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Abstract— Location-awareness is crucial to many ap-
plications of sensor networks. Existing location surveying
approaches either rely on an inflexible infrastructure or
suffer from high computation and communication load. In
this paper, we present Non-intEractive lOcation Surveying
(NEOS) to address certain deficiencies in the existing
approaches. The key contribution of NEOS is twofold:
(i) it employs a mobile beacon to introduce mobility-
differentiated time-of-arrival (MDToA) observations, a spe-
cial form of time difference of arrival (TDoA), at the node
side and (ii) it involves simple computations and entails no
node-to-node communication. MDToA enables us to devise
flexible and robust positioning algorithms; the resulting
computational load fully obeys the processing constraints
of sensor nodes. Furthermore, the non-interactive feature
of NEOS allows of a substantial reduction on the nodes’
energy consumption. We have implemented a preliminary
prototype of NEOS using CricketMotes. Our experiments
with this prototype demonstrate a location accuracy within
2cm in a 16m2 area.

Index Terms— Location surveying, Sensor networks,
Mobile beacons, MDToA, TDoA.

I. INTRODUCTION

Location-awareness is becoming increasingly impor-
tant in sensor networks. Its necessity stems from ap-
plications such as guiding navigation (e.g., [1]), source
localization (e.g., [2]), efficient routing with geographical
information (e.g., [3]), and coverage awareness (e.g.,
[4]). In response to this necessity, a large number of
location surveying1 techniques have been proposed (e.g.,
[6]–[23]). These techniques can be roughly categorized
into two classes, namely non-interactive (NI) and inter-
active (IT), based on whether the communications in-
volved are unidirectional or bidirectional. A NI approach

†The work presented in this paper was supported (in part) by the
National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.
(http://www.terminodes.org)

1The term, borrowed from [5], refers to the process of specifying
the locations of the network components.

usually relies on external infrastructures, such as GPS
and beacon/sensor arrays [6], [24], [12]. An IT approach
allows nodes in a network to build location information
autonomously. It may either require mere assistance from
a few anchors whose locations are known (e.g. [7], [8],
[10], [13], [16], [21]), or be anchor-free (e.g., [9], [11],
[15], [19]).

In this paper, we are interested in large scale wireless
sensor networks that perform monitoring of, for ex-
ample, wildlife habitat, avalanche/landslide-prone areas,
forests (e.g., fire detection), and underwater zones (e.g.,
tsunami alert). Nodes involved in such networks are
resource-constrained (in terms of both computation and
communication), whereas the applications (e.g., event
localization) require fine-grained location information
for each node. In this context, a NI approach that
relies on either GPS-equipped nodes or beacon/sensor
arrays (e.g., [25], [6], [26], [12]) might not scale to
large geographical areas, due to the additional costs
that can become huge for a large network size. The IT
approach, though designed to improve scalability, has
its own disadvantages. First, the ranging errors inherent
in the applied ranging technology2 can propagate and
thus lead to even larger errors in coordinate estimations.
Secondly, the energy consumed for ranging and (location
and distance) information exchanging can be significant
(O(m2) with m being the maximum node degree [19]).
Thirdly, translating mutual distances into coordinate as-
signments may involve intensive computations (e.g, [8],
[7]). Finally, networks can only be partially localizable
even with relatively high node degrees [23].

The situation can be improved if a small set of mobile
nodes [27] are applicable to a sensor deployment area.
On one hand, a NI system benefits from the multiple
measurements obtained at distinct positions, which are
made possible by the mobile nodes, to improve its
location accuracy [17], [18], [20]. On the other hand,

2In fact, it is already questionable whether we can afford to equip
every node with the ranging ability.
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mobile nodes can also assist an IT system to build a
globally rigid structure by adding distance constraints
[22]. In general, node mobility brings the same benefit,
i.e., refining distance measurements, to both NI and IT
approaches; this seems to suggest that, aided by mobile
nodes with location-awareness, a NI approach could be
more efficient than an IT one. The reason is simple:
the former approach needs only one phase (i.e., ranging)
whereas the latter approach requires at least two phases
(e.g., ranging+multilateration [22]). Unfortunately, the
existing mobile-aided NI location systems, which rely
on either RSSI-based ranging mechanisms [17], [20]
or proximity information [18], do not scale well with
increasing network sizes. For example, intensive com-
putation must be performed in a centralized way if
sophisticated estimation algorithms are used [20], and
a substantial number of distance measurements have to
be obtained for each node in order to compensate the
inaccuracy of location estimations [17], [18].

The aforementioned observations motivate us to re-
visit the mobile-aided NI approach. Our Non-intEractive
lOcation Surveying (NEOS) makes use of mobility-
differentiated time of arrival (MDToA) to allow nodes
to localize themselves by passively listening to a mobile
beacon. MDToA, as a special form of time difference
of arrival (TDoA), introduces a difference between two
arrival times through the movements of a mobile beacon.
The main contributions of our work are as follows:

• We exploit mobility to differentiate the time of
arrival (ToA) by which location information can be
inferred. This technique makes use of signal prop-
agation time rather than attenuation as an indicator
of distances, which is much less error-prone. In ad-
dition, it avoids the need for synchronization (which
is a chicken-and-egg dilemma with localization).

• We require only the mobile node to send beacon
signals; other nodes simply listen to the signals and
make observations about the differentiated ToAs in
order to find their own locations. This allows all
(static) nodes to compute their coordinate estima-
tions without interfering with each other.

• We devise algorithms with low computational load
for coordinate estimations. We also propose simple
traces for the mobile beacon, which provide ade-
quate observations for all nodes at the same time.

In addition, NEOS guarantees location privacy [24]
thanks to the localized computation. Finally, NEOS is
not meant to replace any IT system. In fact, NEOS can
be integrated with existing IT systems; it provides fine-
grained localization for nodes that either serve as anchors
or cannot be localized due to scarce connectivity.

This paper is organized as follows: In the next section,
we provide some background on ranging techniques
and the principles of MDToA. Section III describes
the algorithms based on MDToA for localization. Sec-
tion IV proposes proper mobility strategies, taken by
a mobile beacon, that enable the MDToA-based local-
ization mechanism. The experiment results are reported
in Section V. Section VI surveys related work. Finally,
Section VII concludes the paper.

II. BACKGROUND ON RANGING TECHNIQUES AND

PRINCIPLES OF MDTOA

In this section, we briefly examine the essence of
different ranging techniques, including RSSI, TDoA,
AoA and our MDToA. By comparing these techniques,
we highlight the benefit of MDToA.

A. Receiver Signal Strength Indicator (RSSI)

RSSI, initially used for power control in wireless
networks, can also serve as a tool for distance estimation.
The basic idea is that, given a predefined transmission
power as well as a signal propagation model that maps a
transmission power and a distance to a received power,
one can estimate the distance from a receiver to a sender
by checking the strength of the received power. The
benefit of using RSSI for localization in large systems
such as sensor networks is obvious: trilateration can be
achieved for all nodes with only three beacons, and
nodes only perform passive listening3. Unfortunately, the
existing signal propagation models are far from perfect
(as a result of, for instance, obstructions, reflections, and
non-uniform spreading.) [29]. This imperfection signif-
icantly limits the accuracy of localization; a receiver
usually needs to perform sophisticated algorithms to
synthesize the RSSIs from multiple (� 1) senders to
achieve adequate accuracy [17], [20].

B. Time Difference of Arrival (TDoA)

TDoA makes use of signal propagation speed, which
is more robust than the signal attenuation feature used
by RSSI. Ideally, if a sender and a receiver are precisely
synchronized, the measurement of time-of-flight (ToF) is
already enough to indicate the distance between them.
However, synchronization whose precision can match
the signal (in particular RF) speed is hard to achieve.
The TDoA mechanism is commonly used in cellular

3Although many proposed localization systems (e.g., RADAR [28])
require nodes to transmit signals and make localization computation
at the fixed receiver side, we consider the reverse (e.g., [17]) to be
more scalable in large systems, in terms of both energy efficiency
and interference avoidance.
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networks for localizing a handset. Since it requires only
the difference between arrival times observed at several
receivers (base stations), TDoA removes the need for
synchronization between the handset and receivers, but
the receivers must still be synchronized.

TDoA has an alternative definition in recent literature
[26], [8]: the difference between arrival times of two
signals (in particular, RF and ultrasound). This mech-
anism, although termed TDoA, actually applies ToF;
it measures the propagation time of one signal (ultra-
sound in the case of Cricket) and makes use of another
signal (whose propagation speed is much faster and
thus the propagation time can be neglected) to perform
time synchronization. Using different types of signal for
ranging has a limitation: one of them might not work
properly in an environment that favors another (e.g., the
transmission range of acoustic/ultrasound is short in the
air, while RF propagates poorly underwater). Therefore,
ranging mechanisms relying on only one signal could be
desirable for sensor location surveying.

C. Angle of Arrival (AoA)

AoA, again a localization mechanism used initially in
cellular networks, requires each receiver to be equipped
with additional gear (e.g., an antenna array) to detect
the bearing from which the sender’s signal is arriving.
Sensor nodes to be localized are usually very small; it
is not realistic to apply this mechanism because of the
limitation on size and power consumption of a node.
Although devices such as Cricket Compass [30] may be
used to provide AoA [10] and thus perform localization,
a node equipped with 4 to 5 ultrasound receivers [30]
might still break the constraints on size and energy
consumption in many scenarios.4

D. Mobility-Differentiated Time-of-Arrival (MDToA)

Let us first look at a “reversed” TDoA system, il-
lustrated in Fig. 1, before elaborating the principle of
MDToA. Assume that (i) the three beacons are syn-
chronized, (ii) they are aware of their locations, and
(iii) they transmit signals that convey their locations
and that are timestamped with the sending time t1, t2,
and t3 (Appendix A provides an index of symbols
used in this paper), respectively. Upon receiving the first
signal (say the one from beacon 1), the node records the
location information and “aligns” its local clock with
the timestamp (as shown by the aligned time line in

4Using a ring of charge-coupled devices (CCDs) that detects light
at certain frequencies could be a cheaper way to estimate AoA [16],
but how to engineer such a system is still an open question.
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Fig. 1. Principles of “reversed” TDoA. An event time on a time line
is defined according to the local clock of a beacon or of the node.

Fig. 1).5 When the signals from beacon 2 and 3 arrive
at the node, the quantities t̄i − ti, i = 2, 3 (where t̄i
stands for an arrival time) characterize the difference
in distances from beacons to the node. With enough
measures of t̄i − ti, The node is able to infer its own
location (we refer to Section III for details).

There are two severe weaknesses for the above mech-
anism. First, in a large computing environment where
nodes are deployed in an ad hoc fashion, it might not
be reasonable to assume the existence of a precisely
synchronized beacon group. Secondly, if obstacles ex-
ist in between a node and certain beacons, this node
might not obtain enough time difference measurements
to estimate its coordinates. By introducing a mobile
beacon to replace multiple static beacons, we avoid
the above weaknesses altogether. The beacon, on one
hand, is bound to “synchronize” with itself, and, on
the other hand, can always find a position to bypass
the obstacles unless a node is totally isolated. Since
this mechanism differentiates the arrival times through
beacon mobility, we term it mobility-differentiated time-
of-arrival (MDToA).

Exploiting the difference of arrival times (of the
same type of signal), MDToA brings two additional
benefits. First, this mechanism is more efficient than
other mobile beacon approaches based on RSSI (e.g.,
[17], [20]), because, as shown in Section III, only a few
observations and simple calculations are necessary to
obtain the location. Secondly, it does not need more than

5As far as there is a non-zero distance between beacon 1 and the
node, this clock actually lags behind the clock of beacon 1.
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one transceiver, which facilitates the low-power design
of sensor nodes.

Now, we formally define the way to measure time
differences and the related errors. We take an alternative
approach without clock alignment (see the nonaligned
time line in Fig. 1); this approach makes it easy to
construct estimators. If there is no clock drift and the
ToA measurements are perfect, a time difference ∆ti1 is
defined as:

∆ti1 ≡ ∆ti −∆t1 = (t̄i − ti)− (t̄1 − t1) (1)

for i 6= 1. In reality, the frequency differences of the
crystals used by sensor nodes and beacons introduce non-
negligible clock drift (e.g., up to 40µs per second for
Mica2 motes [31]), and the ToA measurements always
involve random errors. Therefore, two error terms are
introduced if (1) is used to compute a time difference:

∆̃ti1 −∆ti1 = (t̄i − t̄1)tdrift + εi (2)

where ∆̃ti1 is the observed value computed with (1) and
∆ti1 stands for the real value. The first term includes an
unknown constant tdrift given a pair of node and beacon,
and the second term is assumed to be independent
Gaussian random variable εi ∼ N (0, σ2

i ) that represents
a ToA measurement error.

If we require the mobile beacon to send a sequence of
N signals from a given position i (with ti[n] and t̄i[n]
being a sending time and an arrival time, respectively,
for n = 0, 1, · · · , N − 1), we have:

∆̃ti1[n] = ∆ti1 + (t̄i[n]− t̄1[n])tdrift + εi (3)

Unfortunately, jointly estimating ∆ti1 and tdrift is im-
practical; we prove this in Appendix B by showing that
the achievable Cramer-Rao lower bound (CRLB, the
lower bound of estimation errors) [32] is too large. As
a result, we have to estimate ∆ti1 through two steps:

i) Estimating tdrift using a sequence of N signals
from the same beacon position. Since tdrift leads
to different signal intervals between a node and the
beacon, we have:

t̄i∆[n]− ti∆[n] = ti∆[n]tdrift + εi (4)

where t̄i∆[n] ≡ t̄i[n] − t̄i[0] and ti∆[n] ≡ ti[n] −
ti[0]. The following efficient estimator can be used:

t̂drift =
∑N−1

n=1 (t̄i∆[n]− ti∆[n])ti∆[n]∑N−1
n=1 (ti∆[n])2

(5)

with var(t̂drift) = [
∑N−1

n=1 (ti∆[n]/σi)2]−1. This
estimation can be refined at each beacon position.

ii) Estimating ∆ti1 with (3) by considering that
tdrift ∼ N (t̂drift , var(t̂drift)) and tdrift is indepen-
dent of εi.

III. MDTOA-BASED COORDINATES ASSIGNMENT

Based on the principles of MDToA described in Sec-
tion II-D, we propose two sets of simple algorithms for
nodes (which receive signals from the mobile beacon) to
estimate their coordinates. The first set, which we call
differentiated distance constraints (DDC), is “oblivious”
to the beacon trace; i.e., it only needs a few MDToA
measurements but involves somewhat intensive compu-
tations.6 The second set requires a node to keep track
of the changes of the MDToA measurements, such that
it can catch the closest point of approach (CPA) and
identify its coordinates. The latter set of algorithms trade
more memory usage for lower computational load. As
mentioned in Section II-D, the mobile beacon, upon
transmitting a signal, also piggybacks its own coordi-
nates and a timestamp with the transmission. We assume
that the mobile beacon always uses a relative coordinate
system. As a result, the coordinates estimated by a
node are unique only up to an arbitrary translation and
rotation. In addition, we assume, in all the discussions
hereafter, a 2D space; the extension to 3D space is
straightforward.

A. Differentiated Distance Constraints (DDC)

Let us first consider the measurements that a node
obtains as a consequence of three subsequent positions
of the mobile beacon. As illustrated in Fig. 2 (a), the
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Fig. 2. Differentiated distances introduced by beacon mobility (a)
and the corresponding hyperbolic equation system (b).

node can obtain three differentiated distances, which are
r21 = d2 − d1, r32 = d3 − d2, and r31 = d3 − d1,
with three different positions of the mobile beacon;
they are computed as the products of the known signal
propagation speed and the estimated time differences
∆̂t21, ∆̂t32, and ∆̂t31. Now, by solving the following

6Actually, only several square root computations are needed in the
worst case. However, this might be intensive for sensor nodes that
have only microcontrollers (e.g., ATmega128 [33]).
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system of polynomial equations, the node can obtain its
coordinates (xn, yn):

rij = di − dj

=
√

(xn − xi)2 + (yn − yi)2

−
√

(xn − xj)2 + (yn − yj)2 (6)

where (xi or j , yi or j) are the coordinates of the mobile
beacon at position i or j. As illustrated in Fig. 2 (b),
the problem of finding coordinates of a point, whose
differentiated distances to several fixed points are known,
is actually a hyperbolic location problem; a rich body of
work (e.g. [34], [35], [36], [37], [38]) has been devoted to
this topic. Here we are interested in solutions that require
low computational load, because the load is to be taken
by sensor nodes themselves. We hereby describe two
algorithms, namely hyperbolae linearization (HL) and
kite location fix (KLF), that produce good estimations
with simple computations.

1) Hyperbolae Linearization (HL): This approach is
based on the idea that two polynomial equations in a
form of (6) determine a straight line [37], and each
new beacon position adds another (independent) linear
equation. Therefore, the node can compute an unambigu-
ous coordinate assignment with 4 beacon positions, and
extra information from more beacon positions can be
accommodated by computing a least square fitting.

Given M beacon coordinates ci = [xi, yi]T :
i = 1, 2, · · · ,M and the unknown coordinates cn =
[xn, yn]T of a sensor node n, we have the following
equations according to the law of Cosines:

2cT
i cn = R2

i + R2
n − d2

i (7)

where Ri = ‖ci‖ and di = ‖ci − cn‖. Now if we
choose beacons 1 (c1) and 2 (c2) as reference points and
consider an arbitrary i : i 6= 1, 2, we have the following
equations by subtracting (7) of 2 and i to that of 1 and
by also taking into account that rij = di − dj :

C∆icn = R∆i − d1ri (8)

C∆i =
[

x2 − x1 y2 − y1

xi − x1 yi − y1

]
R∆i =

1
2
·
[

R2
2 −R2

1 − r2
21

R2
i −R2

1 − r2
i1

]
ri =

[
r21

ri1

]
Eliminating d1 from (8) for i = 3, 4, · · · ,M − 1, we
obtain a linear system of M − 2 equations in cn

[A | Ω]cn = B (9)

where

A[i] = ri1(x2 − x1)− r21(xi − x1)

Ω[i] = ri1(y2 − y1)− r21(yi − y1)

B[i] =
1
2
· [ri1(R2

2 −R2
1 − r2

21)− r21(R2
i −R2

1 − r2
i1)]

The least square solution of (9) is

ĉn = ([A | Ω]T [A | Ω])−1[A | Ω]TB (10)

A special case is M = 4, where [A | Ω] becomes
nonsingular and thus [A | Ω]−1B gives the solution.
Note that the least square solution can be computed
sequentially [32], i.e., the estimation ĉn can be updated
for each new beacon position ci without having to
resolve (10).

2) Kite Location Fix (KLF): Basically, solving a
polynomial equation system (6) with 2 equations gives
an estimation of cn (we continue with the same notation
as in III-A.1). However, the accuracy of the estimation
depends heavily on the positions of the beacons. The
errors of the estimation are determined not only by the
errors of MDToA estimations but also by the geometric
dilution of precision (GDOP) introduced by the geome-
tries of the beacon positions. The larger the GDOP, the
more sensitive the estimation accuracy is to the input
(i.e., MDToA estimations) errors. Intuitively, the GDOP
is minimized if the two hyperbolae are orthogonal at the
intersection points and it increases with a decreasing an-
gle between the two tangents. For example, in Fig. 3 (a),
the two right node locations have much larger GDOPs
than the two on the left. We omit the detailed analysis,
which can be done by investigating the CRLB. Usually,
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Fig. 3. Hyperbola intersection problem of two hyperbolae. (a) For 3
collinear beacon positions, the effective region is a lens belt centered
around the line. (b) With 4 beacons at the vertices of a kite, the
effective region is the kite.

we would like to have a large effective region (the region
where GDOP is minimized) with a small number of
beacon positions. In this work, we propose to have the
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beacon positions at the vertices of a kite, as shown in
Fig. 3 (b). By choosing a proper coordinate system, the
2 measurements r21 and r43 along with the coordinates
of the 4 beacon positions define two hyperbola equations:

x2
n

r2
21

− y2
n

d2
21 − r2

21

= 1 (11)

y2
n

r2
43

− (xn − h)2

d2
43 − r2

43

= 1 (12)

where dij is the distance between position i and j. Com-
bining the above two equations and solving a quadratic
equation, the node obtains the following coordinate as-
signments:

x̂n =
−B ±

√
B2 − 4AC

2A
(13)

ŷn = ±

√
(d2

21 − r2
21)(

x̂n
2

r2
21

− 1) (14)

where A = (
d2

21 − r2
21

r2
21

− r2
43

d2
43 − r2

43

)

B = 2h
r2
43

d2
43 − r2

43

C = −r2
43(

h2

d2
43 − r2

43

+ 1)− (d2
21 − r2

21)

The signs of x̂n and ŷn are determined by the signs of
r21 and r43.

B. Closest Point of Approach (CPA)

Given a curve and an off-curve point, the closest
point of approach (CPA) on the curve is a point whose
distance to the off-curve point is minimized. We can
also define the farthest point of approach (FPA) in a
similar way. A node that receives signals sent from a
mobile beacon moving on such a curve can detect a CPA
(or FPA) by keeping track of the MDToA estimations,
thanks to the monotonic changes of the distance. For
some specific curves (which we term CPA-compatible),
nodes that capture a certain number of CPAs (or FPAs)
can immediately identify their coordinates with virtually
no computation. As shown in Fig. 4, moving a beacon
along two adjacent sides of a rectangle leads to two CPAs
for a given static node (a) and moving a beacon along a
circle results in one CPA and one FPA (b). The former
provides the coordinates (xn, yn) = (xCPAx

, yCPAy
) of

the node under Cartesian coordinates, the latter indicates
the coordinates (dn, θn) = (1

2rFPA,CPA, θCPA) of the
node under polar coordinates.7 In this work, we only

7rFPA,CPA = dFPA − dCPA = (R + dn)− (R− dn) = 2dn

O
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Fig. 4. Techniques relying on closest point of approach (CPA). (a)
Under Cartesian coordinates, moving a beacon along two adjacent
sides of a rectangle leads to two CPAs. (b) Under polar coordinates,
moving a beacon along a circle results in one CPA and one farthest
point of approach (FPA).

consider the case with Cartesian coordinates and directly
choose the curve illustrated in Fig. 4 (a).

There is a problem with this seemingly simple so-
lution. Although the mobile beacon can keep moving
in a continuous manner, the beacon signals cannot be
transmitted continuously (otherwise the receiver could
not distinguish between consecutive beacons). As a re-
sult, the beacon trace is “chopped” into discrete beacon
points. Now a CPA for a given node could be in-
between two beacon points with high probability, which
introduces an error into the coordinates assigned to the
node. We hereby discuss several estimation algorithms
and their corresponding errors, assuming that a node
begins to track the MDToA estimations with respect to
a reference beacon position (say c0 in Fig. 5).

• MaxDiff : Take the beacon position with the largest
MDToA estimation as the CPA (e.g., ck). The mag-
nitude of the error is determined by the length of
the beacon interval close to the CPA (i.e., between
cj and ck).

• MinDiff : This method searches for a pair of quasi-
symmetric (in terms of the CPA) beacon positions.
The criterion is that the difference of their MDToA

CPAxc0

Beacon trace

Mobile beacon

Node to be localized

c j c l

( )x ,yn n

x

�

c i ck

ril

�xjk�xjk

rjk

�xil

Fig. 5. Illustrations of CPA algorithms.

estimations are minimized. Let us consider such
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a pair cj and ck in Fig. 5. If we use rjk to
approximate ∆xjk, we have x̂n ≈ xj+rjk+xk

2 . We
could also consider several quasi-symmetric pairs
(e.g., ci and cl is another pair). It is straightforward
to see that the estimation error decreases with an
increasing distance between the nodes of the pairs,
because, for example, ∆xil − ril < ∆xjk − rjk.

• Symmetrical Interpolation: This method refines the
estimations of MinDiff by finding the mirror posi-
tion (in terms of the CPA) of the MaxDiff position
and taking an average of them. As shown in Fig. 5,
the mirror position can be estimated with the known
MDToA estimation (which results in rjk) and the
MinDiff estimations of (x̂n, ŷn) that are used to
compute θ. The estimation can be refined iteratively.

In most cases, simple calculations (MaxDiff or Min-
Diff) can already lead to satisfactory accuracy. We refer
to Section V-C for examples.

IV. NEOS-MDTOA: ENABLING LOCATION

SURVEYING WITH MOBILITY

Equipped with the MDToA-based localization algo-
rithms, we are now ready to present our Non-intEractive
lOcation Surveying (NEOS) approach. We consider a
mobile node that is able to emit one analogue signal. The
signal can be one of the following: RF, infrared, acoustic,
and ultrasound; the choice depends on the requirement
of applications (e.g., RF for terrestrial networks and
acoustic for underwater facilities). For the static nodes
to be localized, we assume that they are equipped with a
clock whose resolution matches the propagation speed of
the signal sent from the mobile beacon.8 The computa-
tional capabilities of the static nodes are heterogeneous;
they independently choose computationally affordable
algorithms for their coordinate estimations. The problem
we are facing is to select a proper trace for the mobile
beacon such that all nodes can obtain adequate MDToA
estimations to compute their coordinate assignments,
regardless of the estimation algorithms they choose. In
the following subsections, we first identify the beacon
positions critical to the DDC algorithms (Section III-A).
Then we design, for the mobile beacon, proper moving
traces that go through these critical positions and are
also CPA-compatible (Section III-B). We also discuss
practical issues at the end.

8The resolution should be in the order of nanosecond if the RF
signal is used. According to PinPoint’s 3D-iD system [39], a 40MHz
clock rate (25ns resolution) may lead to a systematic error up to 7.5m
in our case. We expect future technology to provide sensor nodes with
an adequate level of timing resolution.

A. Pinpoint Critical Positions with CRLB

Critical beacon positions are those, when being added,
that can significantly improve the coverage of the effec-
tive region (defined in Section III-A.2) or the estimation
accuracy within the effective region. Given an estimation
algorithm, its error characteristics (as a function of bea-
cons positions) indicate the critical positions. However,
the error characteristics of the ad hoc algorithms that we
described in Section III, even if obtained through labo-
rious inductions, could be difficult to interpret, due to
the complicated correlations between inputs. Therefore,
we turn to the CRLB (Cramer-Rao lower bound). Since
CRLB bounds from below the estimation variance given
the same inputs to our algorithms, it can indicate the
critical positions for the optimistic case. We only report
the results that are obtained from the analysis; detailed
inductions on CRLB are given in Appendix C.

Inspired by the work of Savvides et al. [40], we first
put four beacon positions at the vertices of a square,
then we investigate the effect of adding beacon positions,
as well as moving the four original positions. The
contours of the root mean square (RMS) errors under
the same input to the DDC-HL approach (Section III-
A.1) are drawn in Fig. 6. We have also obtained results
similar to Fig. 6 (a) and (f) for the DDC-KLF approach
(Section III-A.2). Based on this analysis, we make the
following observations:

• The effective region is roughly within the convex
hull;9 reducing the effective region by moving bea-
con positions closer to each other leads to larger
errors (comparing (a) with (b)). This result is similar
to what was obtained in [40], but the inputs to the
problem are quite different.

• The initial four beacon positions are critical; adding
extra positions can gradually improve the accuracy,
but removing one of the initial positions dramati-
cally deteriorates the estimation results (e.g., (e)).
Actually, the other (not plotted in Fig. 6) results for
only three beacon positions show that no meaning-
ful estimation can be made.

• Shifting the beacon positions without changing the
area size within the convex hull may only result
in slight differences. For example, both (f) and
(g) exhibit somewhat enlarged effective regions but
with reduced accuracy.

Note that, although increasing distances between beacon
positions leads to better estimation accuracy and a larger
effective region, these distances are also constrained by
the transmission range of the beacon.

9Although the variances within the convex hull are not constant,
they vary negligibly. So we consider them all minimum.
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Fig. 6. The contours of root mean square (RMS) errors resulting
from our CRLB analysis (assuming a RMS error of 60ns for all
MDToA estimations). The dimension of each figure, as well as errors,
are measured in meter. (a) 4 beacon positions at the vertices of a
square. (b) Reducing the square size. (c) and (d) Adding beacon
positions at the midpoints of the square edges. (e) Moving one vertex
position to the center. (f) Shifting one diagonal along the other. (g)
Shifting both diagonals. (h) Shifting two diagonal positions along
opposite directions (i.e., 4 beacons at the vertices of a parallelogram).

B. Mobility Strategies

Given a known10 sensor deployment area as shown in
Fig. 7 (a), the trace of a mobile beacon is subject to the
following constraints imposed by different algorithms:

• It should pass all the critical beacon positions.
According to Section IV-A, these positions are
vertices of quadrilaterals that are shifted versions
of a square.

10The geographical information does not need to be exact.

• In order to be CPA-compatible, the trace should
parallel the axes of a given Cartesian coordinate
system, as shown in Section III-B.

S
O

Micro moving trace
x

y

(a) (b)

Sensor
deployment

area

Macro moving trace

Critical beacon position

Fig. 7. Mobility strategies. (a) Sensor deployment area and macro-
“S” beacon trace. (b) micro-“S” trace in detail.

Based on the above constraints, we suggest an “S”
beacon trace illustrated in Fig. 7. A given deployment
area is first divided into small squares defined by several
critical beacon positions (a). The area size of each
square is determined by the transmission range of the
mobile beacon. In the extreme case where the whole
deployment area is within the transmission range, one
square is enough to cover the area. The mobile beacon
winds around two adjacent squares following the micro
trace (b) to enable observations of MDToA; the trace
is designed to shorten t̄i[n] − t̄1[n] in (3) (Section II-
D) for higher estimation accuracy. When moving along
the trace, the mobile beacon sends beacon signals peri-
odically, with the signal sent at a critical position being
specially tagged. Note that nodes that take the DDC-KLF
approach have to perform a (45◦) axis rotation before and
after their coordinate computations.

C. Implementation Issues

We now discuss four practical aspects related to the
implementation of NEOS: location awareness, energy
saving, adaptive mobility control, and integration with
interactive (IT) location algorithms.

1) Location-Aware Mobile Beacon: NEOS requires
the mobile beacon be location-aware. We can meet this
need by relying on a location system (e.g., GPS) and
accurate odometer+compass. While the location system
provides the beacon with coordinates of important posi-
tions (e.g., the starting point), the odometer and compass
take care of the rest. The choice of a specific location
system may vary with different application scenarios. For
example, a GPS receiver does not work for underwater
devices. The location information acquired through the
above combination may not be perfect; we leave it for
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future work to address the coordinate estimation errors
introduced by the uncertainty of beacon positions.

2) Energy Saving: The non-interactive feature of
NEOS requires no information to be sent by sensor
nodes; this can reduce the energy consumption of nodes.
However, since the receiving power can be as significant
as transmission power, a node has to switch off its
transceiver whenever appropriate in order to achieve
energy saving. Nodes that apply DDC algorithms may
duty cycle their transceivers through periodical sleeps
and wakes. The CPA algorithms require the nodes to
stay awake during certain periods, at any other time the
nodes can totally shut down.

3) Adaptive Mobility Control: The information we
have on the sensor deployment area may be too coarse in
certain scenarios. This would require the mobile beacon
to be navigated. If we relax the non-interactive constraint
on NEOS, the already localized nodes can guide the
mobile beacon to further localize other nodes. Since the
solution involves other aspects of sensor networks (e.g.,
navigation guide [1]) that are beyond the scope of our
paper, we refer to the corresponding literature for details.

4) Integration with IT: There could be cases where
the beacon trace cannot cover the whole network, be-
cause of, for instance, hostile conditions. A solution
could be the combination of NEOS and an IT algorithm:
NEOS tries to localize as many nodes as possible; the
IT will do the rest using nodes with known coordinates
as anchors.

V. EXPERIMENTS

In this section, we report our preliminary experiment
results. These results are preliminary because we have
not implemented a mobile beacon that moves auto-
matically (we actually move it manually). We make
use of an existing device (i.e., CricketMote [41], a
Crossbowr implementation of MIT Cricket [26]), to
emulate the mobile beacon we have in mind. The reason
we consider CricketMote is twofold: (i) it is one of
the few commercial off-the-shelf sensor nodes that are
equipped with ultrasound transceiver; ultrasound has a
propagation speed that matches the microsecond clock
resolution achieved by similar devices and (ii) we need
the RF transceiver of CricketMote to send coordinates
and timestamps of the mobile beacon; otherwise a special
modem would be necessary to transmit information using
ultrasound, which is beyond the scope of this paper.

Our experiment setup, shown in Fig. 8, consists of a
mobile beacon (a CricketMote) and a listener (the node
to be localized). The listener comprises 4 CricketMotes
bound together. This provides us with an omnidirectional
ultrasound receiver that mimics UCLA Medusa nodes

Fig. 8. Experiment setup. Both the mobile beacon and the node to
be localized are amplified to show the details.

[8]. A side effect of this design is that we cannot
require the listener to estimate its coordinates; we have to
retrieve the MDToA readings from the listener through
serial cables and compute the coordinates in a laptop.
Although we have only one node to be localized, we put
it at different positions to test our algorithms. Since, due
to the non-interactive feature of our algorithms, the node
density does not matter, our experiments perfectly emu-
late the case where several nodes at different positions
estimate their coordinates concurrently.

We perform our experiments in a square area of
380cm×380cm (the white area shown in Fig. 8), and
we assume a coordinate system with its origin at the
square center and its axes paralleling the square sides.
For the DDC approaches, we have 4 critical beacon
positions at (180, 180), (180,−180), (−180,−180), and
(−180, 180) (which work for both DDC-HL and DDC-
KLF) and 4 accessory positions at (180, 0), (0,−180),
(−180, 0), and (0, 180) (which help to refine the estima-
tions of DDC-HL). For the CPA approachs, we move the
beacon along two sides of the square and set the interval
between two consecutive beacon positions to be 20cm.
Due to the symmetry of the beacon positions, it makes
sense to test our algorithms only in quadrant 1 (where
both x and y coordinates are positive). Within quadrant
1, we put the listener at the following 12 positions (which
are marked as “real coordinates” in the later plots):
(160, 160), (0, 80), (12.5, 160), (13.5, 15), (37.5, 50),
(42.5, 127.5), (70, 145), (75, 90), (80, 12.5), (117.5, 65),
(160, 0), (160, 80), and compare with them the estimated
coordinates resulting from different algorithms. The root
mean square (RMS) error of MDToA estimations ob-
tained in the experiments is 60ns (equivalent to a 2.2cm
RMS error in differentiated distance measurements).
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A. Hyperbolae Linearization

The experiment results of using DDC-HL are shown
in Fig. 9. Only one critical beacon position (180, 180)
is plotted, because the figure shows quadrant 1. An
accessory beacon position at (180, 0) is used to refine
the estimation. As we can see from the Fig. 9, five
beacon positions are already enough to obtain a very
good estimation (see the marked location errors).
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Fig. 9. Coordinate estimations using DDC-HL for 12 nodes with four
or five beacon positions. Location errors are marked in centimeter.

In general, the estimations with only four beacon
positions have relatively large errors. There are some
positions whose 4-beacon estimations are not plotted,
because they are simply out of quadrant 1. The main
reason for this is that linearization dilutes information
(e.g., the sign of the differentiated distances). Fortu-
nately, adding only a single beacon rectifies the errors
sufficiently. DDC-HL has the advantage of accommodat-
ing additional information, which makes it more suitable
for the case where MDToA errors are large.

B. Kite Location Fix

Fig. 10 shows the results of using DDC-KLF. With
only four critical beacon positions, DDC-KLF already
achieves an accuracy very close to what DDC-HL
obtains with five beacons. The reason is twofold: (i)
DDC-KLF maintains the non-linearity of the original
problem without diluting information and (ii) it maxi-
mizes the information extracted from the four beacons
by making use of the differentiated distances between
opposite corners. However, the algorithm requires the

  x (cm)

  y
 (

cm
)

−20 0 20 40 60 80 100 120 140 160 180
−20

0

20

40

60

80

100

120

140

160

180

Beacon position Real coordinates Estimated coordinates

10.59

0.22

1.88

2.16

0.41

2.10

1.58

1.76

1.84

4.12

1.71

2.40

Fig. 10. Coordinate estimations using DDC-KLF for 12 nodes with
four beacon positions. Location errors are marked in centimeter.

computation of square roots, which can be undesirable
for some sensor nodes. In addition, DDC-KLF cannot
accommodate additional information.

C. Closest Point of Approach

As shown by Fig. 11, the CPA algorithms provide less
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Fig. 11. Coordinate estimations using CPA for 12 nodes. Location
errors are marked in centimeter for the Max-MinDiff.

accurate estimations than the DDC algorithms. There is
no surprise here because CPA algorithms involve barely
any computation. We could have obtained better results
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with the symmetrical interpolation algorithm, but the
strength of a CPA algorithm is its computation-free prop-
erty. The Max-MinDiff algorithm, whose performance is
also reported in Fig. 11, is a special case of MinDiff:
the quasi-symmetric pair (see Section III-B) that is the
farthest apart is chosen. If the coordinates of a node
coincide with those of certain beacons, MaxDiff gives
the perfect estimations, while MinDiff and Max-MinDiff
bring small biases. In other cases, Max-MinDiff always
perform better than others (actually, MinDiff does not
differ from it too much). The worst case happens when
the node is far from the beacon trace (e.g., the one at
(13.5, 15)), because the distance changes become less
sensitive to the beacon mobility and thus more sensitive
to MDToA errors.

VI. RELATED WORK

We discuss, in this section, related topics that are not
covered in Section I and II.

Location surveying approaches for sensor networks
can also be categorized according to whether ranging
techniques are used. Range-based approaches (e.g., [8],
[9], [10], [12], [16], [17], [19], [20], [22]) usually apply
one of the ranging techniques discussed in Section II.
Their errors are measured in absolute units (e.g. cm).
Range-free approaches (e.g, [6], [7], [11], [13], [14],
[15], [18], [21], [23]) rely on proximity information such
as radio connectivity. Relative units (e.g., percentage of
the radio range) are commonly used for error measure-
ment. Range-free approaches are often approximations to
their counterparts; dedicated analyses on such approxi-
mations are also reported in literature (e.g., [42], [43]).

NEOS is also related to source localization using
sensor networks with known sensor coordinates (e.g.,
[44], [2]). In particular, Li et al. [2] apply TDoA-based
target tracking technique. NEOS can be considered as the
reverse of their work: we use a mobile object with known
coordinates to survey the sensor coordinates. Galstyan et
al. [45] present a joint location survey and target tracking
approach. Their proposal needs assistance from anchors
and its performance is significantly improved with a high
percentage of anchors. Source localization algorithms
(apart from those assuming a priori knowledge about
the optimal sensor positions [46]) can use the coordinate
estimations from NEOS as their inputs.

A large body of work has investigated hyperbolic
localization. Existing solutions are either iterative meth-
ods [47], [48] or in closed-form [34], [35], [36], [37],
[38]. The DDC algorithms used by NEOS follow the
line of closed-form solutions. Our approach differs from
previous solutions in that we propose simple algorithms
that are computationally affordable by sensor nodes.

VII. CONCLUSION

In this paper, we have presented a location sur-
veying system for sensor networks. Our NEOS (Non-
intEractive lOcation Surveying) approach relies on a
mobile beacon; the beacon provides static sensor nodes
with MDToA (Mobility-Differentiated Time of Arrival)
observations, and thus enables them to estimate their
coordinates without interactions with either the beacon or
other nodes. Exploiting the multiple MDToA (a special
form of TDoA) observations acquired by a node, we
have proposed simple algorithms to perform coordinate
estimations. These algorithms either impose a modest
computation load or are almost computation-free. Nodes
in a network, whose processing powers are probably
heterogeneous, can choose algorithms according to their
processing constraints. We have also implemented a
preliminary prototype of NEOS. Experiments with this
prototype demonstrate promising location accuracy.

Compared with the existing mobile-aided approaches,
our NEOS has the advantages of (i) higher accuracy,
due to the use of a more robust signal propagation
property (i.e., TDoA instead of RSSI) and (ii) less
complexity and thus less energy consumption, due to its
non-interactive feature. In the networks where location-
aware mobile beacons are applicable, NEOS can perform
better than existing interactive (IT) approaches, again due
to its lower demand in terms of both computation and
communication resources.

We plan to further improve our prototype and make
it autonomous. Full-scale field tests with the prototype
would be useful to confirm the strength of NEOS. We
will also explore the possibility of integrating NEOS
with IT location systems for higher scalability.
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APPENDIX

A. Symbol Index
ti, t̄i Beacon’s and node’s clock reading for position i.
∆ti ∆ti = t̄i − ti
∆tij The MDToA between to position i and j.
∆̃tij The observed value of ∆tij .
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x̂ Estimated value of a quantity x.
x[n] A quantity related to the nth signal sent

from the same beacon position.
x∆[n] x∆[n] ≡ x[n]− x[0].
rij rij = signal speed×∆tij is the differentiated

distance between beacon positions i and j.
di The distance between a node and the beacon

position i.
dij The distance between beacon positions i and j.
c c = [x, y]T is a vector representing the

coordinates of a position (ci for a beacon
position i and cn for a node).

B. CRLB for the Joint Estimation of ∆ti1 and tdrift

The likelihood function for the given observation
vector x = [∆̃ti1[0], ∆̃ti1[1], · · · , ∆̃ti1[N − 1]]T and
parameter vector θ = [∆ti1, tdrift ]T is

p(x;θ) =
1

(2π)N/2|C|1/2
×

exp{−1
2
[x− µ(θ)]TC−1[x− µ(θ)]} (15)

where C = σ2
i I is the covariance matrix of εi (with I

being the identity matrix), | · | denotes the determinant
of a matrix, and

µ(θ) =


1 t̄i[0]− t̄1[0]
1 t̄i[1]− t̄1[1]
...

...
1 t̄i[N − 1]− t̄1[N − 1]


[

∆ti1
tdrift

]

= [U | V ]θ

The first and second-order derivatives of p(x;θ) are

∂ ln p(x;θ)
∂θ

=
[
UTC−1[x− µ(θ)]
V TC−1[x− µ(θ)]

]
=

1
σ2

i

[ ∑N−1
n=0 (∆̃ti1[n]−∆ti1 − V [n]tdrift)∑N−1

n=0 (∆̃ti1[n]−∆ti1 − V [n]tdrift)V [n]

]
(16)

and
∂2 ln p(x;θ)

∂θ2 =
[
UTC−1U UTC−1V

V TC−1U V TC−1V

]
= − 1

σ2
i

[
N

∑N−1
n−0 V [n]∑N−1

n−0 V [n]
∑N−1

n−0 V [n]2

]
(17)

Therefore, the Fisher information matrix is given by

I(θ) = −E[
∂2 ln p(x;θ)

∂θ2 ]

=
1
σ2

i

[
N

∑N−1
n−0 V [n]∑N−1

n−0 V [n]
∑N−1

n−0 V [n]2

]
(18)

Now by solving the equation

∂ ln p(x;θ)
∂θ

= I(θ)(g(x)− θ)

we have

θ̂ = g(x)

=


∑

V [n]2×
∑

∆̃ti1[n]−
∑

V [n]×
∑

V [n]∆̃ti1[n]
N

∑
V [n]2−(

∑
V [n])2

N
∑

V [n]∆̃ti1[n]−
∑

V [n]×
∑

∆̃ti1[n]
N

∑
V [n]2−(

∑
V [n])2

 (19)

Although this estimator achieves CRLB, it does not
produce accurate results because

var(∆̂ti1) = [I−1(θ)]11

=
σ2

i

∑N−1
n=0 V [n]2

N
∑N−1

n=0 V [n]2 − (
∑N−1

n=0 V [n])2
(20)

which can be arbitrarily large. In the worst case
var(∆̂ti1) →∞ if V [n] = const.

C. CRLB of the MDToA-based Coordinate Estimations

The error vector derived from (6) is

ψ = r − µ(xn, yn) (21)

r = [r21, r31, · · · , rM−1,1]T

µ(xn, yn) =


‖cn − c2‖ − ‖cn − c1‖
‖cn − c3‖ − ‖cn − c1‖

...
‖cn − cM−1‖ − ‖cn − c1‖


The likelihood function for the given observation vector
x = r and parameter vector θ = [xn, yn]T is the same as
(15) but with C = diag{σ2

2+, σ2
3+, · · · , σ2

M−1+} being
the covariance matrix of ψ (where σ2

i+ is determined by
the estimation variance of ∆̂ti1 in Section II-D). We can
simplify the case by considering σ2

2+ = σ2
3+ = · · · =

σ2
M−1+ = σ2. As a result, the Fisher information matrix

is computed as follows:

I(θ) = −E[
∂2 ln p(x;θ)

∂θ2 ] =
1
σ2

DT (θ)D(θ) (22)

D(θ) =


xn−x2
‖cn−c2‖ −

xn−x1
‖cn−c1‖

yn−y2

‖cn−c2‖ −
yn−y1

‖cn−c1‖
xn−x3
‖cn−c3‖ −

xn−x1
‖cn−c1‖

yn−y3

‖cn−c3‖ −
yn−y1

‖cn−c1‖
...

...
xn−xM−1

‖cn−cM−1‖ −
xn−x1
‖cn−c1‖

yn−yM−1

‖cn−cM−1‖ −
yn−y1

‖cn−c1‖


and the CRLB is given by CCRLB = I−1(θ). When
investigating the error characteristics with CCRLB, the
root mean square (RMS) error is usually used as a scalar
representative:

ERMS =
√∑

i

λi (23)

where {λi} are the eigenvalues of CCRLB.


