the objects did not change). The number of worker robots was varied from 1 to
10 and from 1 to 15 in the small and big arenas respectively. For each set-up (i.e.
for a given arena and a given number of robots) 10 different runs were carried
out with different random seeds. A run simulated 1000 seconds. We measured
the mean time delay after which the database robot knew all 4 (small arena)
and 10 (big arena) object locations. In figure 4, we compare the prediction of the
probabilistic model and the results of the simulations. As one would expect, the
more robots, the faster the learning. However, the relation between these two
variables is not linear and the increase of time efficiency saturates for important
numbers of robots. Thus, if one would consider implementing the system in a real
robotic set-up based on these results, one would determine the optimal number
of robots by comparing the gain in time efficiency to the cost increase when
augmenting the number of robots.

For both small and big arenas, the results of the probabilistic model and of
the simulations are qualitatively and quantitatively similar. This means that,
although the probabilistic model is a crude representation of the system, it ap-
proximates well the correlations between the main system’s variables. Two as-
pects of the simulations are, however, not represented by the model. First, the
probabilistic model assumes a uniform coverage of the space, where all points of
the space are visited with the same frequency; this does not take into account
the exploration strategy and the boundary effects due to the walls which make
the center of the arena (i.e. the database robot’s location) an area more often
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Fig. 4. The Y-axis represents the mean (over 10 runs) time delay T of the database robot to learn
all object locations. The X-axis is the number of robots. Each figure compares the prediction of the
probabilistic model (diamonds points) and of the Webots simulations (‘+’ point with error bars) in

the small arena (left) and in the big arena (right). Error bars correspond to standard deviations.

visited than the exterior of the arena. In order to represent this effect in the
model, we increased Py, by 20% compared to its real geometrical value so that
we obtained the same probability of meeting the database robot as that mea-
sured in the simulations. Second, the probabilistic model assumes that learning
of an object’s location is perfect, i.e. when a robot sees the object, it learns its
location without the imprecisions due to odometry errors3.

The probabilistic model allows one to determine the optimal efficiency of
the system in the ideal case; for instance, it can be used to estimate the mini-
mal number of robots, as well as the minimal battery life time they should be
provided with for the robots to collect a given number of informations from an
environment of a given size.

4.2 Learning in a dynamic environment

Simulations were carried out in a dynamic environment, in which the objects
changed locations periodically. For each arena, 15 different periods P of envi-
ronmental change were tested, 8,16,24,...,120 seconds in the small arena and
28,56,...,420 seconds in the large arena®. In each case, 3 runs were carried out
for a duration corresponding to 5000 - P. We ran simulations with groups of 1, 3
and 5 robots in the small arena and 5, 10 and 15 robots in the big arena. Figures
5 top left and 5 top right show the mean number of correctly and incorrectly

3 The odometry errors are in fact negligible given the resetting strategy, see section
2.1.

4 The minimal steps of 8 and 28 seconds were chosen because it was estimated to
be the minimal time to finding an object; it was calculated as the mean distance
between the objects divided by the distance traveled by a robot in one time step.
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Fig. 5. Top: Mean number of correctly and incorrectly learned locations over the whole run for
small (left) and big arenas (right); superposition of the results for three robots’ configurations (left:
1,3,5 robots; right: 5,10,15 robots). X-axis is the update rate equal to P/5. Bottom State of the
database’s knowledge (number of known locations) along a run. 5 robots configuration in small arena

(left) and 10 robots configuration in big arena (right). 1 processing cycle is 0.05 second.

learned locations over the whole run for the small and big arenas respectively.
The results for each three configuration of robots are superimposed. For P less
than 40sec. (small) and 140sec. (big), the database knows on average about 50%
of the correct locations, while still taking for correct almost 50% of the locations
which are no longer valid. For those periods, the environment changes faster
than the minimal time delay T required for the robots to learn all the locations.
The minimal 7" was measured in the simulations of section 4.1 (see figure 4)
as a minimum of 40 and 120 seconds for small and big arenas respectively (the
measures were consistent with the probabilistic predictions). For P greater than
40 seconds (small arena) and 140 seconds (big arena), the proportion of correctly
learned locations increases steadily while the proportion of incorrectly learned
locations decreases by the same proportion. There is almost no difference be-
tween the three different robot configurations in each case. This is due to the
fact that the minimal time delay for finding all objects is almost the same for



these three robot configurations (see figure 4)). Thus, it appears that there is
almost no benefit in using 15 rather than 5 robots in the big arena and 5 robots
rather than 1 in the small arena. However, figure 4 shows that it is more efficient
to use 5 robots rather than 1 in the big arena.

Figures 5 bottom shows the progression of the learning of the database robot
along a run (results of the simulation in small (left) and big (right) arenas with
5 and 10 robots respectively for P = 40and140). The curve varies from zero (no
locations known yet) to the maximum (4 and 10 correctly known locations in
small and big arenas). In the simulations, the objects are not displaced simulta-
neously. The period at which each object is displaced is constant (it is P) but
the phase at which the first displacement occurs is different for each object. This
explains the fact that the learning curve does not always decrease until zero (the
new locations being discovered and transmitted before all locations have been
changed). These results demonstrate that a multiple robots system based on an
associative memory learning algorithm, as described in section 2.3, is successful
at learning the topography of an environment and updating its knowledge when
the environment constantly changes.

5 Experiments with global communication

In this section, experiments are carried out with robots communicating globally
in a square arena (see figure 2) with four objects. Similarly to experiments of
section 4, we first carried out a set of simulations studies and physical experi-
ments in a static environment in order to determine the minimal time delay for
learning the four locations, and then implemented the experiment in a dynamic
environment.

5.1 Learning in a static environment

40 runs were carried out in simulation and then in a physical set-up using groups
of 1,2,3 and 4 robots (10 runs for each robot configuration, with different random
seeds in the simulations and different starting positions for the robots in the
physical experiments). Figure 6 shows superimposed the mean time delay for
learning all the four locations.

We observe a good agreement between the three plots, with the different
implementations (physical set-up, Webots simulations and probabilistic model)
showing the same behavior qualitatively. As expected, the mean value of min-
imal time T decreases with an increase of the number of robots. The standard
deviations also decrease with an increase of the robots’ number. This means that
the learning redundancy due to having more robots reduces the influence of the
randomness of the robots’ trajectories on the learning success.

Note that, the probability of seeing a source P; had to be increased by 20%
compared to its original value in order to get a good quantitative fit of the prob-
abilistic model (if the probability P; is not increased, the probabilistic model
gives an estimation of T 20% bigger than the measured one). The value of P
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robots. The prediction of the probabilistic model is compared to the results of the Webots simulations
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corresponds then to that measured in the simulations. Similarly to the exper-
iments with local communication, the increase of P is probably necessary to
represent the boundary effects due to the walls (i.e. a reduction of the visited
surface of the arena A, and therefore an increase of P, = S;/A ), which are
significant here because of the reduced arena size.

The good correspondence between the results of the Webots simulations and
those of the physical experiments further confirm the quality of that simulator
(it had already been demonstrated in a multiple robots clustering task [11]). It
is however important to stress the fact that the physical experiments still used
a number of artifacts, such as a virtual definition of the object locations and
the use of an external positioning system instead of odometry calculation (as
was done in the simulations). Further experiments using robots relying only on
physical sensors should be carried out in order to validate the learning system
for real world applications.

5.2 Learning in a dynamic environment

12 (4 times 3) runs were carried out in the physical set-up of Khepera robot,
using groups of 1,2,3 and 4 robots respectively with 3 different periods of envi-
ronmental changes (50, 100 and 200 seconds). A run lasted for 10 environmental
changes. Figure 7 shows the learning performance (mean number of correctly
and incorrectly learned locations over the whole run) of the 4 groups of robots
for the 3 update periods. The plotted data are the locations recorded by the
database robot (here the stand-alone radio station connected to a workstation)
following the broadcast of the worker robots (see explanations of section 2.2).



The learning performances of the four different groups of robots are qualitatively
and quantitatively similar; the correctedness of the learning improves when the
period of environmental changes increases (leaving more time for the robots to
discover all sources). The more robots, the better the learning on average, i.e.
the better the ratio between percentage of learning success (figure 7 top) and
learning failure (figure 7 bottom). However, the gain in using more robots is not
important (the standard deviations of the four curves superimpose®), as this was
shown previously in figure 6.

o
1

B4l
5 *
g * 5 :
3r O +
k-] ¢ .
S2r
] + 1 robot
S = 2 robots
olr o 3 robots
* 4 robots
0 . . . . . . . . )
o 20 40 60 80 100 120 140 160 180 200 220
Period of change in sec.
5.

. + 1 robot
2,0 o 2 robots
N=] <o 3 robots
® * 4 robots
O 3+ *
k=]

°
o2r & +
= o
Q <
O 1L
8 :
0 L L L L L L L L L ? J
5} 20 40 60 80 100 120 140 160 180 200 220

Period of change in sec.

Fig. 7. Mean number of correctly and incorrectly learned locations over the whole run; superposi-
tion of the results for experiments with 1,2,3 and 4 robots.

Figure 8 shows the number of correctly learned locations (as recorded by
the workstation) along a run for the four different robot configurations. In all
graphs, the period of change was 100 seconds, which is bigger or equal to the
average minimal time required for learning all locations (as shown in figure 6). We
observe that the fluctuations of the learning decreases as the number of robots
increases. Similarly to section 5.1, the redundancy in the learning due to using
more robots reduces the variability of the results linked with the randomness of
each robot’s trajectory.

5 We did not plot the error bar of the graph in figure 7 for clarity reasons.
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Fig. 8. State of the robots’ knowledge (number of known locations) along a run. From left to right,
top to bottom: experiments with 1,2,3 and 4 robots when the object locations change with a period

of 100 seconds.

6 Conclusion

This paper presented a multi-robot system capable of learning the topography
of an environment whose features changed regularly. A learning algorithm was
proposed, composed of learning and forgetting processes. It was implemented in
simulation with 1 to 15 robots and in a real set-up of 1 to 4 Khepera robots.
Results showed that the multi-robot system was able of keeping an up-to-date
account of the environmental state when this changes regularly. A probabilis-
tic model was developed to represent the system’s dynamics. The probabilistic
equations give an explicit description of the correlations between the different
variables of the system. It was used to predict the minimal time delay for correct
learning in different configurations of robots and environments. The prediction
of the probabilistic model were shown to agree qualitatively and quantitatively
to the results of simulated and physical experiments, demonstrating that the
probabilistic model is a good first approximation of this multi-robot system.
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