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Abstract

This dissertation investigates wavelets as a multiscale tool on non-Euclidean manifolds. The growing
importance of using non-Euclidean manifolds as a geometric model for data comes from the diversity
of the data collected. In this work we mostly deal with the sphere and the hyperboloid. First, given
the recent success of the continuous wavelet transform on the sphere a natural extension is to
build discrete frames. Then, from a more theoretical perspective, having already wavelets on the
sphere, which is a non-Euclidean manifold of constant positive curvature, it is interesting and even
challenging to build and prove the existence of wavelets on its dual manifold-the hyperboloid as
non-Euclidean manifold of constant negative curvature.

This dissertation starts with detailing the construction of one- and two-dimensional Euclidean
wavelets in both continuous and discrete versions. Next, it continues with details on the construction
of wavelets on the sphere. In the three cases (line, plane and sphere) the group theoretical approach
for constructing wavelets is used.

We develop discrete wavelet frames on the sphere by discretizing the existing spherical continuous
wavelet transform. First, half-continuous wavelet frames are derived. Second, we show that a
controlled frame may be constructed in order to get an easy reconstruction of functions from their
decomposition coefficients. Finally we completely discretize the continuous wavelet transform on
the sphere and give examples of frame decomposition of spherical data. As a close parent of the
wavelet transform we also implement the Laplacian Pyramid on the sphere.

Another important part of this dissertation is dedicated to the hyperboloid. We build a total
family of functions, in the space of square-integrable functions on the hyperboloid, by picking a
probe with suitable localization properties, applying on it hyperbolic motions and supplemented by
appropriate dilations. Based on a minimal set of axioms, we define appropriate dilations for the
hyperbolic geometry. Then, the continuous wavelet transform on the hyperboloid is obtained by
convolution of the scaled wavelets with the signal. This transform is proved to be a well-defined
invertible map, provided the wavelets satisfy an admissibility condition.

As a final part in this dissertation, we discuss one possible application of non-Euclidean wavelets -
the processing of non-Euclidean images. This leads to implementing some other basic non-Euclidean
image processing techniques, for example scale-space analysis and active contour, that we apply to
catadioptric image processing.
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Version Abrégeé

Cette dissertation étudie la transformée en ondelettes en tant que technique multirésolution sur des
variétés non-Euclidiennes. L’importance grandissante de ces variétés comme modèle géométrique
est motivée par la pluralité et la complexité de nouvelles formes de données. Dans ce travail, nous
nous concentrons principalement sur la sphère et l’hyperbolöıde. Tout d’abord, au vu des récents
succès de la transformée continue en ondelettes sur la sphère, une extension naturelle consiste à
construire des repères discrets associés. Un second problème, de nature plus théorique, consiste à
étendre le formalisme sphérique au cas de la variété duale à la sphère: l’hyperbolöıde de courbure
constante négative.

Notre travail démarre avec un exposé des transformées euclidiennes en dimension un et deux,
dans leurs versions continues et discrètes. Ensuite, nous détaillons la construction des ondelettes
sur la sphère. Dans ces trois cas, droite, plan et sphère, nous procédons au moyen de l’approche par
théorie des groupes.

Nous développons ensuite des repères sur la sphère en discrétisant la transformée continue.
D’abord, nous introduisons les repères dits quasi-continus. Ensuite nous prouvons que ces repères
peuvent être contrôlés par un opérateur borné et à inverse borné, ce qui nous permet de reconstruire
aisément une fonction à partir de ses coefficients dans le repère. Enfin, nous procédons à une
discrétisation complète et donnons des illustrations pratiques sur des signaux naturels. La pyramide
laplacienne sur la sphère, un parent proche des ondelettes, est également discutée.

Une autre partie importante de cette dissertation concerne l’hyperbolöıde. Nous introduisons
une nouvelle famille totale de fonctions dans l’espace des fonctions de carré intégrable sur cette
variété en sélectionnant une forme génératrice à laquelle nous appliquons des rotations hyperboliques,
supplémentées de dilatations spécialement définies. Ces dernières sont construites sur base d’un
ensemble minimum d’axiomes adaptés à la géométrie hyperbolique. Ensuite nous définissons la
transformée continue en ondelettes au moyen de la convolution entre un signal et la famille explicitée
plus haut. Nous prouvons que cette transformée est bien définie et possède un inverse stable si la
forme génératrice de départ satisfait une condition d’admissibilité.

Dans la dernière partie de cette dissertation, nous discutons des applications des ondelettes à
des images non-Euclidiennes. Ceci nous amène à introduire d’autres outils de traitement d’images
sur des variétés, comme les notions d’espace-échelle et de contours actifs. Enfin nous montrons des
applications pratiques aux images catadioptriques.
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Introduction

The wavelet analysis is a particular time-scale or space-scale representation of signals. Its applica-
tions run from signal and image processing to data analysis.

The Fourier Transform (FT) converts a function f that depends on time, into a new function
f̂ which depends on frequency. In contrast, the wavelet transform uses approximating functions
that are localized in both time and frequency space. It is this unique characteristic that makes it
particularly useful.

Although wavelets represent a departure from Fourier analysis, they are also a natural extension
of it. Thus the history of wavelets begins with the history of Fourier analysis. Before 1975, many
researchers had pondered over the idea of Windowed Fourier Analysis (for instance Gabor in [32])
and this idea allowed to consider things in terms of both time and frequency. Windowed FT dealt
with studying the frequencies of a signal piece by piece, i.e. window by window. This windows
helped to make the time variable discrete or fixed. The different oscillating functions of varying
frequencies could be looked at in these windows. While Morlet worked with windowed Fourier
analysis he discovered that keeping the window fixed was the wrong approach. He did exactly the
opposite. He kept the frequency of the function (number of oscillations) constant and changed the
window. He discovered that stretching the window stretched the function and squeezing the window
compressed the function. Morlet and Grossman worked on an idea that Morlet discovered while
experimenting on a basic calculator - that is, a signal could be transformed into wavelet form and
then transformed back into the original signal without any information being lost. Since wavelets
deal with both time and frequency, they thought a double integral would be needed to transform
wavelet coefficients back into the original signal. However, in 1984, Grossman found that a single
integral was all that was needed [36]. While working on this idea, they also discovered another
interesting thing: making a small change in the wavelets only causes a small change in the original
signal.

The next two important contributors to the field of wavelets were by Meyer and Mallat [56, 55].
They gave rise to the multiresolution analysis. Using wavelets as a tool for multiresolution analysis
was a big step in the research of wavelets. It was where the scaling function of wavelets was first
mentioned, and it allowed researchers and mathematicians to construct their own family of wavelets
using its criteria. Around 1988, Daubechies created her own family of wavelets [26] based on the
same idea. Daubechies wavelet family satisfies a number of wavelet properties. They have compact
support, orthogonality, regularity, and continuity.

However, data analysis has undergone deep changes recently and the field faces new exciting
challenges. On one hand the volume of data is exploding due to the ubiquity of digital sensors(
think of a camera). The first challenge resides in extracting information from very high dimensional
data. On the other hand, the type of data has also evolved tremendously over the past few decades,
from images or volumetric data to non-scalar valued signals. As a first example comes tensor
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diffusion imaging, a new modality in medical imaging; or multi-modal signals, i.e. signals obtained
when the same physical scene is observed through different sensors. The representation and analysis
of signals in non-Euclidean geometry is a recurrent problem in many scientific domains. Not only
certain data are constrained by nature on curved surfaces, but a lot of detectors collect information
via interfaces which are geometrically complicated. Because of these demands, in 1998 Antoine and
Vandergheynst built wavelets on the sphere that are coherent states associated to the conformal
group of the sphere [9, 10].

Having already wavelets on the sphere, which is a non-Euclidean manifold of constant positive
curvature, it is interesting and even challenging to build and prove the existence of wavelets on its
dual manifold - the hyperboloid as a non-Euclidean manifold but of constant negative curvature.

Another recurrent problem connected to these non-Euclidean wavelets is processing of omni-
directional images obtained from catadioptric imaging sensors. The advantages of the latter over
the (classical) cameras comes from shooting a 3600-scene with a camera and a curved mirror. This
mirror could be hyperbolic, or spherical, or parabolic, and images obtained are governed by the
corresponding mirror’s geometry, the non-Euclidean ones. It is challenging to implement some
image processing techniques. As main examples stand scale-space analysis, active contour and
motion estimation.

Organization of the Dissertation

This dissertation articulates around harmonic analysis on non-Euclidean manifolds. It is realized in
four main chapters. The first three chapters are theoretical. They concern the wavelet transform on
Euclidean manifolds, on the sphere and on the hyperboloid, respectively. The forth one is application
oriented. The state of the art is described in the whole first chapter and in a part of the second one.
In a little more detail:

• Chapter 1: Manifolds, signals and wavelets

This chapter focuses on the concept of manifold, including both Euclidean and non-Euclidean
ones. It recalls the basic Fourier transform and gives the basic notion of construction of
wavelets together with the corresponding wavelet transform on Euclidean manifolds. In gen-
eral, two main approaches for building wavelets on a manifold are distinguished: one based
on group-theory and the other based on convolution. Two particular Euclidean cases are ex-
plored: wavelets on the line and wavelets on the plane. It finishes with discretization of the
continuous wavelet transform for both one- and two-dimensional Euclidean cases.

• Chapter 2: Wavelets and frames on the sphere

In this chapter we enter into the non-Euclidean world and concentrate on the sphere. It starts
with recalling the group-theoretical construction of wavelets on the sphere. Then we discretize
it and construct the stereographic frames on the sphere.

• Chapter 3: Wavelet on the hyperboloid

We enter deeper into the non-Euclidean world and, in this chapter, we focus on the hyper-
boloid. The difference between the sphere and hyperboloid, even though both non-Euclidean
manifolds, is just the curvature: the first has positive, while the latter negative. One impor-
tant ingredient for wavelet is the dilation operation. Based on a minimal set of axioms, we
define appropriate dilations for the hyperbolic geometry. We then define the corresponding
continuous wavelet transform based on convolution theorem and prove that this is an invertible
map.
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• Chapter 4: On processing non-Euclidean images

This chapter present some processing techniques for non-Euclidean images. These are scale-
space and active contour. All are based on the usual Euclidean one, but taking into account the
respective geometry and its influence on the image, we derive their non-Euclidean counterparts.
Motion estimation algorithm on the sphere is developed as well.

This division allows an easy access to particular wavelets construction viewed from the prism of
manifold’s geometry.

Main Contributions of the Dissertation

• Derivation of half-continuous and fully discretized stereographic wavelet frames on the sphere.

• Construction of Laplacian pyramid on the sphere.

• Construction of wavelets on the hyperboloid. This includes: proof of the convolution theo-
rem in Fourier-Helgason domain, derivation of hyperbolic wavelet admissibility condition for
different schemes of hyperbolic dilation.

• Derivation of image processing techniques for non-Euclidean images obtained by central cata-
dioptric sensors. These are: scale-space, active contour on the sphere and hyperboloid; mul-
tiresolution motion estimation on the sphere.
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Manifolds, Signals and

Wavelets 1
In this introductory chapter, we give a basic idea for signals and their relation to flat
or curved manifolds, i.e. Euclidean or non-Euclidean. Signals are analyzed better in
frequency domain and the Fourier transform is the tool which transforms a signal as a
function of time to a function of frequency. It is the basic tool for harmonic analysis but
not the most efficient. The idea behind the wavelet transform is to decompose a signal
locally into contributions living at different scales and thus it stands ahead the Fourier
transform. Obviously, the signal analysis is more efficient in time-frequency domain.
Thus wavelets on the line and plane are described as two particular cases of wavelets
on Euclidean manifolds. It finishes with exposing different aspects of the discretization
of continuous wavelet transform for both one- and two-dimensional Euclidean cases.

1.1 The notion of manifold

Euclid has formulated the first geometric theory in his ”Elements”, the Euclidean geometry, based
on axioms justified by physical experience and the perception of space. This step seemed natural:
a mathematical theory, whatever its abstraction is, presents more or less a link with the physical
reality. The difficulties which affront the mathematicians interested in the fundaments of geometry,
come not only from the confusion between metrical and topological concepts, but as well from the
concept of the grandeur of the objects in multiple dimensions.

A manifold is a topological space that is locally Euclidean [50, 65], i.e. around every point, there
is a neighborhood that is topologically the same as the open unit ball in Rn. To illustrate this idea,
let consider the ancient belief that the Earth was flat as contrasted with the modern evidence that
it is round. The discrepancy arises essentially from the fact that on the small scales that we see, the
Earth does look flat. In general, any object that is nearly ”flat” on small scales is a manifold, and
so manifolds constitute a generalization of objects we could live on in which we could encounter the
round/flat ”Earth problem”.

The basic example of a manifold is Euclidean space, i.e. n-dimensional real linear space Rn,
and many of its properties carry over to manifolds. In particular, R is the real line and R2 is the

5



6 Chapter 1. Manifolds, Signals and Wavelets

Euclidean plane. A manifold is symmetric with respect to a given operation, if this operation (when
applied on it) does not change it. Actually, the Euclidean plane is a symmetric surface∗. The basic
operations of symmetry are:

• Translation is an affine transformation of Euclidean space which moves every point by a fixed
distance in the same direction. It can also be interpreted as the addition of a constant vector
to every point, or as shifting the origin of the coordinate system;

• Rotation: a counterclockwise rotation of the plane about the origin;

• Reflexion (mirror view): ”flips” the plane over a line.

A manifold may be endowed with more structure than a locally Euclidean topology. For instance,
it could be smooth. A smooth manifold with a metric is a Riemannian manifold [13, 59].

1.1.1 Riemannian manifold

Certainly we should be able to measure lengths of curves on the manifold in order to do geometry.
For a surface M2 ⊂ R3, we can measure the length of a curve γ : [0, 1] → M by the usual formula

l(γ) =
∫ 1

0

|γ′(t)|dt (1.1)

Notice that the basic ingredients is the measure of the length of the tangent vector γ′(t) ∈ Tγ(t)M ,
where Tγ(t)M is the tangent space of the curve γ(t) on the manifold M . We can also use this formula
for any manifold embedded in Rn, which covers the classical cases in algebraic geometry and analysis
where manifolds appear as the zero set of constraint equations.

Definition 1. A Riemannian manifold (M, g) is a smooth manifold M with a family of smoothly
varying positive definite inner products g = gx on TxM for each x ∈ M . The family g is called
a Riemannian metric. Two Riemannian manifolds (M, g) and (N, h) are called isometric if there
exists a smooth diffeomorphism f : M → N such that

gx(X,Y ) = hf(x)(dfX, dfY )

for all X, Y ∈ TxM , for all x ∈ M .

Given a Riemannian metric we can set the length of a curve γ : [0, 1] → M to be

l(γ) =
∫ 1

0

gx

√
(γ′(t), γ′(t))dt. (1.2)

On Rn, the standard Riemannian metric is given by the standard inner product gx(v, w) = v ·w
for all u,w ∈ TxRn, for all x ∈ Rn. Of course, we call Rn with this Riemannian metric Euclidean
space. If M is a sub-manifold of Euclidean space, then M has a natural Riemannian metric given
by gx(v, w) = v ·w. This so called induced metric is the metric used in the classical theory of curves
and surfaces in Euclidean three-space. By this same construction, a sub-manifold of a Riemannian
manifold always inherits an induced metric.

To compute with Riemannian metric, we must be able to analyze it in a local coordinate chart.
If v, w ∈ TxM and (x1, x2, · · · , xn) are coordinates near x, then there exist αi, βi such that

v =
∑

αi
∂

∂xi
, w =

∑
βi

∂

∂xi
. (1.3)

∗a surface is a two-dimensional manifold
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We have

gx(v, w) = gx

( ∑

i

αi∂xi ,
∑

j

βj∂xj

)
(1.4)

=
∑

i,j

αiβjgx(∂xi , ∂xj ), (1.5)

where ∂xi
= ∂

∂xi
. Thus, gx is determined by the symmetric, positive definite matrix (gij(x)) =

(gx(∂xi , ∂xj )). Note that while the metric g is defined on all of M , the gij(x) are defined only in a
coordinate chart, where we can write

g =
∑

i,j

gijdxi ⊗ dxj . (1.6)

Here gij is called metric tensor and g is known as linear element, or first fundamental form.
Therefore, Riemannian manifolds permit to understand and visualize the concepts and funda-

mental results of the non-Euclidean geometry.
Let us develop the metric (1.6) in three-dimensional Euclidean space with orthogonal coordinate

system x0, x1, x2. We note it as ds2 ≡ g.It is defined by the relation:

ds2 = dx2
0 + dx2

1 + dx2
2. (1.7)

Inside this space, another manifolds exist. They are two-dimensional manifolds imbedded in three-
dimensional Euclidean space. For instance, the plane can be viewed as a two-dimensional Euclidean
manifold in the three-dimensional Euclidean space.

1.2 Non-Euclidean manifolds

In the three-dimensional Euclidean space, the set of all points equidistant from a point (called
a center) forms a sphere (Figure 1.1(a)). Each point x on this surface can be described by three-
dimensional vector in polar coordinates θ ∈ [0, π] and ϕ ∈ [0, 2π) as x = (cos θ, sin θ sinϕ, sin θ cos θ) ≡
(x0, x1, x2). In this particular case, we assumed the distance between each point and the center to
be 1. Based on these coordinates we can see that the metric on this surface is ds2 = dθ2 +sin2 θdϕ2.
What first distinguishes the sphere from the Euclidean plane is that the sphere is not flat and the
curvature is the amount by which it deviates from being flat. A manifold which bulges out in all
directions, such as the sphere, is positively curved. A rough test for positive curvature is that if one
takes any point on the manifold, there is some plane touching it at that point so that the manifold
lies all on one side except at that point.

The negative curvature analogue of the n-sphere is the hyperbolic n-space [68]. Two-dimensional
hyperbolic surface H2 ∈ R3 can be thought of a sphere of imaginary radius. Figure 1.1(b) shows
the one-sheeted hyperboloid, while Figure 1.1(c) shows the two-sheeted hyperboloid. Every plane
through a point on such a manifold actually cuts it in two or more pieces.

What distinguishes the three surfaces - the plane, sphere and hyperboloid, is the fact that they
satisfy all the standard postulate of the Euclidean geometry [23], except the subtle fifth postulate
which concerns the existence and uniqueness of straight lines passing by a point and parallel to a
given another straight line. It is remarkable that these geometries are characterized by their behavior
according this postulate.

The geometries of the plane and of the sphere are connected by the fact that each one can be
represented in a three-dimensional Euclidean space. Their symmetries result from the ones of the
three-dimensional Euclidean geometry, which facilitates their visualization. But this pleasant fact
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(a) (b) (c)

Figure 1.1: Examples of non-Euclidean manifolds: (a) 2-sphere, (b) one-sheeted 2-hyperboloid,
(c) two-sheeted 2-hyperboloid.

is not valid for the hyperbolic plane. One could represent some aspects of the hyperbolic plane in
the Euclidean geometry, but some other aspects of it will be lost.

The non-Euclidean geometry, elaborated by Lobatchevsky is known as hyperbolic geometry [20].
It is obtained as the fifth postulate in the Euclidean geometry:

” In the plane, it exists one and only one straight line passing through a point and parallel to
another straight line which does not contain the given point”,

is replaced by
”Given a straight line in the plane and a point, not on the line, there are more than one straight

lines parallel to the given line and passing through the given point”.
In other words, in the geometry of Lobatchevsky, there exist an infinity of lines passing through

same point and parallel to a straight line, which does not contain this point.
There are many representations of the hyperbolic plane studied and known. Such are the upper

half of the Euclidean plane, the Poincaré disk, Beltrami pseudo sphere, Klein’s model or hemisphere
model [68]. But the most popular model among all of them is the hyperboloid model shown on
Figure 1.2. This model represents the surface of revolution of a hyperbola. The bottom of the
hyperboloid is at distance 1 (North Pole) from the origin O. Though the model is actually stretched
up to infinity, it is cut for easy observation and visualization. We put a disk at the origin and
draw sweeping rays from −1(the South Pole) of the axis of revolution∗ to the red straight line on
the hyperboloid and thus we get the so called arc, on the Poincaré’s disk. Actually, the simplest
representation of the hyperbolic plane, from the Riemannian geometry viewpoint, is as one sheet of
a two sheeted hyperboloid.

It is important to note that the sphere and the hyperboloid are not the only examples of non-
Euclidean manifolds, but they are the canonical ones. Roughly speaking, each manifold which is not
flat is already non-Euclidean one. Such are, for instance, the ellipsoid or the paraboloid [59, 23]. In
the three-dimensional Euclidean space, each point on the ellipsoid can be described by the vector
x = (a cos θ, b sin θ sinϕ, c sin θ cosϕ), θ ∈ [0, π], ϕ ∈ [0, 2π) and a, b, c are fixed positive real numbers
determining the shape of the ellipsoid. In fact, if two of those numbers are equal, the ellipsoid is
a spheroid; if all three are equal, then we have a sphere. On the other hand, there are two kinds

∗a straight line about which some line or plane is revolved, so that the several points of the line or plane shall

describe circles with their centers in the fixed line, and their planes perpendicular to it, the line describing a surface

of revolution, and the plane a solid of revolution.
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o

1

-1

Figure 1.2: The hyperboloid model of the hyperbolic plane.

of paraboloid: elliptic and hyperbolic as shown on Figures 1.3(b) and 1.3(c), respectively. The
elliptic paraboloid is shaped like a cup and can have a maximum or minimum point. The hyperbolic
paraboloid is shaped like a saddle and can have a critical point called a saddle point.

(a) (b) (c)

Figure 1.3: Examples of non-Euclidean manifolds: (a) ellipsoid,(b) elliptic paraboloid, (c) hyper-
bolic paraboloid.

In this dissertation, we mostly work on the sphere and on the hyperboloid. The elliptic paraboloid
will also appear in the last chapter. For simplicity, it is called paraboloid. But first we explain what
is the use of non-Euclidean manifolds in data analysis.

1.3 Non-Euclidean manifolds as a geometric model for data

Let us think of a specific case: we measure minute changes in temperature, produced by an infra-red
radiation. For this purpose a thermal sensor is used for detecting the temperature differences. These
temperatures are peaked up in an electronic circuit and stored on computer. In addition, if these
are measurements performed by a satellite then we obtain an image of this temperature fluctuations
in the full sky. Obviously, the set of data obtained is somehow spherical since the satellite is in
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the center of the sphere and it measures the data all around. Clearly, there is data collected on
curved manifolds. Actually, not only certain data is constrained by nature on curved surfaces, but
a lot of detectors collect information via interfaces which are geometrically complicated. A natural
example is the human eye. In the same manner, if we have a spherical mirror, in it we can see the
reflection of the scene around. In addition, having a camera which points at that mirror we obtain a
spherical image. Respectively, by using a hyperbolic mirror instead of the spherical one, we obtain
a hyperbolic image. Therefore, from geometrical point of view, these signals are non-Euclidean
(multidimensional) signals. Concrete examples are shown on Figure 1.4. What we see on Figures
1.4(a) and 1.4(b) is that these are somehow 2-D (flat) images. Actually, it is so because the non-
Euclidean data they contain was adapted to the Euclidean space, so that it would be possible to
represent them. This ”adaptation” is a projection of the non-Euclidean data to a manifold which is
usually in the Euclidean world.

(a) (b)

(c) (d)

Figure 1.4: Examples of non-Euclidean signals: (a) CMB temperature anisotropies full sky image,
(b) spherical omni-directional image, (c) diffusion spectrum magnetic resonance image, (d)high-
dimensional data.

The current ”data deluge” inundating science and technology is remarkable not merely for the
often-mentioned volumes of data, but also for the rapid proliferation in new data types. In addition
to the old standby of simple numerical arrays, we are starting to see arrays where the entries have
highly structured values obeying nonlinear constraints [66, 17].

Clearly, a given feature shared by all these complex data is the importance of geometry and we
can distinguish three different occurrences of the non-Euclidean geometry in data processing:
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(i) Data on non-Euclidean manifold: for instance-Cosmic Microwave Background (CMB) tempera-
ture anisotropies full sky image (Figure 1.4(a)); non-Euclidean (omnidirectional) images (Fig-
ure 1.4(b));

(ii) Data with non-scalar values, i.e. manifold-valued signals: for instance, diffusion tensor MRI
[37] - at each point ~x of a sampled volume in R3 is assigned a function P~x(θ, ϕ) that describes
the probability with which a water molecule at ~x diffuses in direction (θ, ϕ) (Figure 1.4(c));

(iii) Euclidean data (in Rn) but mostly clustered around a lower dimensional non-Euclidean man-
ifold i.e. data arrays of the form s(t), s(x, y), s(x, y, z) with t, x, y, z run though equi-spaced
values in a cartesian grid, and s takes values in a manifold M (Figure 1.4(d)): for instance
high dimensional data sets; document databases.

1.4 Signals and harmonic analysis

1.4.1 A broad definition for signal

It is difficult, and even it might be impossible to give a unique definition of a signal, since it varies
from one to another domain of application. Even though, a signal is a ”representation” of a variable
of a physical system meant to provide ”information” on that given system. Most signals of interest
can be modelled as functions of time or position [63, 49] or they can be of different dimensions:

• Since a sound is a vibration of a medium (such as air), a sound signal associates a pressure
value to every value of time. This is 1-D continuous time signal.

• A picture assigns a color value to each of a set of points. Since the points lie on a plane, the
domain is two-dimensional. A painting, being a physical object, is a continuous signal.

• A video is a series of images. A point in a video is identified by its position (two-dimensional)
and by the time at which it occurs, so the video is a three-dimensional signal.

One of the fundamental distinctions between different types of signals is between continuous-time,
as the sound is, and discrete-time. In the mathematical language, the domain of a continuous-time
(CT) signal is the set of real numbers, whereas the domain of a discrete-time (DT) signal is the
set of integers (or some interval)[49]. It is the nature of the signal that determines what these
integers represent. Computers and other digital devices are restricted to discrete time. For instance,
CDs contain discrete signals representing sound, recorded at 44,100 samples per second. Or, digital
images are 2-D digital signals. It is often convenient to represent color as the sum of the intensities
of three primary colors, so that this kind of signal is vector-valued with dimension three.

1.4.2 Signal analysis in frequency domain

A time-domain graph shows how a signal changes over time, whereas a frequency domain graph
shows how much of the signal lies within each given frequency band over a range of frequencies.
When we analyze a signal(function) with respect to frequency, then we work in the frequency domain.
A frequency domain representation also includes information on the phase shift that must be applied
to each frequency in order to be able to recombine the frequency components to recover the original
time signal.

It is remarkably useful to analyze the frequency spectrum of a signal, which is a representation
of a signal or other function in terms of frequency. A frequency spectrum contains both amplitude
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(non-negative scalar measure of a wave’s magnitude of oscillation) and phase (relates the position of
a feature to that same feature in another part of the waveform ) information. The power spectrum
describes how much of the ”energy” (loosely defined) of the function or signal lies in any given
frequency band, without regard for the phase. This technique is applicable to all signals, both
continuous and discrete. For instance, if a signal is passed through a linear time-invariant system,
the frequency spectrum of the resulting output signal is the product of the frequency spectrum of
the original input signal and the frequency response of the system.

Fourier transform

Actually, the Fourier transform of a signal f(t) can be thought of as that signal in the frequency
domain. It is the operation which transforms the signal from a function of time f(t) to a function of
frequency f̂(ω); it is a decomposition of a function into harmonics of different frequencies [43, 48].

Suppose f is a complex-valued Lebesgue-integrable function, i.e. f ∈ L1(R). We then define its
continuous Fourier transform f̂ to be also a complex-valued function:

f̂(ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt, ∀ω ∈ R. (1.8)

We think of ω as a frequency and f̂(ω) as the complex number which is the amplitude and phase of
the component of the signal f(t) at that frequency.

The Fourier transform is close to a self-inverse mapping: if f̂(ω) is defined as above, and f is
sufficiently smooth, then

f(t) =
1√
2π

∫ ∞

−∞
f̂(ω)eiωtdω, ∀t ∈ R (1.9)

The factor 1√
2π

before each integral are normalization factors. These factors are arbitrary as long
as their product is equal to 1

2π . The values chosen above are referred to as unitary normalization
constants. Another common choice is 1 and 1

2π for the forward and inverse transforms, respectively.
In addition, the Fourier coordinate ω is sometimes replaced by 2πν, integrating over all frequencies
ν, in which case the unitary normalization constants are both equal to unity.

The Fourier transform can be extended to n-dimensional space in a straightforward manner. If
f(~x) ∈ Rn and ~k is the corresponding vector in the transform space, then

f̂(~k) =
( 1√

2π

)n
∫

Rn

f(~x)e−i~k·~xd~x, (1.10)

where d~x is an n-dimensional infinitesimal volume element in the space and the product in the
exponential is the dot product. Using the n-dimensional orthogonality relationship:

δ(~k − ~k′) =
( 1

2π

)n
∫

Rn

e±i(~k−~k′)·~xd~x (1.11)

yields the inverse transform:

f(~x) =
( 1√

2π

)n
∫

Rn

f̂(~k)ei~k·~xd~k. (1.12)

The Fourier transform translates between convolution and multiplication of functions. If f(t)
and g(t) are integrable functions with Fourier transforms f̂(ω) and ĝ(ω), respectively, and if the
convolution of f and g exists and is integrable, then the Fourier transform of the convolution is
given by the product of the Fourier transforms f̂(ω)ĝ(ω):

(f ∗ g)(t) =
∫ +∞

−∞
f(τ)g(t− τ)dτ (1.13)
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and consequently
(̂f ∗ g)(ω) = f̂(ω)ĝ(ω). (1.14)

That is, convolution in the time domain is the equivalent of multiplication in the frequency domain.
The same is true in the inverse - convolution in frequency is the equivalent of multiplication in the
time domain. The equation (1.14) is the convolution theorem. In signal processing language, the
convolution is the time-domain equivalent of the filtering in the frequency domain. Highly used in
data processing is the correlation, even though it is viewed as special case of the convolution. In
general, the correlation is used to compare similarities of two sets of data and is written as:

(̂f ? g)(ω) = f̂(ω)ĝ(ω), (1.15)

where (·) denotes the complex conjugate. A detailed proof of these two fundamental theorems can
be found in [63, 62] for the continuous and discrete case, respectively.

Naturally, for scientific computations and digital signal processing, one must have functions xk

that are defined over discrete instead of continuous domains, again finite or periodic. In this case,
one uses the discrete Fourier transform, which represents xk as the sum of sinusoids:

xk =
1
N

N−1∑

j=0

fje
2πijk

N , k = 0, · · ·N − 1, (1.16)

where fj are the Fourier amplitudes. Although applying this formula directly would require O(N2)
operations, it can be computed in only O(NlogN) operations using a fast Fourier transform (FFT)
algorithm, which makes the FT a fundamental operation.

1.4.3 Time-frequency signal analysis

Most real-life signals are not just complex and influenced by a specific geometry but it is a fact
that they are non-stationary, i.e. their statistical properties change with time, and they usually
cover a wide range of frequencies. Many signals contain transient components, whose appearance
and disappearance are physically very significant. In addition, there is often a direct correlation
between the characteristic frequency of a given segment of the signal and the time duration of that
segment. Clearly, a generalization of signal processing is needed and the Fourier transform alone
is not enough. Strictly speaking, it applies only to stationary signals, and it loses all information
about the time localization of a given frequency component. Moreover, it is highly unstable with
respect to perturbation, because of its global character. Regarding this problems, the signal analysis
turned out to be more efficient in time-frequency representation. The idea is that one needs two
parameters: one, called a, characterizes the frequency, the other, b, indicates the position in the
signal. Indeed, the basic idea of the wavelet transform, as we will see later, is to decompose a
signal locally into contributions living at different scales. This makes the contrast with the Fourier
coefficients, which are sinusoidal waves repeating themselves indefinitely. But taking into account
that many signals are in non-Euclidean geometry, new time-frequency analyzing tools are needed.
In particular, wavelet transforms are of great interest.

It must be clear that wavelets on the line or on the plane are two particular cases of Euclidean
wavelets, in particular, in the space L2(R) or in L2(R2). Naturally, there exist a generalization
of these Euclidean wavelet transforms to n-dimensional Euclidean space Rn. We need to specify
that we cannot use any of this constructions as wavelets on the sphere or the hyperboloid or any
other curved manifold, even though they are manifolds in the Euclidean space. The most particular
feature of such manifolds is their curvature. In other words, these are non-Euclidean manifolds and
the wavelets which ”live” on them are going to be non-Euclidean wavelets.
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1.5 General set-up: wavelets on a manifold

There are two approaches to wavelet analysis. The first is geometric: a generalization of time-
frequency analysis which results in continuous wavelet transform (CWT) [27]. The second approach
is functional and it gives a rise to wavelet orthonormal basis [26, 28]. In both approaches, though,
wavelets are a family of elementary signals built by suitably translating and dilating a single mother
wavelet [3, 8, 25]. The main advantages of the wavelet transform over the classical Fourier transform
is its microscopic nature: zooming in and out the signal.

In general, for constructing a continuous wavelet transform on a manifold, few basic requirements
should be satisfied

• wavelets and signals must “live” on the manifold;

• the transform must involve dilations of some kind; and

• in case of curved manifold: the CWT should reduce locally to the usual CWT in the tangent
plane.

For such a construction, we distinguish two main techniques: the one is based on group theory
and the other is based on a convolution theorem.

1.5.1 Wavelet construction based on group theory

One basic method for building wavelets on any manifold is based on group theory. In this technique
the wavelets coincide with, so called in the physical literature, the coherent states (CS) associated to a
group representation of affine transformations. Let us expose here some details for this construction.
Most of this discussion is borrowed and adopted from [4].

Let M be a manifold. For instance, M could be the n-dimensional Euclidean space Rn, the
2-sphere S2, space-time R × R or R2 × R, the hyperboloid H2, etc. In order to construct coherent
states on M , one needs two ingredients:

• the class of finite energy signals living on M , i.e. the space L2(M, dµ) ≡ H for a suitable
measure µ; and

• a (locally compact) group G of transformations acting (transitively) on M , i.e., m 7→ g[m],
∀g, g′ ∈ G with g[g′[m]] = gg′[m], e[m] = m, where e is the neutral element, and for any pair
m,m′ ∈ M , there is at least one g ∈ G such that g[m] = m′.

From this, one obtains a natural unitary representation of G in the space L2(M, dµ):

[U(g)f ](m) = f(g−1m). (1.17)

Then, the system of CS on M associated to G may be defined if U is a square integrable representation
of G; that is, U is irreducible and there exists a nonzero vector ψ ∈ L2(M, dµ), called admissible,
such that the matrix element 〈U(g)ψ|ψ〉 is square integrable as a function on G, with respect to the
(left or right) invariant Haar measure on G. When this is the case, the corresponding CS, indexed
by G, are obtained as the elements in the orbit of an admissible vector ψ under U:

ψg = U(g)ψ, g ∈ G. (1.18)

Quite often, however, the representation U is not square integrable in the strict sense just described.
However, it may become square integrable when restricted to a homogeneous space X = G/H, for
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some closed subgroup H. By this the following is meant. Let σ : X → G be a Borel section. Then
the nonzero vector ψ ∈ L2(M,dµ) is said to be admissible mod(H, σ), and the representation U
square integrable mod(H, σ), if the following condition holds:

∫

X

|〈U(σ(x))ψ|φ〉|2dν(x) < ∞,∀φ ∈ H, (1.19)

where ν is a (quasi)invariant measure on X.
Then CS indexed by X may be defined as

ψσ(x) = U(σ(x))ψ, x ∈ X, (1.20)

and they form a total (overcomplete) set Sσ in H, with essentially the same properties as in the
restricted case described before.

The condition (1.19) may also be written as

0 <

∫

X

|〈ψσ(x)|φ〉|2dν(x) = 〈φ|Aσφ〉 < ∞, ∀φ ∈ H, (1.21)

where Aσ is a positive, bounded, invertible operator. If the operator A−1
σ is also bounded, the family

Sσ = ψσ(x), x ∈ X is called a frame, and a tight frame if Aσ = λI, for some λ > 0.
Here are some familiar examples of this construction:

(1) The ax + b group acting on R yields the usual 1-D continuous wavelets [36].

(2) The similitude group of Rn, consisting of translations b ∈ Rn, rotations R ∈ SO(n), and
dilations a > 0, yields the n-dimensional wavelets [61]. For an axisymmetric wavelet ψ, the
isotropy group H ≡ SO(n− 1), is quotient out and so X = Rn · R+

∗ · Sn−1 ∼ R2n.

In any of these examples one has Aσ = 1. The admissible vector ψ is normalized by c(ψ) =
〈ψ|Aσψ〉 = 1 and it generates a frame; that is, A−1

σ is bounded. The linear map Wψ : H → L2(X, dν)
defined by

(Wψφ)(x) = 〈ψσ(x)|φ〉, φ ∈ H, (1.22)

is called the CS map or the wavelet transform associated to ψ. Clearly, the vectors ψg = U(g)ψ ∈ H
are the coherent states (CS) of the representation U(g). Its range, Hψ, is complete with respect
to the scalar product 〈Φ|Ψ〉ψ ≡ 〈Φ|WψA−1W−1

ψ Ψ〉 and Wψ is unitary from H onto Hψ. As a
consequence, the map Wψ may be inverted on its range by the adjoint operator, which yields the
reconstruction formula

ψ = W−1
ψ Φ =

∫

X

Φ(x)A−1
σ ψσ(x)dν(x), Φ ∈ Hψ. (1.23)

In other words, the signal φ is expanded in terms of CS A−1
σ ψσ(x), the (wavelet) coefficients being

Φ(x) = (Wψφ)(x).
The technique for building a family of wavelets on a manifold based on group theory is not the

only one. Another possible construction of wavelets is based on convolution. This apparatus for
constructing wavelets is more practical.

1.5.2 Wavelet construction based on convolution

This technique is more practical and for realizing it one needs:

• a function on a given manifold (let us call it ψ),
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• a set of affine transformations, i.e. dilations, rotations and translations, and

• a convolution theorem valid for square-integrable functions on the manifold.

The construction consists of the following. First, the ”mother wavelet” ψ, to which affine op-
erations may be applied, is defined as a localized function on the manifold. Second, the wavelet
transform of a signal is defined as the convolution of the signal with the rotated and dilated version
of the mother wavelet. Thus the wavelet coefficients are obtained. Finally, an admissibility condition
is imposed on the mother wavelet by explicitly requiring the exact reconstruction formula of the
signal from its wavelet coefficients.

We next put into details the group theoretical construction of one- and two-dimensional Euclidean
wavelets. Being an elegant construction, it as well leads naturally toward extensions of the wavelet
transform. For instance wavelets on the sphere are first constructed based on the group theory, but
this will be exposed in Chapter 2. Note that from signal processing perspective, this result can also
be obtained by considering wavelet transform as a convolution with a particular family of filters.

1.6 Wavelets on the real line: 1-D wavelets

1.6.1 Group of affine transformation on the real line

We are interested in finite energy signals f ∈ L2(R,dx). Let us consider the group of affine trans-
formations on R, defined by the following semi-direct product:

GAff = Ro R∗. (1.24)

Any element of this group is represented by a couple (b; a) ◦ (b′; a′) = (b+ ab′; aa′). The neutral and
inverse elements are respectively

e = (0; 1), (b; a)−1 = (− b

a
; a−1). (1.25)

The form (1.24) permits to supply R with a transitive action

σ(b;a) : R→ R
x 7→ ax + b

which makes it a G-space. This action can be separated in two operations

- Translation :

T b : R→ R (1.26)

x 7→ x + b, b ∈ R. (1.27)

- Dilation :

Da : R→ R (1.28)

x 7→ ax, a ∈ R+
∗ . (1.29)

In order to build wavelets on the line using the transformations contained in G we need to specify
a representation in L2(R, dx) and to verify that it is square integrable. The following theorem
summarizes these results.
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1.6.2 1-D wavelet admissibility condition

Theorem 1. (Grossmann-Morlet [36]).

(i) Up to a unitary equivalence, GAff has one and only one unitary irreducible representation
(UIR) acting in L2(R, dx)

(
U(b, a)f

)
(x) =

1√
a
f
(x− b

a

)
≡ fb,a, a 6= 0, b ∈ R, (1.30)

or in the Fourier domain

(
Û(b, a)f̂

)
(ω) =

√
ae−iωbf̂(aω). (1.31)

(ii) U is square-integrable and ψ ∈ L2(R, dx) is said to be admissible if and only if

Cψ = 2π

∫ +∞

−∞
dω
|ψ̂(ω)|2
|ω| < ∞. (1.32)

The square integrability is a basic step in the process of constructing a family of wavelets. We
show the corresponding formal calculations for this case here:

∫

GAff

|〈Û(b, a)ψ̂|ψ̂〉|2 dadb

a2
=

∫∫∫∫
eib(ξ−ξ′)ψ̂(aω)ψ̂(aω′)ψ̂(ω)ψ̂(ω′)dωdω′

da

|a|dω

= 2π

∫∫
|ψ̂(aω)|2|ψ̂(ω)|2 da

|a|dω

= 2π‖ψ‖2
∫ +∞

−∞
|ψ̂(ω)|2 dω

|ω| < ∞,

where Fubini’s theorem was applied for interchanging the integrals.
Let us note that in equation (1.24) we have imposed a ∈ R, a 6= 0. In most of the cases we choose

only positive dilations. With this new definition, the representation (1.30) or (1.31) is not anymore
irreducible on L2(R,dx). It is decomposed into two parts

U = U+ ⊕ U−,

which are irreducible on the Hardy-spaces H2
+(R) and H2

−(R) defined by

H2
±(R) =

{
f ∈ L2(R,dx)|f̂(ω) = 0 ω ≶ 0

}

and which are called spaces of progressive signals (or of analytical signals). With these restrictions,
the admissibility condition equation (1.32) becomes

C+
ψ = 2π

∫ +∞

0

dω
|ψ̂(ω)|2

ω
< ∞

over H2
+(R) and similarly over H2

−(R). The wavelet analysis on L2(R, dx) is possible if it is imposed
either a strict equality of wavelets contributions of H2

+ and H2
−

0 < C+
ψ = C−ψ < +∞,
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or a symmetry of the positive and negative frequencies of the wavelet

0 < Cψ =
∫ +∞

−∞
dω
|ψ̂(ω)|2
|ω| < +∞.

The condition (1.32) imposes only small restrictions on the convergence of ψ̂ at infinity, but asks
for rapid annulation in ω = 0. The following corollary gives precise meaning of this remark.

Corollary 2. (Necessary admissibility condition).
If ψ ∈ L1(R,dx) ∩ L2(R, dx) is admissible, then ψ̂(0) = 0.

The last condition means that ψ has a zero mean.

∫ +∞

−∞
ψ(x)dx = 0. (1.33)

According to this, an admissible wavelet is a sufficiently oscillating function.
Following equation (1.22), we can explicitly define the 1-D continuous wavelet transform now.

Definition 2. A function ψ ∈ L2(R) with
∫

ψ = 0 is called wavelet. The wavelet transform of a
function f ∈ Lp(R), 1 ≤ p ≤ ∞, is defined as

Wf (b, a) = 〈ψb,a|f〉 =
∫ +∞

−∞
dx

1√
a

ψ
( t− b

a

)
f(x), b ∈ R, a > 0. (1.34)

The numbers Wf (b, a) will be often called the wavelet coefficients of f (with respect to the
wavelet ψ).

Notice that a different normalization is often used, namely, replacing 1√
a

by 1
|a| in (1.34), which

has the effect of enhancing small scales in transforms, we obtain the so called L1-normalization. It
ensures that L1 norm is conserved under dilation. However, the L2-normalization given in (1.34) is
the only one that comes from a unitary representation of GAff .

In practice, one often imposes on the analyzing wavelet ψ a number of additional properties, for
instance, restrictions on the support of ψ and of ψ̂. Or we might have requirements on ψ to have
certain number N ≥ 1 of vanishing moments:

∫ +∞
−∞ xnψ(x)dx = 0, n = 0, 1, · · ·N . This property

improves its efficiency at detecting singularities in the signal. Indeed, the transform (1.34) does not
”see” the smoothest part of the signal, that is polynomial of degree up to N (and, in general, less
interesting). Only the sharper part remains, including all singularities. For instance, if the first
moment (n = 1) vanishes, the transform will erase any linear trends in the signal.

For completing the picture of 1-D Euclidean wavelets, we next provide two basic examples.

1.6.3 Examples of 1-D wavelets

Example 1. (The 1-D Mexican hat (or Marr) wavelet)

ψmex(x) = (1− x2)e−
x2
2 (1.35)

ψ̂mex(ω) = ω2e−
ω2
2 . (1.36)

This simply is the second derivative of a Gaussian and is shown on Figure 1.5(a). It is a real
wavelet with two vanishing moments (n = 0, n = 1). If a higher derivative of the Gaussian is taken,
similar wavelets but with more vanishing moments are obtained.



1.7. Wavelets on the Euclidean plane: 2-D wavelets 19

−20 −15 −10 −5 0 5 10 15 20
−0.5

0

0.5

1

x

ψ
m

ex

(a)

−20 −15 −10 −5 0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

R
e(

ψ
M

or
le

t)

(b)

Figure 1.5: Examples of 1-D Euclidean wavelets: (a) Mexican hat wavelet, (b)real part of the
Morlet wavelet, ω0 = 7

.

Example 2. (The 1-D Morlet wavelet)

ψ(x) = π−1/4(eiω0x − e−ω2
0/2)e−x2/2 (1.37)

ψ̂(ω) = π−1/4
[
e−(ω−ω0)

2/2 − e−ω2/2e−ω2
0/2

]
. (1.38)

Actually, this is just a modulated Gaussian. The first term alone does not satisfy the admissibility
condition and so a correction term is needed. For ω0 large enough, however, this term is numerically
negligible. This wavelet is complex, and so is the corresponding transform, which enables one to
deal separably with the phase and the modulus of the transform. In applications, such as feature
detection, the phase turns out to be a crucial ingredient, and this property of the Morlet wavelet
makes it efficient and highly used there [51]. This wavelet is shown on Figure 1.5(b).

Finally, the continuous wavelet transform is covariant with respect to the group ax + b:

f(x− b0) 7→ Wf (b− b0, a), b0 ∈ R, (1.39)

a
−1/2
0 f(a−1

0 x) 7→ Wf (a−1
0 b, a−1

0 a), a0 > 0. (1.40)

The properties (1.39) and (1.40), especially with the translation, are one of the reasons why the CWT
is extremely useful for detecting particular features in signals. Indeed, the translation covariance is
lost in the discrete time WT, which is one of the drawbacks of the discrete wavelet scheme based
on multiresolution which we will meet later in this chapter.

1.7 Wavelets on the Euclidean plane: 2-D wavelets

In 1-D, the CWT amounts to projecting the signal onto the wavelet ψb,a, obtained by translation
and dilation of the mother wavelet ψ. Thus, the transform is fully determined by these elementary
operations of the line. Consequently, in order to derive the CWT for 2-D Euclidean case, it is normal
to consider first the elementary operations which one wants to apply to the 2-D signal. The wavelet
construction has been generalized to two and higher dimensions [60, 61]. Actually, as it will be
shown later, considering the affine transformations first, allows one to extend the CWT to much
more general situations - in higher dimensions and curved spaces.
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1.7.1 Similitude group on the Euclidean plane

For extending wavelet analysis to 2-D, Murenzi defined a group which contains translations, dilations
and rotations [61]. To illustrate this we take as a model a two-dimensional image. This is a finite
energy signal f ∈ L2(R2,d2~x). The operations applied to f are translations in the Euclidean plane
(~b ∈ R2), global dilations (zooming in and out by a > 0) and rotations around the origin (θ ∈ [0, 2π)).
Together these transformation constitute a four-parameter group , called the similitude group on
the Euclidean plane and denoted by SIM(2). The last two operations (dilations and rotation) are
commutative and the only possibility for expressing this group remains

G = R2 o (R+
∗ × SO(2)) ∼ SIM(2). (1.41)

The action on the plane is

~x = (~b, a, θ)~y = arθ~y +~b, (1.42)

where rθ is the 2× 2 rotation matrix.
A generic element of this group is written as g = (~b; (a, θ)). There is a realization of SIM(2) by

means of 3 non-singular matrices

g =

(
arθ

~b

0 1

)
, (1.43)

where

rθ =

(
cos θ − sin θ

sin θ cos θ

)
, (1.44)

is the classical realization of the rotation group SO(2).
The three operations which compose SIM(2) are realized in terms of unitary operators on

L2(R2,d2x):

- translations:
(
T

~bf
)
(~x) = f(~x−~b) ,

- dilations : (Daf)(~x) = 1
af

(
~x
a

)
,

- rotations : (Rθf)(~x) = f(rθ~x).

The natural action of the similitude group on the Euclidean plane is

σ[g] : R2 → R2, (1.45)

σ
[
(~b; (a, θ))f

]
~x = arθ~x +~b, (1.46)

whose product makes a unitary representation of the similitude group in L2(R2,d2~x) as

[U(
~b; (a, θ)

)
f ](~x) =

(
T

~bDaRθf
)
(~x) (1.47)

=
1
a
f
(
a−1r−θ(~x−~b)

)
. (1.48)

This representation is irreducible on L2(R2, d2~x). It is as well square-integrable and offers a more
general admissibility condition as shown in the following theorem.
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1.7.2 2-D wavelet admissibility condition

Theorem 3. Let ψ ∈ L2(R2,d2~x) such that

0 < Cψ =
∫ ∫

R2
d2~k

|ψ̂(~k)|2
|~k|2

< +∞. (1.49)

Then all the elements f ∈ L2(R2,d2~x) admit the decomposition

f =
1

Cψ

∫

SIM(2)

d2~bdθ
da

a3
〈U

(
~b; (a, θ)

)
ψ|f〉 U(

~b; (a, θ)
)
ψ (1.50)

in f ∈ L2(R2, d2~x).

If we impose that the wavelet belongs to L1(R2), the Fourier transform is continuous and we
obtain a simpler condition

Corollary 4. An element ψ ∈ L1(R2, d2~x) ∩ L2(R2, d2~x) is admissible only if it satisfies

ψ̂(0) = 0, (1.51)

which means ∫

R2
d2~x ψ(~x) = 0. (1.52)

This corollary shows that in order one wavelet to be admissible, its mean must be zero. Conse-
quently, such an wavelet can be used as a band-pass filter. The associated wavelet transform based
on so described family of wavelets is the corresponding:

Definition 3. Let f ∈ L2(R2, d2~x) and ψ is an admissible wavelet. The 2-D wavelet transform of
f with respect to ψ is said to be the function Wf ∈ L2(SIM(2),dµL).

Wf

(
~b; (a, θ)

)
= 〈U

(
~b; (a, θ)

)
ψ|f〉 (1.53)

= a−1

∫

R2
d2~x ψ

(
a−1r−θ(~x−~b)

)
f(~x) (1.54)

= a

∫

R2
d2~kei~b~kψ̂(ar−θ(~k))ŝ(~k). (1.55)

From the above definition it is clear that the CWT on the Euclidean plane Wf is the scalar
product of f with the transformed wavelet ψ~b,a,θ, considered as a function of (~b, a, θ).

Let us rewrite the 2-D wavelet transform from Definition 3 as

Wf

(
~b; (a, θ)

)
= 〈ψ(~b;(a,θ))|f〉 (1.56)

=
1
a

∫

R2
d2~x ψ

(r−θ(~x−~b)
a

)
f(~x). (1.57)

If we denote
ψ̃(a,θ)(~x) =

1
a
ψ

(
− r−θ~x

a

)
, (1.58)

we can see that equation (1.57) can be expressed as

Wf

(
~b; (a, θ)

)
= (f ∗ ψ̃(a,θ)(~b)), (1.59)

which is a convolution of the signal with the wavelet ψ, to which it is previously applied a rotation
of angle θ and a dilation by a factor a.
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1.7.3 Examples of 2-D wavelets

Example 3. (The 2-D Mexican hat wavelet)

ψ(~x) = −∆exp(−1
2
|~x|2) = (2− |~x|2) exp(−1

2
|~x|2), ∆ = ∂2

x + ∂2
y . (1.60)

This is real, rotation invariant wavelet, with vanishing moments of order up to 1, also known as
LOG wavelet∗ This particular wavelet is, for instance, efficient for a fine point-wise analysis, but not
for detecting directions. In some applications it might be useful to introduce additional parameter,
namely, the width σ of the Gaussian. Thus the wavelet (1.60) becomes:

ψ(~x) = −∆exp(−σ2|~x|2
2

), (1.61)

ψ̂(~ω) =
|~ω|2
σ2

exp(−|~ω|
2

2σ2
). (1.62)

This wavelet is shown on Figure 1.6(a).
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Figure 1.6: Examples of 2-D Euclidean wavelets: (a) 2-D Mexican hat wavelet, σ = 1.7, (b) 2-D
DOG wavelet, α = 0.5.

Example 4. (”Difference-of-Gaussian” (DOG) wavelet):

ψDOG(~x) =
1

2α2
exp(− 1

2α2
|~x|2)− exp(−1

2
|~x|2), (0 < α < 1) (1.63)

This is another interesting class of wavelets obtained as the difference of two positive functions.
In order to get an isotropic wavelet in this way, the only possibility is to take the difference between
a single isotropic function ψ and a contracted version of the latter. A typical example of this class
of wavelets, shown on Figure 1.6(b).

There are many other particular examples. In all cases, the main use of the 2-D wavelets is for
the analysis of images. In particular, the 2-D CWT can be used for the detection or determination
of specific features, such as hierarchical structure, edges, filaments, contours, etc. Of course, the
type of wavelet chosen depends on the precise aim.

∗It was initially introduced by Marr and Hildreth, in their work on vision, because it is obtained by applying an

isotropic differential operator of second order to the Gaussian.
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We must note that the reconstruction formula in the continuous wavelet transform cannot be
used in practice. This problem is corrected in the discrete version of the wavelet transform which
we now describe.

1.8 Discrete Wavelet Frames

In this section we reveal the meaning of discretization of the continuous wavelet transform. We
start the discussion with the classical frames in Section 1.8.1. Then we continue with continuous
and half-continuous frames in Section 1.8.2, and controlled and weighted frames in Section 1.8.3.
We conclude with 2-D Euclidean frames in Section 1.8.4.

1.8.1 Classical frames

Let H be a Hilbert space with scalar product 〈·|·〉 and the associated norm ‖f‖ =
√
〈f |f〉, f ∈ H.

We start with a precise definition adopting the terminology introduced by Duffin and Schaefer [30]:

Definition 4. Let Γ be a countable set. A family of vectors Ψ = {ψn ∈ H : n ∈ Γ} is a discrete
frame in H if there exist two constants 0 < A 6 B < ∞ such that

A‖f‖2 6
∑

n∈Γ

|〈ψn|f〉|2 6 B‖f‖2, ∀ f ∈ H. (1.64)

The frame is called tight if A = B. When A = B = 1 and ||ψn|| = 1, ∀n ∈ Γ, the frame is just
an orthonormal basis. Given a frame Ψ, the associated frame operator L is defined as

Lf =
∑

n∈Γ

〈ψn|f〉ψn. (1.65)

This is, of course, a bounded operator. Indeed [72]:

Proposition 5. If Ψ is a frame of H, the associated frame operator L is bounded and verifies

A 1| 6 L 6 B 1|, (1.66)

where 1| denotes the unit operator and P 6 Q means 〈g|Pg〉 6 〈g|Qg〉, ∀ g ∈ H, for two given
operators P and Q.

It follows that the frame operator L is not only bounded, it also has a bounded inverse, that is,
it belongs to the set GL(H) [2]. We emphasize that GL(H) is the natural class of operators in the
context of frame theory. Indeed, (1.64) means that the norm ‖ · ‖ and the set of coefficients {〈ψn|·〉}
define the same Hilbertian topology on H. And the elements of GL(H) are precisely the natural
isomorphisms for such a Hilbertian structure, exactly as unitary operators are the isomorphisms
for the Hilbert space structure defined by a given inner product 〈·|·〉 (note the difference between a
Hilbert space and a Hilbertian space: the former is attached to a given inner product, the latter to
an equivalence class of inner products).

It is possible to reconstruct a function from its frame coefficients. Let us introduce first a related
family of vectors Ψ̃ = {ψ̃n : n ∈ Γ} defined by

ψ̃n = L−1ψn. (1.67)

Then, we have the following result:
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Proposition 6. [25] The family Ψ̃ is a frame with bounds 0 < B−1 6 A−1 < ∞, called the dual
frame of Ψ. Any f ∈ H can be reconstructed from its frame coefficients through

f =
∑

n∈Γ

〈ψn|f〉 ψ̃n =
∑

n∈Γ

〈ψ̃n|f〉ψn. (1.68)

The proof of this proposition can be found in [25]. Note that if the frame is tight then ψ̃n = 1
Aψn,

and the same vectors are used for the decomposition and for the reconstruction. In fact, 〈Lf |f〉 =
A‖f‖2 for every f ∈ H, so L = A 1| and L−1 = A−1 1|. This is the most attractive property of a tight
frame.

Finally, when A ' B we can have a good approximation of the element f by setting

f ' 2
A + B

Lf =
2

A + B

∑

n∈Γ

〈ψn|f〉ψn, (1.69)

since in this case 2
A+B L ' I.

1.8.2 Continuous and half-continuous frames

Several variations on the original frame concept have been studied. For instance, it is possible to
extend the original definition to the case of continuous decompositions [72], as follows. Let C be a
measurable space with measure dµ(ν). Given a family Ψ = {ψν ∈ H, ν ∈ C}, we define the frame
operator

L : f ∈ H 7→ Lf =
∫

C
dµ(ν) 〈ψν |f〉ψν . (1.70)

The set Ψ is called a continuous frame if L is a bounded operator. This guarantees that L ∈ GL(H),
and thus also the reconstruction of f from its wavelet coefficients {〈ψν |f〉}.

It is also possible to have a mixed set of indices where some of them are continuous while the rest
are discrete. If we note by ν ∈ C the continuous set and by n ∈ D the discrete one, then we say that
the family Ψ = {ψν,n ∈ H : ν ∈ C, n ∈ D} is a frame if there exist two constants 0 < A 6 B < ∞
such that, ∀f ∈ H,

A ‖f‖2 6
∑

n∈D

∫

C
dµ(ν) |〈ψν,n|f〉|2 6 B‖f‖2. (1.71)

In that case, the family Ψ is called a half-continuous frame.

1.8.3 Controlled and weighted frames

We introduce in this section a slight variation on the definition of frames, called controlled frames.
It helps tuning the frame bounds in order to obtain a better approximation of f by Lf (as in (1.69))
[40, 54, 27].

Controlled frames

Definition 5. Let O ∈ GL(H). A frame controlled by the operator O is a family of vectors Ψ =
{ψn ∈ H : n ∈ Γ} such that there exist two constants A,B ∈ R∗+ verifying

A ‖f‖2 ≤
∑

n∈Γ

〈ψn|f〉 〈f |O ψn〉 ≤ B ‖f‖2, (1.72)

for all f ∈ H.
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In that case, the frame operator is given by

L
O
f = OL f =

∑

n∈Γ

〈ψn|f〉O ψn. (1.73)

Proposition 7. The family Ψ is a frame of H controlled by O ∈ GL(H) iff Ψ is a (classical) frame
of H.

This result is obtained by projecting L
O
f on f and noting that L

O
= OL. Therefore, if Ψ is

controlled by O, there are two constants A,B ∈ R∗+ such that

A I ≤ L
O

≤ B I (1.74)

⇔
AO−1 ≤ L ≤ B O−1, (1.75)

with L the classical frame operator defined in (1.65). Since there are two constants AO , BO ∈ R∗+
such that A

O
≤ O ≤ B

O
, we see that a frame controlled by O with frame bounds A, B ∈ R∗+ is a

genuine frame with frame bounds AB−1
O

and BA−1
O

. Conversely, if A′ ≤ L ≤ B′ for A′, B′ ∈ R∗+,
then A′O ≤ LO ≤ B′O and A′AO ≤ LO ≤ B′BO , which proves (1.72).

As a consequence, given a controlled frame Ψ, every function f ∈ H may be reconstructed as in
(1.68) without using the operator O. But when A ' B in (1.74), 2

A+B L
O

is close to the identity
and we obtain a new approximation for f

f ' 2
A + B

LOf =
2

A + B

∑

n∈Γ

〈ψn|f〉 O ψn. (1.76)

Thus, if |B
O
/A

O
| < |B/A|, Eq. (1.76) gives a better approximation to f than the one obtained

using the frame operator L in (1.69). If, in addition, it turns out that O ψn is easily computed,
then we have a simple and good reconstruction of f , as desired. Thus, while a controlled frame is
equivalent to a classical frame in the mathematical sense, as stated in Proposition 7, they can have
very different numerical properties.

Weighted frames

A particular case of controlled frame occurs when the operator O is diagonal with respect to the
elements ψn of the frame Ψ, i.e., if O ψn = wnψn for wn ∈ R. Notice that, since O is positive, we
have necessarily wn > 0. This diagonalization of the operator O leads to the concept of weighted
frames.

Definition 6. Let Ψ = {ψn : n ∈ Γ ⊂ Z} be a family of elements of H and {wn ∈ R∗+ : n ∈ Γ} a
sequence of strictly positive weights. We say that this family is a w-frame of H, if there exist two
constants 0 < A 6 B < ∞ such that, for every f ∈ H,

A‖f‖2 6
∑

n∈Γ

wn |〈ψn|f〉|2 6 B‖f‖2. (1.77)

In fact, if wn > 0 for all n ∈ Γ, a w-frame {ψn} corresponds to the classical frame {√wnψn}.
But it will be useful to make these weights more explicit later on. It is interesting to note that the
notion of weighted frames was already present in the beginnings of frame theory, as developed by
Duffin and Schaeffer [30], in the context of the reconstruction of band-limited signals. They have
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shown that if supp(f̂) ⊂ [− π
T , π

T ], then it is possible to reconstruct the continuous function f from
an irregular sampling {f(tn)}n∈Z, by using the frame

{
√

tn+1 − tn−1

2
hT (t− tn) : n ∈ Z}, (1.78)

where hT (t) = sinc(πt
T ). We see that in this case some strictly positive weights wn =

√
tn+1−tn−1

2

appear, which reflect the particular sampling geometry. We will see in the next chapter, section
2.4.1, similar considerations are needed for an equi-angular spherical sampling.

Even if a weighted frame may also be expressed as a classical frame, we point out that it is
possible to define a w-frame operator Lw : H → H in this context by

Lwf =
∑

n∈Γ

wn〈ψn|f〉ψn, (1.79)

for every f ∈ H. This is an invertible operator and the reconstruction formula for f reads

f = L−1
w Lwf = L−1

w

∑

n∈Γ

wn 〈ψn|f〉ψn =
∑

n∈Γ

wn 〈ψn|f〉 ψ̃n, (1.80)

where ψ̃n = L−1
w ψn.

Half-continuous controlled frames

To conclude this section, let us remark that we can define half continuous frames controlled by
an operator from GL(H). In that case, taking the same notations as in Section 1.8.2, a family
Ψ = {ψν,n ∈ H : ν ∈ C, n ∈ D} constitutes such a frame if, for two constants A,B ∈ R∗+,

A ‖f‖2 6
∑

n∈D

∫

ν∈C
dµ(ν) 〈ψν,n|f〉 〈f |O ψν,n〉 6 B‖f‖2, (1.81)

for all f ∈ H and a given O ∈ GL(H). As before, it is easy to see that a half-continuous controlled
frame is equivalent to a classical half-continuous frame on H. A particular case arises when O can
be factorized in

O ψν,n = wn Õ ψν,n, (1.82)

where Õ ∈ GL(H) and wn are positive weights. Then, (1.81) becomes

A ‖f‖2 6
∑

n∈D
wn

∫

ν∈C
dµ(ν) 〈ψν,n|f〉 〈f |Õ ψν,n〉 6 B‖f‖2. (1.83)

1.8.4 2-D wavelet frames

Proceeding as in 1-D, one first obtains the following natural discretization scheme.

- for the dilations: a logarithmic scale aj = a0λ
−j , j ∈ Z, for some λ > 1. We put a0 = 1.

- for the rotations: uniformly subdivision of the interval [0, 2π) into L0 pieces. For some natural
number L0 ∈ N, that is, θl = lθ, θ0 = 2π

L0
, l ∈ ZL0 = {0, · · ·L0 − 1}.

- for the translations: the two previous discretization are taken into account, putting

~bm ≡ ~bjlm0m1 = λ−jrlθ0(~um0m1), (1.84)

with
~um0m1 ≡ (m0β0,m1β1), m0, m1 ∈ Z0, β0, β1 ≥ 0. (1.85)
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Thus the discretization grid reads:

Λ = Λ(λ,L0, β0, β1) =
{

(λ−j , l
2π

L0
,~bjlm0m1), (j, l, m0,m1) ∈ Z× ZL0 × Z2

}
. (1.86)

The resulting discretized wavelet transform, which is a map from L2(R2, d2~x) to l2(Z× ZL0 × Z2),
reads now:

Sjlm0m1 ≡ S(~bm, λ−j , lθ0) = 〈ψjlm0m1 |s〉 (1.87)

= λj

∫

R2
d2~xψ(λjr−lθ0(~x)− ~um0,m1)f(~x) (1.88)

= λ−j

∫

R2
d2~kei~bm0,m1

~k ψ̂(λ−jr−lθ0(~k))f̂(~k), (1.89)

with wavelet coefficients
{

Sjlm0m1 , (j, l,m0,m1) ∈ Z× ZL0 × Z2
}

. (1.90)

It remains to be found conditions on the grid Λ(λ,L0, β0, β1), that is, on the parameters λ,L0, β0, β1,
such that the family of wavelets {ψjlm0m1 , (j, l,m0,m1) ∈ Z×ZL0×Z2} is a frame. This was worked
out in [61] and here we provide just the following theorem:

Theorem 8. Assume the wavelet ψ satisfies the following conditions:

(i) s(λ,L0, ψ) = ess inf
~k∈R2

∞∑

j=−∞

L0∑

l=0

|ψ̂(λ−jr−lθ0(~k))|2 (1.91)

= ess inf
(|~k|,θ)∈[0,λ)×[0,2π)

∞∑

j=−∞

L0∑

l=0

|ψ̂p(λ−j |~k|, ϕ− lθ0)|2 > 0, (1.92)

where ~k = |~k|(cos ϕ, sin ϕ) and ψ̂p is the Fourier transform of ψ in polar coordinates.

(ii) S(λ,L0, ψ) = sup
~k∈R2

∞∑

j=−∞

L0∑

l=0

|ψ̂(λ−jr−lθ0(~k))|2 (1.93)

= sup
(|~k|,θ)∈[0,λ)×[0,2π)

∞∑

j=−∞

L0∑

l=0

|ψ̂p(λ−j |~k|, ϕ− lθ0)|2 < ∞. (1.94)

(iii) sup
~u∈R2

(1 + |~u|)1+εα(~u) < ∞, (1.95)

where ε > 0 and

α(~u) = sup
~k∈R2

∞∑

j=−∞

L0∑

l=0

|ψ̂(λ−jr−lθ0(~k)) + ~u|2|ψ̂(λ−jr−lθ0(~k))|2. (1.96)

Then there exist constants βc
0, β

c
1 > 0 such that:

(1) ∀β0 ∈ (0, βc
0), β1 ∈ (0, βc

1), the family {ψljm0m1} associated to (λ,L0, β0, β1) is a frame of
L2(R2,d2~x);

(2) ∀δ > 0, there exist β0 ∈ (βc
0, β

c
0+δ), β1 ∈ (βc

1, β
c
1+δ), such that the family {ψljm0m1} associated

to (λ,L0, β0, β1) is not a frame of L2(R2, d2~x).



28 Chapter 1. Manifolds, Signals and Wavelets

The proof of this theorem can be found in [8].
Clearly, the discretization of the CWT leads to the theory of frames. For many practical purposes

of signal processing, a tight frame is almost as good as an orthonormal basis. If one remains with
the standard wavelets, one could not do better since wavelets does not generate any orthonormal
basis. There are cases in which such basis are required, for instance in data compression. For this
operation, consisting in removing all wavelet expansion coefficients below a fixed threshold, would
be ideal an orthonormal basis. The reason for this is that we need wavelet coefficients to be as
de-correlated as possible in order to not introduce any bias in this operation.

Fortunately, it turns out that one can design wavelets that do generate such bases. This leads
to discrete-time WT and the key point was the discovery that almost all examples of orthonormal
bases of wavelets can be associated to multiresolution analysis [57, 55].

We restrict our presentation to this but further information on constructing orthonormal wavelet
bases can be found in [54].

1.9 Summary

• Signals are constrained on flat (Euclidean) or on curved (non-Euclidean) manifolds.

• The signal analysis turns to be more efficient in time-frequency representation. The basic idea
of the wavelet transform is to decompose a signal locally into contributions living at different
scale.

• One basic method for construction wavelets on a manifold is based on the group theory. In
this case the wavelets coincide with the coherent states associated to a group representation.
But the WT defined as the scalar product of the signal with the transformed wavelet can also
be seen as the convolution of the signal with the scaled flipped and conjugated wavelet. In
order to call a dilated and translated(rotated) function a wavelet, it must satisfy a particular
admissibility condition.

• The CWT on the line is derived from the natural unitary representation of the ax + b group
in the space of finite energy signals L2(R,dx), while the 2-D wavelets are derived from the
similitude group SIM(2) on the Euclidean plane.

• For numerical implementation of great use is the discrete wavelet transform



Wavelets and Frames on

the Sphere 2
Now it is time to enter the proper subject of this dissertation, namely, the wavelet
analysis on non-Euclidean manifolds. We start first by the sphere, a non-Euclidean
manifold of positive curvature. We recall the group theoretical construction of wavelets
on the sphere.

Then we turn toward discretization of the continuous spherical wavelets and start
with building half-continuous spherical frames. The first approach toward them stems
from a straightforward generalization of the classical Euclidean construction but we
show that it cannot yield a tight frame (a property rooted in the fact that the con-
tinuous version of the wavelet transform is not an isometry). In the second approach
we start from the Plancherel relation and determine under which conditions we can
obtain controlled frames. We then show that a controlled frame may be constructed in
order to get an easy reconstruction of functions from their decomposition coefficients.
We completely discretize the CWT on the sphere and give an example of frame de-
composition of spherical data. As a final step in this chapter, we construct spherical
Laplacian pyramid.

2.1 Spherical Geometry

2.1.1 Spherical coordinates

The 2-sphere (S2 ∈ R3) of radius r is a compact manifold of constant positive curvature (κ = 1)
and equation x2

1 + x2
2 + x2

3 = r2. In polar coordinates (Figure 2.1(a)), we write:

x0 = r cos θ

x1 = r sin θ sin ϕ, r ∈ (0,∞), θ ∈ [0, π], ϕ ∈ [0, 2π)

x2 = r sin θ cos ϕ

In the following discussion, we are working with the two-dimensional sphere but for simplicity
we call it just sphere.

29
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In order to visualize the sphere (or any other non-Euclidean manifold) in the plane one needs to
perform a projection.

x1

x0

x2

S

N

(a)

r

r

r

S

N

2

O

P

X

(b)

Figure 2.1: Spherical geometry: (a) spherical coordinates, (b)cross-section of a stereographic
projection through the South Pole.

2.1.2 Stereographic projection of the sphere

The stereographic projection from the South Pole maps any point of the surface of the sphere onto
a point of the tangent plane at the North Pole, as depicted on Figure 2.1(b). In 4SOP we have:

• ^SOP = 180o − θ,

• OS = OP = r

• ^OSP = ^OPS = ψ.

Then, for the angles in 4SOP we get: 180o − θ + 2ψ = 1800, from where we obtain ψ = θ
2 . From

4NSX we have NX = 2r tan θ
2 , which is the stereographic projection. Thus, the stereographic

projection Φ : S2 7→ C (here S2 is taken as the Riemann sphere and the tangent plane at the North
Pole as the complex plane C) is a bijection given by

Φ(ω) = ζ = 2 tan
θ

2
eiϕ, ω ≡ (θ, ϕ), θ ∈ [0, π], ϕ ∈ [0, 2π). (2.1)

2.2 Harmonic analysis on the sphere

Let us first introduce the basic Fourier analysis on the sphere and then some numerical implemen-
tation aspects concerning the discrete version of the spherical Fourier transform. We will use this
background to build discrete frames on the sphere (in Section 2.4) and the Laplacian pyramid on
the sphere (in Section 2.5).
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2.2.1 Fourier transform on the sphere

Before entering into the details of the continuous wavelet transform on the 2-sphere, we need to have
a basic notion of the Fourier analysis on this non-Euclidean manifold [29, 39]. Let L2(S2, dµ(θ, ϕ))
denote the Hilbert space of square integrable functions on S2 with the invariant measure on the
sphere dµ(ω) = sin θdθdϕ where ω, θ, ϕ are as defined in (2.1). A function on the sphere is an
axisymmetric function (or zonal function) if it is invariant under rotation on itself, i.e. such a
function is independent of the angle ϕ, f(θ). Any non-axisymmetric function is given as a general
function f(θ, ϕ) ∈ L2(S2, dµ(θ, ϕ)).

Let us recall that a rotation ρ ∈ SO(3) may be parameterized by its Euler angles ϕ, θ, ϑ ∈ S1 in
the following way

ρ = ρ(ϕ, θ, ϑ) = Rx0
ϕ Rx1

θ Rx0
ϑ , (2.2)

where ρ stands for three-dimensional rotation matrix acting on the coordinates ω ≡ (θ, ϕ) and
Ru

γ denotes a rotation by an angle γ around the u axis. If g is an axisymmetric function, then
Rρg = R[ω]g, where [ω] = ρ(ϕ, θ, 0). In this way, if g is localized around the North Pole, then R[ω]g

is localized around ω = (θ, ϕ) ∈ S2.
In polar coordinates, the usual inner product is given by

〈f, g〉 =
∫ π

0

∫ 2π

0

dϕ sin θdθf(θ, ϕ)g(θ, ϕ) (2.3)

=
∫

S2
dµ(ω)f(ω)g(ω). (2.4)

As it is known from [74], the spherical harmonics provide an orthonormal basis for L2(S2). For
any non-negative integer l and an integer m such that |m| ≤ l, the (l, m)-spherical harmonic Y m

l

is a harmonic homogeneous polynomial of degree l. The harmonics of degree l span a subspace of
L2(S2) of dimension 2l + 1 which is invariant under the relations of the sphere. The expansion of
any function f ∈ L2(S2) in terms of spherical harmonics is written

f =
∑

l≥0

∑

|m|≤l

f̂(l, m)Y m
l (2.5)

and f̂(l, m) denotes the (l,m)-Fourier coefficients, equal to 〈f, Y m
l 〉. In coordinates (θ, ϕ), Y m

l has
the factorization

Y m
l (θ, ϕ) = kl,mPm

l (cos θ)eimϕ, (2.6)

where Pm
l is the associated Legendre function of degree l and order m, and kl,m =

[
2l+1
4π

(l−m)!
(l+m)!

]2

is
a normalization constant. The orthonormality and completeness relations respectively read:

∫ π

0

∫ 2π

0

dϕdθ sin θ Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ) = δll′δmm′ , (2.7)

and ∑

l∈N

∑

|m|≤l

Y m
l (θ′, ϕ′) Y m

l (θ, ϕ) = δ(cos θ′ − cos θ)δ(ϕ′ − ϕ), (2.8)

where (·) denotes the complex conjugate.
Consequently, separating variables according to (2.6) shows that the computation of the spherical

harmonic transform can be reduced to a regular Fourier transform in the longitudinal coordinate ϕ

followed by a projection onto the associated Legendre functions

f̂(l,m) = 〈f, Y m
l 〉 = kl,m

∫ π

0

∫ 2π

0

dϕdθ sin θe−imϕf(θ, ϕ)Pm
l (cos θ). (2.9)
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2.2.2 Wigner transform

The Wigner D−functions Dl
mn(ρ) for ρ = (ϕ, θ, φ) ∈ SO(3) as defined in (2.2), and with l ∈

N,m, n ∈ Z, and |m|, |n| ≤ l, are the matrix elements of the irreducible unitary representation
of weights l of the rotation group SO(3) in L2(SO(3),dρ). Any function g(ρ) ∈ L2(SO(3), dρ) is
uniquely given as a linear combination of Wigner D−functions (inverse Wigner transform):

g(ρ) =
∑

l∈N

2l + 1
8π2

∑

|m|,|n|≤l

ĝ(l,m, n)Dl
mn(ρ), (2.10)

for the Wigner coefficients (direct Wigner transform)

ĝ(l,m, n) =
∫

ρ∈SO(3)

dρDl
mn(ρ)g(ρ), (2.11)

with |m|, |n| ≤ l.

2.2.3 Convolution on the sphere

In general, the convolution on the sphere is well defined and has many properties in common with
its equivalent in Rn. It is useful to treat the convolution by the means of axisymmetric functions,
i.e. ϕ = 0. Let us consider the elements of L2([−1,+1],d cos θ), for which the Fourier series are
developed in Legendre polynomials:

ψ̂(l) =

√
4π

2l + 1

∫ +1

−1

d cos θ ψ(cos θ)Pl(cos θ), (2.12)

ψ(cos θ) =
∞∑

l=0

√
2l + 1

4π
ψ̂(l)Pl(cos θ). (2.13)

Therefore, for two measurable functions on S2, f and g, if g is axisymmetric , the convolution of
both reads [73]:

(g ∗ f)(γ) =
∫

S2
dµ(ω)g(ω)f(~ω · ~γ), (2.14)

where ~ω · ~γ is the scalar product in R3 of unitary vectors in the direction of ω and γ.
Of great importance for us is the following convolution theorem.

Theorem 9. (Spherical Convolution Theorem)[29] For functions f, g ∈ L2(S2), the transform
of the convolution is a point-wise product of the transforms:

(̂g ∗ f)(l,m) =

√
4π

2l + 1
ĝ(l, 0)f̂(l, m). (2.15)

Therefore, a popular method to perform spherical convolution is to first project the discretized
spherical function and filter onto the span of spherical harmonics and perform the convolution in the
Fourier domain via simple multiplication. We must note that the convolution theorem is independent
of the sampling. Hence, as long as we can project our samples onto the span of spherical harmonics
accurately, we can perform convolution via the Fourier domain accurately, regardless of the sampling
grid.
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2.2.4 Correlation on the sphere

The correlation on the sphere is defined as the scalar product between a function f and an arbitrary
another function g rotated on itself in a direction ψ ∈ [0, 2π), and translated at any point ω0 ≡
(θ0, ϕ0) on the sphere.

For a rotation ρ ∈ SO(3) as defined in (2.2), the correlation on the sphere can be decomposed
in Wigner D-functions [76]. The Wigner coefficients ̂〈Rρg|f〉(l, m, n) of the correlation 〈Rρg|f〉 are
given as the point-wise product of the scalar spherical harmonics coefficients f̂(l, m) and ĝ(l, n).
The following correlation holds:

〈Rρg|f〉 =
∑

l∈N

2l + 1
8π2

∑

|m|,|n|≤l

̂〈Rρg|f〉(l, m, n)Dl
mn(ρ), (2.16)

with the Wigner coefficients on SO(3) given as

̂〈Rρg|f〉(l, m, n) =
8π2

2l + 1
ĝ(l, n)f̂(l, m). (2.17)

The following proposition shows that the correlation has a simple expression in the Fourier
domain. When reduced to axisymmetric function, the correlation on the sphere is equivalent to the
convolution on the sphere:

Proposition 10. (Spherical Correlation) Let f ∈ L2(S2) and let g ∈ L2(S2) be axisymmetric.
Then

(̂g ? f)(l, m) =

√
4π

2l + 1
ĝ(l, 0) f̂(l, m), ∀(l,m) ∈ N , (2.18)

where ĥ denotes the Fourier transform of h on S2 and N = {(l, m) : l ∈ N, m ∈ Z, |m| ≤ l}.

A proof of this classical result can be found in [29].
Equations (2.18) suggests a fast implementation of the FT in the Fourier domain. We will use

this later, in Section 2.4, for discretization of the continuous wavelet transform on the sphere.
We say that a function f ∈ L2(S2) is band-limited of bandwidth β ∈ N if

f ∈ Bβ = { g ∈ L2(S2) : ĝ(l,m) = 0, ∀ (l, m) ∈ N such that l ≥ β }. (2.19)

We will work with data discretized on the equi-angular grid Gβ defined by:

Gβ := {(θp, ϕq) : p, q ∈ Z[2β]}, (2.20)

with Z[N ] = {0, . . . , N − 1}, θp = (2p + 1) π
4β and ϕq = q π

β . Actually, {θp} constitutes a pseudo-
spectral grid, localized on the zeros of a Chebishev polynomial of order 2β [15, 29]. The next result,
proved in [29], will be of great importance in what follows. It shows that there is a quadrature
formula for calculating the Fourier coefficients of band-limited functions.

Proposition 11. (Spherical Sampling) Let g ∈ Bβ with β ∈ N0. Then there exist weights
wβ

p ∈ R∗+ such that

ĝ(l, m) =
∫

S2
dµ(θ, ϕ) Y m

l (θ, ϕ) g(θ, ϕ) (2.21)

=
∑

p,q∈Z[2β]

wβ
p Y m

l (θp, ϕq) g(θp, ϕq), (2.22)
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for all (l, m) ∈ Nβ = {(l, m) ∈ N : l < β} and (θp, ϕq) ∈ Gβ . Explicitly

wβ
p =

2π

β2
sin(θp)

∑

k∈Z[β]

1
2k + 1

sin
(
(2k + 1)θp

)
, (2.23)

with
∑

p∈Z[2β]

∑
q∈Z[2β] wβ

p = 4π.

This sampling theorem ensures that the discretization of the spherical functions is reversible (i.e.
no aliasing). Equation (2.22) is in fact a Discrete Fourier Transform on the sphere. The Inverse
Discrete Fourier Transform is obtained as

g(θp, ϕq) =
∑

(l,m)∈Nβ

ĝ(l, m)Y m
l (θp, ϕq), p, q ∈ Z[2β]. (2.24)

For l and m fixed, the evaluation of (2.22) needs O(β2) operations. Then for (l,m) ∈ Nβ , i.e.,
β2 elements, O(β4) operations are needed. The same estimate is valid for the computation of the
inverse Fourier transform. The performance of this evaluation may be greatly improved if one notes
that the spherical harmonic function Y m

l (θp, ϕq) , as defined in equation (2.6), is a separable function
in terms of the variables θ and ϕ, which automatically implies O(β3) [76]. Then a discrete Fourier
transform on S1 may be applied on the longitude ϕq in (2.22), which yields

ĝ(l, m) =
∑

p,q∈Z[2β]

wβ
p g(θp, ϕq)Y m

l (θp, ϕq) (2.25)

=
∑

p∈Z[2β]

wβ
p nlm ǧ(θp,m)Pm

l (cos θp), (2.26)

with ǧ(θp,m) =
∑

q∈Z[2β] g(θp, ϕq) e−imϕq .

2.3 Wavelets on the sphere

Antoine and Vandergheynst built the theory of wavelets on the sphere [10, 9, 11]. They started by
exploring the geometry of the problem, which led them to considering the conformal group of the
sphere and this permitted them to construct a spherical dilation in a purely algebraic way. The
problem then was brought to the study of coherent states associated to this conformal group, i.e.
the Lorentz group SO0(3, 1). After isolating a suitable representation from the principle series,
they showed that it is square integrable in the generalized sense of Ali, Antoine and Gazeau [3],
which means that the associated coherent states are indexed by a homogeneous space of the whole
conformal group. Moreover, they showed that this theory satisfies an Euclidean limit, in other
words, CWT on the sphere locally converges to the usual theory in the tangent plane, or for big
radius of curvature as imposed by geometry.

2.3.1 Affine transformations on the sphere and their group theory

The spherical CWT, as in 1-D and 2-D Euclidean cases, is based on affine transformations. Conse-
quently, the first step toward constructing a CWT on S2 is to identify the appropriate transforma-
tions [10]. These are of two types, motions(displacements) and dilations:

(i) Motions are given by elements of the rotation group SO(3), which indeed act transitively on
S2, and S2 ≡ SO(3)/SO(2).

(ii) Dilations are obtained in two ways:
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• dilations around the North Pole, DN , are obtained by considering usual dilations in the
tangent plane at the North Pole and lifting them to S2 by inverse stereographic projection
from the South Pole;

• dilation around any other point ω ∈ S2 is obtained by moving ω to the North Pole by a
rotation γ ∈ SO(3), performing a dilation DN and going back by inverse rotation.

What follows next is to identify a group of affine transformations on S2. The rotation group
SO(3) is mapped onto SU(2), with homographic action on C:

ζ 7→ aζ + b

cζ + d
,

(
a b

c d

)
∈ SU(2). (2.27)

A dilation ζ 7→ aζ, a > 0 is represented by the diagonal matrix diag(a
1
2 , a−

1
2 ). Combining these

two transformations we obtain the full group SL(2,C), and a simply transitive action on S2 by
SL(2,C)/Z2 ' SO0(3, 1), the Lorentz group. We note that SO(3, 1) is the conformal group of
the tangent plane R2 and that of S2 as well. All these considerations can be translated in a
straightforward group-theoretical language by considering the Iwasawa decomposition of the Lorentz
group SO0(3, 1). In other words, like any connected semi-simple Lie group, the latter admits a
decomposition into three closed subgroups, namely G = KAN , where K is the maximal compact
subgroup, A is Abelian, and N is nilpotent, and both are simply connected. In the case of SO(3, 1),
one gets:

• K ∼ SO(3), is the maximal compact subgroup.

• A ∼ SO0(1, 1) ∼ R+
∗ ∼ R is the subgroup of the Lorentz boosts in the x3-direction.

• N ∼ C is two-dimensional and nilpotent.

Thus one obtains, respectively,

SO0(3, 1) = SO(3) · R+
∗ · C, (2.28)

SL(2,C) = SU(2) · R+
∗ · C. (2.29)

Now, let again G = KAN be the Iwasawa decomposition of a connected semi-simple Lie group
G, with finite center. Let M be the centralizer of A in K; that is, M = γ ∈ K : γa = aγ, ∀a ∈ A.
Then P = MAN is a closed subgroup of G, called the minimal parabolic subgroup. The subgroup
P is not invariant, but it is the stability subgroup of the North Pole, and the quotient G/P , which
is isomorphic to K/M , is simply

S2 ' SO0(3, 1)/P ' SO(3)/SO(2), and (2.30)

S2 ' SL(2,C)/P ' SU(2)/SU(1). (2.31)

This shows that both SO0(3, 1) and SL(2,C) act transitively on S2. As K was previously identified
with the Euclidean motions on S2 and A with dilations, which constitute the basic operations on
the sphere, the parameter space of this theory is the homogeneous space

X ≡ SO0(3, 1)/N ' SO(3) ·A. (2.32)

The next step is the derivation of the action of dilations on the sphere. We will proceed in a
purely algebraic way, starting from the Iwasawa decomposition of an element g = γan ∈ SL(2,C):

(
a b

c d

)
=

(
α β

−β̄ ᾱ

)(
δ−1/2 0

0 δ1/2

)(
1 ζ

0 1

)
, (2.33)
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with α, β, ζ ∈ C, δ ∈ R+
∗ . The elements of SU(2) are expressed in Euler parameterizations:

α = cos
θ

2
· e−i(ϕ+ψ)

2 , (2.34)

β = −i sin
θ

2
· e i(ψ−ϕ)

2 . (2.35)

On the other hand SU(2) has the following Euler decomposition:
(

α β

−β̄ ᾱ

)
=

(
e−iψ/2 0

0 eiψ/2

)(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)(
e−iϕ/2 0

0 eiϕ/2

)
(2.36)

≡ m(ψ)u(θ)m(ϕ). (2.37)

Then, for an element g(a) = diag(a−1/2, a1/2) ∈ SL(2,C), acting on another γ ∈ SU(2), we have
γa = g(a)γ. Since g(a) commutes with m(ψ) we can write

γa = m(ψ)g(a)u(θ)m(ϕ), (2.38)

Here of interest is the product g(a)u(θ) which we decompose using (2.33) and thus we obtain

cos θa =
(1 + a2) cos θ + (1− a2)
(1− a2) cos θ + (1 + a2)

. (2.39)

It is clear that the action of the dilation on SU(2) is of the form

γ(ϕ, θ, ψ) → γ(ϕ, θa, ψ). (2.40)

Using (2.39) and applying basic trigonometric relations, it is clear that

tan
θa

2
= a · tan

θ

2
. (2.41)

Finally, in polar spherical coordinates, the dilation operator acting on a point ω = (θ, ϕ) is :

DS2

a (θ, ϕ) = (θa, ϕ), with tan
θa

2
= a · tan

θ

2
. (2.42)

Thus, the transformation corresponding to a pure dilation is the usual Euclidean dilation lifted on
S2 by inverse stereographic projection:

DS2

a : ω 7→ (Φ−1 ·DCa · Φ)(ω), ω = (θ, ϕ). (2.43)

Consider the space of finite energy signals H = L2(S2, dµ), where dµ(ω) = sin θdθdϕ is the usual
rotation invariant measure on S2. In this space, the basic transformations are represented by the
following unitary operators:

• rotation Rρ

(Rρf)(ω) = f(ρ−1ω), ω ≡ (θ, ϕ). (2.44)

where ρ ∈ SO(3) is a 3 × 3 rotation matrix acting on a unit vector in R3 and may be
parameterized in terms of Euler angles.

• dilation Da

(Daf)(ω) = λ1/2(a, θ)f(ω1/a),with ωa ≡ (θa, ϕ), (2.45)

where the Radon-Nikodým derivative λ(a, θ) is given by

λ(a, θ) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2
. (2.46)

Thus the spherical wavelet function becomes

ψa,ρ(ω) = RρDaψ(ω) = Rρλ
1/2(a, θ)ψ(ω1/a). (2.47)
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2.3.2 The continuous wavelet transform on the sphere

On the two-dimensional sphere S2, embedded in R3, the basic transformations consist of rotations,
defined by elements ρ of the group SO(3), and dilations, parameterized by the scale a ∈ SO0(1, 1) ∈
R+
∗ . Thus, it remains to find a suitable unitary irreducible representation of the Lorentz group

SO0(3, 1) in the Hilbert space L2(S2, dµ), that is the space of square integrable functions on S2,
with the rotation invariant Lebesgue measure dµ(θ, ϕ) = sin θdθdϕ. As it was already mentioned, it
is not the whole group SO(3, 1) which is of interest here but a section σ := X = KAN/N → KAN

in the principle fibre bundle defined by the Iwasawa decomposition. The points on the space X are
written as pairs x ≡ (γ, a), with γ ∈ SO(3) and a ∈ A ' SO(1, 1) and thus the natural section is
choosen:

σI(γ, a) = γa. (2.48)

Spherical admissibility condition

It is clear that not all dilated and rotated spherical functions can be wavelets. Only those which
fulfill the following condition are admissible.

Theorem 12. (Antoine and Vandergheynst [11]) The representation

[U(σ(x))f ](ω) = λ1/2(σ(x), ω)f(σ−1(x)ω) (2.49)

is square-integrable modulo the subgroup N and the section σI ; that is, the representation space
L2(S2,dµ) contains a nonzero vector ψ admissible mod(N, σI), which means that there exists a
constant c > 0, independent of l, such that

Cψ(l) =
8π2

2l + 1

∑

|m|≤l

∫ ∞

0

da

a3
|ψ̂a(l, m)|2 < c, (2.50)

where ψ̂(l, m) = 〈Y m
l |ψ〉 stands for the Fourier coefficient of ψ and

ψa(ω) = [U(σI(e, a))ψ](ω) ≡ (Daψ)(ω) = λ1/2(a, θ)ψ(ω1/a). (2.51)

The proof consists in an explicit calculation, using the properties of the Fourier analysis on the
sphere. So, according this proposition, any admissible ψ generates a continuous family {ψa,g ≡
U(σ(ρ, a))ψ, (ρ, a) ∈ X} of spherical wavelets, but in fact there is more:

Proposition 13. (Antoine and Vandergheynst [11])
For any admissible vector ψ such that

∫ 2π

0
dϕψ(θ, ϕ) 6= 0, the family {ψσI(x), x ∈ X} is a

continuous frame; that is, there exist constants A > 0 and B < ∞ such that

A‖φ‖2 ≤
∫

X

dν(x)|〈ψσI(x)|φ〉|2 ≤ B‖φ‖2,∀φ ∈ L2(S2, dµ). (2.52)

Thus, for any admissible vector ψ, we get a continuous frame, but not necessarily a tight one. The
condition (2.50) is necessary and sufficient for the admissibility of ψ, but it is somewhat complicated
to use in practice, since it requires the evaluation of nontrivial Fourier coefficients. Instead, there is
a simpler, although only necessary, condition.

Proposition 14. ( Antoine and Vandergheynst [11])
A function ψ ∈ L2(S2, dµ) is admissible only if it satisfies the condition

∫

S2
dµ(θ, ϕ)

ψ(θ, ϕ)
1 + cos θ

= 0. (2.53)
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This necessary condition is the exact equivalent of the usual necessary condition for wavelets in
the Euclidean plane,

∫
d2xψ(x) = 0. The interesting about it is that is zero mean condition, as in

the flat case. As such, it plays the same role, i.e. it ensures that the CWT on S2 act as a local filter.
Theorem 12 yields the basic ingredient for writing the CWT on S2. Given an admissible wavelet

ψ ∈ L2(S2, dµ), the wavelets on the sphere are the functions ψγ,a = U(σI(γ, a))ψ, and the CWT
reads:

Wf (ρ, a) = 〈ψρ,a|f〉 (2.54)

=
∫

S2
dµ(ω)RρDaψ(ω)f(ω) (2.55)

=
∫

S2
dµ(ω)ψa(ρ−1ω)f(ω), (2.56)

where (·) denotes the complex conjugate. This last expression is nothing but a spherical correlation,
i.e.,

Wf (ρ, a) = (ψa ? f)(ρ) ≡
∫

S2
dµ(ω′)[Rρψa](ω′)f(ω′). (2.57)

The following proposition shows that the family of rotated and translated wavelets constitutes
a (continuous) frame in L2(S2), from which the reconstruction formula can be derived.

Proposition 15. (Antoine et al. [7])
Let f ∈ L2(S2). If ψ is an admissible wavelet such that

∫ 2π

0
dϕψ(θ, ϕ) 6= 0, then

f(ω) =
∫

R+
∗

∫

SO(3)

dadν(ρ)
a3

Wf (ρ, a)[RρL
−1
ψ Daψ](ω), (2.58)

where dν(ρ) is the left Haar measure on SO(3) and the coefficients are given by (2.55). The frame
operator Lψ is defined by

[̂Lψh](l, m) = Cψ(l)ĥ(l, m), ∀h ∈ L2(S2), (2.59)

where Cψ(l) is given in (2.50).

The frame operator so obtained is probably not tight, in general. As a consequence, the spherical
CWT does not define an isometry. However, one has the following result, which immediately follows
from (2.58):

Corollary 16. (Antoine et al. [7]) Under the conditions of Proposition 15, the following Plancharel
relation is satisfied

‖f‖2 =
∫

R+
∗

∫

SO(3)

dadν(ρ)
a3

W̃f (ρ, a)W(ρ, a) (2.60)

with
W̃f (ρ, a) = 〈ψ̃ρ,a|f〉 = 〈RρL

−1
ψ Daψ|f〉. (2.61)

Before giving a concrete example of an wavelet on the 2-sphere, we will mention one last inter-
esting result concerning the SCWT. It states that the inverse stereographic projection of a wavelet
on the Euclidean plane leads to a wavelet on the sphere. The related technical proofs can be found
in [75]. Beyond its pure theoretical interest, this new correspondence principle between the wavelet
formalisms on the plane and on the sphere is of great practical use. Indeed, it enables to construct
wavelets on the sphere by simple projection of wavelets on the plane.
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2.3.3 An example of wavelets on the sphere

Example 5. (The ”difference-of-Gaussian” (DOG) spherical wavelet) Given a square-integrable
function φ(θ, ϕ) = exp

(
− tan2 θ

2

)
, we define

ψα
φ (θ, ϕ) = φ(θ, ϕ)− 1

α
Dα(θ, ϕ), (α > 1). (2.62)

This particular wavelet is depicted on Figure 2.2.

(a) (b)

Figure 2.2: Spherical DOG wavelet for α = 1.25: (a) a = 0.03,(b) a = 0.09.

Corresponding to the axisymmetric function on the sphere, the wavelet build using it will be
an axisymmetric spherical wavelet. Given [ω] = ρ(ϕ, θ, 0) ∈ SO(3), we define the correlation ?̃ :
L2(S2)× L2(S2) → L2(S2) as

(g?̃h)(ω) =
∫

S2
dµ(ω′)R[ω]g(ω′)h(ω′), (2.63)

to distinguish it from the complete correlation ? in equation (2.57). Since the stereographic dilation
is radial around the North Pole, an axisymmetric wavelet ψ on S2 remains axisymmetric after
dilation. Consequently, the CWT is redefined on S2 × R+

∗ by

Wf (ω, a) = (ψa ? f)([ω]) = (ψa?̃f)(ω), a ∈ R∗+. (2.64)

In this particular case, the reconstruction formula (2.58), becomes

f(ω) =
∫

R+
∗

∫

S2

dadµ(ω′)
a3

Wf (ω′, a)[R[ω]L
−1
ψ Daψ](ω′), (2.65)

where Lψ is the frame operator defined in equation (2.59) with Gψ reducing to

Gψ(l) =
4π

2l + 1

∫

R+
∗

da

a3
|ψ̂a(l, 0)|2. (2.66)
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In the general set-up for wavelet construction, we pointed out that a good wavelet transform on
the sphere should be asymptotically Euclidean, in other words, the spherical WT should match the
usual CWT in the Euclidean plane at small scales or, what amounts to the same, for large values
of the radius of curvature. To this statement may be given a precise mathematical meaning, using
the technique of group contractions, as it was derived in [10].

2.3.4 Wavelets on the sphere based on convolution

Before proceeding toward discretization of the continuous wavelet transform on the sphere we need
to point out one more general result: it is possible to construct wavelets on the sphere, independently
of the group theoretical approach. Since there exist a convolution theorem on the sphere in the sense
of spherical harmonics, it is equivalently possible to do a derivation through spherical convolution.
This aspects of the wavelets on the sphere, together with some basic implementations (concerning
directional wavelets on the sphere), were performed in [7].

2.4 Discrete wavelet transform on the sphere

As in the Euclidean case, the WT on the sphere has two branches: the continuous wavelet transform
and the discrete wavelet transform.

Various alternative constructions of discrete spherical wavelets have been proposed. For example,
spherical wavelets based on the lifting scheme were introduced in [70]. They yield a multiresolution
analysis on the sphere based on a particular parametrization of the latter.

W. Freeden [31] defines also a transformation on S2 using a special dilation operator defined in
the Fourier domain. Polynomial spherical frames have also been introduced in [58] where the order
of the polynomials plays the role of the dilation. The drawbacks of these methods is that they focus
on the frequential aspect of the transformations. In consequence, the spatial localization of these
wavelets is either not guaranteed or precisely controlled.

T. Bülow did succeed in getting good localization properties by using the evolution of a spher-
ical Gaussian governed by the heat equation on S2 [18]. Then he gets a set of wavelet filters by
differentiation of this Gaussian. However, this approach is restricted to the Gaussian function and
thus it not as general as the one based on a stereographic dilation applied to an arbitrary admissible
wavelet on S2.

In the following discussion, we describe under which conditions the parameters of the spherical
continuous wavelet transform can be discretized without losing the reconstruction property. We
assume all wavelets to be axisymmetric. This construction also appears in [14] and [44].

2.4.1 Half-continuous spherical frames

First approach

We propose to discretize the scale of the CWT but we let the position vary continuously. We choose
therefore

ω ∈ S2, a ∈ α = {aj ∈ R∗+ : j ∈ Z, aj > aj+1}, (2.67)

which generates the half-continuous grid

Λ(α) = {(ω, aj) : ω ∈ S2, j ∈ Z}. (2.68)
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To simplify these notations, we will replace in the sequel each occurrence of aj by j, ψaj = Daj ψ

becoming for instance ψj = Djψ, and similarly Wj(ω) = 〈ψω,j |f〉.
In order to have a reconstruction of every function f ∈ L2(S2), a first possible approach would

be to impose

A‖f‖2 ≤
∑

j∈Z
νj

∫

S2
dµ(ω) |Wj(ω)|2 ≤ B‖f‖2, (2.69)

with A, B ∈ R∗+ independent of f , and for some weights νj > 0 taking into account the discretization
of the continuous measure da/a3. In this case, the family

Ψ = {ψω,j = R[ω]Djψ : ω ∈ S2, j ∈ Z} (2.70)

constitutes a half-continuous frame in L2(S2). The following proposition transposes the last condi-
tion in the Fourier domain (as identified by spherical harmonics).

Proposition 17. Let ψ be an admissible wavelet. If there are two constants A,B ∈ R∗+ such that

A ≤ 4π

2l + 1

∑

j∈Z
νj |ψ̂j(l, 0)|2 ≤ B, for all l ∈ N, (2.71)

then (2.69) is satisfied.

Proof : The SCWT of a function f ∈ L2(S2) in the Fourier domain is given by

Wf (ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
f̂(l,m) ψ̂a(l, 0)Y m

l (ω).

Using this expression, we obtain
∑

j∈Z
νj

∫

S2
dµ(ω) |Wj(ω)|2 =

∑

j∈Z
νj

∑

(l,k)∈N

∑

(l′,k′)∈N

4π√
(2l + 1)(2l′ + 1)

f̂(l, k) f̂(l′, k′)

ψ̂j(l, 0) ψ̂j(l′, 0)
∫

S2
dµ(ω) Y k

l (ω)Y k′
l′ (ω)

=
∑

j∈Z
νj

∑

(l,k)∈N

4π

2l + 1
|f̂(l, k)|2 |ψ̂j(l, 0)|2

=
∑

(l,k)∈N
|f̂(l, k)|2

∑

j∈Z

4π

2l + 1
νj |ψ̂j(l, 0)|2,

where we have used the orthonormality of the spherical harmonics. The lower and upper bounds in
(2.69) are well defined if there are two constants A,B ∈ R∗+ such that

A ≤ 4π

2l + 1

∑

j∈Z
νj |ψ̂j(l, 0)|2 ≤ B, for all l ∈ N.

¥
In order to illustrate this result, let us choose a DOG wavelet (α = 1.25) and a discretized dyadic

scale with a certain number of voices K ∈ N0 per octave, namely,

aj = a0 2−j/K , j ∈ Z. (2.72)

Once again, for the sake of simplicity, we replace the indices aj by j. Moreover we choose weights
νj that take into account the discretization of the continuous measure da/a3, which means

νj =
aj − aj+1

a3
j

=
21/K − 1
21/K a2

j

. (2.73)
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Figure 2.3: The function S(l) for l ∈ [0, 31) and K = 1, 2, 3. First Approach.

K A B B/A

1 0.5281 0.9658 1.8288
2 0.6817 1.1203 1.8107
3 0.6537 1.1836 1.8107
4 0.6722 1.2171 1.8107

Table 2.1: Estimation of the bounds A and B as a function of the extremum of S(l) for some
values of K. First approach.

We have estimated the bounds A and B, respectively, by the minimum and the maximum of the
quantity

S(l) =
4π

2l + 1

∑

j∈Z
νj |ψ̂j(l, 0)|2, (2.74)

over l ∈ [0, 31] and for K = 1, 2, 3. The function S(l) is represented on Figure 2.3 and the results
are shown in Table 2.1. We see that for K > 2, the ratio B/A converges towards the value 1.8107.
We thus do not obtain a tight frame, for which we should have A = B. As can be checked on the
graph, however, S(l) quickly tends to a constant for l ≥ 5. The problem mostly comes from a severe
“dip” in the graph of S(l) (Figure 2.3) for small values of l (l ≤ 3).

Second approach

Trying to converge to a tight frame, we adopt now a second approach for our half-continuous
discretization. We start from the Plancherel relation defined in Corollary 16 and determine under
which conditions we can obtain a controlled frame. That is, for two frame bounds A,B ∈ R∗+, we
want

A‖f‖2 ≤
∑

j∈Z
νj

∫

S2
dµ(ω) Wj(ω) W̃j(ω) ≤ B‖f‖2, (2.75)

where f ∈ L2(S2) and W̃j(ω) = 〈R[ω]L
−1
ψ Djψ|f〉. The operator L−1

ψ controlling the frame is the
continuous frame operator defined in the Fourier domain by

L̂−1
ψ f(l,m) = G−1

ψ (l)f̂(l, m),
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where Gψ is given in (2.66). It is bounded with bounded inverse, i.e., Lψ ∈ GL(H), if and only if
the wavelet ψ is admissible.

Proposition 18. If there exist two constants A,B ∈ R∗+ such that

A ≤ 4π

2l + 1
Gψ(l)−1

∑

j∈Z
νj |ψ̂j(l, 0)|2 ≤ B, for all l ∈ N, (2.76)

then (2.75) is satisfied.

Proof : As in the previous proposition, we start from the Fourier coefficients

Wf (ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
f̂(l,m) ψ̂a(l, 0)Y m

l (ω).

Then W̃f (ω, a) = 〈R[ω]L
−1
ψ Daψ|f〉 reads

W̃f (ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
Gψ(l)−1 f̂(l, m) ψ̂a(l, 0)Y m

l (ω),

since the frame operator depends only on l and commutes with rotations.
Using these expressions for the coefficients and the fact that spherical harmonics are orthonormal,

we find
∑

j∈Z
νj

∫

S2
dµ(ω) Wj(ω) W̃j(ω) =

∑

(l,k)∈N
|f̂(l, k)|2

∑

j∈Z

4π
2l + 1

Gψ(l)−1 νj |ψ̂j(l, 0)|2.

Then, inequalities in (2.75) are verified if there exist two constants A,B ∈ R∗+, such that

A ≤ 4π

2l + 1
Gψ(l)−1

∑

j∈Z
νj |ψ̂j(l, 0)|2 ≤ B, for all l ∈ N.

¥
Note that, for aj = a02−j/K ,

Gψ(l) = lim
K→∞

4π

2l + 1

∑

j∈Z
νj |ψ̂j(l, 0)|2, (2.77)

since the weights νj discretize the continuous measure da/a3 (in other words, Gψ is well approxi-
mated by Riemann sums). Therefore, we obtain a good approximation of Gψ by taking a large K

in the previous equation. We will set K = 10.
Given this scale discretization and using the same wavelet and the same weights νj as in the first

approach, the new quantity

S(l) =
4π

2l + 1
Gψ(l)−1

∑

j∈Z
νj |ψ̂j(l, 0)|2 (2.78)

has been evaluated. It is drawn on Figure 2.4 for several values of K. The previous “dip” at small
l has disappeared and the oscillations occuring at K = 1 are almost inexistent for K = 3. This is
confirmed in Table 2.2, where the values of A and B have been estimated by the infimum and the
supremum of S(l) on l ∈ [0, 31], respectively. We see that the ratio B/A tends quickly to 1 as K

increases. A tight frame is thus reachable using the controlled frame approach.
Before proceeding toward the spherical frame reconstruction, we first expose some explicit discus-

sion on the scale range of the spherical continuous wavelet transform associated to an axisymmetric
wavelets.
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Figure 2.4: The function S(l) for l ∈ [0, 31[ and K = 1, 2, 3. Second Approach.

K A B B/A

1 0.7313 0.7628 1.0431
2 0.8747 0.8766 1.0021
3 0.9242 0.9254 1.0014
4 0.9503 0.9512 1.0009

Table 2.2: Estimation of the bounds A and B as a function of the extremum of S(l) for some
values of K. Second approach.
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Figure 2.5: Behavior of ψ̂a(l, 0) as a function of the scale a. If a = 0.01, the bandwidth of the
dilated wavelet exceeds the limit fixed by the discretization.
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The scale range

The range of the scale parameter in the continuous wavelet transform seems arbitrary. However,
this is not the case in practice. For fixing ideas, let us recall the situation for classical wavelets on
R. Even if the wavelet transform of a signal is obtained by integration over the whole real line, in
practice, data are discretized and have finite length. Hence the possible values of the scale parameter
are constrained on one side by the sampling frequency (this gives a lower bound: the wavelet cannot
oscillate more than permitted by the Nyquist frequency) and on the other side by the length of the
interval where the signal is defined (upper bound: the wavelet should “live” inside that interval).

In the case of the spherical continuous wavelet transform, the smallest a is also constrained by
the sampling frequency of the spherical grid. This phenomenon is displayed on Figure 2.5, where
ψ̂a(l, 0) is drawn for several values of a. On this graph, we discretize ψa on a 512×512 spherical grid
according to the previous section, for a maximal permitted bandwidth β = 256. One clearly sees
that ψ̂(l, 0) is not numerically negligible for l = 255 with the choice a ≤ 0.01. Therefore ψa /∈ Bβ and
it cannot be defined on G256. As a matter of fact, the upper limit of the scales is also constrained
by the high frequencies of the dilated wavelet. Actually, the nature of the dilation produces an
accumulation of points around the South Pole, so the oscillating tails of the wavelet are compelled
to oscillate faster as a increases, even if the amplitude is negligible. The following discussion roughly
formalizes this behavior.

We are going to estimate the highest non-negligible frequency lM(a) reached by the dilated
wavelet ψa, which determines its bandwidth. We will see that it increases not only for small values
of the scale (as expected because that corresponds to high frequencies), but also for large ones. Our
argument rests upon the fact that the bandwidth of an oscillatory function may be estimated from
the distance between its zero crossings.

Given two latitudes α and β in [0, π], let us first study the evolution of the (angular) distance
between the dilated angles αa and βa as a function of a. We get

∆αβ(a) := tan
(αa − βa)

2

=
tan αa

2 − tan βa

2

1 + tan αa

2 tan βa

2

=
a(tan α

2 − tan β
2 )

1 + a2 tan α
2 tan β

2

=
a(1 + tan α

2 tan β
2 )

(1 + a2 tan α
2 tan β

2 )

(tan α
2 − tan β

2 )

(1 + tan α
2 tan β

2 )
= Ξαβ(a) ∆αβ(1),

where we have denoted

Ξαβ(a) =
a(1 + tan α

2 tan β
2 )

1 + a2 tan α
2 tan β

2

. (2.79)

If α and β are not zero, the function Ξαβ has a unique maximum in

ã(α, β) =
1√

tan α
2 tan β

2

. (2.80)

We also have that Ξαβ(0) = lima→+∞ Ξαβ(a) = 0. In other words, the distance ∆αβ(a) increases in
(0, ã] and decreases in [ã,+∞).

If the bandwidth of the wavelet is l0, the minimal distance between two of its zeros is of the
order of π

l0
. Let us label those points as α and β = α + π

l0
.
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From the relation ∆αβ(a) = Ξαβ(a)∆αβ(1), we can see that the bandwidth lM(a) of the dilated
wavelet ψa is approximately related to l0 by

tan
π

2 lM(a)
' Ξαβ(a) tan

π

2 l0
,

that is to say,
lM(a) ' π

2 tan−1
(
Ξαβ(a) tan( π

2l0
)
) . (2.81)

Knowing the behavior of Ξαβ(a), from (2.81), we can roughly say that lM(a) decreases in the interval
(0, ã] and increases in [ã,+∞). A minimum lM = 3 is in a neighborhood of a = 0.8. This means that
the DOG wavelet should be discretized on an equi-angular spherical grid of 8×8 points at least and
for values of a near 0.8 only. Besides, if we take for example a 256× 256 grid (β = 128), the dilated
wavelet ψa will not be correctly discretized for a outside of the interval [amin = 0.0204, aM = 45.83]
because lM(a) is strictly bigger than l = 127 for those values.

Having this specific issues on the spherical wavelet scale range, we proceed towards the spherical
frames reconstruction.

Reconstruction

A function f ∈ L2(S2) can be reconstructed from its coefficients Wj(ω) as soon as the family
Ψ = {ψω,j : ω ∈ S2, j ∈ Z} constitutes a (classical) half-continuous frame.

Proposition 19. Let α = {aj : j ∈ Z, aj > aj+1} be a sequence of scales. If ψ is an axisymmetric
wavelet such that, for two constants A, B ∈ R∗+,

A ≤ gψ(l) =
4π

2l + 1

∑

j∈Z
νj |ψ̂j(l, 0)|2 ≤ B, ∀ l ∈ N, (2.82)

then,

f(ω) =
∑

j∈Z
νj

∫

S2
dµ(ω′)

[
R[ω]`

−1
ψ Daj ψ

]
(ω′)Wf (ω′, aj)

=
∑

j∈Z
νj [ψj ?Wj ](ω),

where `ψ is the operator defined in the Fourier domain by

[̂`−1
ψ h](l, m) = g−1

ψ (l) h(l, m). (2.83)

and ψj = `−1
ψ ψj is the dual function of ψj.

The proof is similar to the proof of Proposition 18, replacing Gψ by gψ. The new operator `ψ is
nothing but the discretization of Lψ defined in (2.66). According to this proposition, the family Ψ
can be interpreted as a tight frame controlled by the operator `−1

ψ .
We have seen, in our discussion on the wavelet scale range, that there exists a limit scale ã ∈ R∗+

such that, for increasing a ∈ [ã,+∞[, the support of ψ̃a stops contracting towards low frequencies
and starts growing again towards high frequencies. We will lump together all wavelets having this
behavior into a single scaling function ζ defined by

|ζ̂(l, m)|2 = δm,0

−1∑

j=−∞
νj |ψ̂j(l, 0)|2. (2.84)
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We have estimated the angular distance between two dilated angles on the sphere to have a maximum
for ã ' 0.8. Thus we can safely take ã = 1, corresponding to j = 0. This justifies the upper bound
in the sum (2.84). However, the weights νj ∝ a−2

j decrease rapidly for j → −∞ (large scales), so
that only the last few terms, with |j] small, will contribute significantly to the sum, which entails
that the function ζ is mainly concentrated at low frequencies.

In addition, if the analyzed signal f is band-limited, i.e., there is a bandwidth β ∈ N0 such that
f ∈ Bβ (a frequent situation for signals on the sphere), we may define a residual function with

|η̂(l,m)|2 = 1l[0,β)(l) δm,0

∞∑

j=J+1

νj |ψ̂j(l, 0)|2, (2.85)

where J is the maximal resolution such that the support of ψ̂j(l, 0) is contained in [0, β[.
This function will catch the high frequency components of f omitted by ψ̂j for j ∈ [0, J ]. With

these two functions, the reconstruction formula reads

f(ω) = [ ζ ? S](ω) +
J∑

j=0

νj [ψj ?Wj ](ω) + [ η ? H](ω), (2.86)

with S(ω) = 〈R[ω] ζ|f〉, ζ = `−1
ψ ζ, H(ω) = 〈R[ω] η|f〉 and η = `−1

ψ η.

2.4.2 Discrete spherical frames

As a last step, we will now completely discretize the CWT on the sphere. First, the scales are
discretized as previously, namely

a ∈ α := {aj ∈ R∗+ : aj > aj+1, j ∈ Z}.

Then we choose the positions on an equi-angular grid of resolution j and of size 2βj × 2βj

(βj ∈ N), i.e.,

ω ∈ Gj := {ωjpq = (θjp, ϕjq) ∈ S2 : θjp =
(2p + 1)π

4βj
, ϕjq =

qπ

βj
, p, q ∈ Z[2βj ]}. (2.87)

As explained in Section 2.2.4, the grid Gj allows to sample perfectly any function of bandwidth βj .
The complete grid finally reads as follows :

Λ(α,β) = {(aj , ωjpq) : j ∈ Z, p, q ∈ Z[2βj ] }, (2.88)

for a set of bandwidths β = {βj ∈ N : j ∈ Z}. In this case, for an axisymmetric admissible mother
wavelet ψ ∈ S2, the family

Ψ = {ψjpq = R[ωjpq ]Djψ : j ∈ p, q ∈ Z[2βj ] } (2.89)

constitutes a weighted frame controlled by the operator L−1
ψ , if there are two constants A, B ∈ R∗+

such that, for any f ∈ L2(S2),

A‖f‖2 ≤
∑

j∈Z

∑

p,q∈Z[2βj ]

νjwjp Wj [p, q] W̃j [p, q] ≤ B‖f‖2, (2.90)

with Wj [p, q] = 〈ψjpq|f〉, W̃j [p, q] = 〈L−1
ψ ψjpq|f〉, and where the quadrature weights wjp = w

βj
p

are defined in (2.23). The product νj wjp replaces the continuous measure a−3da dµ(θ, ϕ) of the
continuous framework.
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Proposition 20. Consider the discretization grid Λ(α,β) defined in (2.88). Given an axisymmetric
admissible wavelet ψ on S2, define the quantities

S′(l) =
∑

j∈Z

4πνj

2l + 1
1l[0,β)(l) G−1

ψ (l) |ψ̂j(l, 0)|2, (2.91)

δ = ‖X‖ ≡ sup
(Hl)l∈N

‖XH‖
‖H‖ , (2.92)

where the infinite matrix (Xll′)l,l′∈N is given by

Xll′ =
∑

j∈N

2πνj cj(l, l′)
βj

1l[2βj ,+∞)(l + l′)G−1
ψ (l) |ψ̂j(l, 0)| |ψ̂j(l′, 0)| (2.93)

and cj(l, l′) =
(
2(l + βj) + 1

)1/2(2(l′ + βj) + 1
)1/2. If we have

0 ≤ δ < K0 ≤ K1 < ∞, (2.94)

where K0 = inf l∈N S′(l) and K1 = supl∈N S′(l), then the family (2.89) is a weighted spherical frame
controlled by the operator L−1

ψ , with frames bounds K0 − δ, K0 + δ.

The technical proof of this result is placed in Appendix A.
The evaluation of ‖X‖ could be complex when the size of X is infinite. In practice, however,

we work with band-limited functions f ∈ L2(S2) of bandwidth βM ∈ N0. In this case ‖X‖ can be
replaced by the norm of the finite matrix (Xl,l′ )0≤l,l′<βM

.
We have estimated the bounds of a spherical DOG wavelet frame in the case βM = 128, using a

dyadically discretized scale (with K = a0 = 1 in (2.72)), while the bandwidth associated to the grid
size supporting each resolution j was fixed to

βj = β02|j|, β0 ∈ N, (2.95)

where β0 is the minimal bandwidth associated to ψ1. The last equation takes into account the
particular nature of the stereographic dilation on S2. Indeed, for the DOG wavelet, the (numerical)
support of ψ̂j increases roughly with 2|j|. Table 2.3 presents the results of the evaluation of K0, K1

K0 K1 δ A = K0 − δ B = K1 + δ B/A

β0 = 2 0.6691 0.7644 344.2417 − − −
β0 = 4 0.7313 0.7736 0.0607 0.6707 0.8343 1.2440
β0 = 8 0.7313 0.7736 0.0014 0.7299 0.7751 1.0618

Table 2.3: Evaluation of K0, K1 and δ on the functions f ∈ L2(S2) at bandwidth 128.

and δ as well as the bounds of the associated frames. One can see that condition (2.94) is satisfied for
β0 ≥ 4. However, a tight frame cannot be obtained by increasing β0. Indeed if β0 tends to infinity,
the spherical grids at each resolution become finer and finer and we approach half-continuous frames.
But, as seen in the previous section, this single voice discretization of the scale is not sufficient for
producing a tight frame.

Approximate reconstruction

As explained in Section 1.8.3, the frame Ψ = {ψjpq} controlled by L−1
ψ provides a simple approximate

reconstruction formula if the bounds A and B are sufficiently close. In this case, indeed, we have

f(ω) ' 2
A + B

∑

j∈Z

∑

p,q∈Z[2βj ]

νjwjp Wj [p, q] [L−1
ψ ψjpq](ω). (2.96)
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Let us assume that f is a band-limited function, i.e., f ∈ BβM , for a certain βM ∈ N. Therefore, f

may be discretized without loss of information on a grid GJ , where J ∈ N0 is the maximal resolution
of the grid such that βJ = βM. As in the half-continuous case, the residual function η defined in
(2.85) can be used to catch the high frequencies left over by the restriction j ≤ J .

This leads to the approximate reconstruction formula

A + B

2
f(ω) '

J∑

j=−J

∑

p,q∈Z[2βj ]

νjwjp Wj [p, q] [L−1
ψ ψjpq](ω) + · · ·

+
∑

p,q∈Z[2βM]

H[p, q] [L−1
ψ ηpq](ω), (2.97)

where H[p, q] = 〈ηpq|f〉 and ηpq(ω) = [R[ωJpq ] η](ω).
Notice that a scaling function could be defined to gather wavelets in the range j < −J . However,

wavelet coefficients at these resolutions are practically negligible since the weights νj decrease with
j as 22j . The approximation of f by the new frame operator

L′ψf =
2

A + B

J∑

j=−J

∑

p,q∈Z[2βj ]

νjwjp Wj [p, q] L−1
ψ ψjpq + · · ·

+
2

A + B

∑

p,q∈Z[2βM]

H[p, q] L−1
ψ ηpq, (2.98)

may be largely improved by using the conjugate gradient algorithm [54], which computes iteratively,
from L′ψ, the reconstruction of f that we would obtain with the dual wavelets of ψn. Note the
latter cannot be obtained explicitly, because we cannot control the effect in Fourier space of the
undersampling implied by the successive grids.

An example of spherical wavelet frame

We will now decompose and reconstruct a particular example of spherical data. The spherical data
to be processed, s, represents the planet Mars. It is recorded to an equi-angular grid of 512 × 512
points and therefore bandwidth βM = 256 . For this frame decomposition a spherical DOG with
α = 1.25 is the mother wavelet. The parameters of the multi-scale grid are α0 = 1 and β0 = 4. First,
we note that there is no subgrid imbedded in the maximum one, i.e Gj * GJ and thus we compute
Ws[ω, aj ] on the maximum grid GJ . Next, a linear interpolation of the coefficients Ws(ωjpq, aj)
on the sub-grid Gj from the coefficients Ws(ωJp′q′ , aj)is performed. From this two operations, the
values Ws[p, q] have been obtained. Figures 2.6(b), 2.6(c), 2.6(d), 2.6(e), 2.6(f) show respectively
wavelet coefficients W2[p, q], W3[p, q], W5[p, q], W7[p, q] and W8[p, q].

For the purpose of reconstruction of Mars the function Gψ(l) from equation (2.77) has been
estimated for K = 10. The ratio 2

A+B from equation (2.96) is set to 1.3289, according the results in
Table 2.3. On Figures 2.7(a) and 2.7(b) we can see the the reconstructed signal and the deference
between the signal and its reconstruction s− L′ψs, respectively. The amplitude of this difference is
calculated, and we can see that the reconstruction L′ψs is very close to s:

‖s− L′ψs‖
‖s‖ ' 0.8846. (2.99)

A better reconstruction is obtained with the conjugate gradient algorithm. The amplitude of
difference s− s(2) reconstructed by this algorithm is respectively:

‖s− s(2)‖
‖s‖ ' 0.3586. (2.100)
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Figure 2.6: Spherical frame decomposition of Mars map: (a) original data (Mars map) (512×512
equi-angular grid), (b) W2[p, q], (c) W3[p, q], (d) W5[p, q], (e)W7[p, q], (f)W8[p, q].



2.5. Laplacian pyramid on the sphere 51

The reconstructed signal and the amplitude of the error of it is shown on Figures 2.7(c) and 2.7(d),
respectively.
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Figure 2.7: Spherical frame reconstruction of the Mars map: (a) approximate reconstruction (by
inverse spherical wavelet frames), (b)amplitude of the error of the reconstruction, (c) by spherical
conjugate algorithm, (d) difference between the original and reconstructed signal s(2) obtained by 2
iterations of the conjugate gradient algorithm.

2.5 Laplacian pyramid on the sphere

One of the simple ancestors of the wavelet transform is the Laplacian Pyramid(LP). It is a versatile
data structure with many attractive features and approaches the wavelet analysis by representing
the signal at different scales.
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2.5.1 Euclidean Laplacian pyramid

Burt and Adelson introduced it first for Euclidean images in [19]. They implemented a technique
for image encoding in which local operators of many scales but identical shape serve as the basis
functions. The resulting code elements, which form a self-similar structure, are localized in both
space and spatial frequency. We use the term Euclidean Laplacian Pyramid for it and briefly sketch
it here.

The first step in it is to low-pass the original image I0 and so obtain the image I1. Filtering is
performed by a procedure equivalent to convolution with one of a family of local, symmetric weighted
functions. An important member of this family resembles the Gaussian probability distribution, so
the sequence of images I0, I1, · · · In is called Gaussian pyramid. The image I0 is the bottom or zero
level of the Gaussian pyramid. Pyramid level 1 contains image I1, which is a reduced (or low-pass
filtered) version of I0. Each value within level 1 is computed as a weighted average of values in level
0 within a n × n window. The size of this window is not crucial but must be selected so that it
provides adequate filtering at low computational cost. Each value within level 2, representing I2, is
then obtained from values within level 1 by applying the same pattern of weights:

Il(i, j) =
2∑

m=−2

2∑
n=−2

w(m, n)Il−1(2i + m, 2j + n), (2.101)

where 0 < l < N , 0 ≤ i < Cl and 0 ≤ j < Rl. The pyramid is of level N . Note that the same n× n

pattern of weights w is used to generate each pyramid array from its predecessor. This weighting
pattern, called generating kernel, is chosen for simplicity to be separable: w(m,n) = ŵ(m)ŵ(n). The
one-dimensional function, length n, ŵ is normalized

∑2
m=−2 ŵ(m) = 1 and symmetric ŵ(i) = ŵ(−i)

for i = 0, 1, · · · n−1
2 .

Iterative pyramid generation is equivalent to convolving the Image I0 with a set of ”equivalent
weighting functions” Hl:

Il = Hl ⊕ I0 (2.102)

or

Il(i, j) =
Ml∑

m=−Ml

Ml∑

n=−Ml

Hl(m,n)I0(i2l + m · j2l + n). (2.103)

The effect of convolving an image with one of the equivalent weighted functions Hl is to blur, or
low-pass, the image. The pyramid algorithm reduces the filter band limit by an octave from level
to level, and reduces the sample interval by the same factor.

The purpose for constructing the reduced image Ii is that it might serve as a prediction for pixel
values in the original image I0. To obtain a compressed representation, we encode the error image
E0 which remains when an expanded (low-passed) I1 is subtracted from I0. This image becomes a
bottom level of the Laplacian pyramid. The next level is generated by encoding I1 in the same way.
Thus the LP is a sequence of error images E0, E1, · · ·EN . Each is the difference between two levels
of the Gaussian pyramid and for 0 ≤ 1 < N :

El = Il − Il+1. (2.104)

It is clear that just as we may view the Gaussian pyramid as a set of low-pass filtered copies of the
original image, we may view the LP as a set of band-pass filtered copies of the image. The scale of
the Laplacian operator doubles from level to level of the pyramid, while the center frequency of the
pass-band is reduced by an octave.

The original image can be recovered by expanding and then summing all the levels of the Lapla-
cian pyramid: expand EN once and add it to EN−1, then expand this image once and add it to
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EN−2 and so on until level 0 is reached and I0 is recovered. Actually, this procedure is just reversing
the steps in LP generation.

Laplacian pyramid from the Euclidean to the spherical case

Now we will define the LP for a spherical signal. Following the classical (Euclidean) technique and
supported by already existing spherical sampling theorem (by the means of Proposition 11) and
the spherical correlation theorem (as in Proposition 10), we thus initiate the Spherical Laplacian
Pyramid (SLP).

The input spherical signal is defined on an equi-angular grid ω ∈ Gj (equation (2.87)). These
grids allow us to perfectly sample any band-limited function f ∈ L2(S2) of bandwidth βj , i.e. such
that f̂(m,n) = 0 for all m > βj . Moreover, this class of sampling grids is associated to a Fast
Spherical Fourier Transform [38]. In general the SLP consists of two operations:

• low-pass filtering - convolution of the spherical data with a Gaussian, and

• down-sampling - reducing the data by 2,

from whose combination we build the LP on the sphere.

2.5.2 Analysis spherical Laplacian pyramid

The forward 2-level Laplacian Pyramid is shown for Mars surface map and depicted on Figure 2.8.
The input data is on 512 × 512-grid. The first step in the SLP is to low-pass filter the original
spherical signal f0 and thus obtain f1. Obviously, f1 is reduced version of f0. In the similar way
we form f2, as a reduced version of f1, and so on. For performing this step we use an axisymmetric
low pass filter defined by its Fourier coefficients:

Ĥσ0(m) = e−σ0m0 . (2.105)

This operation is performed in the Fourier domain for speeding up the computations. Suppose the
original data f0 is bandlimited, i.e. f̂0(m,n) = 0, ∀n > B0 and sampled on G0. The bandwidth
parameter σ0 is chosen so that the filter is numerically close to a perfect half-band filter Ĥσ0(m) =
0,∀m > B0/2. The sequence of spheres f0, f1, f2 · · · fl is called spherical Gaussian pyramid.

The low pass filtered data is then down-sampled on the nested sub-grid G1, which gives the
low-pass channel of our pyramid f1. The high-pass channel of the pyramid is computed as usual,
that is, by first up-sampling f1 on the finer grid G0, low-pass filtering it with hσ0 and taking the
difference with f0. Coarser resolutions are computed by iterating this algorithm on the low-pass
channel fl and scaling the filter bandwidth accordingly, i.e. σl = 2lσ0.

The spherical Laplacian pyramid is the sequence of ”error spheres” h0, h1 · · ·hl, and each is the
difference between two levels of the spherical Gaussian pyramid.

2.5.3 Synthesis spherical Laplacian pyramid

The synthesis of so decomposed Mars surface is a reversion of the steps in the Laplacian pyramid
generation. It is represented on Figure 2.9. Actually, the input spherical data can be reconstructed
by expanding and summing all the levels of the Laplacian pyramid. Expanding consists of low-pass
filtering and up-sampling. In the case of 2-levels SLP, we expand first h1 and add it to h0.
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Figure 2.8: Decomposition step of 2 level Spherical Laplacian Pyramid, 512 × 512-Mars surface
map. The finished pyramid consists of two hight-pass bands (h0, h1) and the low-pass band (f2).
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Figure 2.9: Reconstruction step for 2 level Spherical Laplacian Pyramid. The process begins with
the two hight-pass bands (h0, h1) and the low-pass band (f2), and then perfectly reconstructs the
starting sphere f0.
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2.6 Summary

• The continuous wavelet transform on the sphere has been recalled.

• Half-continuous spherical framesWj(ω) have been derived. They are based on a half-continuous
grid, where only the scale is discretized and the position vary continuously. It has been proved
that a function f ∈ L2(S2) can be reconstructed from its coefficients Wj(ω).

• Complete discretization of the CWT on the sphere has been done. In this case both the scale
and the position on the sphere are discretized. It is based on a equi-angular grid of resolution
j and of size 2βj × 2βj(βj ∈ N). The frame Ψ = {ψjpq} controlled by L−1

ψ provides a simple
approximate reconstruction formula if the bounds A and B are sufficiently close. An example
of spherical wavelet frame decomposition and reconstruction has been provided, where the
planet Mars has been used as spherical data.

• A spherical Laplacian pyramid has been proposed. Two main operations are used in this spher-
ical encoding technique: low-pass filtering (smoothening) and down-sampling of a bandlimited
spherical signal. The spherical Laplacian pyramid is a sequence of ”error spheres” as each is a
difference between two levels of low-passed spheres. The original sphere can be recovered by
expanding and then summing all the levels of the analyzing spherical Laplacian pyramid. A
concrete example of spherical Laplacian pyramid decomposition and reconstruction has been
performed on the Mars surface map.



Wavelets on the

Hyperboloid 3
In this chapter we enter deeper into the non-Euclidean world. Here we focus on the
hyperboloid - a non-Euclidean manifold of negative curvature. We work only in the
continuous time-domain and we construct a family of hyperbolic wavelets. For doing
this, first we define hyperbolic rotations, motions and a generalized hyperbolic dilation.
The latter consists of conic projection and flattening. Then, the continuous wavelet
transform on the hyperboloid is obtained by convolution of the scaled wavelets with
the signal. This wavelet transform is proved to be invertible whenever the hyperbolic
wavelets satisfy a particular admissibility condition. We give illustrative examples for
both the hyperbolic wavelet and the hyperbolic wavelet transform. Finally, we discuss
the limit at big curvature radiuses.

3.1 Motivation

Although the sphere is a manifold most desirable for applications, the mathematical analysis made
so far invites us to consider other manifolds with similar geometrical properties. Among them, the
two-sheeted hyperboloid H2 stands as a very interesting case.

In fact, the negatively curved geometries, of which the hyperbolic non-Euclidean geometry is the
prototype, have profound applications to the study of complex variables, to the topology of two-
and three-dimensional manifolds, to the study of finitely presented infinite groups, to physics,...
For instance, in quantum mechanics such a manifold may be a particular example of a phase space
[33, 34]. Other examples come from physical systems constrained on a hyperbolic manifold, for
instance, an open expanding model of the universe; or it can be viewed as the phase-space for
the motion of a free particle in 1 + 1-anti de Sitter space-time. A completely different example of
application is provided by the emerging field of catadioptric image processing [53, 24]. In this case,
a normal (flat) sensor is overlooking a curved mirror in order to obtain an omnidirectional picture
of the physical scene. An efficient system is obtained using a hyperbolic mirror, since it has a single
effective viewpoint. Finally, from a purely conceptual point of view, having already built the CWT
for data analysis in Euclidean spaces and on the sphere, it is natural to raise the question of its

57
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Figure 3.1: Geometry of the 2-hyperboloid.

existence and form on the dual manifold.

3.2 Geometry of the two-sheeted hyperboloid

The non-Euclidean geometry of Gauss, Lobachevsky and Bolyai is usually called hyperbolic geometry
because of one of its natural analytic models: the two-sheeted hyperboloid.

3.2.1 Hyperbolic coordinates

We start by recalling basic facts about the upper sheet of the two-sheeted 2-hyperboloid (H2 ∈ R3)
of radius ρ, H2

+ρ. Let χ, ϕ be a system of polar coordinates for H2
+ρ. To each point θ = (χ, ϕ) we

shall associate the vector x = (x0, x1, x2) of R3 given by

x0 = ρ cosh χ,

x1 = ρ sinhχ cos ϕ, ρ > 0, χ > 0, 0 ≤ ϕ < 2π,

x2 = ρ sinhχ sin ϕ,

where χ > 0 is the arc length from the pole to the given point on the hyperboloid, while ϕ is the
arc length over the equator, as shown in Figure 3.1. The meridians (ϕ = const) are geodesics. The
squared metric element in hyperbolic coordinates is:

(ds)2 = −ρ2

(
(dχ)2 + sinh2 χ(dϕ)2

)
, (3.1)

called Lobachevskian metric, whereas the measure element on the hyperboloid is

dµ = ρ2 sinhχdχdϕ. (3.2)

In the sequel, we shall designate the unit hyperboloid H2
+ρ=1 by H2

+.

3.2.2 Projective structures

Various projections can be used to endow H2
+ with a local Euclidean structure. One of them is

immediate. It suffices to flatten the hyperboloid onto R2 ' C.
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Figure 3.2: Projective structure on the hyperboloid: conic projection

Another possibility is to project the hyperboloid onto a cone. Let us consider a half null cone
C2

+ ∈ R3 of equation (x0)2 − 1
tan ψ0

((x1)2 + (x2)2) = 0, x0 > 0. This cone C2
+ has Euclidean

nature (metric (3.1) vanishes). The cone surface unrolled is a circular sector. All points of H2
+ will

be mapped onto C2
+ using a specific conic projection. The characteristic parameter of this conic

projection is the constant of the cone m = cos ψ0, where ψ0 is the Euclidean angle of inclination of
the generatrix of the cone as shown in Figure 3.2. The relation with the hyperbolic angle χ0 of the
parallel intersecting the cone and ψ0 is :

cos ψ0 =
1√

1 + tanh2 χ0

≡ m.

Considering the radial conic projection, it is more convenient to use a radius r defined by the
Euclidean distance between the point on the cone, conic projection of the point (χ, ϕ) ∈ H2

+, and
the x0-axis:

r = f(χ), dr = f ′(χ)dχ with
dr

dχ

∣∣∣∣
χ=0

= 1. (3.3)

Each suitable projection is determined by a specific choice of f(χ). It is clear that dilation of the
cone C2

+ 7→ aC2
+ = C2

+ entails r 7→ ar. Consequently, the resulting map χ 7→ χa is determined by
f(χa) = a · f(χ). This is precisely the point at the heart of our approach for constructing wavelets
on the hyperboloid and we shall discuss this in more details in Section 3.3.2.

3.3 Affine transformations on the 2-hyperboloid

We recall that our purpose is to build a total family of functions in L2(H2
+,dµ) by picking a wavelet

or probe ψ(χ) with suitable localization properties and applying on it hyperbolic motions, belonging
to the group SO0(1, 2), supplemented by appropriate dilations

ψ(x) → λ(a, x)ψ(d1/ag−1x) ≡ ψa,g(x), g ∈ SO0(1, 2). (3.4)

Dilations da will be studied in section 3.3.2. We first start by the hyperbolic rotations and motions

3.3.1 Rotations and motions on the hyperboloid

Hyperbolic rotations and motions, g ∈ SO0(1, 2), act on x in the following way. A motion g ∈
SO0(1, 2) can be factorized as g = k1hk2, where k1, k2 ∈ SO(2), h ∈ SO0(1, 1), and the respective
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action of k and h are the following

k(ϕ0).x(χ, ϕ) =




1 0 0
0 cos ϕ0 − sin ϕ0

0 sin ϕ0 cos ϕ0







cosh χ

sinhχ cos ϕ

sinhχ sinϕ


 (3.5)

= x(χ, ϕ + ϕ0), (3.6)

h(χ0).x(χ, ϕ) =




cosh χ0 sinh χ0 0
sinhχ0 cosh χ0 0

0 0 1







cosh χ

sinhχ cos ϕ

sinhχ sinϕ


 (3.7)

= x(χ + χ0, ϕ) (3.8)

The action of a motion on a point x ∈ H2
+ is trivial: it displaces (rotates) by an hyperbolic angle

χ ∈ R+ (respectively by an angle ϕ).

3.3.2 Dilations on the hyperboloid

The dilation is a homeomorphism da : H2
+ → H2

+ and we require that da fulfills the two conditions:

Requirements on the hyperbolic dilation

(i) it monotonically dilates the azimuthal distance between two points on H2
+:

dist(da(x),da(x′)), (3.9)

where dist(x, x′) is defined by

dist(x, x′) = cosh−1 (x · x′), (3.10)

and the dot product is the Minkowski product in R3. Note that dist(x, x′) reduces to |χ− χ′|
when ϕ = ϕ′.

(ii) it is homomorphic to the group R+
∗ ;

R+
∗ 3 a → da, dab = dadb, da−1 = d−1

a , d1 = Id.

It has to be noted that, as opposed to the case of the sphere, attempting to use the confor-
mal group SO0(1, 3) for describing dilation, our requirements are not satisfied. Here we adopt an
alternative procedure that describes different maps for dilating the hyperboloid.

To dilate the hyperboloid we must endow it with Euclidean structure so that the Euclidean
dilation can be applied on it. There are different possibilities for projections of the hyperboloid. To
each of them corresponds a specific scheme for hyperbolic dilation.

Dilation on hyperboloid through conic projection

Considering the half null-cone of equation

C2
+ =

{
ξ ∈ R3 : ξ · ξ = ξ2

0 − ξ2
1 − ξ2

2 = 0, ξ0 > 0
}

, (3.11)

there exist the SO0(1, 2)-motions and the obvious Euclidean dilations

ξ ∈ C2
+ → aξ ∈ C2

+ ≡ d
C2

+
a (ξ), (3.12)
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Figure 3.3: Cross-section of a conic projection of the hyperboloid and the action of the dilation
through it.

which form a multiplicative one parameter group isomorphic to R+
∗ .

In order to lift the dilation (3.12) back to H2
+, it is natural to use possible conic projections of

H2
+ onto C2

+

H2
+ 3 x → Φ(x) ∈ C2

+, (3.13)

as it was previously mentioned. Then, we might wish to find a form of the radial conic projection
(initially defined in (3.3)) , Φ, such that expressed in polar coordinates, the measure is

dµ = rdrdϕ. (3.14)

In this way, dilating r will quadratically dilate the measure dµ as well. By expressing the measure
(3.14) with the radius defined in (3.3) we obtain

f(χ)f ′(χ) = sinh χ =⇒ f(χ) = 2 sinh
χ

2
. (3.15)

Consequently, the radius of the conic projection is

r = 2 sinh
χ

2
(3.16)

Thus, the conic projection Φ : H2
+ → C2

+ is a bijection given by

Φ(x) = 2 sinh
χ

2
eiϕ,

with x ≡ (χ, ϕ), χ ∈ R+, 0 ≤ ϕ < 2π. The action of Φ is depicted in Figure 3.3. Then, the
lifted dilation is of the form

sinh
χa

2
= a sinh

χ

2
. (3.17)

Dilation through flattening

If we chose to use flattening as projective structure, then we have

H2
+ 3 x = x(χ, ϕ) → Π0Φ(x) = sinh χeiϕ ∈ C, (3.18)

where Π0 stands for flattening defined by

Π0Φ(x) : x(r, ϕ) ∈ C2
+ 7→ r · eiϕ ∈ C. (3.19)

The invariant metric and measure on H2
+, respectively (3.1) and (3.2), are then transformed into



62 Chapter 3. Wavelets on the Hyperboloid

a
C

a

0
0

N

x

x

x

2

1

0

a

H
2

+

Figure 3.4: Action of a dilation a on the hyperboloid H2
+ by “flattening”.

(ds)2 → cosh2 χ(dχ)2 − sinh2 χ(dϕ)2, (3.20)

dµ(χ, ϕ) → sinhχ cosh χ√
1 + sinh2 χ

dχdϕ. (3.21)

In polar coordinates r, ϕ, the measure (3.14) reads

dµ(r, ϕ) =
r√

1 + r2
drdϕ. (3.22)

The action of dilation by flattening is depicted in Figure 3.4 and it is of the form

sinhχa = a sinhχ. (3.23)

Generalized hyperbolic dilation: conic projection and flattening

The two proceeding situations lead us to consider one generalization, namely, we consider the fol-
lowing family of projections indexed by a positive parameter p:

H2
+ 3 x = x(χ, ϕ) → Π0Φ(x) =

1
p

sinh pχeiϕ = reiϕ ∈ C. (3.24)

Flattening reveals the Euclidean nature of the conic projection and the full action of (3.24) is depicted
on Figure 3.5. Thus, for one particular case p = 1

2 , the conic projection Φ : H2
+ → C2

+ is a bijection
which, after flattening , is given by

Π0Φ(x) = 2 sinh
χ

2
eiϕ. (3.25)

The action of Φ for different values of the parameter p is depicted on Figure 3.6. The invariant
metric and measure on H2

+, respectively (3.1) and (3.2), are then transformed into

(ds)2 → −
(

1
1 + p2r2

(dr)2 +
1
4

(
$(r)2 + ($(r))−2 − 2

)
(dϕ)2

)
, (3.26)

dµ(χ, ϕ) → 1
2

$(r)− ($(r))−1

√
1 + p2r2

drdϕ, (3.27)

where $(r) = 1/p

√
pr +

√
1 + p2r2. This also shows that so defined class of dilations is not conformal.

The action of dilation in this general case is given by

sinh pχa = a sinh pχ (3.28)
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Figure 3.5: Conic projection and flattening.
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Figure 3.7: Analysis of the distance (3.9) as a function of dilation a, with xN being the North
Pole and using conic projection for different parameter p.

For any of the values of parameter p the dilated point xa ∈ H2
+ is

xa = (cosh χa, sinhχa cos ϕ, sinhχa sin ϕ), (3.29)

with polar coordinates θa ≡ (χa, ϕ). The behavior of dist(xN, xa) with xN being the North Pole,
in the case p = 0.1, p = 0.5 and p = 1, is shown in Figure 3.7. We can immediately see that in all
cases this is an increasing function with respect to the dilation a.

Dilation through stereographic projection

It is also interesting to compute the action of dilations in the bounded version of H2
+. The latter is

obtained by applying the stereographic projection from the South Pole of H2 and it maps the upper
sheet H2

+ onto the open unit disc in the equatorial plane:

x = x(χ, ϕ) → Φ(x) = tanh
χ

2
eiϕ. (3.30)

In the case p = 0.5, using (3.17) and basic trigonometric relations we obtain

tanh
χa

2
=

√
a2 tanh2 χ

2

1 + (a2 − 1) tanh2 χ
2

≡ ζ. (3.31)

In this case, the dilation leaves invariant both ζ = 0 and ζ = 1, the center and the border of the disc,
respectively. Figure 3.8 depicts the action of this transformation on a point x ∈ H2

+. A hyperbolic
dilation from the North Pole (DN ) is considered as a dilation in the unit disc in equatorial plane
and lifted back to H2

+ by inverse stereographic projection from the South Pole. A dilation from any
other point x ∈ H2

+ is obtained by moving x ∈ H2
+ to the North Pole by a rotation g ∈ SO0(1, 2),

performing dilation DN and going back by inverse rotation:

Dx = g−1DNg.

The visualization of the dilation on the hyperboloid H2
+ with p = 0.5 is provided in Figure 3.9.

There, each circle represents points on the hyperboloid at constant χ and is dilated by the scale
factor a = 0.75.
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Figure 3.8: Action of a dilation a on the hyperboloid H2
+ through a stereographic projection.

Figure 3.9: Visualization of the dilation on a hyperboloid H2
+.
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3.4 Harmonic analysis on the 2-hyperboloid

3.4.1 Fourier-Helgason Transform

This integral transform is the precise analog of the Fourier-Plancherel transform on Rn [5]. It
consists of an isometry between two Hilbert spaces

FH : L2(H2
+, dµ) −→ L2(L, dη), (3.32)

where the measure dµ is the SO0(1, 2)-invariant measure on H2
+ and L2(L,dη) denotes the Hilbert

space of sections of a line-bundle L over another suitably defined manifold, the so-called Helgason-
dual of H2

+ and denoted by Ξ. We note here that the Helgason-dual of Rn is just its own dual.
Let us see what is the concrete realization of the dual space Ξ. In fact Ξ can be realized as the

projective half null-cone, as defined in (3.11) and asymptotic to H2
+, times the positive real line.

The space Ξ is given by
Ξ = R+ × PC+ ≡ {k = (ν, ~ξ)}, (3.33)

where PC+ denotes the projective forward cone {ξ ∈ C2
+ | λξ ≡ ξ, λ > 0, ξ0 > 0} (the set of “rays”

on the cone). A convenient realization of PC+ makes it diffeomorphic to the 1-sphere S1 as follows

PC+ ' {~ξ ∈ R2 : ‖~ξ‖ = 1} ∼ S1 (3.34)

ξ ≡ (ξ0, ~ξ) = (ξ0, ξ1, ξ2) 7→ 1
ξ0

~ξ. (3.35)

The Fourier - Helgason transform, is defined in an way similar to the ordinary Fourier transform
by using the eigenfunctions of the invariant differential operator of second order, i.e. the Laplacian
on H2

+. In our case, the functions of the (unique) invariant differential operator (the Laplacian) are
named hyperbolic plane waves [16]

Eν,ξ(x) = (ξ · x)−
1
2−iν , ξ ∈ C2

+, ν ∈ R+. (3.36)

These waves are not parameterized by points of R+×PC+ but rather by points of R+×C2
+; however

the action of R+ on C2
+ just rescales them by a factor which is constant in x ∈ H2

+. In other words,
they are sections of an appropriate line bundles over Ξ, which we denote by L and C2

+ is thought
of as total space of R+ over PC+. As well, we note that the inner product ξ · x is positive on the
product space C2

+ ×H2
+, so that the complex exponential is uniquely defined.

Let us express the plane waves in polar coordinates for a point x ≡ (x0, ~x) ∈ H2
+

Eν,ξ(x) = (ξ · x)−
1
2−iν (3.37)

≡
(

cosh χ−
~ξ · ~x
ξ0

)− 1
2−iν

(3.38)

= (cosh χ− (n̂ · x̂) sinh χ)−
1
2−iν , (3.39)

where n̂ ∈ S1 is a unit vector in the direction of ~ξ and x̂ ∈ S1 is the unit vector in the direction of
~x. Applying any rotation % ∈ SO(2) ⊂ SO0(1, 2) on this wave, it immediately follows

R(%) : Eν,ξ(x) → Eν,ξ(%−1 · x) = Eν,%·ξ(x). (3.40)

Finally, the Fourier - Helgason transform FH and its inverse FH−1 are defined as

f̂(ν, ξ) ≡ FH[f ](ν, ξ) =
∫

H2
+

f(x)(x · ξ)− 1
2+iνdµ(x), ∀f ∈ C∞0 (H2

+), (3.41)

FH−1[g](x) =
∫

jΞ

g(ν, ξ)(x · ξ)− 1
2−iνdη(ν, ξ), ∀g ∈ C∞0 (L), (3.42)
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where C∞0 (L) denotes the space of compactly supported smooth sections of the line-bundle L. The
integration in (3.42) is performed along any smooth embedding jΞ into the total space of the line-
bundle L and the measure dη is given by

dη(ν, ξ) =
dν

|c(ν)|2 dσ0, (3.43)

with c(ν) being the Harish-Chandra c-function [41]

c(ν) =
2iνΓ(1)Γ(iν)√

πΓ( 1
2 + iν)

. (3.44)

The factor |c(ν)|−2 can be simplified to

|c(ν)|−2 = ν sinh (πν)|Γ(
1
2

+ iν)|2. (3.45)

The 1-form dσ0 in the measure (3.43) is defined on the null cone C2
+, it is closed on it and hence

the integration is independent of the particular embedding of Ξ. Thus, such an embedding can be
the following

j : Ξ −→ R+ × C2
+ (3.46)

(ν, ξ) 7→ (ν, (1,
ξ1

ξ0
,
ξ2

ξ0
)) = (ν, (1, ξ̂)) (3.47)

Note that the transform FH maps functions on H2
+ to sections of L and the inverse transform

maps sections to functions. Thus, we have

Proposition 21. [41] The Fourier - Helgason transform defined in equations (3.41, 3.42) extends
to an isometry of L2(H2

+, dµ) onto L2(L, dη) so that we have
∫

H2
+

|f(x)|2dµ(x) =
∫

jΞ

|f̂(ξ, ν)|2dη(ξ, ν). (3.48)

3.5 Continuous Wavelet Transform on the Hyperboloid

One way of constructing the CWT on the hyperboloid H2
+ would be to find a suitable group contain-

ing both SO0(1, 2) and the group of dilations, and then find its square-integrable representations in
the Hilbert space ψ ∈ L2(H2

+,dµ), where dµ is the normalized SO0(1, 2)-invariant measure on H2
+.

We will take another approach by directly studying the following wavelet transform
∫

ψa,g(x)f(x)dµ(x) = 〈ψa,g|f〉,

where the notation ψa,g has been introduced in (3.4) and will be now made more precise in terms
of group representation. Looking at pseudo-rotations (motions) only, we have the unitary action :

[Ugψ](x) = f(g−1x), g ∈ SO0(1, 2), ψ ∈ L2(H2
+,dµ), (3.49)

where Ug is a quasi-regular representation of SO0(1, 2) on L2(H2
+).

We now have to incorporate the dilation. However, the measure dµ is not dilation invariant, so
that a Radon-Nikodym derivative λ(g, x) must be inserted, namely:

λ(a, x) =
dµ(a−1x)

dµ(x)
, a ∈ R+

∗ . (3.50)
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The function λ is a 1-cocycle and satisfies the equation

λ(a1a2, x) = λ(a1, x)λ(a2, a
−1
1 x). (3.51)

In the case of dilating the hyperboloid through generalized projection with parameter p > 0, we
have

λ(a, χ) =
d cosh χ1/a

d cosh χ
=

1
a

sinh χ1/a

sinhχ

cosh pχ

cosh pχ1/a
, (3.52)

with sinh pχ1/a = 1
a sinh pχ. Note here that the case p =

1
2

is unique in the sense that λ(a, χ) does

not depend on χ : λ(a, χ) = a−2. In the case p = 1, we get the more elaborate expression

λ(a, χ) =
d cosh χ1/a

d cosh χ
=

cosh χ

a2
√

1 + a−2 sinh2 χ
. (3.53)

Thus, the action of the dilation operator on the function is

Daψ(x) ≡ ψa(x) = λ
1
2 (a, χ)ψ(d−1

a x) = λ
1
2 (a, χ)ψ(x 1

a
) (3.54)

with xa ≡ (χa, ϕ) ∈ H2
+ and it reads

ψa(x) =

√
1
a

sinhχ1/a

sinhχ

cosh pχ

cosh pχ1/a
ψ(x 1

a
). (3.55)

Finally, the hyperbolic wavelet function can be written as

ψa,g(x) = UgDaψ(x) = Ugψa(x).

Accordingly, the hyperbolic continuous wavelet transform of a signal (function) f ∈ L2(H2
+) is

defined as:

Wf (a, g) = 〈ψa,g|f〉 (3.56)

=
∫

H2
+

[UgDaψ](x)f(x)dµ(x) (3.57)

=
∫

H2
+

ψa(g−1x)f(x)dµ(x) (3.58)

where x ≡ (χ, ϕ) ∈ H2
+ and g ∈ SO0(1, 2).

In the next section, we show that this expression can be conveniently interpreted and studied as
a hyperbolic convolution.

3.5.1 Convolution on the hyperboloid

Since H2
+ is a homogeneous space of SO0(1, 2), one can easily define a convolution. Indeed, let

f ∈ L2(H2
+) and s ∈ L1(H2

+), their hyperbolic convolution is the function of g ∈ SO0(1, 2) defined
as

(f ∗ s)(g) =
∫

H2
+

f(g−1x)s(x)dµ(x). (3.59)

Then f ∗ s ∈ L2(SO0(1, 2),dg) , where dg stands for the left Haar measure on the group and

‖f ∗ s‖2 ≤ ‖f‖2‖s‖1, (3.60)
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by the Young convolution inequality.
Let us deal with a simpler definition where the convolution is a function defined on H2

+. Let
[·] : H2

+ −→ SO0(1, 2) be a section in the fiber bundle defined by the group and its homogeneous
space. In the following we will make use of the Euler section, whose construction is now presented.
Recall from Section 3.3.1 that any g ∈ SO0(1, 2) can be uniquely decomposed as a product of three
elements g = k(ϕ)h(χ)k(ψ). Using this parametrization, we thus define :

[·] : H2
+ −→ SO0(1, 2)

[·] : x(χ, ϕ) 7→ g = k(ϕ)h(χ)

The hyperbolic convolution, restricted to H2
+, thus takes the following form:

(f ∗ s)(y) =
∫

H2
+

f([y]−1x)s(x)dµ(x), y ∈ H2
+

We will mostly deal with convolution kernels that are axisymmetric (or rotation invariant) func-
tions on H2

+ (i.e. functions of the variable χ alone). The Fourier-Helgason transform of such an
element has a simpler form as shown by the following proposition.

Proposition 22. If f is a rotation invariant function, i.e. f(%−1x) = f(x), ∀ρ ∈ SO(2), its
Fourier-Helgason transform f̂(ξ, ν) is a function of ν alone, i.e. f̂(ν).

Proof : Applying the Fourier-Helgason transform on a rotation-invariant function we write:

f̂(ξ, ν) =
∫

H2
+

f(x) Eξ,ν(x)dµ(x) (3.61)

=
∫

H2
+

f(%−1x)(ξ · x)−
1
2+iνdµ(x), ξ ∈ PC+, ρ ∈ SO(2) (3.62)

=
∫

H2
+

f(x′)(ξ · %x′)−
1
2+iνdµ(x′) (3.63)

= f̂(%−1ξ, ν), (3.64)

and so f̂(ξ, ν) does not depend on ξ. ¥
We now have all the basic ingredients for formulating a useful convolution theorem in the Fourier

- Helgason domain. As we will see now, the Fourier-Helgason transform of a convolution takes a
simple form, provided one of the kernels is rotation invariant.

Theorem 23. (Convolution) Let f and s be two measurable functions with f, s ∈ L2(H2
+) and s

be rotation invariant. The convolution (s ∗ f)(y) is in L1(H2
+) and its Fourier-Helgason transform

satisfies
(̂s ∗ f)(ν, ξ) = f̂(ν, ξ) ŝ(ν). (3.65)

Proof : The convolution of s and f is given by:

(s ∗ f)(y) =
∫

H2
+

s([y]−1x)f(x)dµ(x).

Since s is SO(2)-invariant, we write its argument in this equation in the following way :



cosh χ sinhχ 0
sinhχ cosh χ 0

0 0 1







x0

x1

0


 =




x0 cosh χ + x0 sinhχ

x0 sinh χ + x1 cosh χ

0


 , (3.66)
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where x = (x0, x1, x2) and we used polar coordinates for y = y(χ, ϕ). On the other hand we can
alternatively write this equation in the form :




x0 cosh χ + x1 sinhχ

x0 sinhχ + x1 cosh χ

0


 =




x0 x1 0
x1 x0 0
0 0 1







cosh χ

sinh χ

0


 . (3.67)

Thus we have
s([y]−1x) = s([x]−1y). (3.68)

Therefore, the convolution with a rotation invariant function is given by

(s ∗ f)(y) =
∫

H2
+

f(x)s([y]−1x) dµ(x) (3.69)

=
∫

H2
+

f(x)s([x]−1 · y) dµ(x). (3.70)

On the other hand, applying the Fourier-Helgason transform on s ∗ f we get

(̂s ∗ f)(ν, ξ) =
∫

H2
+

(s ∗ f)(y)(y · ξ)− 1
2+iνdµ(y)

=
∫

H2
+

dµ(y)
∫

H2
+

dµ(x)s([y]−1x)f(x)(y · ξ)− 1
2+iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s([y]−1x)(y · ξ)− 1
2+iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s([x]−1y)(y · ξ)− 1
2+iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s(y)([x]y · ξ)− 1
2+iν

=
∫

H2
+

dµ(x)f(x)
∫

H2
+

dµ(y)s(y)(y · [x]−1ξ)−
1
2+iν .

Since ξ belong to the projective null cone, we can write

(y · [x]−1ξ) = ([x]−1ξ)0

(
y · [x]−1ξ

([x]−1ξ)0

)
, (3.71)

and using ([x]−1ξ)0 = (x · ξ), we finally obtain

(̂s ∗ f)(ν, ξ) =
∫

H2
+

dµ(x)f(x)(x · ξ)− 1
2+iν

∫

H2
+

dµ(y)s(y)
(

y · [x]−1ξ

([x]−1ξ)0

)− 1
2+iν

= f̂(ν, ξ)ŝ(ν)

where we have used the rotation invariance of s. ¥
Based on Theorem 23, we can write the hyperbolic continuous wavelet transform of a function

f with respect to an axisymmetric wavelet ψ as

Wf (a, g) ≡ Wf (a, [x]) =
(
ψ̄a ∗ f

)
(x). (3.72)
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3.6 Wavelets on the 2-hyperboloid

We now come to the heart of the theory of wavelets on the hyperboloid : we prove that the hyperbolic
wavelet transform is a well-defined invertible map, provided the wavelet satisfy an admissibility
condition.

3.6.1 The hyperbolic wavelet admissibility condition

Theorem 24. (Admissibility condition) Let ψ ∈ L1(H2
+) be an axisymmetric function, a 7→ α(a) a

positive function on R+
∗ and m, M two constants such that

0 < m ≤ Aψ(ν) =
∫ ∞

0

|ψ̂a(ν)|2 α(a)da ≤ M < +∞. (3.73)

Then the linear operator Aψ defined by :

Aψf(x′) =
∫

R∗+

∫

H2
+

Wf (a, x)ψa,x(x′)dxα(a)da, (3.74)

where ψa,x = ψa,[x], is bounded and with bounded inverse. More precisely Aψ is univocally charac-
terized by the following Fourier - Helgason multiplier :

Âψ f̂(ν, ϕ) ≡ Âψf(ν, ϕ) = f̂(ν, ϕ)
∫ ∞

0

|ψ̂a(ν)|2 α(a)da = Aψ(ν)f̂(ν, ϕ).

Proof : Let the wavelet transform Wf be defined as in equation (3.72) and consider the following
quantity :

∆a(x′) =
∫

H2
+

Wf (a, x)ψa,x(x′)dx. (3.75)

A close inspection reveals that ∆a(x′) is itself a convolution. Taking the Fourier - Helgason transform
on both sides of (3.75) and applying Theorem 23 twice, we thus obtain:

∆̂a(ν, ϕ) = |ψ̂a(ν)|2f̂(ν, ϕ) .

Finally, integrating over all scales we obtain :
∫

R∗+
α(a)da ∆̂a(ν, ϕ) = f̂(ν, ϕ)

∫

R∗+
α(a)da |ψ̂a(ν)|2 (3.76)

which is the expected result. ¥
There are three important remarks concerning this result. First, Theorem 24 shows that the

wavelet family {ψa,x, a ∈ R+
∗ , x ∈ H2

+} forms a continuous frame provided the admissibility condi-
tion (3.73) is satisfied (in the sense of [3]). In this case, the wavelet transform Wf of any f can be
inverted in the following way. Let ψ̃a,x be a reconstruction wavelet defined by :

̂̃
ψa,x(ν) = A−1

ψ (ν)ψ̂a,x(ν).

As a direct consequence of Theorem 24, the inversion formula, to be understood in the strong sense
in L2(H2

+), reads :

f(x′) =
∫

R∗+

∫

H2
+

Wf (a, x)ψ̃a,x(x′)dxα(a)da . (3.77)
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As a second remark, one could check that Theorem 24 does not depend on choice of dilation! This is
not exactly true, actually. The architecture of the proof does not depend on the explicit form of the
dilation operator, but the admissibility condition explicitly depends on it. As we shall see later, it
will be of crucial importance when trying to construct admissible wavelets. Finally the third remark
concerns the somewhat arbitrary choice of measure α(a) in the formulas. Again, one may easily
check that the usual 1-D wavelet theory can be formulated along the same lines, keeping an arbitrary
scale measure. In that case though, the choice α = a−2 leads to a tight continuous frame, i.e. the
frame operator Aψ is a constant. The situation here is more complicated in the sense that no choice
of measure would yield to a tight frame, a particularity shared by the continuous wavelet transform
on the sphere [10]. Some choices of measure though lead to simplified admissibility conditions as we
will now discuss.

Theorem 25. Let a 7→ α(a) be a positive continuous function on R+
∗ which for large a behaves like

a−β, β > 0. If Da is the hyperbolic dilation with parameter p defined by equations (3.24), (3.52)
and (3.54), then an axisymmetric, compactly supported, continuous function ψ ∈ L2(H2

+, dµ(χ, ϕ))

is admissible for all p > 0 and β >
2
p

+ 1. Moreover, if α(a)da is a homogeneous measure of the

form a−βda, then the following zero-mean condition has to be satisfied :
∫

H2
+

ψ(χ, ϕ)
[
sinh 2pχ

sinhχ

] 1
2

dµ(χ, ϕ) = 0. (3.78)

Proof : Let us assume ψ(x) belongs to C0(H2
+), i.e. it is continuous and compactly supported

ψ(x) = 0 if χ > χ̃, χ̃ < const.

We wish to prove that ∫ ∞

0

|〈Eξ,ν |Daψ〉|2 α(a)da < ∞. (3.79)

First, we compute the Fourier-Helgason coefficients of the dilated function ψ:

〈Eξ,ν |Daψ〉 =
∫

H2
+

Daψ(χ, ϕ) Eξ,ν(χ, ϕ) dµ(χ, ϕ)

=
∫ 2π

0

∫ χ̃1/a

0

λ
1
2 (a, χ)ψ(χ 1

a
, ϕ)Eξ,ν(χ, ϕ) sinh χdχdϕ.

By performing the change of variable χ′ = χ 1
a
, we get χ = χ′a and d cosh χ = dcosh χ′a =

λ(a−1, χ′)d cosh χ′. The Fourier-Helgason coefficients become

〈Eξ,ν |Daψ〉 =
∫ 2π

0

∫ χ̃

0

λ
1
2 (a, χ′a)ψ(χ′, ϕ)Eξ,ν(χ′a, ϕ)λ(a−1, χ′) sinh χ′dχ′dϕ. (3.80)

From the cocycle property

λ
1
2 (a−1, χ′) =

1
λ

1
2 (a, χ′a)

=
[
a

sinhχa

sinhχ

cosh pχ

cosh pχa

] 1
2

, (3.81)

we get

〈Eξ,ν |Daψ〉 =
∫ 2π

0

∫ χ̃

0

λ
1
2 (a−1, χ′) ψ(χ′, ϕ) Eξ,ν(χ′a, ϕ) sinh χ′ dχ′dϕ. (3.82)

Then, we split (3.79) in three parts:
∫ ∞

0

(.)α(a)da =
∫ σ

0

(.)α(a)da

︸ ︷︷ ︸
I1

+
∫ 1

σ

σ

(.)α(a)da

︸ ︷︷ ︸
I2

+
∫ ∞

1
σ

(.)α(a)da

︸ ︷︷ ︸
I3

. (3.83)
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Let us focus on the first integral. Developing the Fourier-Helgason kernel Eξ,ν in (3.82), we obtain :

I1 =
∫ σ

0

α(a) da×

× ∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ) λ
1
2 (a−1, χ′)ψ(χ′) (cosh χ′a − sinhχ′a cos ϕ)−

1
2+iν

∣∣2.

Using the explicit form of χ′a, we have for the various involved quantities the following asymptotic
behaviors at small scale a ≈ 0 :

cosh pχa ∼ 1 + o(a),

coshχa ∼ 1 + o(a),

sinhχa ∼ a

p
sinh pχ + o(a),

(coshχ′a − sinhχ′a cosϕ)−
1
2+iν ∼ 1− (−1

2
+ iν)

a

p
cos ϕ.

So we have the approximation
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ) λ
1
2 (a−1, χ′)ψ(χ′) (cosh χ′a − sinhχ′a cos ϕ)−

1
2+iν

∼ a√
2p

∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)
[
sinh 2pχ

sinh χ

] 1
2

(
1− (−1

2
+ iν)

a

p
cos ϕ

)
.

Integrating over ϕ and using the rotation invariance of ψ, we obtain the following approximation
for I1 :

I1 ∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

sinhχ′dχ′
[
sinh 2pχ

sinhχ

] 1
2

ψ(χ′)
∣∣∣
2

. (3.84)

The second sub-integral (I2) is straightforward, since the operator Da is strongly continuous and
thus the integrand is bounded on [σ, 1

σ ].
Consider now the inequality :

I3 ≤
∫ +∞

1
σ

α(a)da

(∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)λ
1
2 (a−1, χ′) |ψ(χ′)|| coshχ′a − sinhχ′a cosϕ|−1/2

)2

. (3.85)

The term | coshχ′a − sinhχ′a cosϕ|−1/2 is bounded from above and from below by :

e−
χ′a
2 ≤ | cosh χ′a − sinhχ′a cos ϕ|−1/2 ≤ e

χ′a
2 . (3.86)

Now, we have

e
χ′a
2 =

(
epχ′a

) 1
2p

=
[√

1 + a2 sinh2 pχ′ + a sinh pχ′
] 1

2p

,

and so we get the asymptotic behavior of this upper bound at large scale:

e
χ′a
2 ∼ a

1
2p (sinh pχ′)

1
2p .

Again using the explicit form of χ′a and the following asymptotic behaviors at large scale a →∞ :

cosh pχa ∼ a sinh pχ,

sinhχa ∼ a
1
p (sinh pχ)

1
p ,
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we reach the following majoration of I3 :

I3 ≤
∫ +∞

1
σ

α(a)a
2
p da

(∫ χ̃

0

dχ′ (sinhχ′)
1
2 (sinh pχ′)

1
p− 1

2 (cosh pχ′)
1
2 |ψ(χ′)|

)2

.

Since the hyperbolic functions involved in the integration on the χ′ variable are increasing, we finally
end up with the estimate :

I3 ≤∼ (sinh χ̃)
1
2 (sinh pχ̃)(

1
p− 1

2 ) (cosh pχ̃)
1
2 ‖ψ‖21

∫ +∞

1
σ

α(a)a
2
p da.

and so α(a) should behave at least like a−β with β > 2
p + 1 for a →∞.

The convergence of I1 and I3 clearly depends on the choice of measure in the integral over scales.
Restricting ourselves to homogeneous measures α(a) = a−β and to the range 0 < p ≤ 2, one can
distinguish the following cases :

• β 6 2
p + 1: in this case I3 does not converge and there are no admissible wavelets.

• β > 2
p + 1: In this case I1 diverges except when

∫
H2

+
ψ

[
sinh 2pχ
sinh χ

] 1
2

= 0. ¥

Let us look at the two particular cases. In the first one we use a pure conic dilation (p = 1
2 ):

Corollary 26. Let α(a)da be a homogeneous measure of the form a−βda, β > 0. If Da is the conic
dilation defined by equations (3.17) and (3.54) with λ(a, χ) = a−2, then an axisymmetric function
ψ ∈ L2(H2

+,dµ(χ, ϕ)) is admissible if β > 5 and the following zero-mean condition is satisfied :
∫

H2
+

ψ(χ, ϕ)dµ(χ, ϕ) = 0. (3.87)

Proof : We follow the same arguments as in the proof of Theorem 25 and thus perform the same
change of variable while looking for the Fourier-Helgason coefficients of the dilated wavelet function
through pure conic dilation (p = 0.5).

By performing the change of variable χ′ = χ 1
a
, we get χ = χ′a and d cosh χ = d coshχ′a =

λ(a−1, χ′)d cosh χ′. The Fourier-Helgason coefficients become

〈Eξ,ν |Daψ〉 =
∫ 2π

0

∫ χ̃

0

λ
1
2 (a, χ′a)ψ(χ′, ϕ)Eξ,ν(χ′a, ϕ)λ(a−1, χ′) sinh χ′dχ′dϕ. (3.88)

From the cocycle property

λ
1
2 (a, χ′a) =

1
λ

1
2 (a−1, χ′)

=
1
a
, (3.89)

we get

〈Eξ,ν |Daψ〉 = a

∫ 2π

0

∫ χ̃

0

ψ(χ′, ϕ)Eξ,ν(χ′a, ϕ) sinh χ′dχ′dϕ. (3.90)

Once again, the central point is to prove that
∫ ∞

0

|〈Eξ,ν |Daψ〉|2 α(a)da < ∞. (3.91)

We split it in three parts:
∫ ∞

0

(.)α(a)da =
∫ σ

0

(.)α(a)da

︸ ︷︷ ︸
I1

+
∫ 1

σ

σ

(.)α(a)da

︸ ︷︷ ︸
I2

+
∫ ∞

1
σ

(.)α(a)da

︸ ︷︷ ︸
I3

. (3.92)
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Let us focus on the first integral. Developing the Fourier-Helgason kernel Eξ,ν in (3.90), we
obtain :

I1 =
∫ σ

0

α(a)a2da
∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)ψ(χ′)(cosh χ′a − sinhχ′a cos ϕ)−
1
2+iν

∣∣2.

Using the explicit form of χ′a, we have :

I1 =
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)ψ(χ′)

(
1 + 2a2 sinh2 χ′

2
− 2a

√
1 + a2 sinh2 χ′

2
sinh

χ′

2
cos ϕ

)− 1
2+iν

∣∣∣
2

. (3.93)

Since we are interested in the small scale behavior of this quantity, we can focus on the leading term
in the expansion in powers of a, which yields :

I1 ∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)ψ(χ′)
(
1− 2a sinh

χ′

2
cos ϕ

)− 1
2+iν

∣∣∣
2

∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)ψ(χ′)
(
1− (−1 + 2iν)a sinh

χ′

2
cos ϕ

)∣∣∣
2

.

Finally, integrating over ϕ and using the rotation invariance of ψ, we obtain :

I1 ∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

sinhχ′dχ′ ψ(χ′)
∣∣∣
2

. (3.94)

The second subintegral (I2) is straightforward, since the operator Da is strongly continuous and
thus the integrand is bounded on [σ, 1

σ ].
Consider now the inequality :

I3 ≤
∫ +∞

1
σ

α(a)a2da

(∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)|ψ(χ′)|| cosh χ′a − sinhχ′a cosϕ|−1/2

)2

.

The term | coshχ′a − sinhχ′a cosϕ|−1/2 is bounded from above and from below by :

e−
χ′a
2 ≤ | cosh χ′a − sinhχ′a cos ϕ|−1/2 ≤ e

χ′a
2 . (3.95)

Now, we have

e
χ′a
2 = cosh

χ′a
2

+ sinh
χ′a
2

= a sinh
χ′

2

[√
1 +

1
a2 sinh2 χ′

2

+ 1

]
∼ 2a sinh

χ′

2
.

Since the hyperbolic functions involved in the integration on the χ′ variable are increasing, we reach
the following majoration of I3 :

I3 ≤∼ 8π sinh2 χ̃

2
sinh2 χ̃‖ψ‖21

∫ +∞

1
σ

α(a)a4da,

and so α(a) should behave at least like a−β with β > 5 for a →∞.
The convergence of I1 and I3 clearly depends on the choice of measure in the integral over scales.

Restricting ourselves to homogeneous measures α(a) = a−β , we can distinguish the following cases :

• β 6 5: In this case I3 does not converge and there are no admissible wavelets.



76 Chapter 3. Wavelets on the Hyperboloid

• β > 5: In this case I1 diverges except when
∫

H2
+

ψ = 0. ¥

In the second case we chose to use flattening as projective structure for obtaining hyperbolic
wavelets, and thus we obtain even a simpler version of the admissibility condition:

Corollary 27. Let α(a)da be a homogeneous measure of the form a−βda, β > 0. If Da is the dilation
operator defined through flattening, as by equations (3.23), (3.53) and (3.54), then an axisymmetric
function ψ ∈ L2(H2

+, dµ(χ, ϕ)) is admissible if β > 3 and the following zero-mean condition is
satisfied : ∫

H2
+

dµ(χ, ϕ) cosh1/2 χψ(χ, ϕ) = 0. (3.96)

Proof: For proving this corollary we use the same technique as in Corollory 26, namely we assume
that ψ(x) is compactly supported and we wish to prove that the Fourier-Helgason coefficients of the
hyperbolic wavelet function are square-integrable with respect to the dilation.

After the same change of variable and using the cocycle property, the Fourier-Helgason coeffi-
cients are computed as follows

〈Eξ,ν |Daψ〉 =
∫ 2π

0

∫ χ̃

0

λ1/2(a−1, χ′)ψ(χ′, ϕ)Eξ,ν(χ′a, ϕ) sinh χ′dχ′dϕ (3.97)

=
∫ 2π

0

∫ χ̃

0

a(coshχ)1/2

(1 + a2 sinh2 χ)1/4
ψ(χ′, ϕ)Eξ,ν(χ′a, ϕ) sinh χ′dχ′dϕ. (3.98)

Splitting (3.91) as in (3.92), we start by studying the integral at small scales I1.

I1 =
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)
(cosh χ′)1/2

(1 + a2 sinh2 χ′)1/4
ψ(χ′)

(√
1 + a2 sinh2 χ′ − a sinhχ′ cosϕ)−

1
2+iν

∣∣∣
2

. (3.99)

In this case we are interested in small scale behavior of this quantity and we focus on the leading
term in the expansion in powers of a, which leads to

I1 ∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)(cosh χ′)1/2ψ(χ′)(1− a sinhχ′ cos ϕ)−
1
2+iν

∣∣∣
2

∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)(cosh χ′)1/2ψ(χ′)(1− (−1
2

+ iν)a sinhχ′ cosϕ)
∣∣∣
2

∼
∫ σ

0

α(a)a2da
∣∣∣
∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)(cosh χ′)1/2ψ(χ′)
∣∣∣
2

.

The integral I2 is bounded on [σ, 1
σ ] because it is strongly continuous.

For calculating the integral I3 , we first note that the term | coshχ′a−sinhχ′a cos ϕ|−1/2 is bounded
from above and below as in (3.95). We express

eχ′a/2 = (cosh χ′a + sinh χ′a)1/2 (3.100)

= (
√

1 + a2 sinh2 χ′ + a sinhχ′)1/2 (3.101)

∼
√

2a sinhχ′. (3.102)

Consider now the inequality

I3 ≤
∫ +∞

1
σ

α(a)a2da
(∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)
∣∣∣ (coshχ′)1/2

(1 + a2 sinh2 χ′)1/4

∣∣∣

|ψ(χ′)|| coshχ′a − sinhχ′a cosϕ|−1/2
)2

.
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Using (3.102), this inequality becomes

I3 ≤
∫ +∞

1
σ

α(a)a2da
(∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)
∣∣∣ (coshχ′)1/2

(1 + a2 sinh2 χ′)1/4

∣∣∣|ψ(χ′)|
√

2a1/2 sinh1/2 χ′
)2

≤
∫ +∞

1
σ

α(a)a2da
(∫ χ̃

0

∫ 2π

0

dµ(χ′, ϕ)
√

2|ψ(χ′)| cosh1/2 χ′
)2

≤ C

∫ +∞

1
σ

α(a)a2da.

Since ψ(χ) is assumed to be with compact support and cosh χ > 1, then C is bounded. In this case,
in order I3 to converge, we need to have at least α(a) = 1

a4 . ¥

3.6.2 An example of hyperbolic wavelet

For concluding our theory of the wavelets on the hyperboloid, let us present here a class of admissible
vectors, which satisfy the admissibility condition. We restrict ourself to the case p = 0.5 but let first
state a preliminary result

Proposition 28. Let ψ ∈ L2(H2
+, dµ). Then

∫

H2
+

Daψ(χ, ϕ)dµ(χ, ϕ) = a

∫

H2
+

ψ(χ, ϕ)dµ(χ, ϕ). (3.103)

Proof: We have to compute the following integral

I =
∫

H2
+

Daψ(χ, ϕ)dµ(χ, ϕ) =
∫

H2
+

λ
1
2 (a, χ)ψ(χ 1

a
, ϕ)dµ(χ, ϕ).

By change of variable χ 1
a

= χ′, we get

I =
∫

H2
+

λ
1
2 (a, χ′a)ψ(χ′, ϕ)λ(a−1, χ′)dµ(χ′, ϕ)

=
∫

H2
+

λ
1
2 (a−1, χ′)ψ(χ′, ϕ)dµ(χ′, ϕ),

and having λ
1
2 (a−1, χ′) = a, which follows directly from (3.52), we get

I = a

∫

H2
+

ψ(χ′, ϕ)dµ(χ′, ϕ),

which proves the proposition. ¥
Using this result, we can build the hyperbolic DOG wavelet. Thus, given a square-integrable

function ψ, we define

fβ
ψ (χ, ϕ) = ψ(χ, ϕ)− 1

β
Dβψ(χ, ϕ), β > 1. (3.104)

More precisely, using the hyperbolic function ψ = e− sinh2 χ
2 , we dilate it through the conic projection

and thus obtain
Dβψ =

1
β

e
− 1

β2 sinh2 χ
2 . (3.105)

Then we write (3.104) and get:

fβ
ψ (χ, ϕ) = e− sinh2 χ

2 − 1
β2

e
− 1

β2 sinh2 χ
2 . (3.106)



78 Chapter 3. Wavelets on the Hyperboloid

Now, applying a dilation operator on (3.106) we get

Dafβ =
1
a
e−

1
a2 sinh2 χ

2 − 1
aβ2

e
− 1

a2β2 sinh2 χ
2 . (3.107)

One particular example of hyperbolic DOG wavelet at β = 2 is:

f2
ψ(χ, ϕ) =

1
a
e−

1
a2 sinh2 χ

2 − 1
4a

e−
1

4a2 sinh2 χ
2 .

The resulting hyperbolic DOG wavelet is shown in Figure 3.10 for different values of the scale a and
the position (χ, ϕ) on the hyperboloid.

Of course, similar admissible hyperbolic DOG wavelets can be constructed for generic p > 0, but
let us discuss some specific features of this one. On Figure 3.11 we can see the same DOG wavelet
but viewed on the open unit disk. The action of the dilation a in this particular case is trivial: it
dilates the wavelet toward the border of the disk as it never reaches it and it remains centered.

More interesting is the behavior of the wavelet when different hyperbolic translations are applied
on it. This is equivalent to variation of the hyperbolic angle χ. The more it is increased, the closer
to the disk’s border the wavelet moves but it never reaches it. Actually, seen on the disk it behaves
as different functions though it is just the same wavelet but hyperbolically translated. We can see
this on Figure 3.12.

The action of the rotations on the same wavelet are trivial, it just rotates it in the disk by
ϕ ∈ [0, 2π). This is shown on Figure 3.13.

3.6.3 An example of continuous wavelet transform on the hyperboloid

For concluding this section we provide an example of the continuous wavelet transform applied on a
synthetic signal - a hyperbolic triangle. The signal is projected on the unit disc and the visualization
of its CWT at different scale a is depicted on Figure 3.14.

3.7 The hyperbolic wavelet L1-normalized transform

We should emphasize here that the choice of the normalization factor

λ1/2(a, χ) =

√
1
a

sinhχ1/a

sinh χ

cosh pχ

cosh pχ1/a

in (3.55) is not essential. This choice makes the transform unitary : ‖ψa(x)‖2 = ‖ψ‖2 and also
‖Wf‖2 = ‖f‖2, where ‖ · ‖2 denotes the L2 norm in the appropriate variables (the square norm is
interpreted as the total energy of the signal). Instead, in practice one often uses a factor λ(a, χ),
which has the advantage of giving more weight to the small scales, i.e. the high frequency part
(which contains the singularities of the signal, if any).

Thus, when constructing hyperbolic wavelets through flattening (p = 1), we define the action of
the dilation operator as

(Daψ)(x) ≡ ψa(x) = λ(a, χ) =
cosh χ

a2
√

1 + a−2 sinh2 χ
ψ(χ1/a), (3.108)

and obtain the so called L1-normalized transform, which preserves the L1-norm of the hyperbolic
signal. The same development is valid for any other projection parameter p.
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a = 1.7; χ = 0; ϕ = π a = 0.5;χ = 1.15; ϕ = 3π
4

a = 0.5;χ = 2.15; ϕ = π
2 a = 0.7;χ = 2.15; ϕ = 3π

4

a = 0.5;χ = 2.15; ϕ = π a = 0.7;χ = 1.15; ϕ = 3π
4

Figure 3.10: The hyperbolic DOG wavelet fβ
ψ , for β = 2 at different scales a and positions (χ, ϕ).
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Figure 3.11: Action of a dilation on the hyperbolic DOG wavelet fβ
ψ , for β = 2 at χ = 0, ϕ = 0;

up: a = 0.01, middle: a = 0.125, bottom: a = 0.5.
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Figure 3.12: Action of a hyperbolic translation on the hyperbolic DOG wavelet fβ
ψ , for β = 2 at

a = 0.3, ϕ = π; up: χ = 0.75, middle: χ = 1.25, bottom: χ = 2.75.
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Figure 3.13: Action of a rotation on the hyperbolic DOG wavelet fβ
ψ , for β = 2 at a = 0.3, χ = 1.25;

up: ϕ = π/2, middle: ϕ = π/4, bottom: ϕ = 3π/2.
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hyperbolic signal a = 0.015
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Figure 3.14: Continuous wavelet transform of a hyperbolic triangle at different scales a, using
hyperbolic DOG wavelet with β = 2.
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3.7.1 L1-normalized hyperbolic admissibility condition

We must note that changing the dilation operator from L2 to L1 norm amounts to replacing the
factor λ(a, χ)1/2 by its square λ(a, χ), but this modifies the admissibility condition in a nontrivial
way and is expressed in the following proposition, we develop the admissibility condition for p = 1,
but the other cases are analogues.

Proposition 29. Let α(a)da be a homogeneous measure of the form a−βda, β > 0. If Da is the
dilation operator defined for p = 1, as by equations (3.23), (3.54) and (3.53), then an axisymmetric
function ψ ∈ L1(H2

+, dµ(χ, ϕ)) is admissible if β ≥ 3 and the following zero-mean condition is
satisfied : ∫

H2
+

dµ(χ, ϕ)ψ(χ, ϕ) = 0. (3.109)

Proof: First we start with FH coefficients

〈Eξ,ν |Daψ〉 =
∫ 2π

0

∫ χ̃

0

λ(a, χ′a)ψ(χ′)Eξ,ν(χ′a, ϕ)λ(a−1, χ′) sinh χ′dχ′dϕ (3.110)

=
∫ 2π

0

∫ χ̃

0

ψ(χ′)Eξ,ν(χ′a, ϕ) sinh χ′dχ′dϕ (3.111)

where was taken the cocycle property

λ(a, χ′a) =
1

λ(a−1, χ)
.

I1 =
∫ σ

0

α(a)da
∣∣∣
∫ 2π

0

∫ χ̃

0

dµ(χ′, ϕ)ψ(χ′)(coshχ′a − sinhχ′a cosϕ)−
1
2+iν

∣∣∣
2

(3.112)

=
∫ σ

0

α(a)da
∣∣∣
∫ 2π

0

∫ χ̃

0

dµ(χ′, ϕ)ψ(χ′)(
√

1 + a2 sinh2 χ′ − a sinhχ′ cos ϕ)−
1
2+iν

∣∣∣
2

(3.113)

∼
∫ σ

0

α(a)da
∣∣∣
∫ 2π

0

∫ χ̃

0

dµ(χ′, ϕ)ψ(χ′)(1− a sinh χ′ cos ϕ)−
1
2+iν

∣∣∣
2

(3.114)

∼
∫ σ

0

α(a)da
∣∣∣
∫ 2π

0

∫ χ̃

0

dµ(χ′, ϕ)ψ(χ′)(1−
(
− 1

2
+ iν

)
a sinhχ′ cos ϕ)

∣∣∣
2

(3.115)

∼
∫ σ

0

α(a)da
∣∣∣
∫ 2π

0

∫ χ̃

0

dµ(χ′, ϕ)ψ(χ′)
∣∣∣
2

(3.116)

The integral I2 converges because ψ is defined to be with compact support.
It remains to see what is the behavior of I3.

I3 ≤
∫ +∞

1/σ

α(a)da
( ∫ 2π

0

∫ χ̃

0

dµ(χ′, ϕ)|ψ(χ′)|2
√

2a sinhχ′
)2

(3.117)

≤
∫ +∞

1/σ

α(a)2ada
( ∫ 2π

0

∫ χ̃

0

dµ(χ′, ϕ)|ψ(χ′)|2 sinh1/2 χ′
)2

(3.118)

This integral converges for all α(a) ≥ 1
a3 . In this case, in order the integral I to converge we need

the subintegral I1 to converge and this happens when is fulfilled
∫

H2
+

ψ(χ)dµ(χ, ϕ) = 0. (3.119)

¥
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3.8 Euclidean limit

Since the hyperboloid is locally flat, the associated wavelet transform should match the usual 2-D
CWT in the Euclidean plane at small scales, i.e. for large radiuses of curvature. In this section we
recall some basic facts emphasizing those notions.

Let Hρ ≡ L2(H2
+ρ,dµρ) be the Hilbert space of square integrable functions on a hyperboloid of

radius ρ, ∫

H2
ρ

|f(χ, ϕ)|2ρ2 sinhχdχdϕ < ∞, (3.120)

and H = L2(R2,d2~x) be the Hilbert space of square integrable functions on the plane.
One can easily adapt the Fourier-Helgason transform by updating Eν,ξ(x) for any ρ [6]:

Eρ
ν,ξ(x) =

(
x0 − n̂~x

ρ

)− 1
2−iνρ

, (3.121)

for x ∈ H2
+ρ, (x2 = ρ2). The Inönü-Wigner contraction limit of the Lorentz to the Euclidean group

SO(2, 1)+ → ISO(2)+ is the limit at ρ →∞ for (3.121) with x0 ≈ ρ, ~x2 ¿ ρ2, i.e

lim
ρ→∞

Eρ
ν,ξ(x) = lim

ρ→∞

(
x0 − n̂~x

ρ

)− 1
2−iνρ

(3.122)

≈ lim
ρ→∞

(
1− n̂~x

ρ

)−iνρ

= exp (iνn̂~x). (3.123)

The Fourier-Helgason transform on the hyperboloid of radius ρ reads :

ψ̂ρ(ν, ξ) =
ρ

2π

∫

~x

ψ(~x)Eν,ξ(~x)
d2~x

x0
(3.124)

and since x0 ≈ ρ for ρ →∞, we obtain

lim
ρ→∞

ψ̂ρ(ν, ξ) =
1
2π

∫

~x

ψ(~x) exp (iνn̂~x)d2~x (3.125)

= ψ̂(~k), (3.126)

which is the Fourier transform in the Euclidean plane.
This relation shows that the geometric and algebraic breakdown SO(2, 1)+ → ISO(2)+ is mir-

rored at the functional level. Consequently, the necessary condition of the hyperbolic wavelet con-
tracts to the 2-D Euclidean one is:

lim
ρ→∞

∫

H2
ψρ(χ, ϕ)dµ(χ, ϕ) →

∫

R2
ψ(~x)d2~x. (3.127)

A much finer analysis would be necessary to understand if this association holds at the level of
the necessary and sufficient condition (3.73).

3.9 Summary

In this chapter a constructive theory for the continuous wavelet transform on the hyperboloid H2
+ ∈

R3
+ has been developed.

• Affine transformations on the hyperboloid have been defined and different schemes for dilating
H2

+ have been proposed.
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• Hyperbolic convolution has been proved by the means of Fourier-Helgason transform.

• The hyperbolic continuous wavelet transform together with the corresponding admissibility
condition have been derived. Two particular cases of the admissibility condition have been
presented:through conic projection and through flattening.

• An example of hyperbolic DOG wavelet has been given and some details on the action of the
zoom, translation and rotation on the hyperbolic DOG wavelet have been shown.

• Finally, we have used the Inönü-Wigner contraction limit of the Lorentz to the Euclidean
group SO0(2, 1)+ → ISO(2)+ to check the consistency of the CWT on the hyperboloid with
that one on the Euclidean plane.



On Processing

Non-Euclidean Images 4
In this chapter we concentrate on one possible application of non-Euclidean wavelets-
processing of non-Euclidean images. These images are closely related to the plenoptic
function, a concept that embodies all visual information in a scene. The plenoptic
function is represented in spherical coordinates and is in a tight relation with projection
of the scene onto a sphere. Thus one efficient way for processing is by mapping the
scene on the sphere, and then applying spherical frames. But depending on the curved
mirror used for capturing the scene, it can be processed directly in the geometry of the
mirror, for instance we could apply hyperbolic wavelets for processing a non-Euclidean
image reflected by a hyperbolic mirror. For completing the set of processing tools for
non-Euclidean images, we develop scale-space and active contour for the case of the
sphere and hyperboloid. This is supplemented by a multiresolution motion estimation
algorithm on the sphere.

4.1 Plenoptic function

The plenoptic function is a parameterized function for describing everything that is visible from a
given point in space. Adelson and Bergen [1] assigned the name plenoptic function to the pencil of
rays visible from any point in space, at any time, and over any range of wavelengths. This function
describes all of the radiant energy that can be perceived from the point of view of the observer
rather than the point of view of the source (Figure 4.1(a)).

It is interesting to note the parameter space over which this function is valid. Let an observer
stand at any point in space (X,Y, Z), from which one selects any of the viewable rays by choosing
an azimuth and elevation angle (θpl, ϕpl) , as on Figure 4.1(b), as well as a band of wavelength λ

which one wishes to consider. In addition, if this is a dynamic scene, one can chose the time t, at
which the light field to be evaluated. This results in the following form for the plenoptic function

p = P (θpl, ϕpl, λ, X, Y, Z, t). (4.1)

For the purpose of visualization, one can consider this function as a scene representation. In
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(a)

Z

X

Y

pl

pl

(b)

Figure 4.1: Notion of plenoptic function: (a) The plenoptic function describes the information
available to an observer at any point in space and time, (b)the image information available from a
single viewing point is described by the pencil of light rays passing through the eye; the rays are
parameterized in spherical coordinates and so is represented the full sphere of optical information
impinging on a point in space.

order to generate a view from a given point in a particular direction we would need to merely plug
in appropriate values for (X,Y, Z) and select from a range of (θpl, ϕpl) for some constant t. We
define a complete sample of the plenoptic function as a full spherical map for a given viewpoint and
time value, and an incomplete sample as some solid angle subset of this spherical map.

One can measure any of the variables but an important case is where ~P = (X, Y, Z) is fixed
and one records I~P (θ, ϕ), that is the light incoming on a perfect punctual observer located at ~P .
Measuring I~P (θ, ϕ) is equivalent to observing the scene in any direction (θ, ϕ) from a fixed viewpoint
~P . This can be achieved by a catadioptric sensor as we now explain.

4.1.1 Catadioptric sensors and omni-directional images

Catadioptric sensors have direct applications in a variety of fields-video conferences, computer vision,
virtual reality and robotics. The original idea of the catadioptric vision sensors has been initially
proposed by Rees [67]. Later this concept was extended [77, 42, 78].

Obviously, the conventional imaging systems (photographic or video) are severely limited in
their fields of view. Thus for obtaining an image of entire (360o) scene, either multiple or rotating
cameras may be used. But in many cases the rotating camera is not suitable. For instance, it can
not simultaneously cover actions in all directions of a dynamic scene. On the other hand, the highest
spatial resolution is given with multiple cameras pointing outwards but it is technically difficult to
achieve a single effective viewpoint (center of projection) with it. To use mirrors in conjunction
with lenses tends out to be an effective way to enhance the field of view. The catadioptric sensor
is an imaging sensor based on combination of a mirror (catoptrics) and a lens (dioptrics) to form a
projection onto the image plane of a (video)camera. The mirror itself presents virtually no chromatic
aberration while its surface can provide for a complex remapping of the scene. A catadioptric sensor
offers the potential for simultaneously capturing an image with a high resolution on target as well
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as a wide-field-of-view periphery. In fact, these are the main advantages of such imaging sensors
over the classical ones. These sensors are capable of viewing the world in all directions from the
center of projection, i.e. the entire sphere of view around a single point. Consequently, the images
obtained from such a sensor are omni-directional because they contain the information from a scene
in all directions. Some examples of such images are provided on Figure 4.2:

(a) (b)

Figure 4.2: Examples of non-Euclidean images: (a) hyperbolic, (b) parabolic.

Depending on the curved mirror used, we can clearly distinguish some particular examples of
catadioptric sensors. The images obtained from each one can be defined as non-Euclidean images
since they result from a reflection of the scene by a non-Euclidean (curved) mirror. The design and
properties of these sensors have already been studied [12].

The fixed viewpoint constraint is the requirement that a catadioptric camera only measures the
intensity of light passing through a single point in 3-D (Euclidean) space. The direction of the light
passing through this point may vary, but that is all. In other words, the catadioptric sensor must
sample the 5-D plenoptic function at a single point in 3-D space. The fixed 3-D point at which a
catadioptric sensor samples the plenoptic function is known as the effective viewpoint.

It is highly desirable that a catadioptric sensor has a single effective viewpoint, i.e. center of
projection. The reason for this is obvious: having a unique center of projection permits to warp
geometrically correct images from the images captured by the catadioptric sensors. Such a generation
is possible because under the singe effective viewpoint constraint, every pixel in the captured image
measures the irradiance of the light passing through the viewpoint in one particular direction. Since
one knows the geometry of the catadioptric sensor, it is possible to precompute this direction for
each pixel. Therefore, we can map the irradiance value measured by each pixel onto a plane at any
distance from the viewpoint to form a Euclidean (planar) images. Actually, so warping gives a, so
called, perspective image, which is more natural to inspect (when presented to a human).

In this chapter, we deal only with non-Euclidean images obtained from catadioptric sensors where
all rays intersect in a single point, i.e. sensor that have a single effective viewpoint.

4.1.2 Central catadioptric sensors

The sensors with a single effective viewpoint are called central catadioptric sensors. In general, a
conic∗ reflects any ray of light incident with one of its foci (FM in Figure 4.3) to a ray of light
incident with its other focus (FC). Central catadioptric devices utilize this property and achieve a
single effective viewpoint at one of the foci of a conic (FM ). Therefore, sensors fulfilling the single
effective viewpoint are, for instance, with hyperbolic and parabolic mirror. We recall some basic
facts on both for better understanding the geometry of the images obtained.

∗The four mathematical curves that can be found in a cone: circle, ellipse, parabola, hyperbola.



90 Chapter 4. On Processing Non-Euclidean Images

O

z

F
M

F
C

p(x,y)

a

2c

b P(X,Y,Z)

Figure 4.3: Geometric configuration of catadioptric sensor with hyperbolic mirror: the camera
center coincides with the focal point of the mirror FC and the rays reflected from the mirror intersect
in FM .

Hyperbolic catadioptric sensor

In this kind of sensor, an image reflected by a hyperboloidal mirror is taken by a (video) camera.
The mirror features a two sheeted hyperboloid with two focuses, FM and FC as shown in Figure 4.3.
The camera is fixed so that its lens center coincides with the external focus FC of the hyperbolic
mirror. In terms of 3D-world coordinates (X,Y, Z), the mirror surface is expressed as

X2 + Y 2

a2
− Z2

b2
= −1, Z > 0. (4.2)

The mirror focus FM is the point (0, 0, c) and the lens center is (0, 0,−c), where c =
√

a2 + b2. Here,
a, b and c are parameters of the hyperboloidal mirror.

The hyperboloidal mirror has a focal point, which makes possible easy generation of any desired
image projected on any designated image plane, such a perspective image or a panoramic image, from
an omnidirectional input. It also allows a human user to see familiar perspective images or panorama
images instead of an unfamiliar omnidirectional input image deformed by the hyperboloidal mirror.
On the other hand, with a hyperbolic projection, the vertical edges in the environment appear
radially in the image and the azimuth angles are invariant to changes in distance and height.

Parabolic catadioptric sensor

The parabolid is the limiting case of the hyperboloid when the focal point FC goes to infinity. A
parabolic catadioptric sensor is shown on Figure 4.4. The mirror, an elliptic paraboloid, is placed
at the parabolic focus. It is reflective on its outer surface. All rays from the environment reflect at
the parabolic mirror and run parallel to its rotating axis. In this way they reach the image plane
which is perpendicular to the direction of the projection. There is a single effective viewpoint in the
focus of the paraboloid if the mirror is imaged by an orthographic camera∗.

∗A camera that uses parallel projection to generate a two-dimensional image of the objects in a three-dimensional

model. In particular, an orthographic camera uses orthographic projection, in which the view plane is perpendicular

to the viewing direction.
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Figure 4.4: Geometric configuration of catadioptric sensor with parabolic mirror: an (orthograph-
ic) camera with a parabolic mirror assembled so that rays of the camera are parallel to the mirror
symmetry axis and the reflected rays intersect in FM .
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Figure 4.5: Plenoptic sphere centered at the hyperbolic mirror focus FM .

Actually, a central catadioptric projection is equivalent to a two-step mapping via a sphere. All
that can be seen from a single viewpoint can be represented by a non-Euclidean image mapped on
a sphere of view. In the case of parabolic mirror, the second step is equivalent to a stereographic
projection, while the hyperbolic case is more complicated. In the following two sections, we briefly
sketch these equivalencies. In both cases our goal is to recover the spherical coordinates, θ = [0, π]
and ϕ = [0, 2π), of incoming rays of light at the parabola/hyperbola focus FM , which locates our
ideal observer.

4.1.3 Mapping of a hyperbolic image onto the sphere

Let us consider a sphere with a center in the mirror focus FM as shown on Figure 4.5. Through the
focal projection a point of the hyperboloid (χ, ϕ) is sent onto the plenoptic sphere with coordinates
(θpl, ϕpl). Let us assume the mirror is the upper sheet of a unit two-sheeted hyperboloid. Then we
have that the parameters a = b = 1 and consequently c =

√
2. The meaning of this parameters was
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given on Figure 4.3. For deriving the angle θpl, we consider 4FMFCH, for which it holds:

^HFMFC = 180o − θ (4.3)

FMFC = 2
√

2, (4.4)

FCH =
√

X2
h + Y 2

h + (Zh +
√

2)2, (4.5)

FMH =
√

X2
h + Y 2

h + (Zh −
√

2)2. (4.6)

Applying the law of cosines for 4FMFCH, we write

(FCH)2 = (FMFC)2 + (FMH)2 − 2(FMFC)(FMH) cos (^HFMFC), (4.7)

from where we easily derive

cos (^HFMFC) =
(FMFC)2 + (FMH)2 − FCH)2

2(FMFC)(FMH)
. (4.8)

Substituting the sides with their values as in (4.6) we get

cos (180o − θpl) =
2− Zh

√
2√

2(X2
h + Y 2

h + (Zh −
√

2)2)
. (4.9)

Then

180o − θpl = arccos
2− Zh

√
2√

2(X2
h + Y 2

h + (Zh −
√

2)2)
, (4.10)

from where follows

θpl = 180o − arccos
2− Zh

√
2√

2(X2
h + Y 2

h + (Zh −
√

2)2)
. (4.11)

In other words, an object in the three-dimensional Euclidean space captured by a hyperbolic
catadioptric sensor can be represented on the plenoptic sphere with the θpl derived in (4.11) knowing
its special coordinates (X, Y, Z).

4.1.4 Mapping of a parabolic image onto the sphere

In order to see how a parabolic image is mapped on the sphere, we first consider a cross-section
of the parabololoid as shown on Figure 4.6 [35]. All points on the parabola are equidistant to the
focus FM and the directrix d. Let l pass through FM and be perpendicular to the parabolic axis.
If a circle has center FM and radius equal to twice the focal length of the paraboloid, then the
circle and parabola intersect twice the line l and the directrix is tangent to the circle. The North
Pole N of the circle is the point diametrically opposite to the intersection of the circle and the
directrix. Point P is projected on the circle from its center, which gives Π1. This is equivalent to
a projective representation, where the projective space (set of rays) is represented as a circle here.
One easily sees that Π2 is the stereographic projection of the point Π1 to the line l from the North
Pole N, where Π1 is the intersection of the ray FMP and the circle. We can thus conclude that the
parabolic projection of the point P , yields point Π2 which is collinear with Π1 and N . Extending
this reasoning to three dimensions, the projection by a parabolic mirror is equivalent to projection
on the sphere (Π1) followed by stereographic projection (Π2).

Therefore, a projection by a parabolic mirror is equivalent to the composition of normalization
to the unit sphere followed by stereographic projection. We can thus recover the spherical coor-
dinates of incoming light rays through a simple inverse stereographic projection of the parabolic
omnidirectional images.
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Figure 4.6: Cross-section of mapping the parabolic image on the sphere [35].

4.2 Processing of non-Euclidean images

Considering the discussion on obtaining non-Euclidean images from central catadioptric sensors, we
therefore distinguish two main ways toward their processing:

(i) projecting the non-Euclidean image onto the sphere: In this case, the hyperbolic or parabolic
image is mapped on the sphere and the processing is performed on the sphere. It can then be
processed by spherical frames (as developed in Section 2.4);

(ii) direct processing of the non-Euclidean image (this is the image as viewed from the camera
pointing into the mirror): In this case, the particular geometry of the reflecting mirror is
taken into consideration and the non-Euclidean image is directly processed as it comes in its
disk-like form. For instance, for processing such a hyperbolic image we could apply hyperbolic
wavelets.

For completing the set of processing techniques for non-Euclidean images, we develop some basic
but highly practical techniques. In the following section we develop the scale-space analysis for the
spherical and hyperbolic cases. This is followed by derivation of the active contour on the sphere
and the hyperboloid. Then we propose an algorithm for local motion estimation on the sphere,
which can be applied on both hyperbolic or parabolic images, once they are mapped on the sphere.

4.2.1 Scale-space analysis for non-Euclidean images

It was observed that objects in the world appear in different ways depending on the scale of ob-
servation [52]. Besides this multi-scale properties of real-world objects, it is necessary to cope with
the complexity of unknown scenes and noise. This brings us to the conclusion that for a deep un-
derstanding of the image structure, multi-resolution image representation is necessary. One such
representation is to embed the image in a one-parameter family of images. Starting from the da-
ta I(~x), one creates a family of images I(~x, t), where t measures the scale or the time by setting
I(~x, t = 0) = I(~x). This method derives, from one image, a whole stack of images as it is shown in
Figure 4.7. It is interesting to see how one-parameter set of images can be generated. Actually, it
is possible on the basis of many different principles. One way is by progressively blurring an image
using heat flow/ partial differential equation:

∂

∂t
I(~x, t) = 4I(~x, t), (4.12)
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Figure 4.7: Scale-space stack of non-Euclidean images.

where I stands for the luminance of the image which depends on the position ~x and scale t and 4
is the Laplacian operator. Generating images at coarser and coarser resolution is very much like in
the wavelet approximation scheme. In fact, generating coarser resolution images can be done by a
convolution with a Gaussian kernel at scale t, I(~x, t) = I ∗G(~x, t), where

G(x, y, t) =
1

2πt
e−

|~x|
4t . (4.13)

The resulting structure is known as Gaussian scale-space and this is another strong link between
scale-space and wavelet analysis.

In order to generalize the scale-space analysis to a non-Euclidean manifold, one needs a gener-
alization of the Laplacian operator. On a smooth manifold, the differential df encodes all the first
derivative information of a function f in a coordinate-free manner; equivalently, on a Riemannian
manifold, the gradient ∇f encodes this information. To keep track of second derivative information,
d2f certainly will not do, and ∆f is a complicated combination of second derivative information
(and lower order terms). Therefore, Laplacian may be defined on non-Euclidean manifolds with a
metric (Riemannian manifolds). In this case, it is still defined as the divergence of the gradient;
however, the definitions of the divergence and gradient are modified in order to take into account the
curvature. When derived in this way, i.e. taking into account the Riemannian metric, the Laplacian
operator is known as Laplace-Beltrami operator.

Laplace-Beltrami operator

First, we need to define a Hilbert space of real valued functions on M , i.e L2(M), by setting
〈f, g〉 =

∫
M

f(x)g(x). Then, let us define the Laplacian ∆ : L2(M, g) → L2(M, g). We want the

Laplacian to agree with the standard Laplacian −
(

∂2

∂(x1)2 ,+ · · · + ∂2

∂(xn)2

)
on Rn. However, this

expression depends on the standard coordinates for Rn, and we need a coordinate-free expression
for our realization. This is provided by the classical equation

−
( ∂2

∂(x1)2
,+ · · ·+ ∂2

∂(xn)2
)

= −div ◦ ∇. (4.14)

In local coordinates we have

∇f = gij∂if∂j , (4.15)

where ∂j = ∂xj = ∂
∂xj

, and gij is the inverse matrix of gij .
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As for div, integration by parts applied to f ∈ C∞(Rn) gives

−
∫

Rn

∂iX
i · f =

∫

Rn

∂if ·Xi, (4.16)

for functions Xi, which shows that the divergence ∂iX
i of a vector field X = Xi∂i on Rn is

characterized by the equation

〈−divX, f〉 = 〈X,∇f〉, (4.17)

where the inner products are the global inner products on functions and vector fields induced by
the standard dot product.

We are interested in what does the operator divX look like in local coordinates.
If g denotes the metric tensor on the manifold, the volume form in local coordinates is given by

[69]:

dvol =
√

det g dx1 ∧ · · · ∧ dxn,

whenever (∂x1 , · · · , ∂xn) is a positively oriented basis of TxM .
Finally, for any function f ∈ C∞(U) and vector field X = Xi∂i ∈ TM , we have

〈X,∇f〉 =
∫

M

〈X,∇f〉dvol (4.18)

=
∫

U

〈Xi∂i, g
kj∂kf∂j〉dvol (4.19)

=
∫

U

Xi(∂kf)gkjgij

√
det g dx1 · · · dxn (4.20)

=
∫

U

Xi(∂if)
√

det g dx1 · · · dxn (4.21)

= −
∫

U

1√
det g

f · ∂i(Xi
√

det g)
√

det g dx1 · · · dxn (4.22)

= 〈f,− 1√
det g

∂i(Xi
√

det g)〉. (4.23)

From here we can see that it must be satisfied

divX =
1√

det g
∂i(Xi

√
det g). (4.24)

Here, once again, the Einstein notation is used, so the above is actually a sum in i.
Assuming this expression is independent of choice of coordinates, we can then define the Laplacian

on functions to be ∆ = −div ◦ ∇, a second order differential operator. In local coordinates, we get

∆f = − 1√
det g

∂j(gij
√

det g ∂if) (4.25)

= −gij∂i∂jf + (lower order terms). (4.26)

We must note that this reduces to the usual expression for the Laplacian on Rn. The last expression
shows that not only is the Laplacian determined by the Riemannian metric, but the Laplacian
also determines the metric. In other words, by evaluating ∆ on a function which is locally xixj , we
recover gij and hence gij . We expect the spectral theory of the Laplacian to be intimately connected
with the geometry of (M, g).
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Laplace-Beltrami operator on the hyperboloid

Consider the 2-hyperboloid in R3, with coordinates (x0, x1, x3), in terms of which the Lobachevskian
metric has the form

dl2 = dx2
0 − dx2

1 − dx2
2. (4.27)

Let us recall that 2-hyperboloid of radius R is the set of points satisfying the equation

x2
0 − x2

1 − x2
2 = R2. (4.28)

In spherical coordinates (ρ, χ, ϕ), the metric (4.27) takes the form

dl2 = −ρ2(dχ2 + sinh2 χdϕ2) + dρ2. (4.29)

For ρ = R we distinguish the upper sheet of the hyperboloid, and for ρ = −R, the lower one.
Since ρ is constant on the hyperboloid, the metric can be written as

−dl2 = R2(dχ2 + sinh2 χdϕ2). (4.30)

We can define a stereographic projection of the hyperboloid onto the plane. It maps the upper sheet
of the hyperboloid onto the open disc x2

1 + x2
2 < R2. If a point P ∈ H2

+ has coordinates (x0, x1, x2),
and its projection on the plane has coordinates (u, v), then

x1

u
=

x0 + R

R
,

x2

v
=

x0 + R

R
, (4.31)

whence
x1 = u

(
1 +

x0

R

)
, x2 = v

(
1 +

x0

R

)
. (4.32)

Substituting these in (4.28) and solving the resulting equation for x0 > 0, we get

x0 = −R
(
1 +

2R2

u2 + v2 −R2

)
, (4.33)

from where we obtain

x1 =
2R2u

R2 − u2 − v2
, x2 =

2R2v

R2 − u2 − v2
. (4.34)

Thus,we can express the induced metric in terms of the coordinates (u, v). But first, let us recall
the hyperbolic coordinates:

x0 = R cosh χ (4.35)

x1 = R sinhχ cos ϕ (4.36)

x2 = R sinhχ sin ϕ (4.37)

From the equivalence of (4.35) and (4.33), and putting u2 + v2 = r2, we get

cosh χ = −
(
1 +

2R2

(r2 −R2)

)
, (4.38)

which, after differentiation, leads to

sinhχdχ =
4R2r

(r2 −R2)2
dr. (4.39)

On the other hand, from (4.34),(4.36)and (4.37) we get

sinh2 χ =
x2

1 + x2
2

R2
=

4R2r2

(R2 − r2)2
. (4.40)



4.2. Processing of non-Euclidean images 97

From (4.30) and using (4.39) and (4.40) we obtain

−dl2 =
4R4

(R2 − r2)2
(dr2 + r2dϕ2), (4.41)

that is

−dl2 =
4R4

(R2 − u2 − v2)2
(du2 + dv2). (4.42)

We can see that the metric on the hyperboloid is obtained from the metric on the Euclidean plane
by multiplying the latter of a function, i.e. these two metric are ”proportional”.

If we take out the minus sign in (4.30) we obtain

dl2 = R2(dχ2 + sinh2 χdϕ2), (4.43)

which is the metric on the upper sheet of the hyperboloid.
In terms of the coordinates in the disk (x, y), the metric on the upper sheet of the unit hyper-

boloid, i.e R = 1, takes the form

dl2 =
4

(1− x2 − y2)2
(dx2 + dy2), (4.44)

where x2 + y2 < 1. The open disc with the metric (4.44) is the Poincaré model of Lobachevsky’s
geometry. Taking into account that dl2 = gijdxidxj with x1 = x and x2 = y, we directly obtain the
metric tensor :

(g)ij =

(
4

(1−x2−y2)2 0
0 4

(1−x2−y2)2

)
=

(
gxx gxy

gyx gyy

)
, (4.45)

and accordingly its contra-variant (inverse) metric:

(g)ij =

(
(1−x2−y2)2

4 0
0 (1−x2−y2)2

4

)
. (4.46)

Developing the Laplacian operator (4.25) for this particular case we write

∆D+f =
1√
detg

( ∂

∂x

√
det g gxx ∂f

∂x
+

∂

∂y

√
det g gyy ∂f

∂y

)
(4.47)

=
(1− x2 − y2)2

4

(∂2f

∂x2
+

∂2f

∂y2

)
(4.48)

=
(1− x2 − y2)2

4
∆R2f. (4.49)

The last result shows that the Laplacian operator on the hyperboloid (or the open disk) is a
scaled version of the Laplacian operator on the plane.

We apply this theory on a synthetic hyperbolic image, which is shown on Figure 4.8(a). This is
an Escher tiling of the hyperbolic plane. The equivalence between the hyperboloid and the disk is
by the stereographic projection through the South Pole.

Obviously, it is straightforward to be numerically implemented the scale-space of hyperbolic
image and it is suggested by the linear diffusion equation (4.12). If we denote the original hyperbolic
image as h(x, y, t = 0), then it holds ht = 4h. As t increases, we approach to a blurred version of
the original hyperbolic image as shown on Figure 4.8

Accordingly, for the gradient of a hyperbolic image we have:

(∇D+f)x = gxx ∂f

∂x
+ gxy ∂f

∂y
= gxx ∂f

∂x
(4.50)

(∇D+f)y = gyx ∂f

∂x
+ gyy ∂f

∂y
= gyy ∂f

∂y
(4.51)
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Figure 4.8: Scale-space on a hyperbolic image: (a) original, (b) t = 10, (c) t = 100, (d) t = 300.
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We can easily see that

∇D+f =
(1− x2 − y2)2

4
∇R2f. (4.52)

Therefore, the gradient on the hyperboloid is proportional to the gradient of the Euclidean plane.
What concerns a hyperbolic disk image, its gradient is a scaled gradient of the plane. From an image
processing point of view, the gradient operator is used to localize contours, as shown on Figure 4.9.
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Figure 4.9: Gradient of a hyperbolic image: (a) original image, (b) gradient in direction of x, (c)
gradient in direction of y , (d) magnitude of the gradient.

Laplace-Beltrami operator on the sphere

Consider the sphere as introduced in Section 2.1.1. A point on the sphere is the vector(x0, x1, x2).
In terms of spacial coordinates, the Euclidean metric takes the form

dl2 = dx2
0 + dx2

1 + dx2
2 = dr2 + r2(dθ2 + sin2 θdϕ2). (4.53)
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On the surface R = r, the differential dr = 0, so the metric induced on the sphere is given by

dl2 = r2(dθ2 + sin2 θdϕ2) (4.54)

The stereographic projection of the sphere sends a point (θ, ϕ) on the sphere to the point with polar
coordinates (R, ϕ) in the plane, for which we have that ϕ = ϕ,R = r cot θ/2. In terms of these new
coordinates the metric becomes

dl2 =
4r4

(r2 + R2)2
(dR2 + R2dϕ2). (4.55)

Let us proceed toward (Euclidean )coordinates in the disc:(x1, x2) ≡ (x, y) ∈ R2, where R2 =
x2 + y2. We obtain

dl2 =
4r4

(r2 + x2 + y2)2
(dx2 + dy2). (4.56)

We can see that in this case as well, the metric on the sphere is obtained from the Euclidean metric
on the plane by multiplying the latter by the function 4r2

(r2+x2+y2)2 :

dl2S2 =
4r4

(r2 + x2 + y2)2
dl2R2 . (4.57)

Accordingly, the metric on the unit sphere, i.e. R = 1, is derived as

(g)ij =

(
4

(1+x2+y2)2 0
0 4

(1+x2+y2)2

)
, (4.58)

and accordingly

(g)ij =

(
(1+x2+y2)2

4 0
0 (1+x2+y2)2

4

)
. (4.59)

Developing the Laplacian operator (4.25) on the sphere, we obtain

∆S2f =
1√
detg

( ∂

∂x

√
det g gxx ∂f

∂x
+

∂

∂y

√
det g gyy ∂f

∂y

)
(4.60)

=
(1 + x2 + y2)2

4

(∂2f

∂x2
+

∂2f

∂y2

)
(4.61)

=
(1 + x2 + y2)2

4
∆R2f. (4.62)

The gradient of a spherical image is

∇S2f =
(1 + x2 + y2)2

4
∇R2f, (4.63)

It is clear that both the Laplace-Beltrami operator and the gradient of a spherical non-Euclidean
image are proportional to the Euclidean image, as it turned out to be in the hyperbolic case.
Implementing the scale-space for spherical image is analogous to the hyperbolic one. The stack of
images forming the spherical scale-space is shown on Figure 4.10. Looking at the spherical gradient
on Figure 4.11, we can clearly distinguish the main difference in gradient’s action for the hyperbolic
and the spherical case. In the first case the gradient acts as it never reaches the border of the
disk. This is a natural consequence of the hyperbolic geometry. In the case of sphere, the action is
stronger toward and including the border of the disk.
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Figure 4.10: Scale-space on a spherical image: (a) original image, (b) t = 10, (c) t = 100, (d)
t = 300.
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Figure 4.11: Gradient of a real spherical image: (a) original image, (b) spherical gradient.
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4.2.2 Active contours on non-Euclidean manifolds

The notion of active contour model

In classical (Euclidean) image analysis, image segmentation is a fundamental component and its
main objective consists in determine the semantically important parts of images. When it is needed
to detect objects in an image, the active contour segmentation model is used. It proposes to detect
the closest contours from an initial position and was introduced in [45]. This model detects sharp
image intensity variations by deforming (like a snake) a curve C toward the edges of objects. The
evolution equation of the parametric Euclidean curve C(p) = (x(p), y(p)) ∈ Ω, p ∈ [0, 1] is given
by the minimization of the following energy functional defined for any observed Euclidean image
I0 ∈ L1(Ω) and any positive parameters α, β, λ:

F (C) = α

∫ 1

0

∣∣∣∂C(p)
∂p

∣∣∣
2

dp + β

∫ 1

0

∣∣∣∂
2C

∂p2

∣∣∣
2

dp + λ

∫ 1

0

f2(I0(C))dp, (4.64)

where the first two terms are physics based smoothness constraints on the geometry of the curve
since the first term makes the snake act like a membrane and the second term makes it act like a
thin plate. The sum of both terms is called the internal energy. The third term , called the external
energy, attracts the curve toward the boundaries of objects using an edge detecting function f

vanishing at infinity such as the function:

f(I0) =
1

1 + γ|∇(I0 ? Gσ)|2 , (4.65)

where Gσ is the Gaussian function with standard deviation σ, I0 ? Gσ is the low-passed image I0

and γ is an arbitrary positive constant. With this method it is not possible to detect more then one
object, since the final curve has the same topology as the initial one as shown on Figure 4.12. From
Figure 4.12(d) we can clearly see that this model cannot naturally change its topology during the
evolution process since the final contour has captured only one object. To overcome the limitation

(a) (b) (c) (d)

Figure 4.12: Active contour on a Euclidean image: (a) original image (b) associated edge detecting
function f(I0), (c) the contour at the beginning of the evolution process , (d) the contour at the
ende of the evolution process.

of the changes of topology, a powerful level-set method was proposed in [64, 71]. The curve C is
then implicitly represented by a function of higher dimension, called the level-set function, and the
curve evolution equation can be re-written in a level set formulation.

Based on energy functional in (4.64), a new one was proposed in [21, 47, 46]:

E(C) =
∫ 1

0

f(|∇I0(C(p))|)|C′(p)|dp =
∫ L(C)

0

f(|∇I0(C(s))|)ds, (4.66)

where ds is the Euclidean element of length and L(C) is the Euclidean length of the curve C defined
by L(C) =

∫ 1

0
|C′(p)|dp =

∫ L(C)
0

ds and |C′(p)| is the lenght of tangent vector in Euclidean geometry.
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Hence, the functional (4.66) is actually a new length obtained by weighting the Euclidean element of
length ds by the function f which contains information concerning the boundaries of objects. The
function f is the edge detecting function as defined in equation (4.65). The equivalence between
(4.64) and (4.66) was shown in [21].

Geometric active contour model on non-Euclidean manifold

The active contours in non-Euclidean spaces follows the theory of its counterpart in Euclidean
spaces. Actually, the curve minimizing E(C) in (4.66) is a geodesic in a Riemannian space with
metric tensor gij = f(|∇I0|)δij , where f is the edge detecting function.

Once again, the goal is to minimize E for C in a certain allowed space of curves. Following the
classical model, we need to minimize the energy functional

∫ 1

0

f(|∇I(C(h))|)|C′(h)|dh, (4.67)

where f is an edge-detecting function,disk-curve C(h) = (x(h), y(h)) ∈ Ω, h ∈ [0, 1] and |C′(h)| is the
length of tangent vector in Euclidean geometry. This functional is not intrinsic since it depends on
the parametrization h, which for the moment is arbitrary.

In other words, the solution to the energy problem is given by a curve of minimal ”weighted
distance” between given points. Distance is measured in a given Riemannian space with the first
fundamental form gij .

|C′(h)| =
√

gijC′iC′jdh, (i, j = 1, 2), (4.68)

Since C = (C1, C2), we can write

|C′(h)| =
√

g11C′21 + 2g12C′1C′2 + g22C′22 dh. (4.69)

The geodesic is computed by the calculus of variations. Thus we are brought to minimizing the
following functional:

E(C) =
∫ 1

0

f(|∇I(C(h))|)
√

(g)ijC′iC′jdh. (4.70)

Taking our two specific examples, sphere and hyperboloid, with tensor metrics derived in (4.58)
and (4.45), respectively, we could even simplify it. Both metrics are diagonal; g12 = g21 = 0, g11 =

g22 and thus
√

(g)ijC′iC′j =
√

g1/2δijC′iC′j . The energy functional becomes:

E(C) =
∫ 1

0

f(|∇I(C(h))|)
√

g1/2δijC′iC′jdh

=
∫ 1

0

g1/4f(|∇I(C(h))|)
∣∣∣∂C
∂h

∣∣∣,

where g denotes the determinant of (g)ij . We denote the edge detector function for the spher-
ical/hyperbolic (non-Euclidean) image as fD = g1/4f(|∇I(C)|), where f is the edge detector in
Euclidean case. Let us introduce an artificial time t and consider the family of curves C(t) in the
disk D. The first variation of the energy E(C) is then dE(C)

dt , and it reads :

dE(C)
dt

=
∫ 1

0

dfD(|∇I(C)|)
dt

∣∣∣∂C
∂h

∣∣∣dh +
∫ 1

0

fD(|∇I(C)|) d
dt

∣∣∣∂C
∂h

∣∣∣dh. (4.71)

Let us first develop the derivatives separately. We start by the term

dfD(|∇I(C)|)
dt

=
d
dt

fD(C1, C2) =
∂fD

∂u1

∂C1

∂t
+

∂fD

∂u2

∂C2

∂t
= 〈∇fD,

∂C
∂t
〉, (4.72)
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where the contour was considered as a vector C ≡ (C1, C2) and for obtaining its derivative the chain
rule was applied.

Next, we look at the term:

d
dt

∣∣∣∂C
∂h

∣∣∣ =
d
dt

√(∂C1

∂h

)2

+
(∂C2

∂h

)2

(4.73)

=
1

2

√(
∂C1
∂h

)2

+
(

∂C2
∂h

)2
2
(∂C1

∂h

∂2C1

∂t∂h
+

∂C2

∂h

∂2C2

∂t∂h

)
(4.74)

= 〈
∂C
∂h∣∣∣∂C
∂h

∣∣∣
,

∂2C
∂t∂h

〉 (4.75)

Then the energy variation in (4.71) becomes

dE(C)
dt

=
∫ 1

0

〈∇fD,
∂C
∂t
〉
∣∣∣∂C
∂h

∣∣∣dh +
∫ 1

0

fD〈
∂C
∂h∣∣∣∂C
∂h

∣∣∣
,

∂2C
∂t∂h

〉dh (4.76)

We integrate by parts with respect to h the second integral and thus obtain

dE(C)
dt

=
∫ 1

0

〈∇fD,
∂C
∂t
〉
∣∣∣∂C
∂h

∣∣∣dh−
∫ 1

0

〈∂C
∂t

, fD
∂

∂h

( ∂C
∂h∣∣∣∂C
∂h

∣∣∣

)
+

∂C
∂h∣∣∣∂C
∂h

∣∣∣
〈∇fD,

∂C
∂h
〉〉dh.

This equation can be rewritten as

dE(C)
dt

=
∫ 1

0

∣∣∣∂C
∂h

∣∣∣〈∂C
∂t

,∇fD − fD∣∣∣∂C
∂h

∣∣∣
∂

∂h

( ∂C
∂h∣∣∣∂C
∂h

∣∣∣

)
−

∂C
∂h∣∣∣∂C
∂h

∣∣∣
〈∇fD,

∂C
∂h∣∣∣∂C
∂h

∣∣∣
〉〉dh (4.77)

By definition, for the tangent vector we have:

T =
∂C
∂h∣∣∣∂C
∂h

∣∣∣
. (4.78)

The normal vector N is perpendicular to the tangent and by its definition it reads

1∣∣∣∂C
∂h

∣∣∣
∂

∂h
T = κN , (4.79)

with κ being the curvature. Using these two definitions, the energy variation becomes:

dE(C)
dt

=
∫ 1

0

∣∣∣∂C
∂h

∣∣∣〈∂C
∂t

,∇fD − κfDN − 〈T ,∇fD〉T 〉dh. (4.80)

Decomposing the vector ∇fD = 〈∇fD,N〉N + 〈∇fD, T 〉T , we obtain:

dE(C)
dt

=
∫ 1

0

∣∣∣∂C
∂h

∣∣∣〈∂C
∂t

, 〈∇fD,N〉N − κfDN〉dh. (4.81)

From here it is obvious that the direction of the strongest energy variations correspond to

∂C
∂t

= (κfD − 〈∇fD,N〉)N , (4.82)
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which is the equation of the active geodesic contour, representing an evolving curve in the direction
of its normal vector and under the action of a force F :

∂C
∂t

= FN . (4.83)

In the specific case fD = 1 ⇒ f = 1
g1/4 , we get an evolving curve which minimizes the mean

curvature:
∂C
∂t

= κN . (4.84)

Active contour on the hyperboloid

The specific evolution of the active contour on the hyperboloid is shown on Figure 4.13. The initial
contour has an oval form and it is preserved on the hyperbolic image. Its evolution is analogical to
that in the Euclidean plane: the given initial contour shrinks towards its center, while the geometry
of contour seen on the hyperboloid does not have the same form as seen on the disk-image.
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Figure 4.13: Evolution of geometric active contour on the hyperboloid: (a) initial contour on the
hyperboloid, (b) initial contour viewed on the unit disk, (c) the contour at final state of evolution
on the hyperboloid, (d) the contour at final state of evolution, viewed on the unit disk .

We use a synthetic hyperbolic image to perform a hyperbolic segmentation using active contour.
The image consists of a set of three hyperbolic triangles and is shown on Figure 4.14(a). Applying
the hyperbolic gradient on it, we obtain the edge detecting function as shown on Figure 4.14(b).
After evolution of the contour toward the objects of interest, it stops at their border and thus they
are segmented from the background.



106 Chapter 4. On Processing Non-Euclidean Images

(a) (b) (c)

Figure 4.14: Segmentation in a synthetic hyperbolic image: (a) original image, (b) edge detection
function, (c)segmented image .

Active contour on the sphere

On Figure 4.15 is shown the evolution of a contour on the sphere. It is interesting to notice that
opposite to the hyperbolic case, here the contour evolves towards the border of the disk. Such an
behavior is natural and it comes directly from the action of the spherical geometry on the contour.
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Figure 4.15: Evolution of the geometric active contour on the sphere: (a) the initial state of the
contour on the sphere, (b) the initial state of the contour projected on the disk, (c) the contour
in a further state of its evolution on the sphere, (d) the contour in a further state of its evolution
projected on the disk .
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Figure 4.16: Algorithm for local motion estimation on the sphere.

4.2.3 Motion estimation in spherical omnidirectional images

In Section 4.1 we have seen that the plenoptic function can be represented directly in the spherical
domain. Let us suppose that we have several central catadioptric sensors capturing a static 3-D
scene from arbitrary viewpoints. According Sections 4.1.3 and 4.1.4, each of these sensors outputs
an omnidirectional image that can be mapped on a sphere. However the output images from multiple
cameras are obviously correlated, and a rate efficient representation of the overall 3-D scene first
requires the removal of redundancy between the different views. Thus a local motion estimation
algorithm that captures the correlation between omnidirectional images, taken from arbitrary view
point, is needed. The choice of local motion estimation is driven by the perspective of an efficient
coding of the plenoptic function.

Multiresolution motion estimation algorithm

Due to the distortion introduced in the unwrapped images, we choose to implement the local motion
estimation algorithm directly in the spherical domain. The algorithm is base on L-level multireso-
lution approach, that pairs solid angles from two spherical images. This is depicted on Figure 4.16.
Assume that the motion estimation aims at computing a prediction G̃0 of the spherical image G0

from S0, that is an image scene, but captured from a different (arbitrary) viewpoint. Both spherical
images are first filtered and down-sampled, to generate a multiresolution representation of the scene,
as described in Section 2.5.2 for analysis spherical Laplacian pyramid. The multiresolution approach
clearly limits the complexity of the motion estimation, and improves the consistency of the motion
field.

The local motion estimation consists in the following. The lowest resolution spherical image
GL−1 is divided into uniform solid angles, of size MδL−1

θ × NδL−1
ϕ . The predicted blocks gi

L−1 in
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GL−1 are then paired with the best matching blocs with the same size in the reference image SL−1

with a search window of WδL−1
θ ×WδL−1

ϕ , around the location of the gi
L−1. A full search for each

block gi
L−1 determines the best prediction in a MSE sense, si

L−1, and the corresponding motion
vectors. Note that, even if the blocks gi

L−1 are all distinct, the blocks si
L−1 may be overlapping.

The implemented block-matching algorithm also takes into account the periodicity in the azimuthal
direction.

The motion estimation is then iteratively redefined as successive resolution levels. The blocks at
resolution l, bi

l, are divided into four sub-blocks of size M l−1δl−1
θ ×N l−1δl−1

ϕ at the next resolution
level l − 1, with 2δl−1

θ = δl
θ and 2δl−1

ϕ = δl
ϕ, due to the change in the resolution level. The motion

vector from lower resolution level l serve as initial estimations of the motion vectors of the four
sub-block bi

l. These estimations are then refined based on the spherical images at resolution l − 1,
with a full search in a window of size W l−1δl−1

θ × W l−1δl−1
ϕ around the location specified by the

motion vector from the lower resolution l, that has been up-sampled accordingly. The same process
is applied iteratively up to the fines resolution, and eventually outputs the field of motion vectors.
These motion vectors, along with the spherical image s0 are used to form the prediction G̃0 of G0.
The prediction error is finally denoted E0 = G0 − G̃0.

Algorithm 4.1: Multiresolution local motion estimation on the sphere

l = L− 1.MV i
L = [0, 0], ∀i, δ0

θ = π
2B0

, δ0
ϕ = 2π

2B0
, B0 ≡ full resolution

repeat
δl
θ = 2lδ0

θ .δl
ϕ = 2lδ0

ϕ;
divide Gl into I uniform blocks of size M lδl

θ ×N lδl
ϕ;

i = 0;
repeat

(pi, qi) ← position of gi
l ;

MV i
l ← up-sample MV i

l+1;
Ω ← {(p, q)}such that
p ∈ [pi + MV i

l (1)− W lδl
θ

2 + 1, pi + MV i
l (1) + W lδl

θ

2 ] and

q ∈ [qi + MV i
l (1)− W lδl

ϕ

2 + 1, qi + MV i
l (1) + W lδl

ϕ

2 ];
f i

l = arg minΩ MSE(gi
l , s

i
l);

(wi, t1) ← position of si
l;

MV i
l ← [pi + wi, qi + ti];

i ← i + 1;
until i > I

l ← l − 1;
until l < 0

This algorithm is built on a multiresolution representation of spherical images, in order to provide
a consistent motion field even with images captured at very different viewpoints. The multiresolution
coarse-to-fine motion estimation method used for classical images [22] has been adapted to the
spherical framework, in order to report similarities between solid angles, instead of blocks of pixels.

Experimental results

Here we present the results of the algorithm proposed above. Figure 4.17 shows one image captured
by a parabolic catadioptric sensor, i.e.parabolic image, after it has been mapped on the sphere at the
second finest resolution level (l = 1). Figures 4.18(a) and 4.18(b) show the original unfolded images
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Figure 4.17: Parabolic image mapped on the sphere of view, level l = 1.

(a) (b)

Figure 4.18: Level 0 of the motion estimation algorithm: (a)first original unfolded sphere S0 ,(b)
second original unfolded sphere G0.

of a static scene captured from two different viewpoints. These images represent real parabolic
images mapped on the sphere, but shown here as Euclidean images in the θ, ϕ - plane, to provide
visibility of all image’s features. Figure 4.19 represents the prediction G̃0 of the second frame, with
the local motion estimation algorithm, and Figure 4.20 shows the corresponding prediction error E0,
that has been inverted to highlight the distribution of the residual error (a white pixel corresponds
to no error). The number of decomposition levels is L = 5. The size of the blocks has been set
to 4 × 4. The size of the search window can vary from one resolution to another. We have chosen
the window size for the lowest level to be 32 × 32 and for all higher levels 8 × 8. In this way, the
proposed algorithm can capture big motions with low search complexity. It can be seen that the
motion estimation is quite efficient, since the predicted image provides a very good approximation
of G0. Also, the prediction error is almost exclusively located along high frequency components, as
expected from the high-pass characteristics of motion estimation. Figure 4.21 represents the motion
field that corresponds to the third level of resolution. It can be seen that the motion field is mostly
consistent with the spherical image information. For example, motion vectors are very small in

Figure 4.19: Motion predicted image G̃0.
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Figure 4.20: Motion predicted error E0.

Figure 4.21: Motion field at resolution level 3.

uniform and static areas like the table (on the right-hand side of the predicted image). As expected
from local motion estimation algorithm driven by MSE criteria, the motion vectors do not however
necessarily follow semantic objects, but rather pair areas with similar luminance information. This
behavior can be encountered for large motions where the change of lightning conditions can induce
discrepancies. On the other side, the obtained motion field precisely depicts smaller movements.

Figure 4.22 presents the evolution of the residual energy relative to the original image energy,
as a function of the size of the solid angle, and the size of the search window. It can be seen that
a larger search window at the coarsest resolution level generally improves the quality of the motion
estimation. In the same time, smaller block size provides also a better prediction, since details can
be better approximated. In a coding perspective however, a trade-off needs to be found between the
accuracy of the motion estimation, and the coding cost, which generally increases with the number
of motion vectors.

Figure 4.22: Relative energy of the prediction error, for different block and search window sizes
(L = 5).
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4.3 Summary

• One possible way to measure the plenoptic function is by using catadioptric sensor for capturing
a given scene. The images obtained by them are termed as non-Euclidean since they carry the
geometry of the sensor’s curved mirror.

• One way to process non-Euclidean images, obtained from both hyperbolic or parabolic cata-
dioptric sensors, is to map them on the sphere and then process the data on the sphere.
Or, for directly working in the geometry of the mirror, the processing is performed on the
corresponding image.

• For completing the set of processing techniques for non-Euclidean images, the following have
been proposed:

– Scale-space analysis of non-Euclidean images. Laplace-Beltrami operator and gradient
for the hyperbolic and spherical cases are somehow ”proportional” to the Euclidean one.

– Geometric active contour on non-Euclidean images. Its derivation comes from minimiza-
tion of a contour but solved for the specific geometry: hyperbolic, spherical.

– A local motion estimation algorithm that captures the correlation between non-Euclidean
images obtained from central catadioptric sensors but taken from arbitrary viewpoints in
the space. A multiresolution approach has been used for improving the motion field accu-
racy, while limiting the computational complexity of the motion estimation scheme. The
local motion estimation algorithm has been shown to be quite efficient since the residual
error is kept small and mostly located around edges or high frequency components in
the predicted image. The proposed scheme can certainly represent an important building
block in a rate distortion efficient encoder for distributed omnidirectional images.
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Conclusions

The central theme of this dissertation is how to process scalar data on non-Euclidean manifold, with
a twist toward multiresolution techniques.

First, we derive discrete spherical frames based on the existing continuous wavelet transform on
the sphere. We started with half-continuous spherical wavelet frames where the scale of the con-
tinuous wavelet transform has been discretized but the position kept varying continuously. Then it
had been shown that a controlled frame may be constructed in order to get an easy reconstruction
of functions from their decomposition coefficients. Second, the complete discretization of the con-
tinuous spherical wavelets has been performed. Thus both scale and position have been discretized.
A numerical implementation of so derived spherical discrete frames has been done based on existing
FFTs on the sphere and we gave several illustrative examples.

Second, we dealt with the hyperboloid and a family of wavelets on this non-Euclidean manifold
of constant negative curvature have been derived. Even though the conformal group of the 2-
hyperboloid is identified, SO(1, 3), the group theoretical approach for construction wavelets on the
hyperboloid does not give a dilation which acts only on one sheet of the two-sheeted hyperboloid. In
contrary, the dilation operator acting on a point on the upper sheet of the hyperboloid sends it on the
down and vice versa. An approach toward hyperbolic wavelets based on a convolution theorem for
square-integrable functions on the hyperboloid has been applied. This theorem has been derived by
the means of the Fourier-Helgason transform. The continuous wavelet transform on the hyperboloid
has been obtained by convolution of the scaled wavelets with the signal. The wavelet transform
has been proved to be invertible whenever the hyperbolic wavelets satisfy a particular admissibility
condition.

We then focused on potential applications: processing non-Euclidean images. These images are
closely related to the plenoptic function, which is represented in spherical coordinates and turns out
to be in a tight relation with projection of the scene onto a sphere. Mapping of the hyperbolic and
parabolic images on the sphere has been shown. Thus for non-Euclidean image coding, spherical
frames are suggested to be applied. Another possibility for processing is directly in the geometry
of the mirror used for obtaining the non-Euclidean image. As an efficient tool for processing a non-
Euclidean image reflected by a hyperbolic mirror, hyperbolic wavelets stand. The set of processing
tools for non-Euclidean images has been extended to scale-space analysis and active contours for
the case of the sphere and hyperboloid. Finally, a multiresolution motion estimation algorithm on
the sphere has been proposed as an application of the multiresolution paradigm.

As a future work, it is interesting to check the existence of wavelets on another non-Euclidean
manifolds. One interesting case is the ellipsoid. Actually, the sphere is a particular version of the
ellipsoid. Another case is the paraboloid(elliptic or hyperbolic). It seems logical to get desired
wavelets if the construction technique is based on the convolution. One could then think to extend
these constructions by performing well-behaved deformations of the manifold.
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Appendix A

In this Appendix we prove Proposition 20 from Chapter 2.
Proof:
Let us define

S =
∑

j∈Z

∑

p,q∈Z[2βj ]

νjwjp Wf (ωjpq, aj) W̃f (ωjpq, aj).

Since

Wf (ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
f̂(l,m) ψ̂a(l, 0)Y m

l (ω)

and

W̃f (ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
Gψ(l)−1 f̂(l, m) ψ̂a(l, 0)Y m

l (ω),

we have

S =
∑

j∈N

∑

p,q∈Z[2βj ]

∑

(l,m)∈N

∑

(l′,m′)∈N

4π√
(2l + 1)(2l′ + 1)

f̂(l, m) f̂(l′,m′)

νjwjp G−1
ψ (l) ψ̂aj (l, 0) ψ̂aj (l

′, 0)Y m
l (ωjpq)Y m′

l′ (ωjpq)

=
∑

j∈N
4πνj

∑

(l,m)∈N

∑

(l′,m′)∈N

f̂(l, m) f̂(l′,m′)√
(2l + 1)(2l′ + 1)

G−1
ψ (l) ψ̂aj (l, 0) ψ̂aj (l

′, 0)

∑

p,q∈Z[2βj ]

wjp Y k
l (ωjpq) Y k′

l′ (ωjpq).

If l + l′ < βj , the product Y m
l Y m′

l′ having order l + l′ [74], the weight wjp provides the quadrature
formula [15, 29]

∑

p,q∈Z[2βj ]

wjp Y m
l (ωjpq) Y m′

l′ (ωjpq) =
∫

S2
dµ(ω) Y m

l (ω)Y m′
l′ (ω) = δll′δmm′ , (6.1)

for all |m| ≤ l and all |m′| ≤ l′. Therefore, the sum S splits in two parts

S =
∑

j∈N

∑

p,q∈Z[2βj ]

∑

(l,m)∈N
(l′,m′)∈N
l+l′<2βj

. . . +
∑

j∈N

∑

p,q∈Z[2βj ]

∑

(l,k)∈N (l′,m′)∈N
l+l′≥2βj

. . .

= C + D.
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The first term C, where (6.1) is valid, reduces to

C =
∑

j∈N
4πνj

∑

(l,m)∈N
l<βj

1
(2l+1) |f̂(l,m)|2 G−1

ψ (l) |ψ̂aj (l, 0)|2

=
∑

(l,m)∈N
|f̂(l, m)|2

∑

j∈N

4πνj

(2l + 1)
1l[0,βj [(l) G−1

ψ (l) |ψ̂aj (l, 0)|2.

If (2.94) is verified, then

K0‖f‖2 ≤ C ≤ K1‖f‖2. (6.2)

Let us analyze the part D. Since Y m
l (ωjpq) = Y m

l (θjp, 0) ei mϕjq , with θjp = 2p+1
4βj

π et ϕjq = qπ
βj

,
we find

∑

q∈Z[2βj ]

Y m
l (ωjpq)Y m′

l′ (ωjpq)

= Y m
l (θjp, 0)Y m′

l′ (θjp, 0)
∑

q∈Z[2βj ]

e
i (m−m′) qπ

βj

= 2βj Y m
l (θjp, 0)Y m′

l′ (θjp, 0)
∑

t∈Z
|m+2tβj |≤l′

δm′,m+2tβj

= 2βj

∑

t∈Z
|m+2tβj |≤l′

Y m
l (θjp, 0) Y

m+2tβj

l′ (θjp, 0) δm′,m+2tβj

= 2βj

∑

t∈Z
1l[−l′,l′](m + 2tβj) Y m

l (θjp, 0) Y
m+2tβj

l′ (θjp, 0) δm′,m+2tβj

So,

D =
∑

j∈N
8πνj βj

∑

(l,m)∈N

∑

l′∈N

∑

t∈Z

1l[2βj ,+∞[(l + l′) 1l[−l′,l′](m + 2tβj)√
(2l + 1)(2l′ + 1)

f̂(l,m) f̂(l′,m + 2tβj)

G−1
ψ (l) ψ̂aj

(l, 0) ψ̂aj (l
′, 0)

∑

p∈Z[2βj ]

wjp Y m
l (θjp, 0) Y

m+2tβj

l′ (θjp, 0).

Therefore,

|D| ≤
∑

j∈N
8πνj βj

∑

(l,m)∈N

∑

l′∈N

∑

t∈Z

1l[2βj ,+∞[(l + l′) 1l[−l′,l′](m + 2tβj)√
(2l + 1)(2l′ + 1)

|f̂(l,m)| |f̂(l′, m + 2tβj)|

Gψ(l)−1 |ψ̂aj (l, 0)| |ψ̂aj (l
′, 0)|

∑

p∈Z[2βj ]

wjp |Y m
l (θjp, 0)| |Y m+2tβj

l′ (θjp, 0)|

≤
∑

j∈N
4πνj

∑

(l,m)∈N

∑

l′∈N

∑

t∈Z
|f̂(l,m)| |f̂(l′,m + 2tβj)| 1l[−l′,l′](m + 2tβj)

1l[βj ,+∞[(l + l′)G−1
ψ (l) |ψ̂aj (l, 0)| |ψ̂aj (l

′, 0)|

where we used the fact that |Y m
l | ≤

√
2l+1
4π for all (l,m) ∈ N , and

∑
p∈Z[2βj ]

wjp = 4π
2βj

.
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The sums on m and t can be bounded since
∑

t∈Z

∑

|m|≤l

|f̂(l, m)| |f̂(l′,m + 2tβj)| 1l[−l′,l′](m + 2tβj)

≤
∑

t∈Z

[ ∑

|m|≤l

|f̂(l, m)|2 1l[−l′,l′](m + 2tβj)
]1/2 [ ∑

|m|≤l

|f̂(l′, m + 2tβj)|2 1l[−l′,l′](m + 2tβj)
]1/2

≤ [ ∑

t∈Z

∑

|m|≤l

|f̂(l, m)|2 1l[−l′,l′](m + 2tβj)
]1/2 [ ∑

t∈Z

∑

|m|≤l

|f̂(l′,m + 2tβj)|2 1l[−l′,l′](m + 2tβj)
]1/2

≤ [ ∑

|m|≤l

|f̂(l, m)|2 [2l′ + 1
2βj

+ 1
]]1/2 [ ∑

t∈Z

l+2tβj∑

m′=−l+2tβj

|f̂(l′,m′)|2 1l[−l′,l′](m′)
]1/2

≤ [ ∑

|m|≤l

|f̂(l, m)|2 [2l′ + 1
2βj

+ 1
]]1/2 [ ∑

t∈Z

∑

m′∈Z
|f̂(l′,m′)|2 1l[−l,l](m′ − 2tβj) 1l[−l′,l′](m′)

]1/2

≤ [ ∑

|m|≤l

|f̂(l, m)|2 [2l′ + 1
2βj

+ 1
]]1/2 [ ∑

t∈Z

l′∑

m′=−l′
|f̂(l′,m′)|2 1l[−l,l](m′ − 2tβj)

]1/2

≤ [ ∑

|m|≤l

|f̂(l, m)|2 [2l′ + 1
2βj

+ 1
]]1/2 [ ∑

|m′|≤l′
|f̂(l′,m′)|2 [2l + 1

2βj
+ 1

]]1/2

≤ (2βj)−1
(
2(l + βj) + 1

)1/2(2(l′ + βj) + 1
)1/2 [ ∑

|m|≤l

|f̂(l,m)|2]1/2 [ ∑

|m′|≤l′
|f̂(l′,m′)|2]1/2

,

applying the Cauchy-Schwarz inequality first on the sum over m and then on the sum over t.
Therefore,

|D| ≤
∑

l,l′∈N

[ ∑

|m|≤l

|f̂(l, m)|2]1/2 [ ∑

|m′|≤l′
|f̂(l′,m′)|2]1/2

χ(l, l′)

with

χ(l, l′) =
∑

j∈N

2πνj cj(l, l′)
βj

1l[2βj ,+∞[(l + l′)G−1
ψ (l) |ψ̂aj (l, 0)| |ψ̂aj (l

′, 0)|.

and cj(l, l′) =
(
2(l + βj) + 1

) 1
2
(
2(l′ + βj) + 1

) 1
2 .

Denoting F 2
l =

∑
|m|≤l |f̂(l, m)|2, we obtain with the Cauchy-Schwarz inequality

|D| ≤
∑

l∈N
Fl

∑

l′∈N
χ(l, l′)Fl′

≤ ‖F‖‖XF‖
= ‖f‖‖XF‖,

with F = (Fl)l∈N, ‖F‖2 =
∑

l∈N |Fl|2 = ‖f‖2, X =
(
χ(l, l′)

)
l,l′∈N and (XF )l =

∑
l′∈N χ(l, l′)Fl′ . If

(2.94) is satisfied, we have
|D| ≤ ‖f‖ ‖X‖ ‖f‖ = δ ‖f‖2,

with the norm

‖X‖ = sup
(Gl)l∈N

‖XG‖
‖G‖ .

The proof of the theorem is provided by noting that

0 < (K0 − δ)‖f‖2 < C − |D| ≤ S ≤ C + |D| < (K1 + δ)‖f‖2 < ∞.
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Communication Systems.

September 1997 - July 1999 Technical University of Sofia, Bulgaria, Institute

of Applied Mathematics and Computer Science,

grade obtained: M.Sc. in Applied Mathematics.

October 1992 - July 1997 Technical University of Sofia, Bulgaria, Faculty of

Communication Systems and Technologies,

Department of Telecommunications, grade

obtained: M.Sc. in Telecommunication

Techniques and Technologies.

Professional Experience

August 2000 - present Research and teaching assistant at Swiss Federal

Institute of Technology (EPFL), Signal

Processing Institute (ITS), Lausanne, Switzerland
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September 1997 - July 1999 ”New Television”-Sofia, Bulgaria, Digital Studio,

computer graphics and design, video editing

Skills

Languages

Native Bulgarian

Fluent Russian, Greek, English, French, Spanish,

German

Computer literacy

Operating Systems Mac, Windows9X/00/NT/XP, Unix, MS-Dos

Programming languages MATLAB, Delphi, C, C++, Pascal, HTML,

Java, JavaScript, Action Script, PHP, XML

Tools Microsoft Office, Macromedia Flash, Macromedia

Dreamweaver, Macromedia Director, Adobe

Photoshop, Adobe Illustrator, Paint Pro Shop,

Authorware, Pages, Keynote, Front page

Publications

Journal Papers

¦ I. Bogdanova, P. Vandergheynst, J.-P. Gazeau, ”Continuous Wavelet Transform on the

Hyperboloid”, Applied and Computational Harmonic Analysis [submitted], June 2005

¦ I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques and M. Morvidone, ”Sthereographic

Frames of Wavelets on the Sphere”, Applied and Computational Harmonic Analysis, volume 19,

Issue 2, pp. 223-252, September 2005.

Conference Proceedings

¦ I. Tosic, I. Bogdanova, P. Frossard and P. Vandergheynst, ”Multiresolution Motion Estimation for

Omnidirectional Images”, In Proc. of EUSIPCO, Antalya, Turkey, September 2005

¦ I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L.Jacques, M. Morvidone, ”Descrite Wavelet

Frames on the Sphere”, In Proc. of EUSIPCO, Vienna, Austria, September 6-10, 2004

¦ I. Bogdanova, P. Vandergheynst and M. Kunt, ”Virtual Classroom for Multimedia Teaching on

WWW”, Proc. ASEE/IEEE 32d Annual Frontiers in Education FIE’02, Boston, MA, November

6-9, 2002, pp. F3E-7 - F3E-11.

¦ I. Bogdanova, R. Khan and M. Kunt, ”Multimedia Teaching on WWW: a New Approach”, Proc.

NAISO Networked Learning 2002 NL’02, Berlin, Germany, May 1-4, 2002, (CD)
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Technical Reports

¦ I. Bogdanova, X. Bresson, J.-Ph. Thiran, P. Vandergheynst, ”Laplacian Operator, Difusion Flow

and Active Contour on Non-Euclidean Images”, TR-ITS-2005.020, August 2005.

¦ I. Bogdanova, P. Vandergheynst, J.-P. Gazeau, ”Wavelets on the 2-Hyperboloid”,

TR-ITS-2004.028, November 2004.

¦ I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques and M. Morvidone, ”Sthereographic

Frames on the Sphere”, TR-ITS-2004.001, January 2004.

¦ I. Bogdanova, P. Vandergheynst and M. Kunt, ”Specification for Digital Image Processing On-line

Lab-sessions”, TR-ITS-2002.09, November 2002

¦ I. Bogdanova, P. Vandergheynst and M. Kunt, ”On-line Digital Image Processing Lab-Sessions”,

TR-ITS-2002.06, April 2002

¦ I. Bogdanova, R. Khan and M. Kunt, ”Graphical User Interface and MATLAB Web Server for

Multimedia Teaching on WWW”, TR-ITS-2001.08, 2001

Master Thesis

¦ I. Bogdanova, ”Transmission of Voice Messages in Corporate Information Systems”, Institute of

Applied Mathematics and Computer Science, Technical University of Sofia, July 1999

¦ I. Bogdanova, ”Imitation Modeling of Message Transfer Part in Common Channel Signaling

System No7”, Telecommunications Department, Technical University of Sofia, July 1997




