
THÈSE NO 3404 (2005)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE à LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGéNIEUR

Institut de traitement des signaux

SECTION DE GéNIE électrique et électronique

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Laurea in Ingegneria delle Telecommunicazioni, Università degli Studi di Siena, Italie
et de nationalité italienne

acceptée sur proposition du jury:

Lausanne, EPFL
2006

Prof. P. Vandergheynst, directeur de thèse
Dr L. Daudet, rapporteur

Prof. M. Nielsen, rapporteur
Prof. E. Telatar, rapporteur

nonlinear approximation with redundant 
multi-component dictionaries

Lorenzo GRANAI





The first principle is that you must not fool

yourself - and you are the easiest person to fool.

Richard P. Feynman



iv



Acknowledgments

This dissertation has been submitted to the École Polytechnique Fédérale de Lausanne in partial

fulfillment of the requirements for the degree of doctor of philosophy. I would like to express my

gratitude to the members of the jury who read it carefully and contributed to its improvement with

valuable comments and suggestions.

I would also like to thank to my advisor, Pierre Vandergheynst, for guiding me through the past

four years. I enjoyed discussing with him and sharing ideas about research problems, but also about

many others subjects. His skills and his capacity to understand people have been very precious.

Part of the work underlying this dissertation has been done in collaboration with few colleagues

and students working under my supervision. Their cooperation has been important both for re-

search purposes and for my personal development. For this reason, I would like to acknowledge the

contributions of Oscar Divorra Escoda, Rosa Figueras i Ventura, Mathieu Lemay, Emilio Maggio,

Javier Molinero Hernandez and Lorenzo Peotta. Moreover, I would also like to mention the help-

ful collaborations with Pascal Frossard, Fulvio Moschetti and Jean-Marc Vesin and the support of

Alessandro Mecocci.

Thanks also to all the members of the Signal Processing Institute where I have had the oppor-

tunity to work during the last few years and in particular the director Murat Kunt.

Special thanks to all the good friends I have found in Lausanne and that make me enjoy the

spare time in Switzerland! And to the ones in Italy and all over the world. Thanks to Cristina, for

being close to me, helping and surprising me and for much much more!

Infine, vorrei ringraziare e dedicare questo lavoro ai miei genitori, Giuliana e Aldo. Per avermi

insegnato, ascoltato e sostenuto. E sopportato!

v



vi Acknowledgments



Abstract

The problem of efficiently representing and approximating digital data is an open challenge and it

is of paramount importance for many applications. This dissertation focuses on the approximation

of natural signals as an organized combination of mutually connected elements, preserving and at

the same time benefiting from their inherent structure. This is done by decomposing a signal onto

a multi-component, redundant collection of functions (dictionary), built by the union of several

subdictionaries, each of which is designed to capture a specific behavior of the signal.

In this way, instead of representing signals as a superposition of sinusoids or wavelets many

alternatives are available. In addition, since dictionaries we are interested in are overcomplete,

the decomposition is non-unique. This gives us the possibility of adaptation, choosing among many

possible representations the one which best fits our purposes. On the other hand, it also requires more

complex approximation techniques whose theoretical decomposition capacity and computational

load have to be carefully studied.

In general, we aim at representing a signal with few and meaningful components. If we are able

to represent a piece of information by using only few elements, it means that such elements can

capture its main characteristics, allowing to compact the energy carried by a signal into the smallest

number of terms.

In such a framework, this work also proposes analysis methods which deal with the goal of

considering the a priori information available when decomposing a structured signal. Indeed, a

natural signal is not only an array of numbers, but an expression of a physical event about which we

usually have a deep knowledge. Therefore, we claim that it is worth exploiting its structure, since it

can be advantageous not only in helping the analysis process, but also in making the representation

of such information more accessible and meaningful.

The study of an adaptive image representation inspired and gave birth to this work. We often

refer to images and visual information throughout the course of the dissertation. However, the

proposed approximation setting extends to many different kinds of structured data and examples

are given involving videos and electrocardiogram signals.

An important part of this work is constituted by practical applications: first of all we provide

very interesting results for image and video compression. Then, we also face the problem of signal

denoising and, finally, promising achievements in the field of source separation are presented.

vii



viii Abstract



Résumé

Le problème de la représentation et de l’approximation efficace de données numériques est un défi

ouvert, d’une importance capitale pour de nombreuses applications. Cette thèse se concentre sur

l’approximation de signaux naturels en tant que combinaison organisée d’éléments connectés, en

préservant leur structure inhérente tout en en tirant parti. Ceci est accompli en décomposant un

signal en une collection de fonctions (dictionnaire) redondante et possédant plusieurs composants,

qui est construite par l’union de plusieurs sous-dictionnaires, chacun étant conçu pour capturer un

comportement spécifique du signal.

Ainsi, plutôt que de représenter des signaux comme une superposition de sinusöıdes ou d’ondelettes,

nous avons plusieurs alternatives. De plus, puisque les dictionnaires qui nous intéressent sont sur-

complets, la décomposition n’est pas unique. Ceci nous offre des possibilités d’adaptation, puisque

nous pouvons choisir parmi les multiples représentations possibles celle qui correspond le mieux à

nos buts, mais demande aussi des techniques d’approximations plus complexes dont la capacité de

décomposition théorique et la complexité doivent être étudiées avec soin.

De façon générale, nous visons à représenter un signal avec peu de composants significatifs. Si

nous pouvons représenter une information en utilisant seulement quelques éléments, cela signifie que

de tels éléments peuvent en capturer les caractéristiques principales, ce qui permet de comprimer

l’énergie transportée par un signal en un minimum de termes.

Ce travail propose aussi des méthodes d’analyse qui permettent de considérer l’information a

priori disponible lorsqu’un signal structuré est décomposé. En effet, un signal naturel n’est pas

seulement un tableau de nombres, mais l’expression d’un événement physique dont nous avons

généralement une connaissance profonde. C’est pourquoi nous maintenons qu’il est avantageux

d’exploiter les relations mutuelles entre éléments constituants, car ceci peut aider non seulement le

processus d’analyse mais encore à rendre la représentation d’une telle information plus accessible et

significative.

L’étude d’une représentation d’image adaptive a été l’inspiration de ce travail et lui a donné

naissance, c’est pourquoi nous nous référons souvent à des images et à de l’information visuelle

au long de cette thèse. Cependant, ce système d’approximation s’étend à de nombreuses sortes

de données structurées, et nous donnons des exemples implicant des signaux vidéo et des électro-

cardiogrammes.

Une partie importante de ce travail est constituée d’applications pratiques: premièrement nous

fournissons des résultats très intéressants pour la compression d’image et de vidéo. Puis, nous affron-

tons le problème du débruitage de signal, et finalement nous présentons des résultats prometteurs

dans le domaine de la séparation de source.
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Riassunto

Il problema della rappresentazione ed approssimazione efficiente dell’informazione digitale é una

sfida aperta e ricopre una fondamentale importanza per molte applicazioni. Questa tesi si concentra

sull’approssimazione di segnali naturali in quanto combinazione organizzata di elementi mutuamente

connessi; approssimazione che preserva e allo stesso tempo beneficia della struttura inerente ai

segnali. Ció é ottenuto decomponendo un segnale su un insieme ridondante di funzioni composto

da piú componenti (detto anche dizionario), creato dall’unione di diversi sotto-dizionari, ognuno dei

quali e’ progettato per catturare uno specifico comportamento del segnale.

In questo modo, ci sono molte alternative alla rappresentazione dei segnali come superposizione

di sinusoidi o wavelet. Inoltre, visto che i dizionari che ci interessano sono overcompleti la decom-

posizione non é unica. Questo ci fornisce la possibilitá di adattamento, scegliendo tra le molteplici

possibili rappresentazioni quella che meglio si adegua ai mostri scopi. D’altra parte ció richiede

anche tecniche di approssimazione piú complesse le cui capacita’ di decomposizione e il cui costo

computazionale devono essere studiati attentamente.

In generale, vogliamo rappresentare un segnale con pochi e significativi componenti. Se siamo

in grado di rappresentare dell’informazione usando solo pochi elementi, vuol dire che tali elementi

possono catturare le sue caratteristiche principali, permettendo di compattare l’energia del segnale

nel minimo numero di termini.

In questo ambito, questo lavoro propone anche metodi di analisi che mirano a considerare

l’informazione a priori che e’ disponibile quando un segnale strutturato viene decomposto. In-

fatti, un segnale naturale non e’ solo una serie di numeri, benśı un’espressione di un evento fisico di

cui in generale abbiamo una profonda conoscenza. Quindi sosteniamo che sfruttare la sua struttura

sia vantaggioso, non solo in quanto puó aiutare il processo di decomposizione, ma anche per rendere

la rappresentazione piu’ accessibile e significativa.

Questo lavoro é stato ispirato dallo studio di una rappresentazione adattativa delle immagini.

Nel corso di questa tesi, quindi, facciamo spesso riferimento alle immagini e all’informazione visiva.

Comunque lo scenario di approssimazione qui proposto si estende a molti differenti tipi di dati

strutturati e vengono forniti degli esempi che coinvolgono video e segnali cardiaci.

Una parte importante di questo lavoro e’ costituita da applicazioni pratiche: in primo luogo

sono forniti risultati molto interessanti per quanto riguarda la compressione di immagini e video.

Quindi viene anche affrontato il problema dell’eliminazione del rumore e, in fine, vengono presentati

risultati promettenti nell’ambito della separazione di sorgenti.
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Chapter 1

Introduction

A digital signal is both discrete and quantized. Therefore, a digital image is a bidimensional signal

discrete in the space and in the values that it can assume. Restricting ourselves to the gray-scale

case, but without losing generality, it can be seen as a set of pixels whose scalar values belong

to a predefined finite range. Figure 1.1 shows a digital image that corresponds to the previous

characteristics. It is a 256x256 matrix whose entries (the pixels) have an integer value which lies in

[0, 255]. Nevertheless, Fig. 1.1 does not correspond at all to the concept we have about an image.

Figure 1.1: Random collection of pixels

Indeed, natural images are not random collections of pixels, as syntactically correct sentences are

not random combinations of the letters of the alphabet. Borges supposes a similar situation in one

of his short story [20], where he imagines a giant library which contains every single combination of

the symbols of the alphabet:

...all the books, no matter how diverse they might be, are made up of the same elements:

the space, the period, the comma and the twenty-two letters of the alphabet.

1
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And again,

...the Library is total and [...] its shelves register all the possible combinations of the

twenty-odd orthographical symbols (a finite number, even though extremely vast), that

is all the expressible in all languages. Everything: the detailed history of the future,

the archangels’ autobiographies, the faithful catalogue of the Library, thousands and

thousands of false catalogues...∗

Similarly, the set of randomly generated matrices like the one in Fig. 1.1 can contain all the

possible digital images (and therefore including the photos of my next holidays § - but this would

drag us out of the scope of this dissertation), but has low chance to correspond to a “real world”

picture.

In this work we address the problem of representing natural signals, i.e. “real world”signals, as the

image in Figure 1.2. The difference between Figs. 1.1 and 1.2 is clear to everybody, notwithstanding

this it is not easy to define. Interestingly, the former was obtained just by shuffling the pixels of the

latter. In order to formalize such a distinction, it might be helpful to observe that an image presents

peculiar elements such as edges, textures and smooth parts that are usually absent in random pixel

combinations. Therefore, the problem of image representation must deal with these components

or “primitives”. Note that this topic is strongly related to the characteristics of the human visual

system, as it will be further discussed in the following.

Figure 1.2: A natural image. From [129].

We began this introduction speaking about images and visual information, and we will often

refer to them during the rest of the dissertation. The reasons are manifold. Firstly because natural

images were the starting point of the research underlying this dissertation, providing the foremost

insights for a study that later has been extended to other kinds of signals. Secondly, images are used

here as a paradigm of structured information, and finally they constitute one of the main fields of

application for this research. In general, we are interested in catching the information contained in

∗Translation from Spanish by L. Granai
§All in gray-scale and with a size of 256 × 256 pixels
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natural signals, characterized by a structure. It is such a structure that we want to exploit in order

to efficiently represent the information, and we will see how this can be done using the principle of

multi-component dictionaries.

We often have the opportunity to observe how much the amount of digital information is increas-

ing in the last years, but perhaps the most impressive phenomenon is not so much the quantity as

the diversity that characterizes all this data. We have music, speech, video, text, biomedical signals

like electroencephalograms and electrocardiograms, images and many many others and moreover

there are collections and mixtures of them. These data types are highly structured and, at least in

our mind, taking care of their own structure is a key idea for their efficient treatment and it will be

the hinge of this work.

For many applications, one can be interested not much in an exact representation of a signal, as in

its approximation. Moreover digital signals are usually approximation themselves, approximations

of the reality. Take again the case of a numerical picture as the one in Figure 1.2: approximating it

means to give an image of the image, imago imaginis (note that both words “image” and “represen-

tation” can be translated in Latin with the same word imago). In this dissertation, we will study

the topic of efficient approximation, where the meaning of the word “efficient” will play a key role

and it will be defined in the following. It is worth specifying that we assume to work with a digital

signal, without facing the issue of how such a signal can be acquired.

In short, the problem of efficiently representing and/or approximating digital information is

of key importance for many applications: starting from compression and denoising, up to image

understanding (all the image processing methods that allow computers to segment images into

regions, extract and classify features, recognize objects, etc.). This topic has been studied for a long

time and it is significant from both theoretical and practical points of view. Furthermore, here we

address the “great challenge” in image processing: finding a true and adapted way of representing

images.

This dissertation lies on the edge of different scientific areas: signal processing, physics, applied

mathematics, neurosciences are all involved into this work, and from all of them we try to borrow

the instruments necessary for our purpose.

1.1 Roadmap

Let us now briefly present an outline of the work, along with a roadmap that illustrates our contri-

butions. Schematically, we will face the following issues:

• Why is it interesting to use redundant approximation?

• How to use it?

• How can we better exploit signal structures?

In details, Chapter 2 presents an overview of approximation techniques, with particular emphasis

on natural images. Attention is given to the recent innovations brought by computational harmonic

analysis and approximation theory, whose most remarkable example is undoubtedly provided by

wavelets. We then illustrate the application of wavelets to images and finally we briefly resume

latest directions in image approximation, aimed at overcoming the limits of bidimensional wavelet

orthogonal bases and building geometry-inspired image models.

Chapter 3 explains the importance of introducing concepts such as multiresolution, anisotropy

and rotation when representing natural images. These are motivated both by our visual perception
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and by mathematical analysis. Natural images, in fact, present different primitives with specific

characteristics. We can easily distinguish smooth parts (low frequency components, Ismooth), edges

(Iedge) and textures (Itexture). On this basis, and dealing with the previously highlighted features,

we propose to model an image I as follows:

I ' Ismooth + Iedge + Itexture.

This model is therefore adopted to decompose an image by applying multiple transforms, but this

implies the use of redundant collections of basis functions (also named dictionaries). In fact, such

dictionaries, thanks to their flexibility, allow to better follow the plurality of behaviors shown by

real world images. This leads us to introduce the concept of multi-component dictionary, i.e. an

overcomplete collection of functions composed by several “sub-dictionaries”, each of them suitable

for representing a specific behavior of the signal. Evidently, a multi-component dictionary issues

from a multi-component data model.

We will see how this idea can be also successfully applied to any kind of structured signal. Note

that the idea of multi-component dictionaries can be implemented either by using different methods

in different stages of the decomposition, or by adopting some special technique to drive the analysis

process. Both these strategies will be studied: an instance of the former is illustrated in Chapter 5,

while the latter will be tackled in Chapter 6.

We choose to work with overcomplete dictionaries, which implies that the decomposition is non-

unique. This offers us the possibility of adaptation, choosing among many possible representations

the one which (most) fits our purposes. In Chapter 4 we analyze the requirements we are looking

for when decomposing a signal, specifying what we mean by efficient representation or approxima-

tion, and we formally introduce the concept of sparseness. Then, we face the problem of selecting

functions from a redundant dictionary, presenting some algorithms designed for this purpose. Their

properties and characteristics are carefully illustrated, studying how they can be used to obtain a

set of functions that provides an efficient decomposition of a given signal. This brings us to study

the problem of nonlinear approximation, or better of highly nonlinear approximation, since the dic-

tionaries we are working with are redundant.

Chapter 5 gives practical examples of approximations applied to still picture and video coding.

It is shown how the image model proposed in Chapter 3, followed by a Matching Pursuit selection

algorithm and an appropriate coding procedure, can give interesting and effective results in term of

compression. This is especially true at low bit rates, where the algorithm is able to select the main

structures of an image using very few coefficients and then compressing them efficiently. Comparisons

with the standard JPEG2000 are also made.

We also illustrate here how similar decomposition techniques can be applied to video compression.

Particularly, we focus on hybrid video coding schemes, representing the displaced frame difference,

output of the motion compensation, by a greedy approximation over an ad-hoc redundant dictionary.

Chapter 6 makes a step backward. Here we develop a more general decomposition framework

aimed at dealing with structured signals, and especially useful when multi-component dictionaries

are adopted. We propose new algorithms that are able to take into account the a priori information

we have about the signal we want to decompose. The properties of these algorithms are analyzed

from a theoretical point of view and illustrated by examples, showing how they can lead to a better

signal approximation, if the priors are reliable.
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Finally, Chapter 7 briefly concludes the dissertation, discussing the whole work. New possible

developments of this research are also presented.
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Chapter 2

On Approximating Images

This chapter illustrates the efforts spent in the last years in order to efficiently represent signals tak-

ing into account their own structure, and it pays particular attention to natural images. This is done

in three steps: first, we introduce the framework of harmonic analysis, explaining the advantages of

using nonlinear approximations.

Wavelets [118] are certainly the most successful technique unveiled by the recent innovation

brought by harmonic analysis and approximation theory. The second part of the chapter shows how

wavelets can be used in two dimensions, and how this led the design of a new standard for image

compression, JPEG2000 [2, 3, 9].

Finally we show how wavelets in 2-D suffer from strong limitations and we briefly present some

of the latest routes scientist are covering to approximate and compress images.

2.1 Harmonic Analysis and Approximation Theory

Harmonic analysis is the branch of mathematics which studies the representation of signals as the

superposition of basic waves. These are called “harmonics”, hence the name “harmonic analysis”. In

the past two centuries, it has become a vast subject with applications in areas as diverse as signal

processing, quantum mechanics, and neuroscience.

Let {gi}i=1,2,... be an orthonormal basis of a Hilbert space H, then any f ∈ H can be written as:

f =

+∞∑

i=0

〈f, gi〉 · gi. (2.1)

Instead of using all the inner products, let us consider only the first m, generating a linear

approximation lying in the linear space Hm = span{gi : i = 1, ...,m}. This subspace does not

depend on f ! However, better results may be obtained by choosing the m basis functions depending

on the signal: this is done by nonlinear approximation, replacing Hm with a space consisting of all

the elements f̂ in H such that

f̂ =
∑

i∈Λ

ci gi, (2.2)

where Λ is a set of natural indexes with cardinality |Λ| = m and the coefficients ci are arbitrary.

Here Λ does depend on f : a simple and relevant example of nonlinear approximation is given by

the selection of the basis functions which have the biggest scalar products (in absolute value) with

f [47]. This situation will be analyzed much more in detail in Chapter 4.

7
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In principle, this problem corresponds to a very typical situation in science: we want to replace

an object that we are not able to handle with a simpler entity (or, in this case, a linear combination

of them) that is easy, or at least easier, to manipulate. Sometimes this cannot give an exact

representation, or we may not need one: in this case we are looking for approximations. As just

seen, nonlinear approximations give us much freedom in choosing the elements that participate to

the signal expansion.

It can happen that we would like to design the set of functions gi according to some principle:

for example we may desire that they capture the structures of the signal f , or we may require them

to be scalable... These requests can improve the quality of the approximation, but they can also

complicate the structure of the functions gi, preventing them to be orthogonal. So now we can

ask ourselves if this is a problem. Why such set of functions should form an orthonormal basis?

This last consideration opens the framework of highly nonlinear approximation, called in this way

since it adds another degree of nonlinearity to the problem of function selection. The collection of

functions over which we want to approximate a signal is called dictionary (D). Now, supposing that

D = {gi}i∈Ω and Λ ⊂ Ω, a function is decomposed as:

f '
∑

i∈Λ

ci gi. (2.3)

The difference between Eqs. (2.2) and (2.3) is that in the latter Λ defines a subset of a redundant

dictionary.

2.2 Bidimensional Wavelets

The recent innovations and complementary interesting points of view brought by computational har-

monic analysis and approximation theory have unveiled new and powerful mathematical techniques

[63]. The most successful example is undoubtedly provided by wavelets. The connection between

wavelet-based coding, statistical estimation and approximation theory has shown that wavelets are

optimal for estimating or compressing piecewise smooth signals with any type and number of discon-

tinuities. This is obviously a very important class or model of signals because it describes transient

behaviors, which are central to many processes. The key property of wavelets in this setting is the

sparsity of the representation, i.e., the ability of wavelets to capture a very fine approximation of the

signal with only few non-zero coefficients. Indeed for any such signal, the m-term nonlinear approx-

imation error e(m), that is the error measured when reconstructing the signal with the strongest m

wavelet coefficients, can be shown to behave like:

e(m) ≤ C ·m−α, (2.4)

where α measures the smoothness of the signal [47].

Moreover a signal f ∈ R
n can be decomposed onto a wavelet basis in a very simple and fast

way. This is possible since the coefficients are computed with a fast algorithm that cascades discrete

convolutions of digital filters [118, 179]. Also the adoption of lifting schemes [168, 169, 179] can im-

prove the wavelet decomposition and augment the computational efficiency. Finally the complexity

results to be of the order of O(n).

It was natural to use these properties in 2-D when applying wavelets to images. The extension

is straightforward since any wavelet orthonormal basis of L2(R) can be associated to a separable

wavelet orthonormal basis of L2(R2). 2-D decompositions can therefore be computed with a sepa-

rable extension of the filter bank algorithm used in 1-D. In practice, one should simply perform a
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wavelet filtering along the rows and the columns of an image or vice versa. Non-separable 2-D bases

also exist, even if their use is much less frequent [107].

The applications of 2-D wavelet transform are many: in image processing it is used for contour

and object detection, image retrieval, denoising, compression. In physics we can find it in astronomy

and astrophysics, geophysics and fluid dynamics [16].

2.2.1 JPEG2000

The JPEG committee published its first standard for still images compression and coding in 1993∗,

usually known as JPEG [1, 145]. The baseline of JPEG is a Discrete Cosine Transform (DCT)-based

lossy compression algorithm that uses Huffman entropy coding and operates in sequential mode. At

the end of the 1990s, the JPEG committee began to investigate the possibility of creating a new still

image compression standard, entirely based on the Discrete Wavelet Transform (DWT): JPEG2000

born [2, 3].

The building blocks of a typical JPEG2000 encoder are shown in Figure 2.1. In particular the

compression achieved can be lossless or lossy. The DWT chosen in Part 1 of the standard is the

Daubechies 9,7 for the lossy case and lifted integer-to-integer 5,3-filter bank for the lossless case.

Part 2 of JPEG2000 allows for arbitrary filter specifications in the codestream.

Pre- DWT Quantization Adaptive Bit-Stream
Organiz.

DataImage
Input

Processing Arith.Coding

Compressed

Figure 2.1: JPEG2000 encoder building blocks.

The quantization is uniform, with a deadzone that is twice the quantizer step-size (in the Part

2 of the standard the size of the deadzone may have different values for each subband). Entropy

coding is performed through a context-based adaptive binary arithmetic coding. Each subband

is encoded independently and partitioned into rectangular blocks. This brings many advantages,

like localized random access into the image, improved functions of rotation and cropping, improved

error resilience and more efficient rate control. All these benefits are obtained at expense of the

exploitation of inter-subband redundancies. However, these are partly recovered by the encoding

strategy.

The JPEG2000 standard exploits all the characteristics of 2-D separable wavelets, matching them

with a very efficient coding strategy and a fine rate control process. The overview given here is just

an hint about JPEG2000 structure and we refer a reader interested in a more accurate description

to [9, 153, 170].

2.3 Beyond Wavelets

JPEG2000 is the main example of the use of wavelets for image processing. It offers many very

interesting features, but it also suffers from several shortcomings [122].

We focus here on the strong limits that orthonormal wavelets show in 2-D. In fact, the efficiency of

wavelets really boils down when trying to exploit the sparseness of the coefficients of natural images.

Recently many researchers pointed that the wavelet transform does not give a sparse representation

∗but the technical description was already frozen from 1988
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of such signals, and thus might not be optimal in 2-D. Indeed, in d-dimensions the rate of nonlinear

m-term approximation falls down to:

e(m) ≤ C ·m− 1
2d−2 . (2.5)

This means that it does not depend on the smoothness of the signal, as it was in Equation (2.4).

Moreover, this rate is only obtained for very smooth images, and there are 2-D signals where wavelets

perform much worse. In other words, there is a curse of dimensions in wavelet approximation theory

that really spoils the result. Figure 2.2 shows that wavelets are inefficient at representing contours

because they cannot deal with their geometrical regularity. The number of coefficients needed to

represent the 2-D contour increases exponentially with the resolution! One can also observe from

Eq. (2.5) that in 2-D the error decays as m−1/2, which is the same rate as Fourier expansion.

Figure 2.2: Inadequacy of isotropic refinement for representing contours. The number of wavelets

intersecting the singularity roughly doubles when the resolution increases (from left to right). In

this example 6, 14 and 28 squares are used, corresponding to the 2-D wavelet coefficients.

This is mainly due to the isotropic refinement: the dyadic scaling factor is applied in all directions,

where clearly it should be fine along the direction of the local gradient and coarse in the orthogonal

direction in order to localize the singularity in a sparse way.

In 1-D, there is only one type of singularity, point-like discontinuities in the signal or in one of

its derivatives. But in higher dimensions, the geometry of possible singularities becomes extremely

rich. In images, discontinuities span contours or edges. These are regular curves, whose geometric

meaning is of paramount importance in describing an image. Higher dimensional wavelets completely

ignore the geometry of edges and are unable to deal with curves simply because they are made from

tensor products of 1-D wavelet bases and cannot cope with geometry [25]. Thus, how can we face

this problem and overcame the limits of wavelets?

The issue of efficiently representing images and higher dimensional data, though of high impor-

tance, is still an open practical and theoretical challenge. An intense research activity is deployed

at the border between mathematics and engineering to try to understand what the ideal represen-

tation should be. Most of the new highlights have emerged in the edge dominated problem that is

the problem of representing (for data compression or statistical estimation purposes) images that

are smooth away from embedded sub-manifolds (regular curves as edges).
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The first answer came from a path-breaking paper of Olshausen and Field [139], where a statis-

tical optimization experiment constructed a set of basis functions that would yield the least error

when trying to approximate natural images taken from a database. The collection of these learned

kernels had striking features, or more precisely a striking structure: they are organized as a mul-

tiresolution family of functions resembling Gabor atoms (see Figure 2.3). They are highly sensitive

to orientation, unlike wavelets. The relevance of this result is actually twofold. First, Gabor-like

basis functions seem to have been selected by natural evolution as one type of receptive fields in

the human visual system [41]. It is thus very natural (and encouraging) to see them appearing in

this experience. But more important even is the emergence of a structure: an orientation sensitive

multiresolution representation.

Figure 2.3: The set of 192 basis functions obtained by the sparse coding algorithm of Olshausen

and Field in [139].

Later many other psycho-visual studies confirmed these striking results and pointed to the

existence of a common principle involved in general sensorial information processing (e.g. see

[14, 140, 141, 142, 152, 158]). Human brain represents the input sensorial information by a (rela-

tively) small number of simultaneously active neurons. This phenomenon is commonly referred to

as “sparse coding”.

Building on the preliminary results of Olshausen and Field, Donoho was one of the first to

question the optimality of wavelets in higher dimensional spaces. He showed that overcomplete

dictionaries of elements having particular geometric features (namely orientation sensitivity and an

anisotropic scaling law) would improve on m-term nonlinear approximation [57].

2.3.1 Where the *-let Family Appears and Quickly Disappears

Many efforts were spent in the very last years in order to overcome the curse of dimensionality

explained above and thus to better represent an image considering its inherent geometric structure.

In this section we briefly present some of the most important and famous approaches. This list does

not want to be complete, but it just aims at showing the main directions of research.
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Wedgelets

Adopting the viewpoint of computational harmonic analysis, Donoho developed an overcomplete

collection of functions called wedgelets [58]. They are dyadically organized with a variety of loca-

tions, scales, and orientations. Wedgelet provide nearly-optimal representations of objects in the

Horizon model, as measured by minimax description length. As can be seen in Figure 2.4, wedgelets

basically perform a quadtree decomposition and approximate edges by linear functions. Since they

are oriented towards image coding, all the division and pruning criteria depend on a rate-distortion

optimization.

r
θ

Figure 2.4: Wedgelet representation of a contour. Left: original smooth contour. Middle: wedgelet

piecewise approximation. Right: wedgelet description of a leaf of the quadtree.

Curvelets

An important member of the emerging family of multiscale geometric transforms that aims at coping

with image structures is the curvelet transform [25, 27]. It was developed in the last few years as

an improvement of the ridgelet transform [26], in an attempt to overcome inherent limitations of

traditional multiscale representations. Conceptually, the curvelet transform is a multiscale pyramid

with many directions and positions at each length scale, and needle-shaped elements at fine scales.

This pyramid is nonstandard, however. Indeed, curvelets have useful geometric features that set

them apart from wavelets and the likes. For instance, curvelets obey a parabolic scaling relation

which says that at scale 2−j , each element has an envelope which is aligned along a “ridge” of length

2−j/2 and width 2−j . Curvelets are interesting because they efficiently address very important

problems where wavelets are far from ideal. They provide optimally sparse representations of objects

which display smoothness except for discontinuity along a general curve with bounded curvature.

Such representations are nearly as sparse as if the object were not singular and turn out to be far

more sparse than the wavelet decomposition of the object.

This phenomenon has immediate applications in approximation theory and in statistical estima-

tion. In approximation theory, let fm be the m-term curvelet approximation (corresponding to the

m largest coefficients in the curvelet series) to an object f(x1, x2) ∈ L2(R2). Then, if f is smooth

away from a singular generic smooth C2 curve, the approximation error obeys

‖f − fm‖2
2 ≤ C · (logm)3 ·m−2.

Being defined in the continuous domain, the curvelet transform needs a discretization in order

to be applied to digital signal. Recently a fast discrete curvelet transform has been proposed in [24].

The software package CurveLab implements the discrete curvelet transform and can be found in [7].
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Curvelets can also be used as a component of a bigger dictionary. This interesting approach is

followed for example in [164, 165, 166].

Contourlets

Contourlets [56] are an attractive tool for digital image processing because they are defined in

the discrete domain via non-separable filter banks and consequently they are fast to compute. This

construction results in a flexible multiresolution, local, and directional image expansion using contour

segments. Contourlets have a tree structure and, similarly to curvelets, they impose a parabolic scale

of a/a2. There exist several variations of the discrete contourlet transform, such as the critically

sampled contourlet illustrated in [115].

Bandelets

Recently LePennec and Mallat [110] introduced a nonlinear adaptive technique for efficiently rep-

resenting images by dividing the image support into regions characterized by a regular behavior.

This technique achieves optimal nonlinear approximation error and, contrary to curvelets and con-

tourlets, it is not limited to C2 discontinuities. This approach is an attempt of exploiting the good

behavior of wavelets in one dimension by a careful extension to 2-D. The basic idea of bandelets

is that one can align 1-D wavelets in the direction of the edges, putting the oscillatory part of the

wavelet function perpendicular to the discontinuity. Note that an analysis of the image has to be

preliminary performed in order to drive the bandelet decomposition. Apparently, there exist a “sec-

ond generation bandelet transform”whose preliminary description can be found in [148]. For details

we refer to the web site dedicated to bandelets [6].

There are many other kinds of basis functions that belong to the *-let family: among them we

can cite the beamlets [100] and the directionlets [178]. An interesting and pleasant resume of the

family of *-let functions can be found in the web site in [13].

2.3.2 Other Directions

Do, Shukla et al. [55, 162] have pioneered a rate-distortion approach to the representation of edge-

dominated images. Transposing the heuristic results of Donoho with coding constraints proved

to outperform classical wavelet based coding on simple image models. This model, though very

simple, gives a fundamental lower bound on rate-distortion analysis of edge-dominated images. This

approach has led to a coding algorithm based on quadtree-structured segmentation of the image,

and on a prune and merge strategy which achieves the asymptotic rate-distortion behavior predicted

by the model [162]. This method can obtain very good compression results.

Another interesting approach to the problem of dealing with the representation of different

features into an image is presented in [180, 181] where wavelet and wedgelet (or better wedgeprints,

but for more details see the cited papers) basis functions are combined together in a rate-distortion

compression framework.

A quite different approach has been proposed by Buccigrossi and Simoncelli in [22]. Compression

is achieved by exploiting a probability model for natural images, based on empirical observation of

their statistics in the wavelet transform domain.



14 Chapter 2. On Approximating Images

2.3.3 Discussion

We conclude this chapter stressing again how the shortcomings shown by wavelets when applied to

d-dimensional problems push many researchers to find valid alternatives for image representation.

Very useful insights come from neurosciences and suggest that an efficient approximation method

should take into account the geometric structures that natural images present.

We also highlight that most of the techniques previously cited renounce to the use of an or-

thonormal set of basis functions opening to redundant expansions. Next chapter will develop these

two major points.



Chapter 3

An Image Model and

Multi-Component Dictionaries

As illustrated in Chapter 2, there is a curse of dimensions in wavelet approximation theory: higher

dimensional wavelets completely ignore the geometry of images and are unable to deal with edges

simply because they are made from tensor products of 1-D wavelet bases. From a rate-distortion

(RD) point of view, the sub-optimality of bidimensional wavelets results in a rate-distortion decay

of O
(
R− 1

2

)
[118].

As a reaction to this limit of 2-D wavelets, in the last few years there has been a growing trend

towards more efficient representation techniques, as explained in Chapter 2. All these attempts are

inspired and led by the key concept of geometry.

3.1 Anisotropy and Orientation: Two Key Concepts for Edge

Representation

In this section we show that a geometry-inspired representation of image contours can be efficient and

helpful. Our aim is to perform a rather simple theoretical study of the asymptotic performances of

anisotropic decomposition from a class of “toy” images called the “Horizon”model. This is composed

of images defined on the unit square [0, 1]2, such that:

I(x1, x2) = 1x2≥y(x1) 0 ≤ x1, x2 ≤ 1, (3.1)

where y(x1) ∈ Cp is p-times continuously differentiable and has finite length inside the unit square

(see the image on the top left of Figure 3.2).

One way of representing this image is through a quadtree decomposition, which is in fact a toy

model for wavelets. Do et al. demonstrated in [55] that the distortion D of this model decays as

D(R) ∼ R−1, where the rate R is the number of bits used to code the image I, and the distortion is

measured as the mean square error (MSE) between the original and the reconstructed image. The

optimal quadtree is based on a dyadic division of the unit interval [0, 1]2 (see Fig. 3.1(a)). At each

scale, the algorithm keeps on dividing the squares containing an edge, until the maximum number

of iterations J is reached, and so the maximal resolution. In [55], a refinement is performed (coding

with a certain number of bits where the edge crosses the square), and then the edge is represented

15
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by the lines that join these refinement points (so it is represented as a piecewise linear function).

This approach gives a rate-distortion decay proportional to:

D(R) ∼ log2R

R2
. (3.2)

This is close to the RD of wedgelets which in fact use a very similar representation scheme.

(a) Isotropic (b) Anisotropic

Figure 3.1: Example of isotropic and anisotropic quadtree decomposition.

Now, following [67, 68], we introduce into this quadtree scheme two key concepts: anisotropy

and rotation. They will have great importance in the following of this chapter and they will result

to be extremely helpful when dealing with edges. Anisotropy and rotation are used directly in the

basic quadtree structure, obtaining a toy model for an adaptive nonlinear image representation tool.

The fact of introducing anisotropy shows that the first derivative of the edge function appears in

the rate-distortion expression. Furthermore, when rotation is also included in the scheme, the RD

depends on the curvature of the edge, showing that the rate needed to represent a given contour is

directly proportional to its geometrical complexity.

3.1.1 Anisotropic Quadtree

The difference between the dyadic quadtree and the anisotropic quadtree is the size of the partitions.

The x1-axis maintains the dyadic partition, but the x2-axis partition never crosses the edge, as can

be seen in Fig. 3.1(b). After the first partition, the rectangle containing the edge is split into two

parts along the x1-axis. The x2 axis is split in such a way to obtain a minimal height of the box,

without crossing the edge. This process is repeated iteratively until the desired accuracy or bit-rate

is reached (i.e. until the height or the width of the rectangle has the size 2−J ). In addition, a certain

number of bits can be assigned to code the edge position in the division border, so that a straight

line can approximate it. We suppose that the maximum slope of the edge inside the interval is one

(|y′(x1)| ≤ 1), otherwise one could simply switch the axes.

Let J be the number of bits used for quantizing each of the two axes. Naj
is the total number of

rectangles at iteration j. There are four kind of boxes: “black”, “white”, “intermediate” and “edge”.

Black and white boxes are classified to be below or above the edge, intermediate boxes contain an
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edge and will be split again and edge boxes contain an edge and will not be split anymore because a

sufficient precision is achieved (i.e. the edge inside the rectangle can be approximated by a straight

line) or the final resolution is reached. The height of a rectangle is smaller or equal to its width

times the maximum first derivative (y′max = maxx1
|y′(x1)|). Thus, at resolution j, the height of a

box will be smaller than or equal to

⌈
2−j · |y′max|

2−J

⌉
≤ 2J−j · d|y′max|e.

Thus the maximum number of iterations that the quadtree will perform is:

jstop = J + dlog2 |y′max|e.

Notice that the case y′max = 0 is a special case, because it means that with only one iteration the

minimum resolution has been achieved. Ne is the number of edge-rectangles and Naj
is the number

of all the rectangles at iteration j. Their values are:

Naj
∼ 2j , Ne ≤ 2J+dlog2 y′

maxe. (3.3)

Since the rectangles of iteration j + 1 will be contained by the rectangles of the iteration j, the

number of bits needed to code the size of each rectangle will decrease with j as:

Nbits ≤ J − (j − 1) + dlog2 y
′
maxe. (3.4)

Taking into account the bits needed to code whether a rectangle is black, white, edge or intermediate

and the size and position, the total bit-rate needed to code the anisotropic quadtree will be given

by:

R = (2 +Nbits)Na + 2M ·Ne, (3.5)

where M is the number of bits used for the refinement. The first term counts the bits needed to

describe the tree partition position and whether the partition is black, white, intermediate or edge,

and the second term represents the bits needed to code the edge position in the finest partition.

Merging (3.3) and (3.4) with (3.5), considering M=J and high bit-rate and simplifying, we obtain:

R ∼ J · 2J+dlog2 y′

maxe. (3.6)

The final distortion (at resolution 2−J) is given by the sum of the distortions of all the partitions:

D(R) =

∫

[0,1]2
(I − Î)2 ≤ C · 2−J−M , (3.7)

where Î is the reconstruction of I. When consideringM=J and high bit-rate, it givesD(R) ≤ C · 2−2J ,

and from (3.7) and (3.6) we obtain:

D(R) ∼ 22dlog2 y′

maxe log2
2R

R2
. (3.8)

3.1.2 Introducing Rotation

The anisotropic quadtree shows that the edge representation can be improved in a RD sense if

partitions follow the behavior of the contour. Developing this idea it is possible to use not only

rectangular, but even rotated boxes. Let us take the curve in the unit interval [0, 1]2 and join the
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two extreme points with a line that represents its average slope. This line can be then moved up

and down such that it does not cross the edge anymore. In this way we define a rectangular box

that models a coarse basis function. This procedure is repeated iteratively continuing to split the x1

axis inside the previous box in a dyadic way. Figure 3.2 shows this quadtree scheme for j = 1, ..., 6.

As can readily be noticed, the x1-partition is a fixed dyadic grid, while the x2-partition basically

depends on the edge.

At each iteration j (0 ≤ j ≤ J) and for each box k the distortion is bounded by the area of the

box that encloses the edge (see Fig. 3.3):

Dk
j ≤ Sk

jH
′k
j = Sk

jH
k
j cosθ = 2−jHk

j . (3.9)

Inside every box the edge function is approximated by its second order Taylor expansion at the

central point of the partition, taking as initial partition the unit interval.

Defining x− as the lowest point in the x1 axis which is inside the interval to be analyzed and x+

as the highest one, the coordinates of the two extreme points of the curve, quantized on a dyadic

grid, are (x−,Q[y(x−)]) and (x+, Q[y(x+)]), where Q[·] stands for uniform quantization. The line

joining these two points is:

yLQ(x) = Q[y(x−)] +
Q[y(x+)] −Q[y(x−)]

x+ − x−
(x− x−). (3.10)

The parallelogram cannot cross the edge, therefore its superior and inferior distances to the line are:

d+ = max {0, sup(y − yLQ)} ≥ 0

d− = max {0, sup(yLQ − y)} ≥ 0.
(3.11)

Then the height of the parallelogram confining the edge is:

H = Q [d+ + d−] . (3.12)

Three cases have to be considered: d+ and d− are both bigger than zero, one of them is equal to

zero, and finally d+ = d− = 0. The distortion is at most the area of the parallelogram that contains

the edge, as already shown in (3.9). So, when the evolution of H with the number of bits is found,

the evolution of the distortion as a function of the iteration number will be known as well.

Case d+ > 0 and d− > 0

Let us first compute the distances d+ and d− in order to determine H. If xd+
is the point in the x1

axis where yLQ − y is maximum, we get:

d+ = y(xd+
) − yLQ(xd+

). (3.13)

The above expression, when approximating the curve and y(x−) of Eq. (3.10) by its second order

Taylor expansion at the central point of the interval being analyzed, turns to:

d+ = y(x++x−

2 ) + y′(x++x−

2 )(xd+
+ −x++x−

2 ) + 1
2y

′′(x++x−

2 )(xd+
− x++x−

2 )2

− y(x−) − y(x+)−y(x−)
x+−x−

(xd+
− x−) +O((xd+

− x++x−

2 )3)

and so:

d+ =
[
y′
(

x++x−

2

)
− y(x+)−y(x−)

x+−x−

] (
xd+

−x−
)
± 2−J

(
xd+

−x−

x+−x−

)
± 2−J

2 +

+ 1
2y

′′
(

xd+
+x−

2

)[(
xd+

− x++x−

2

)2

−
(

x+−x−

2

)2
]
+

+ O

((
xd+

− x++x−

2

)3
)

+O

((
x−−x+

2

)3
)
.

(3.14)
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Figure 3.2: Anisotropic and rotated quadtree of an horizon image. From top left: Original image;

rotated rectangles for j = 1, ..., 6; reconstruction with refinement with M=2 bits.
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Figure 3.3: Quadtree Scheme.

It is possible to show that:
∣∣∣∣y

′
(
x+ + x−

2

)
− y(x+) − y(x−)

x+ − x−

∣∣∣∣ ≤ 2−2j (3.15)

and so [
y′
(
x+ + x−

2

)
− y(x+) − y(x−)

x+ − x−

](
xd+

− x−
)
∼ O

(
2−3j

)
. (3.16)

It is also easy to see that:
∣∣∣∣∣

(
xd+

− x+ + x−
2

)2

−
(
x+ − x−

2

)2
∣∣∣∣∣ ≤

(
2−j

2

)2

= 2−2(j+1), (3.17)

which brings the following bound for the third term in Eq. (3.14):

1

2
y′′
(
x+ + x−

2

)[(
xd+

− x+ + x−
2

)2

−
(
x+ − x−

2

)2
]
≤ 1

2

∣∣∣∣y
′′
(
x+ + x−

2

)∣∣∣∣ 2
−2(j+1). (3.18)

This expression is related to the second derivative computed in the middle point of each interval

k at each iteration j. From now on, to simplify the notation, it will be referred to as Kk
j .

Kk
j =

∣∣∣∣y
′′
((

k +
1

2

)
2−j

)∣∣∣∣ , (3.19)

with 0≤k≤2j−1. Since the curvature of a function y(x) is defined as y′′(x)

(1+y′2)
3
2
, K can be considered

as its approximation. As the edge is a C2 curve, the set of Kk
j is bounded:

β = max
0≤k≤2J−1

Kk
J <∞. (3.20)

From Eq. (3.14) it follows that the asymptotic behavior of d+ is given by:

d+ ∼ 1

2
Kk

j 2−J−log2β +
3

2
· 2−J . (3.21)

In fact, the other terms are O(2−3j) (one order of magnitude smaller), so they can be neglected

when computing the asymptotic behavior. Finally d− can be found with the same computations

and it shows an identical behavior.
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The iterative algorithm stops when the requested resolution is reached, i.e. when Hj = 2−J .

Substituting in (3.12), the number of iterations necessary to reach this parallelogram height can be

obtained as a function of the resolution and of the curvature of the edge:

jstop = max

{
0,

1

2
(J + log2 β + 1)

}
. (3.22)

Now the parallelogram has width 2−jstop and height 2−J , showing the a/a2 anisotropy present in

curvelets [25]:

width

height
=

2−jstop

2−J
∼ 2− log2 β 2−

J
2

2−J
∼ width

width2 , (3.23)

The final distortion (j = jstop) is:

D =
∑2jstop−1

k=0 (d+ + d−) 2−jstop =

= 2−2jstop
(∑2jstop−1

k=0 Kk
jstop

2−jstop +
∑2jstop−1

k=0 3·2−jstop
)
.

On the right-hand side of this equation, the second sum gives a constant, while the first, when

jstop→∞, converges to the Riemann integral of the second derivative of the curve,

lim
j→∞

2jstop−1∑

k=0

Kk
jstop · 2−jstop =

∫ 1

0

|y′′(x)| dx, (3.24)

which can be seen as an approximation of the Total Variation (TV) of the edge, with the only

difference that we have a sum of Kk
j instead of the Riemann integral of the curvature. Naming it

T̃V, the final expression of the distortion turns to be:

D ∼
(
T̃V + 3

)
· 2−2jstop ∼

(
T̃V + 3

)
· 2−J−log2β . (3.25)

Each rotated box is coded by means of Hj and a left and a right vertex. At iteration j, as at

least two of the vertexes of the following parallelogram will be inside the previous one, the number

of bits needed to code one vertex of the box k will evolve as:

Nk
bits V = J − 2(j − 2) +

⌈
log2

(
Kk

j−1

)⌉
. (3.26)

Therefore, the total rate will be:

R =

jstop∑

j=0

(2Nbits V +Nbits H) · 2j , (3.27)

where Nbits H = Nbits V is the number of bits needed to code the height of each box. Simplifying:

R ≤ 3J+2 +

jstop∑

j=1

((J−2(j−1) + dlog2βe)·3+2)·2j .

This is an arithmetic-geometrical progression, whose sum gives (see [83]):

R ≤ 28 · 2 1
2 (J+dlog2βe) − 3J − 26 − 6dlog2βe. (3.28)

Finally, for J big enough we can approximate the rate as:

R ∼ 2
1
2 (J+dlog2βe). (3.29)

Combining this equation with (3.25) we obtain the asymptotic RD behavior:

D(R) ∼
(
T̃V + 3

)
· 2−2log2R ∼

(
T̃V + 3

)
·R−2. (3.30)
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Case d+ > 0, d− = 0 or vice versa

This case turns to have the same rate-distortion behavior than the previous one, because the evolu-

tion of the rectangle height is led by the strictly positive distance.

Case d− = d+ = 0

This case is very favorable to our coding scheme, because it means that with just one iteration the

minimum distortion requirement is reached. The parallelogram height will be H = 2−J , and the

rate will consist in the bits needed to code the two vertexes and the box height, R = 3J . This makes

a RD behavior coherent with the results obtained in [55]:

D(R) = 2−
R
3 . (3.31)

3.1.3 Adding refinement

The anisotropic quadtree with rotation has a good RD decay, but it has the drawback that the

reconstructed edge may loose its original continuity. The introduction of refinement solves this

problem. This refined version of the algorithm uses for iterations from 0 to jstop the same approach

than in the previous case. The difference is that when the minimum resolution has been achieved,

a refinement is performed inside the last resolution rectangle by splitting the x1 axis into intervals

of size 2−J . The image on the bottom right of Figure 3.2 shows a reconstruction of the original

horizon image performed using J = 6 quadtree levels and M = 2 bits for the refinement inside each

box. The effect of adding refinement in the anisotropic quadtree with rotations does not change the

slope of the RD decay, but it allows a better PSNR given a certain rate. This can be seen in Figure

3.4, where the RD line is shifted to the left by the refinement. Following the same procedure that

has been previously adopted, the distortion found for the case d+ > 0 and d− > 0 is:

D ∼ T̃V · 2−2J + 3 · 2−J−M . (3.32)

The rate now has to take into account the number of refinements performed inside each paral-

lelogram (which is 2−jstop

2−J + 1), the number of parallelograms to refine (2jstop) and the number of

bits to perform the refinement. Adding these refinement bits to (3.29) and taking M = J , we find:

R = 2
1
2 (J+log2 β) +M · 2J . (3.33)

From Equations (3.32) and (3.33), it is easy to deduce the final rate-distortion expression:

D(R) ∼ T̃V · log2R

R2
. (3.34)

As in the previous section, in the case where d+ or d−> 0 nothing changes. The RD found in the

case where both distances are 0 (i.e. the edge is a straight line) is very similar to the one obtained

in the case without refinement.

3.1.4 Experimental results

Figure 3.4 displays a comparison among the presented methods and wavelets (JPEG2000, see

Sec. 2.2.1 and [2, 8]) for a polygonal edge. These results show that the anisotropic quadtree with rota-

tion gives better approximations than any other method. The fact that the slope for the anisotropic

quadtree with or without refinement is almost the same in the graph is probably because at such

low bit-rates the log factor has no influence. Even though JPEG2000 is not suited to binary images
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Figure 3.4: Comparison among JPEG2000, isotropic quadtree with refinement and anisotropic

quadtree with rotation for an image of 1024 × 1024 pixels.

and so the comparison is not fair, its RD behavior is included in the graph to show that the isotropic

quadtree and wavelets have really the same RD slope.

Figure 3.5 represents the rate-distortion decay of four different curves with increasing Total

Variation. It shows that the practical results, obtained with the anisotropic quadtree with rotation,

are coherent with the theoretical behavior found: the lower the TV, the better the RD. From left to

right, the graph represents the RD of: a straight line (TV=0), a parabola with TV=0.51, a cubic

curve with TV=0.75 and a parabola with TV=0.89.
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Figure 3.5: Comparison of the RD of different curves with different Total Variation (the value of

the approximation of the TV is also indicated).

The fact that an approximation of the TV appears in the rate-distortion expression shows that ge-

ometrical complexity affects the capacity of compressing a given curve. As this anisotropic quadtree

with rotation is a toy model for an adaptive nonlinear image representation technique, it highlights

the importance of the concept of geometry. In particular, practical and theoretical results exposed

in this section clearly show that the inclusion of anisotropy and rotation improves the quality of the

edge decomposition (and therefore the compression).
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3.2 An Edge Oriented Redundant Dictionary

In this section we design a dictionary (D) aimed at representing the edges of an image. It takes into

account all the previous considerations about the geometry of the contours in a natural scene. It is

composed by a set of unit norm functions, also named atoms, built by translating, rotating, bending

and anisotropically scaling a generating function φ(~x) : R
2 → R with ~x = (x1, x2). More precisely

the four transformations are defined as follows:

a) Translation T~b, to move the atom all over the image:

T~b φ(~x) = φ(~x−~b). (3.35)

b) Rotation Rθ, to locally orient the atom along contours:

Rθ φ(~x) = φ(rθ(~x)), (3.36)

where rθ is a rotation matrix

rθ(~x) =

[
cos θ − sin θ

sin θ cos θ

][
x1

x2

]
. (3.37)

c) Since, in general, images do not only contain straight edges, we are adapting the atoms to

the shape of natural contours with a bending transformation Br. Roughly speaking, this

operation arches the x2-axis with radius r, formally Br φ(~x) = φ (βr(~x)). Figure 3.6 shows

how the βr(·) operation acts, and Figure 3.9 shows the result of bending a generating function.

The transformation βr : R
2 −→ (−∞, r] × R is not linear and it is defined as

βr(~x) =





[
r −

√
(x1 − r)2 + x2

2

r · arctan( x2

r−x1
)

]
if x1 < r

[
r − |x2|

sign(x2) ·
(
x1 − r + r π

2

)
]

if x1 ≥ r

. (3.38)

Applying the bending to a continuous function φ(~x) we obtain Brφ(~x), which is in general

discontinuous on the semi-axis [r,+∞). When φ(~x) is continuous and satisfies the conditions

φ(r, x2) = const for − r ≤ x2 ≤ r and

φ(r, x2) = φ(r,−x2) ∀x2 ∈ R,
(3.39)

it follows that Brφ(~x) is continuous for all ~x ∈ R
2. The definition of the bending transforma-

tion is driven by the desire to keep the wavelet-like behavior of the generating function (see

Section 3.2.1) perfectly orthogonal to the smooth direction of edges. In practice the bending

transformation does not introduce discontinuities in the atoms, since the generating functions

are close to zero for x1 = r.

d) Anisotropic scaling Sa1,a2
, to adapt to contour smoothness

S~a φ(~x) = Sa1,a2
φ (x1, x2) = φ

(
x1

a1
,
x2

a2

)
. (3.40)
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x1

x2

r

Figure 3.6: Bending operation Br that arches the x2-axis with radius r.

Atoms are generated varying the parameters ~b, θ, r,~a of the four previous transforms in the following

order:

g(~b,θ,r,~a)(~x) = T~b Rθ Br S~a φ(~x). (3.41)

Finally the waveforms obtained are normalized:

gnorm

(~b,θ,r,~a)
(~x) =

g(~b,θ,r,~a)(~x)

‖g(~b,θ,r,~a)(~x)‖2
. (3.42)

The edge-oriented dictionary can be written as in Equation (3.43), where all the parameters are

discretized:

D = {gnorm

(~b,θ,r,~a)
(~x)}~b,θ,r,~a . (3.43)

The radius r is discretized using a dyadic grid, while for the position ~b a uniform grid is kept.

The two scaling factors are discretized in a uniform way. The range of the scaling factor along x2 is

bigger than the one along x1 and it depends on the radius parameter. Moreover the scaling factor

along x2 can not exceed π
2 times the radius (see Fig. 3.6): the reason is that atoms that cover more

than π radians are unlikely to appear in a natural image. If this is the case, one can rather use two

shorter atoms, avoiding to further increase the size of the dictionary. The rotation step θ is inversely

proportional to the scale a2. This dependency has been established because short atoms need less

rotations than long ones.

3.2.1 Generating functions

The choice of the generating function φ(x1, x2) is driven by the idea of efficiently approximating

the high frequencies of contours, like singularities in 2-D. Therefore, the atom must be a smooth

low resolution function in the direction of the contour and approximate the edge transition in the

orthogonal (singular) direction.

In order to be able to well represent either roof and ramp edges (see [156] and Fig. 3.7) we adopt

two different generating functions, doubling in this way the size of the dictionary.
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Figure 3.7: From left to right: a ramp and a roof edge.

The first function φ1(~x) is a combination of a Gaussian with its first derivative. In the x1-direction

(which is the singular-direction) it is the first derivative of a Gaussian, while in the x2-direction

(which is the contour-direction) it is a Gaussian, see Fig. 3.8:

φ1(x1, x2) = 2x1 e
−(x2

1+x2
2). (3.44)

The second generating function φ2(~x), shown in Fig. 3.8, is a combination of a Gaussian and its

second derivative. It was introduced in [177], motivated by the optimal joint spatial and frequency

localization of the Gaussian kernel:

φ2(x1, x2) = (4x2
1 − 2) · e−(x2

1+x2
2). (3.45)
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Figure 3.8: Generating functions: φ1(x1, x2) on the left, φ2(x1, x2) on the right.

This kind of dictionary was first introduced in [146] and then in [147]. The generating functions

that appear on these papers are slightly different from the ones in Eqs. (3.44) and (3.45), In fact

the Gaussian is replaced by a generalized Gaussian with shape parameter equal to four in the x2-

direction, in order to have a faster decay in the space domain. In this way, it turns out that atoms

can better approximate segments of edges and visual artifacts are reduced. The generating functions

used in [147] are expressed by the following equations:

φ1(x1, x2) = 2x1 e
−(x2

1+x4
2),

φ2(x1, x2) = (4x2
1 − 2) · e−(x2

1+x4
2).

(3.46)

Figure 3.9 shows five atoms generated using the two generating functions of (3.46) in both space

and frequency domain. The effects of the transformations are also shown. It can be seen that the

function φ2 is more compact in the frequency domain, whereas φ1 reaches lower frequencies.
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Figure 3.9: Five atoms: on the top space domain, on the bottom frequency domain represented in

a logarithmic scale. The first function starting from the left is generated from φ1, the others from

φ2. The effect of bending, rotating and anisotropically scaling the atom can be observed.

It is worth mentioning that these atoms present characteristics similar to the spatial receptive

fields of simple cells in mammalian striate cortex. In [139] Olshausen and Field have used a learning

algorithm for finding a sparse decomposition of images. They have shown how, when this algorithm

is applied to a huge set of natural images (namely a high-frequency version of natural images), a set

of basis functions emerges that are qualitatively similar in form to simple cell receptive fields. An

example of the waveforms found using this method is shown in Figure 2.3.

These functions, as well as our atoms, are characterized by being localized in space, oriented

and bandpass. An additional property of the overcomplete dictionary we propose is given by the

possibility of bending the generating function. The fact that this characteristic does not appear in

the waveforms obtained by Olshausen and Field can be explained by considering that the image

patches they were analyzing are too small to observe such a phenomenon. However, in [105] the

learning of space invariant generating functions oriented to the representation of natural images was

performed using patches of 31 × 31 pixels, while the atoms have a support of 16 × 16 pixels. Such

learning led to find spatially localized functions among which straight and also curved edge detectors

appear.

3.2.2 Size of the Dictionary

Taking into account all the atom parameters and the two generating functions, the dictionary can

be written as:

D = {gnorm

(φ,~b,θ,r,~a)
(~x)}φ,~b,θ,r,~a . (3.47)

Here φ ∈ {φ1, φ2} is the index that specifies which function has been chosen to create the atom,

while the other values are the same as in Equation (3.43). Finally we obtain a highly redundant

dictionary, whose size depends on the discretization of θ, r and ~a. The number of rotations is chosen

in proportion to the scale parameter a2. In general the size of the dictionary increases dramatically

allowing big scaling factor along x2. Of course, a dictionary including elongate atoms is able to

better represent long edge structures. Two instances of such a dictionary were used in [146] and

[147]: they present a redundancy of about 11000 and 17000 respectively.

Even if big dictionaries can be built with a small coherence [92], our dictionary has high coherence

since we adopt a geometric oriented design. The role of the coherence in redundant dictionaries will
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be further analyzed in Chapter 4.

3.3 Multi-Component Redundant Dictionaries

Edges are certainly the most visually relevant elements of images, and this justifies the efforts that

many scientists spent in order to find an effective way to represent them. However, natural images are

not only composed by edges, but they present different primitives with peculiar characteristics. As

shown by Figure 3.10, we can easily distinguish smooth parts (low frequency components, Ismooth),

edges (Iedge) and textures (Itexture). Formally, we propose here the following model for an image I:

I ' Ismooth + Iedge + Itexture. (3.48)

The sign “+” simply states that Ismooth and Iedge and Itexture are present in a natural image.

Nevertheless, making the hypothesis that the three components do not overlap (which is quite

reasonable) also allows to give to the “+” in Eq. (3.48) a mathematical meaning, i.e. the sum of the

pixel values.

Figure 3.10: A natural image where we can see edges(E), textures(T) and smooth parts(S).

In the previous section we have proposed a dictionary designed for Iedge. What one needs

now are functions that can well represent the textures and the smooth parts, and a model for the

decomposition.

At first, we focus our attention on the smooth part. In [146] we proposed a decomposition

scheme aimed at compressing an image at a very low bit-rate. In these conditions the most visually

relevant components are included in Ismooth and Iedge, allowing us to use the representation method

illustrated in Figure 3.11, where an image is decomposed into low frequencies and high frequencies

using the laplacian pyramid scheme of Burt and Adelson [23]. From an original image, the laplacian

pyramid scheme derives a coarse approximation by low-pass filtering and downsampling. Based on

this coarse version, it predicts the original by upsampling and filtering and calculates the difference

as the high-pass version or detail version. The detail version is then represented using the atoms

from the edge-oriented dictionary.
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Figure 3.11: Laplacian Pyramid. B(~ω) is the 2-D low-pass filter, A(~ω) is the 2-D interpolation

filter, N is the downsampling factor.

The filters B(~ω) and A(~ω) are set to be the same for sake of simplicity, even though better coding

results may be obtained by choosing the two filters independently. The filtering process is performed

applying three times a low-pass filter followed by downsampling. The filter used is a 11 × 11 taps,

symmetric low-pass FIR filter, designed using the window method. The window used is Gaussian

with variance σ2 = 2 pixels, the normalized cut-off frequency is 0.45, while the downsampling factor

is two.

With such a simple method we first separate the two image components and then we code them

with an appropriate technique. In [146], using such a scheme for compression, the coarse version

of the signal was uniformly quantized and entropy coded, while the detail version was decomposed

over the edge-oriented dictionary using the Matching Pursuit algorithm. Details on this algorithm

will be given in Chapter 5.

Such a model can be modified and upgraded in order to take also textures into account. This

is done, for example, by the image representation scheme presented in [147] and illustrated in Fig.

3.12. Also this scheme is designed for image compression and it will be used by the coding algorithm

presented in Chapter 5. At the present moment we just focus our attention on the decomposition

that it adopts. The dictionary, described in Section 3.2, has been designed to match the object

contours, whose energy is mostly localized at high frequencies. Therefore, before coding the edges,

the image is decomposed with wavelets and reconstructed keeping all the subbands but the low-

pass. This step is equivalent to a high-pass filtering and it is labeled as “W HP” in Fig 3.12. The

high frequency content of the signal is thus decomposed over the edge-oriented dictionary using

again the Matching Pursuit algorithm for selecting the functions. After that the coefficients have

been quantized, a residual image is computed by subtracting the quantized reconstruction from the

original input image. This residual contains the low frequencies of the signal, the textures and the

artifacts introduced by Matching Pursuit (the latter also include quantization errors). As can be

seen in Fig. 3.12 the residual is decomposed with wavelets. The wavelet functions, used for both

decomposing the residual and computing the high-pass input for Matching Pursuit, are the Cohen-

Daubechies-Feauveau 9,7 [35]. At this point we have low-pass wavelet coefficients (projection on the

scaling function) representing Ismooth, atoms from the edge-oriented dictionary representing Iedge

and the high frequency wavelet coefficients representing Itexture and correcting the Matching Pursuit

artifacts, if any.
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Figure 3.12: Coding scheme: W HP is the high-pass filtering using Wavelets, MP Dec and MP Rec

are respectively the Matching Pursuit decomposition and reconstruction, Q represents the quanti-

zation operation, W Dec is the Wavelet decomposition, RD is the rate-distortion optimization and

AC stands for Arithmetic Coding.

More informations about the two previous compression schemes, as well as practical examples

and results, will be copiously given in Chapter 5.

The reader can observe how the image model of Equation (3.48) is reflected by the decomposition

method of Figure 3.12. Of course, this is just an example and many other possibilities are available.

Far from making an exhaustive list of all the works fitting this framework, we can however observe

that many researches investigate on this direction. In particular here we want to cite the pioneering

study of Yves Meyer [123] describing the so-called u + v models, where the u component is aimed

at modeling the objects or important features and the v component represents textures and noise.

On these line see also [131] and [157]. Wakin et al. in [180, 181] propose another technique that

aims at compressing still images using a similar model. They make use of wedgeprints (anisotropic

atoms that are adapted to edge singularities, derived from Donoho’s wedgelets [58]) for coding the

edges and wavelets for the other image components. Also bandelets [110] can be interpreted in such

framework, since they are adapted to the image geometry. Other works in this direction can be

found in [164, 165] and in the very recent work on morphological component analysis [166].

In general, given the image model of Eq. (3.48), one needs a decomposition scheme as the two ones

illustrated in Figures 3.11 and 3.12. Such schemes imply the use of a Multi-Component Dictionary

(MCD), that we can define as a large, redundant collection of functions built by the union of q ≥ 2

sub-dictionaries Dj , each of which is particularly appropriate for describing a given class of features:

D =
⋃

j

Dj , with 1 ≤ j ≤ q. (3.49)

Let us call gi the unit norm atoms that compose D = {gi}i∈Ω. Therefore, the expansion of a

signal f over a MCD looks like (see also [85]):

f =

q∑

j=1

∑

i∈Λj

ci · gi, (3.50)

where Λj ⊂ Ω are subsets that index the basis functions of the sub-dictionary Dj and such that⋃q
j=1 Λj = Ω. Of course, ci are the coefficients of the functions gi.

In the case of the image model we propose in (3.48), one should need q = 3 sub-dictionaries,

one for Iedge, one for Ismooth, and one for Itexture. The first issue has already been widely faced in

Section 3.2, ending up with an edge-oriented collection of functions.

Concerning the case of Ismooth, we gave two examples in this Section, using either low-pass

functions as in Fig. 3.11, either wavelets scaling functions. Another possibility used in [69] and [85]
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is to use a sub-dictionary composed by translated and isotropically scaled versions of a Gaussian:

g(x1, x2) =
1

π
e−(x2

1+x2
2). (3.51)

The transformations, are very similar to the ones defined in Section 3.2, Eqs. (3.35), and (3.40),

except that the scaling factor is the same for both axes, and of course rotation and bending are

missing.

3.3.1 A Dictionary for Textures

Roughly speaking, texture images are specially homogeneous and consist of repeated elements, often

subject to some randomization in their location, size, color, orientation, etc. Figure 3.13 shows some

examples of gray-scale textures.

Figure 3.13: Examples of texture images from [12]. From the left: bark, brick wall and grass.

Julesz pioneered the statistical characterization of textures hypothesizing that the nth-order joint

empirical densities of image pixels (for some unspecified n), could be used to divide textures into

classes, indistinguishable to a human observer [106]. Since then, many different texture models were

proposed, but is still extremely difficult to design a dictionary that can well represent these kind

of primitives. Many interesting researches aim at building statistical texture models, mainly using

the theory of Markov random fields and/or oriented linear kernels at multiple spatial scales. Within

this category we can cite the excellent approach of Portilla and Simoncelli for parametric texture

modeling (and also for synthesis) using wavelets coefficients [150, 151].

The method we presented in [147] makes use of wavelet functions to code textures (see the scheme

in Fig. 3.12), obtaining good results. Another simple and quite efficient basis can be given by the

classical Discrete Cosine Transform (DCT), applied to the whole image [165], or better spatially

localized (local DCT).

3.3.2 MCD for Other Kinds of Structured Signals

To conclude this chapter, we would like to stress how the principle of multi-component dictionaries

can be extended to many signals other than natural images. Just suppose we have a structured

signal, for which we can individuate some class of important features. These can come from the

information we have about the physical background of the signal, rather than form empirical obser-

vation. Suppose also to have a signal model, based on these components. If one is able to design

a dictionary, namely a sub-dictionary, that well catches the main characteristics of each class of

features, we can easily use MCD for a “structure-inspired” decomposition.
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There exist plenty of signal families that present the required characteristics. One example is

given by audio, and more specifically speech and music [19, 40, 87, 90, 126]. Following for instance

[127] or [88], one can individuate in an audio signal transient and tonal parts that can play the role of

edges and smooth parts in natural images (but with the important difference that they may overlap).

Figure 3.14 illustrates a time-frequency representation of a keystroke of piano obtained through a

Matching Pursuit decomposition with 5000 Gabor atoms [88, 89]. One can easily distinguish the

string (long horizontal structures) from the hammer (vertical structure, the transient).

Figure 3.14: Time-frequency representation of a keystroke of piano, where typical audio structures

are easily visible.

Another approach we investigated consists in exploiting the physical structures in electrocardio-

gram (ECG) signals, separating atrial and ventricular activity when atrial fibrillation occurs [125].

This case will be further illustrated in Section 6.6.2, but the reader can just observe Fig. 3.15 to

have an idea of the two dominant structures present in this kind of ECG signals.
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Figure 3.15: On the left, an ECG signal with atrial fibrillation. It contains two physically different

structures, the ventricular activity (shown in the middle), and the atrial activity (on the right).

Notice that MCD is just a principle and does not tell anything about the kind of algorithm that

should be used to analyze the information. In the previous pages we gave some hint about this

problem for the case of natural images, but it will be tackled with much more details in the next

three chapters.



Chapter 4

Function Selection Methods

As seen in the previous chapter, we are interested in representing a signal using a multi-component

dictionary that is built by the union of several sub-dictionaries. A MCD turns out to be overcomplete:

this means it spans the signal space and its atoms form a linearly dependent set. Being the cardinality

of the dictionary bigger than the dimension of the signal space, the decomposition of a signal is non-

unique. This gives us the possibility of adaptation, choosing among many possible representations

or approximations the one that (most) fits our purposes, even if this is not always a simple task.

This chapter focuses on the characteristics we would like a signal decomposition to have and on how

these can be obtained. We study algorithms properties and complexity, and we offer some examples

of decompositions.

Remark that, during this dissertation, we make the difference between exact representation

(otherwise simply wrote as representation) and approximation, depending on the fact that an error

is tolerated or not. The latter problem has a extraordinary bigger practical impact, since, if the

dictionary is complete, then every signal has a representation using all the atoms that it contains,

but almost all signals require all the atoms to be exactly represented. To be more precise, the set of

signals that have an exact representation without using all the atoms in the dictionary has Lebesgue

measure zero in R
n [176]. Nevertheless both problems are interesting and have been deeply studied.

4.1 Sparseness

Signal decompositions we are interested in have to be sparse, i.e. they should involve as few elements

as possible. Intuitively, this request for sparseness can be interpreted as a need of compacting the

information carried by a signal into the smallest amount of terms. If we are able to represent an

image or any other information by using only few elements, it means that such elements can capture

its main characteristics. We can say that they are meaningful because they do not only catch the

most relevant parts of the information, but somehow they “understand” its structure.

Moreover, finding a sparse approximation finally means simplifying and the idea of replacing

a complex object with a simpler (and possibly well organized) one has a strong impact on many

applications. For example, a sparse approximation can be very helpful for compression, denoising,

feature extraction, classification, source separation and many more signal analysis methods. Con-

cerning the case of compression, however, the link between a sparse approximation and an efficient

bit-rate is not straightforward and this problem will be practically tackled in Chapter 5.

33
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Before going on with the discussion, let us just warn the reader that the concept of parsimo-

nious representation that we address here as “sparseness” in the literature is sometimes also called

“sparsity”. Such an ambiguity is also present in the English dictionary [5].

4.1.1 Mathematical Setting

This subsection contains some notations and definitions that will be used throughout the dissertation.

We assume that the signal we are working with are in a finite-dimensional Hilbert space H. If not

differently stated we also fix H = R
n. The inner product is written as 〈·, ·〉, and the corresponding

Euclidean norm as ‖ · ‖2.

The dictionary D used to decompose signals is a finite collection of unit norm functions, also

named atoms and labeled with gi, where i belongs to the index set Ω. Of course, each atom is a

signal itself, therefore belonging to R
n. The size of the dictionary and consequently the cardinality

of Ω are indicated with the letter d = |Ω| = |D|.
Since we want the dictionary to be both complete and redundant, we impose that D spans the

signal space and d > n. The redundancy factor of D is defined as d/n. A dictionary can also be

expressed using the corresponding synthesis matrix D, that is a matrix of size d×n, whose columns

are the atoms. The synthesis matrix maps every coefficient vector into a signal. Consequently the

matrix DT , where T denotes the transpose, is called the dictionary analysis matrix, and maps every

signal into a coefficient vector.

Given a general real matrixM , we write its Moore-Penrose generalized inverse (or pseudoinverse)

as M+ [99]. The pseudoinverse satisfies the properties:

1. MM+ and M+M are symmetric.

2. MM+M = M .

3. M+MM+ = M+.

If M is square and non-singular, M+ = M−1.

A signal f ∈ R
n is represented as a linear combination of functions from D:

f =
∑

i∈Ω

ci · gi. (4.1)

The coefficients form a vector that lies in R
d and that will be called c. Therefore, adopting a matrix

notation, we can also write (see also Figure 4.1):

f = Dc. (4.2)

Of course, in the case of approximation, the previous two expressions will be slightly modified in an

unmistakable way. In this situation f̂ will be called approximant of f :

f ' f̂ =
∑

i∈Ω

ĉi · gi = Dĉ. (4.3)

Looking for a sparse signal decomposition means to use a cost function that counts the number

of non-zero terms, i.e. the size of the support of a signal representation or approximation. This is

done by the `0 quasi-norm:

‖c‖0 = |support(c)|. (4.4)

In order to be a (vector) norm, a real-valued function N(x) must satisfy the following four properties,

where x,y are vectors and a is a scalar:
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=

[f ] = n x 1 [D] = n x d [c] = d x 1

....

Figure 4.1: Matrix notation: f is a column-vector of size n × 1. D has size n × d and each one

of its columns corresponds to an atom of the dictionary. c is the coefficient column-vector of size

d× 1. We ask c to have as much zero-elements as possible.

1. N(x) ≥ 0 .

2. N(x) = 0 ⇐⇒ x = 0 .

3. N(x + y) ≤ N(x) +N(y) .

4. N(ax) = |a| ·N(x) .

These four axioms are familiar properties of Euclidean length in the plane. The `0 is a quasi-norm

and not a norm since it does not respect property 4. In general, for any real number p ≥ 1 we can

define an `p-norm as:

‖c‖p =

(
∑

i∈Ω

|ci|p
)1/p

, (4.5)

The same definition can be extended to any strictly positive, real number p, observing that if p < 1

property 3 is not respected. It can also be noticed that ‖c‖0 = limp→0 ‖c‖p. Moreover, the `∞ norm

can be defined as:

‖c‖∞ = sup
i∈Ω

|ci|. (4.6)

Finally, let us remark that the function in (4.5) is convex if and only if p ≥ 1. This will have a

dramatic impact in the following.

Operator Norms

Here we briefly introduce the norm of a matrix that we will use later on in this and next chapters.

Considering a matrix M as an operator that maps two finite-dimensional vector spaces, we can

define:

‖M‖p,q = max
z6=0

‖Mz‖q

‖z‖p
= max

‖z‖p=1
‖Mz‖q. (4.7)

This measure represents the factor by which the operator M changes the length of a vector. For the

general properties of operators norm, we refer the reader to [99].
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Dictionary Coherence Measures

We summarize some properties of a dictionary studying the interaction among atoms. The coherence

µ of a dictionary equals the maximum inner product (in absolute value) between two distinct atoms

(see [61]):

µ = max
i6=j

|〈gi, gj〉|. (4.8)

This quantity gives information about how much two atoms can look alike. Roughly speaking, a

dictionary is said incoherent if µ is small. Of course, an orthonormal basis has coherence zero, while

in [94] it is shown that a union of two orthonormal bases has coherence at least equal to n−1/2.

Tropp in [174, 175] (but see also [59]) refines the idea of coherence, introducing a new parameter

named cumulative coherence:

µ1(m) = max
|Λ|=m

max
i/∈Λ

∑

λ∈Λ

|〈gi, gλ〉|, (4.9)

where it is assumed that µ1(0) = 0. The cumulative coherence µ1(m) measures how much a collection

of m atoms can resemble a fixed distinct atom.

It is easy to see that µ1(1) = µ and µ1(m) ≤ µ · m [176]. So the cumulative coherence of

an orthonormal basis is zero for every m ≥ 0. In can also be observed that µ1(m) increases

monotonically with m:

µ1(m+ 1) − µ1(m) ≥ 0. (4.10)

Moreover, the cumulative coherence is a subadditive function.

4.1.2 Other Cost Functions

We have already said that among all the possible signal decompositions, we are looking for the

sparsest one and for this purpose we use the `0 cost function. However, other cost functions are

possible. Gribonval and Nielsen in [93] have studied a large class of admissible sparseness measures,

showing how, in order to promote sparsity, a cost function should not charge for zero coefficients,

while it should charge proportionally more for small coefficients than for big ones. Formally the

class of sparseness measures is defined as the set of all non-decreasing functions f : [0,∞) → [0,∞),

not identically zero, with f(0) = 0 and such that t→ f(t)/t is non-increasing on (0,∞).

Without going into details, let us mention that the `0 quasi-norm and the `1 norm (also known

as sum norm) both have these properties. On the other hand, the `2 norm (or Euclidean norm)

does not meet all the requirements for being a cost function in the sense specified in [93]. This also

explains the limits of the Method of Frames, as we will see in Section 4.7.1.

Figure 4.2 illustrates the concept of sparsity-preserving cost functions. Let us restrict to 2-D

and suppose one wants to compute

min
b1,b2

|b1|p + |b2|p s.t. ‖f − b1g1 − b2g2‖2 ≤ ε, (4.11)

where the constraint is represented in the figure by the dashed line (simplifying, in general it is not

linear!). It is clear that if p ≤ 1, than the coefficient involved in the decomposition is just one, while

for bigger values of p, this property is lost.

Another important cost function is the Shannon entropy, roughly proportional to the number of

bits necessary to represent the coefficient vector. Let us conclude this section highlighting that the

`1 norm is the only cost function that is also convex. A simple proof can be found for example in

[176].
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Figure 4.2: Capacity of `p cost functions to preserve sparseness.

4.2 Basic Original Problems

Up to now, dealing with the concept of sparseness, we met two similar classes of problems that are

formally expressed in the following.

The first problem is the sparsest signal exact representation:

(P0) min
c∈Rd

‖c‖0 s.t. Dc = f. (4.12)

The second one is the error-constrained approximation which, for a fixed tolerance for the error

(ε), can be written as:

min
c∈Rd

‖c‖0 s.t. ‖f −Dc‖2 ≤ ε. (4.13)

It is trivial to see how (P0) arises from (4.13) just by setting the tolerance to zero.

The latter minimization knows multiple variations and it can be reformulated in different fash-

ions. For example in approximation theory we can often find the following problem, called m-term

approximation [47, 172]:

min
c∈Rd

‖f −Dc‖2 s.t. ‖c‖0 ≤ m. (4.14)

Another issue of (4.13) is given by the subset selection problem, often present in statistics:

(P2−0) min
c∈Rd

‖f −Dc‖2
2 + τ2‖c‖0. (4.15)

In this last problem the cost function is a trade-off between the error, expressed by a classical

Mean Square Error (MSE) and a penalty term that counts the number of elements involved in the

approximation. When the parameter τ goes to zero, the approximation will involve more and more

atoms until it will reach the exact representation of f . On the other hand, if we let τ grow up to

‖f‖2, the unique solution of (P2−0) will be given by the zero vector.

Observe that all the previous four problems will select coefficient vectors that determine a dic-

tionary subset composed by linearly independent functions. If this was not the case, some atoms

could be discarded in order to diminish the value of the cost function.

Before facing the challenging question of how to solve these problems, let us spend few words

justifying and explaining the notation that we adopted (and we will adopt in the following) to

address them. We often label a problem as (Pa−b), where a stands for the norm used for measuring

the error, while b indicates the norm used to promote the sparsity of the coefficients. Of course, in

the case of exact representation there is just one term in the cost function as it happens for (P0)

and this suggests the kind of norm used for the coefficient vector.
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4.2.1 And Their Direct Solutions

Suppose one wants to find a solution to (P0). Unfortunately, as previously observed, the `0 quasi-

norm is not a convex function and so, in a general situation, solving such a problem means testing

all the representations of f over D and selecting among them the one that involves the minimum

number of terms. It therefore appears obvious how such a strategy is not feasible, even for relatively

small values of n and d.

Concerning the approximation problems, Natarajan in [132] and Davis, Mallat and Avellaneda

in [44] have showed how, in an unrestricted case, the minimization of Eq. (4.14) is NP-hard. This

is also the case of the other two problems (4.13) and (4.15).

Therefore, the rest of the chapter presents several sub-optimal algorithms that have limited

complexity, but in general provide sub-optimal solutions. However, we will see also that there exist

particular situations where they are able to find the solution to the previous problems in polynomial

time.

4.3 Thresholding the Projections

A very simple and naive method to select atoms that approximate f over D is given by considering all

the orthogonal projections of the signal on the atoms and selecting the biggest m in absolute value.

This, in general, means finding the scalar products plus a (computationally negligible) sorting, i.e.

the complexity is O(n · d). Moreover, if particular classes of orthonormal dictionaries (d = n) are

adopted, the computational load can be strongly reduced, thanks to the use of filters to compute

the coefficients. For example the complexity is O(n log2 n) for a Discrete Cosine Transform, and

O(n) a Discrete Wavelet Transform [118, 179].

This procedure is a kind of nonlinear approximation [47, 172]. Sometimes one can be interested

in substituting the sorting with a more simple procedure of shrinkage. Going more into details,

let us consider two possible kinds of thresholding [62]: soft and hard, illustrated in Figure 4.3 and

mathematically described as:

Θhard
η (x) = x · 1(|x|>η)

Θsoft
η (x) = sign(x) · (|x| − η)+,

(4.16)

where η is the threshold value, (·)+ stands for the positive part and 1(p) is 1 if p is true and 0

otherwise.

η η

η

Figure 4.3: Hard and soft thresholding functions.
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Performing a hard thresholding of the projections onto an orthonormal dictionary, one obtains

the solution to problem (P2−0), while performing a soft thresholding one solves the problem:

min
c∈Rd

‖f −Dc‖2
2 + λ‖c‖1, (4.17)

that will be studied in Section 4.5 (see [34, 62]). Note that for a orthonormal basis, both solutions

have the same support and they differ only for the amplitude of the coefficients.

If we study the case where D is redundant, but built by the union of several orthonormal

bases, there exist very interesting results that show how it is still possible to recover the solution of

Eq. (4.17) through the Block Coordinate Relaxation method [159, 160, 161]. For more details see

Section 4.5.

When D is a general overcomplete dictionary the situation becomes much more difficult. Also in

this case thresholding can provide an m-term approximation of the signal, but there is no guarantee

on the quality of such a method. A study of shrinkage operators for certain particular types of

redundant dictionaries can be found in [21], where tight wavelet frames and Gabor Banach frames

are considered. A work in progress by Gribonval et al. [97] provides a first sufficient condition

for thresholding to be able to recover a sparse approximation of a noisy signal. This condition

depends on the dictionary, the noise and the signal. Another very recent work which testifies that

thresholding algorithms, even if very simple, are far from being unhelpful can be found in [65]. In this

paper, the shrinkage of the coefficients of an overcomplete expansion is studied taking inspiration

from [160, 161] and it is interpreted as a first iteration of an algorithm that solves the Basis Pursuit

Denoising problem (see Section 4.5).

4.3.1 Example

Let us now provide an example of signal approximation by shrinkage. In particular, the procedure

can be summarized into three steps:

Algorithm 4.1: Selection algorithm based on thresholding

Require: D = {gi}i∈Ω, define a threshold

1: PROJECT: Compute 〈f, gi〉,∀i ∈ Ω.

2: THRESHOLD: Threshold the projections. This specifies a sub-dictionary D∗ ⊂ D.

3: RE-PROJECT: Compute again the coefficients by re-projecting the signal onto the subspace

spanned by the elements of the dictionary selected in Step 2.

Formally, being D∗ the sub-dictionary selected in Step 2, the new approximant f∗ is found in

Step 3 in the following way:

f∗ = D∗(D∗)
+f = Db∗, (4.18)

where b∗ contains the coefficients of the approximation.

The simple 1-D input signal of this example has a sinusoidal structure with two discontinuities

(see the continuous line in Figure 4.5). Its length is 128 samples. The redundant dictionary used

to decompose the signal is given by the union of two sub-dictionaries. A cosine packet (CP) with

depth 3 and a wavelet Symmlet-4 orthonormal basis [118]. Figure 4.4 shows the dictionary synthesis

matrix D whose columns correspond to the atoms. The size of D is 128× 640, the first 512 columns

are the CP atoms while the last 128 are the wavelet ones.

Figure 4.5 shows the input original signal (continuous line), together with the signals reconstruct-

ed selecting the biggest 15 (dashed line) and 23 coefficients (dotted line). The mean square errors

are 0.080 for the approximation with 15 elements and 0.071 for the other one. Figure 4.6 represents
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Figure 4.4: Representation of the redundant dictionary used in this example. Each column cor-

responds to an atom, the first 512 columns are the CP functions, the last 128 columns are wavelet

functions.

the amplitudes of the coefficient vectors found with this method when m equals 15 (on the left) and

23 (on the right). The horizontal axis of this graphic gives the index of the basis functions in the

dictionary, while the vertical axis specifies the amplitude of the coefficient of that function. In this

way one can see what are the coefficients ci of Eq. (4.3) and which atoms have been selected.

4.4 Greedy Algorithms

Greedy algorithms are known in statistics literature under the name of forward selection, backward

elimination, variable selection, stepwise regression, etc. [124]. This class of algorithms was then

introduced in the signal processing world by Mallat and Zhang in [120], where they presented

Matching Pursuit (MP). Afterward, many variations of this algorithm were developed, among which

the most important ones are Orthogonal Matching Pursuit (OMP) [144] and Weak Matching Pursuit

(Weak-MP) [171].

Greedy algorithms iteratively build an approximant of a signal f by selecting the atom that

maximizes a certain similarity measure with the residual part of the signal. After, such an atom

is used to update the current approximation and the residual is computed again. Basically, fixing

r0 = f , each iteration k : k ≥ 0 can be interpreted as composed by two steps:

1. A selection step where an atom gik
∈ D is chosen, given rk.

2. A projection step where an approximant fk+1 ∈ span({gij
}j=0...k) and a residual rk+1 =

f − fk+1 are generated.

The selection step at iteration k, can be generally formulated as the maximization of a similarity

measure C(rk, gi) between the signal to approximate (the residual at the kth iteration) and the
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Figure 4.5: Original signal and reconstructions obtained by the thresholding method with 15 and

23 coefficients. The MSE obtained with 15 elements is 0.080, while with 23 is 0.071.
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Figure 4.6: On the left: the amplitudes of the coefficients for the approximation with 15 elements.

On the right: the amplitudes of the coefficients for the approximation with 23 elements.

dictionary atoms:

gik
= arg max

gi∈D
C(rk, gi). (4.19)

Matching Pursuit, also called Pure Greedy Algorithm in the approximation theory community

(see [172]), uses the modulus of the scalar product as similarity measure, i.e. C(rk, gi) = |〈rk, gi〉|.
More generally, Weak-MP allows an additional flexibility factor α ∈ (0, 1] allowing the selected atom

gik
to be such that |〈rk, gik

〉| ≥ αmaxi∈Ω |〈rk, gi〉|, where Ω is the set of indexes of the dictionary

elements, as explained in Sec. 4.1.1. The sub-optimality factor α, does not prevent the greedy

algorithm from converging to a solution (i.e. limk→∞ ‖rk‖2
2 = 0, see [103]), though may affect

negatively the speed of the convergence.
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The projection step determines whether Matching Pursuit or Orthogonal Matching Pursuit is in

use. The former just guarantees that the atom selected at iteration k is orthogonal to the residual

rk+1 [120]. The latter constructs the approximant fk by finding an orthogonal projection of f over

the space spanned by all selected atoms until iteration k [144].

4.4.1 Matching Pursuit

Here we give a short description of the Matching Pursuit algorithm. For a more detailed explanation

we refer to [120]. At the first iteration the signal f is decomposed as follows:

f = 〈gi0 , f〉gi0 + r1, (4.20)

where r1 is the residual component after having approximated f in the direction of gi0 . Since r1
and gi0 are orthogonal, it follows that

‖f‖2
2 = |〈gi0 , f〉|2 + ‖r1‖2

2. (4.21)

To minimize ‖r1‖2, MP chooses gi0 such that the absolute value of the projection |〈gi0 , f〉| is maximal.

Applying iteratively such a procedure, after m iterations we obtain:

f =

m−1∑

k=0

〈gik
, rk〉gik

+ rm, (4.22)

where r0 = f and rk is the residual after the kth step. In [118] it is proved that rk converges to

zero when k tends to infinity. The convergence is exponential in the case of finite dimensional signal

spaces. Following (4.21), we can express the energy conservation of MP as:

‖f‖2
2 =

m−1∑

k=0

|〈gik
, rk〉|2 + ‖rm‖2

2. (4.23)

The convergence of MP depends on the structure of the dictionary, the search strategy and the

signal f that has to be approximated. In [118] it is shown that, in finite dimension, there exist two

real numbers α, β ∈ (0, 1] such that for all k ≥ 0 the following relation holds:

‖rk+1‖2 ≤ (1 − α2β2)1/2 · ‖rk‖2, (4.24)

where α is the optimality factor related to the strategy adopted to select the best atom in the

dictionary, while β depends on the dictionary, representing its ability to capture the features of

the input function f (see [73]). Equation (4.24) gives a simple upper bound of the decay of the

approximation error. In the case of infinite dimension the convergence is no longer exponential but

it is still ensured [103].

The complexity of MP depends on the strategy for the implementation in use. In Chapter 5 we

show how a signal of n samples can be decomposed with m atoms with a complexity of the order of

C ·m · s · n log2 n, (4.25)

where the constant C depends on the strategy adopted for atom selection and s depends on the size

of the dictionary. This is achieved for a particular class of dictionaries, by means of the Fast Fourier

Transform (FFT). More details, will be given in Chapter 5.

Being MP iterative, a stopping criterion is needed. Of course the algorithm can be arrested

when a maximum number of atoms has been selected, or when a target error is achieved. Another
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stopping criterion may be found by looking at the amplitude of the projections and arresting the

decomposition when they go under a certain threshold. A very interesting method to evaluate if

the algorithm is able to further select a “good” atom at the next iteration can be found in [91].

However, from a computational point of view, this technique is far from being simple and it can

never be applied in practical situations. For coding purposes much more sophisticated approaches

are needed, namely based on rate-distortion techniques. We will present two of them in the next

chapter in the case of still picture and video compression. Another example can be found in [136].

4.4.2 Recovery Conditions

In a famous example DeVore and Temlyakov have shown that MP is not necessary sparsity-preserving

when the dictionary in use is not an orthogonal basis [48]. Suppose {ηi}∞i=1 is an orthonormal basis

in L2(R). Define the element

g = Aη1 +Aη2 + aA

∞∑

i=3

(i(i+ 1))−1/2ηi,

with A = (33/89)1/2 and a = (23/11)1/2, so that ‖g‖2 = 1. Define the dictionary D = {g}∪{ηi}∞i=1.

Let f = η1 + η2 be the target function and let fm be the m-term approximant generated by MP.

Ideally we should have fm = f for m ≥ 3. In reality we get the much weaker result:

‖f − fm‖2 ≥ m−1/2, for m > 3.

This situation is further analyzed in [172] and well explained by Chen in [33] where he adds the

example illustrated in Figure 4.7. This consists in the decomposition of a signal composed by two

sinusoids at two closely spaced frequencies over a redundant discrete cosine dictionary. The image

on the bottom left of the figure shows how MP fails at recovering the two frequencies because the

atom selected at the first iteration tries to capture both of them and all the further iterations are

spent to correct this mistake. This can be seen as a lack of resolution in the MP decomposition.

Motivated by this problem, a modification of MP was proposed, under the name of High Resolution

Pursuit [102]. The right-hand side of Figure 4.7 illustrates the decompositions obtained by two other

methods (Basis Pursuit and the Method of Frames) that will be introduced later on this chapter.

One can conclude that MP is myopic, i.e. it is not always able to see the real structure of the

signal, and this mainly because of its greedy character. This can be interpreted also as a lack of

global view.

However, there are plenty of cases where greedy algorithms do a good job even working with

redundant dictionaries. Moreover it is clear how, in general, the possibility of greedy algorithms

to recover “correct” atoms depends on the dictionary in use! Recently, new theoretical results have

shown that it is possible to state hypotheses under which MP, OMP and Weak-MP are able to

recover the optimal set of atoms in order to represent or approximate a signal. Such results give a

more precise insight into the algorithm performances and, as previously said, they depend on the

geometric properties of the dictionary.

The first results state sufficient condition for OMP to be able to recover the exact sparse repre-

sentation of a signal. Suppose that the atoms that index the optimal solution to (P0) are indexed

in the set Γ, and cΓ is the optimal representation of f over D. Therefore, Γ = support(cΓ). Let

also DΓ be the dictionary subset containing only the atoms indexed in Γ. Tropp in [174] has shown

that, a sufficient condition for OMP to recover cΓ after |Γ| steps is that:

1 − sup
g/∈DΓ

‖D+
Γ g‖1 > 0. (4.26)
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Figure 4.7: Decomposition of a double sinusoid signal over a redundant dictionary by the Method

of Frames (MOF), MP and Basis Pursuit (BP). From [33].

The quantity on the left-hand side of Eq. (4.26) is called Exact Recovery Coefficient. Since we are

unlikely to know the optimal atoms in Γ before starting a signal decomposition, the condition in

(4.26) has practically a limited use. However, in order to obtain a condition that is easier to apply,

one can establish a lower bound for the quantity that appears in Eq. (4.26). This is done in the

following proposition appeared independently in [77] and [174].

Proposition 4.1 (Tropp [174] and Fuchs [77]) Suppose that Γ ⊂ Ω is has cardinality smaller or

equal to m. One can write that:

1 − sup
g/∈DΓ

‖D+
Γ g‖1 ≥ 1 − µ1(m− 1) − µ1(m)

1 − µ1(m− 1)
.

It follows that

(
1 − sup

g/∈DΓ

‖D+
Γ g‖1

)
> 0 whenever

µ1(m− 1) + µ1(m) < 1.

Using Proposition 4.1 and Eq. (4.26) it is easy to prove that OMP solves (P0) for every input

signal that has an m-term representation over the dictionary whenever µ1(m−1)+µ1(m) < 1. This

new result has the drawback of giving a more pessimistic bound than Eq. (4.26), but on the other

hand it provides a condition that is possible to check before decomposing a signal. Therefore it has

higher practical importance.

A more strict sufficient condition can be also expressed in terms of the dictionary coherence, just

considering that µ1(m) ≤ mµ. In fact it can be proved that if 2m < (µ−1 + 1), then OMP solves

(P0) for every input signal that has a m-term representation over D. Moreover these representations

are unique. The previous results for OMP can be extended to MP and Weak-MP (see [98]).
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Sparse Approximation

Concerning the approximation case, one can establish some guaranties that greedy algorithms are

able to recover the atoms of a m-term sparsest approximation of a signal f [98, 174]. Gribonval

and Vandergheynst extended in [98] the results Tropp found for the particular case of OMP to

the General MP (that is, MP, OMP, Weak-MP). The main achievements consist in the sufficient

conditions that guarantee that General MP recovers the optimal set of atoms that generate the best

m-term approximant fopt
m . These are enunciated in Theorem 4.1. First of all, it is necessary that

the optimal set Γ respects the Stability Condition [98]. If in addition some conditions are satisfied

concerning the remaining residual energy at the kth iteration (‖rk‖2
2) and the optimal residual energy

‖ropt
m ‖2

2, then an additional atom belonging to Γ will be recovered.

Theorem 4.1 (Gribonval and Vandergheynst) Let {rk}k≥0 be a sequence of residuals computed by

General MP to approximate some f ∈ H. For any integer m such that µ1(m − 1) + µ1(m) ≤ 1,

let fopt
m =

∑
γ∈Γ cγgγ be the best m-term approximation of f , and let Nm = Nm(f) be the smallest

integer such that

‖rNm
‖2
2 ≤

∥∥ropt
m

∥∥2

2
·
(

1 +
m · (1 − µ1(m− 1))

(1 − µ1(m− 1) − µ1(m))
2

)
. (4.27)

Then, for 1 ≤ k < Nm, General MP picks up a “correct” atom.

If no best m-term approximant exists, similar results are valid provided that one uses a modified

version of Eq. (4.27) [98].

Moreover, a result establishes as well an upper bound on the decay of the residual energy in the

approximation of a signal that depends on the internal coherence of D, and a bound on how many

“correct” iterations can be performed by the greedy algorithm depending on the dictionary and the

energy of fopt
m . Next result concerns the rate of convergence of the error energy, as well as the bound

on how many “correct” iterations can be performed by the greedy algorithm.

Theorem 4.2 (Gribonval and Vandergheynst) Let {rk}k≥0 be a sequence of residuals computed by

General MP to approximate some f ∈ H. For any integer m such that µ1(m− 1) + µ1(m) ≤ 1, let

fopt
m and Nm = Nm(f) be defined as in Theorem 4.1. We have N1 ≤ 1, and for m ≥ 2:

• if ‖ropt
m ‖2

2 ≤ 3 ‖r1‖2
2 /m , then

2 ≤ Nm < 2 +
m

1 − µ1(m− 1)
· ln 3 · ‖r1‖2

2

m · ‖rm‖2
2

(4.28)

• else Nm ≤ 1.

4.4.3 Multiple Atoms MP

In [146, 147] we proposed a modified Matching Pursuit algorithm for which the constant C in

Eq. (4.25) is much smaller than 1. At each iteration, kj − kj−1 atoms are selected and used to

decompose the residual. Like in Eq. (4.22) we can write:

f =
J−1∑

j=0




kj+1−1∑

k=kj

〈gik
, rk〉gik


+ rm, (4.29)

with k0 = 0 and kJ = m. At the kth iteration all the atoms of the dictionary are sorted according

to the absolute values of the projection coefficients. Afterwards, starting from the one with highest
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projection, all the atoms that are quasi-orthogonal are selected. We adopted this algorithm in order

to obtain an important reduction in computational load. In fact selecting on average kj atoms at

once it turns out that MP only needs m/kj iterations, reducing in this way the number of inner

products which constitute the most computationally demanding part of the algorithm. At the kth

iteration, the selected atom gkj
has to be orthogonal to all the previous selected one at that iteration

and this is achieved by working on the residual and considering the correlation between it and gkj
.

Moreover, of course, not all the quasi orthogonal are chosen. In details, one iteration of multiple

MP can be described as follows:

Algorithm 4.2: Multiple Atoms MP Algorithm

Require: dictionary D, residual signal rk

1: Make a list of atoms according to their projections on rk

2: Select the first one and subtract it creating a temporal residual

3: Check if the next atom has a projection on the temporal residual that is higher than a certain

value (for example 95% of the one that he had originally). This corresponds to putting a

threshold on the scalar product. If so, then subtract it and repeat, if not, skip to the next atom

in the list

4: There is a limit on how many atoms can be skipped, so it is avoided to select all the quasi-

orthogonal atoms

Finally, there are two parameters to fix: the maximum number of atoms that can be skipped,

and the percentage of projection required. The algorithm seems to be quite robust with respect to

both of them. When adopting a dictionary composed by functions well localized in time/space like

the one illustrated in Chapter 3, the condition of quasi-orthogonality is mainly verified when the

atoms centers are distant.

Examples and performance of this modified Multiple Atoms MP concerning image approximation

are shown in Chapter 5. The drawback of this method is that there is no more a guarantee that

at each iteration the best atom will be selected as in the case of the full search MP. However, the

resulting loss we experienced for both natural images and displaced frame differences is negligible

[84, 146].

This method is similar to the fast MP implementation described by Mallat in [118]. When one

controls the structure of the dictionary, one can update the projection of the atoms on the residual

at the next step taking into account the correlation between atoms, according the following updating

formula:

〈gi, rk+1〉 = 〈gi, rk〉 − 〈gik
, gi〉〈gik

, rk〉. (4.30)

In particular the projections of the atoms orthogonal to the selected ones will not change.

4.4.4 Example

Let us now examine again the example given in Section 4.3.1, this time using greedy algorithms

for decomposing the signal over the dictionary of Figure 4.4. Figure 4.8 shows the original input

signal together with its approximants obtained by MP selecting 15 and 23 atoms. The errors are

respectively 0.016 and 0.003. The selected atoms and their coefficients can be seen in Figure 4.9.

These can be compared with the one selected by the other presented methods (see Figures 4.6, 4.11,

4.13, 4.15 and 4.18).

The approximants obtained by OMP are illustrated in Figure 4.10, while the amplitude of the

coefficient vectors are in Figure 4.11. The error of the 15-term approximation is 0.012, while it is

0.003 for the 23-term approximation.
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Figure 4.8: Original signal and reconstructions obtained by MP with 15 and 23 coefficients. The

MSE are respectively 0.016 and 0.003.
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Figure 4.9: MP decomposition. On the left: the amplitudes of the coefficients for the approximation

with 15 elements. On the right: the amplitudes of the coefficients for the approximation with 23

elements.
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Figure 4.10: Original signal and reconstructions obtained by OMP with 15 and 23 coefficients.

The MSE are respectively 0.012 and 0.003.
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Figure 4.11: OMP decomposition. On the left: the amplitudes of the coefficients for the approx-

imation with 15 elements. On the right: the amplitudes of the coefficients for the approximation

with 23 elements.
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4.4.5 Use and Variations of Greedy Algorithms

We want to conclude this section dedicated to greedy algorithms, stressing how, in the last years,

this technique is becoming more and more employed. Undoubtedly, the most important example

is the video codec proposed by Neff and Zakhor [15, 46, 133, 135, 136]. Furthermore, without the

claim to be exhaustive, we can cite [84, 130, 184] again for what concerns motion compensated video

coding, and [49, 53] as an example of non-canonical video compression, where the motion estimation

part is left to the movement of the atoms through frames. We can also add references to [69, 75]

for still images, and to [90, 108] for audio oriented applications, while in [128] MP is used for the

analysis of multimodal signals. These examples offer an evidence of the increasing significance that

MP is assuming in the scientific community.

Moreover many variations of greedy algorithms have been studied, mainly aimed at reducing the

complexity. One, that we proposed and adopted for several applications, has just been illustrated

in subsection 4.4.3. Another approach is the M-Term Pursuit [154], which relies on the concept of

dictionary partitioning, i.e. splitting the dictionary into several (L) disjoint sub-dictionaries, each

one carrying some specific information. Then, it iteratively finds an approximation, by selecting

M atoms at a time, where M ≤ L, followed by an orthogonal projection. The approximation

performances of the M-Term Pursuit algorithm have been shown to contain the losses with respect

to MP. Furthermore, it presents the advantage of a reduced computational complexity.

Another interesting method based on a similar idea of subdivision of the redundant dictionary

is presented in [104], where the authors propose a structuring strategy that can be applied to any

redundant set of functions, and which basically groups similar atoms together. A similarity measure

based on coherence allows to represent a highly redundant sub-dictionary by a unique element.

When the clustering is applied recursively, it naturally leads to the creation of a tree structure

which can be used by a pursuit algorithm.

4.5 Convex Relaxation Methods

As we have seen above, (P0) involves a non-convex minimization. Chen, Donoho and Saunders

proposed a relaxation of such a problem, substituting the `0 quasi-norm with the convex `1 norm

[33, 34]. This new problem was named Basis Pursuit (BP):

(P1) min
c∈Rd

‖c‖1 s.t. Dc = f. (4.31)

Basis Pursuit is a principle, not an algorithm. However, it is possible to reformulate (P1) as a

Linear Programming (LP) problem (e.g. see [33]). We thus have at our disposal several techniques

of low complexity to solve the Basis Pursuit problem (e.g. see [18, 34] and the web sites in [10, 11]).

4.5.1 Exact Recovery Conditions for Basis Pursuit

It is natural to study the relation between the solutions of problems (P0) and (P1). This was

firstly done by Donoho and Huo in [61], working with a union of two bases presenting extremely

low coherence (namely, Fourier sinusoids and Dirac functions). Later, this result was generalized

in [59, 66]. We now state the more recent results concerning general dictionaries. Suppose, as in

Sec. 4.4.2, that the atoms that give the optimal solution of (P0) are indexed in the set Γ, and cΓ is

the optimal representation of f over D. Therefore, Γ = support(cΓ). Let also DΓ be the synthesis

matrix of the dictionary subset containing only the optimal atoms, i.e. the ones indexed in Γ. Tropp

in [174] shows that (P1) provides the unique optimal sparsest solution if the following condition is
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respected:

1 − sup
g/∈DΓ

‖D+
Γ g‖1 > 0. (4.32)

In this case BP recovers all the atoms of DΓ and no others. Note that it is the same condition valid

for greedy algorithms (see Eq. (4.26)). Thus, also in this case it is possible to state another stronger

bound that has the advantage that it only depends on the dictionary and on m and therefore it can

be computed before decomposing a signal. Using Proposition 4.1 and Eq. (4.32) we can state that

BP (as well as OMP) is able to find the m-term sparsest representation if

µ1(m− 1) + µ1(m) < 1. (4.33)

There is another simpler but stronger sufficient condition based on the dictionary coherence.

According to [59], BP will recover the optimal solution if 2m < (µ−1 +1). These results are valid for

a general dictionary. If a dictionary has additional structure, one can prove less restrictive sufficient

conditions. We refer the interested reader to [94, 176].

4.5.2 Approximation by Convex Relaxation Methods

As was done for the exact representation case, one can relax the sparsity constraint in the subset

selection problem (P2−0), ending up with a convex minimization:

(P2−1) min
b∈Rd

1

2
‖f −Db‖2

2 + γ‖b‖1. (4.34)

This problem is also know as Basis Pursuit Denoising (BPDN) [34]. It is possible to show that this

minimization is equivalent to a Quadratic Programming (QP) problem and therefore we have at our

disposal many techniques to solve it (e.g. see [17, 34] and the web sites in [10, 11]).

Note that if D is orthonormal, the solution of (P2−1) can be found by soft shrinkage of the

coefficients [34, 62], while, if D is a union of orthonormal bases, the problem can be solved using

the Block Coordinate Relaxation method [159, 160, 161]. Basically this algorithm iteratively applies

the soft shrinkage procedure to each sub-dictionary and, since usually it converges to a solution in

few iterations, it turns out to be faster than QP.

4.5.3 A Bayesian Approach to Basis Pursuit Denoising

In this subsection the problem of signal approximation is studied from a Bayesian point of view.

First, let us write the model of our data approximation, where f̂ is the approximant and r is the

residual:

f = f̂ + r = Db + r. (4.35)

Assuming r to be an iid Gaussian set of variables, the probability that f̂ corresponds to f , given D

and b is:

p(f |D,b) =
1√
2πσ2

r

· exp

(
−‖f −Db‖2

2

2σ2
r

)
,

where σ2
r is the variance of the residual. In the approximation problem, one aims at maximizing the

likelihood p(b|f,D). Formally, by the Bayes rule, we have

p(b|f,D) =
p(f |D,b) · p(b)

p(f,D)
,
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and thus, being p(f,D) fixed for a given signal and dictionary, it follows that the most probable

signal representation is:

bP = arg max
b

p(f |D,b) · p(b). (4.36)

Let us now assume that the coefficients bi are independent and have a Laplacian distribution with

standard deviation σi:

p(bi) =
1√
2σi

· exp

(
−
√

2|bi|
σi

)
.

From (4.36), by computing the logarithm, it follows that

bP = arg max
b

(
ln(p(f |D,b)) +

∑

i

ln p(bi)

)
= arg min

b

(
‖f −Db‖2

2

2σ2
r

+
∑

i

√
2|bi|
σi

)
. (4.37)

Making the hypothesis that σi is constant for every index i, the previous equation means that the

most probable b is the one found by solving the BPDN problem [113].

Note that we have made two strong hypotheses: r is Gaussian, and bi are Laplacian all with the

same variance. We will see in the following of the dissertation two ways of partly removing these

constraints.

4.5.4 Recovery Conditions for Basis Pursuit Denoising

It is now interesting to study the relation between the subset selection problem (P2−0) and its convex

relaxation (P2−1). Pioneering works in this direction have been done by Tropp [174, 175], Fuchs

[77], Gribonval and Nielsen [92, 95, 96], Donoho, Elad and Temlyakov [60]. Next theorem provides

a sufficient condition for a coefficient vector which minimizes Eq. (4.34) to be supported inside the

optimal set of indexes Γ.

Theorem 4.3 (Tropp) Let us call f opt
m the best approximant of f such that f = DcΓ, where Γ is

the optimal index subset (in the sense of (P2−0)) and |Γ| ≤ m. Suppose that the maximum inner

product between the residual signal and any atom satisfies the condition

‖D∗(f − fopt
m )‖∞ < γ(1 − sup

i/∈Γ

‖D+
Γ gi‖1).

Then any coefficient vector b∗ that minimizes the function (P2−1) must satisfy support(b∗) ⊂ Γ .

In particular, the following theoretical result shows how the trade-off parameters τ and γ are

related.

Theorem 4.4 (Tropp) Suppose that the coefficient vector b∗ minimizes the function (P2−1) with

threshold γ = τ/(1 − supi/∈Γ

∥∥D+
Γ gi

∥∥
1
). Then we have that:

1. The relaxation never selects a non optimal atom since support(b∗) ⊂ Γ.

2. The solution of the convex relaxation is unique.

3. The following upper bound is valid:

‖cΓ − b∗‖∞ ≤
τ ·
∥∥∥(D∗

ΓDΓ)
−1
∥∥∥
∞,∞

1 − sup
i/∈Γ

‖D+
Γ gi‖1

. (4.38)
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4. The support of b∗ contains every index j for which

|cΓ(j)| >
τ ·
∥∥∥(D∗

ΓDΓ)
−1
∥∥∥
∞,∞

1 − sup
i/∈Γ

‖D+
Γ gi‖1

. (4.39)

Note that, if the dictionary we are working with is orthonormal it follows that

sup
i/∈Γ

‖D+
Γ gi‖1 = 0 and

∥∥∥(D∗
ΓDΓ)

−1
∥∥∥
∞,∞

= 1

and the previous theorem becomes much stronger. In particular we obtain that ‖cΓ − b∗‖∞ ≤ τ

and |cΓ(j)| > τ [62, 175].

These results provide sufficient conditions for BPDN to recover the sparsest approximation. In

such cases one can just use QP methods to solve (P2−1) and be sure that the coefficient vector

b∗ will contain all the atoms of the vector minimizing (P2−0). Unfortunately, the hypotheses of

Theorems 4.3 and 4.4 in general cannot be checked since they depend on the optimal set Γ that, of

course, in not known in advance. In order to solve this problem, Tropp developed in [175] a version

of Theorem 4.4 based on the cumulative coherence function. Here, the hypotheses depend only on

D and on m that is the size of the optimal index set Γ.

Corollary 4.1 (Tropp) Suppose that the vector b∗ solves (P2−1) with threshold

γ =
1 − µ1(m− 1)

1 − µ1(m) − µ1(m− 1)
τ.

Then support(b∗) ⊂ Γ and

‖b∗ − cΓ‖∞ ≤ τ

1 − µ1(m) − µ1(m− 1)
.

This result is mainly an application of Proposition 4.1 to Theorem 4.4.

Basis Pursuit and Basis Pursuit Denoising solve a global problem, considering all the signal as

a whole. For this reason they are not affected by the “myopia” of greedy algorithms. This can be

seen in the example of Figure 4.7, where BP is able to resolve the two frequencies correctly. This

phenomenon is also known as super resolution. However, the recovery condition obtained for relaxed

methods do not differ from the ones proved for greedy methods. Moreover in many applications the

approximations found by relaxed algorithms do not outperform the ones given by greedy algorithms.

4.5.5 Example

We are going to give an example of the BPDN decomposition using again the signal and the re-

dundant dictionary introduced in Section 4.3.1. The approximation b found by solving (P2−1) may

present some components with negligible values due to the numerical computation. Therefore, a

hard thresholding is performed in order to get rid of this insignificant elements. In this way, it is

possible to measure the `0 quasi-norm of the thresholded coefficient vector which will be called b∗.

Finally, the approximant is computed as f∗ = Db∗. Of course this procedure is sensitive to the

threshold adopted and one has to be careful not to choose a too high value.

Figure 4.12 shows the original signal along with two approximants obtained by BPDN. The

dashed line refers to a 15-term approximation, obtained using in (P2−1) a trade-off parameter

γ = 3.1. The mean square error is 0.448. The dotted line refers to a 23-term approximation,

obtained with γ = 1.1. The error is 0.107. The selected atoms and their coefficients can be seen in
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Figure 4.13. All these results refer to the coefficient vectors b∗ computed with a threshold of 10−9.

Such value allows to count the number of non-zero coefficients but does not affect the quality of the

representation. The MSE of f∗ and the one of the reconstruction using the approximation vector

found by BPDN without any thresholding differ only by a factor of 10−12!
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Figure 4.12: Original signal and reconstructions obtained by BPDN with 15 and 23 coefficients.

The MSE are respectively 0.448 and 0.107.
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Figure 4.13: BPDN decomposition. On the left: the amplitudes of the coefficients for the approx-

imation with 15 elements. On the right: the amplitudes of the coefficients for the approximation

with 23 elements.

Projection

As just explained, the coefficient vectors found by numerically solving (P2−1) are thresholded re-

moving the negligible components, and in this way we are able to select a sparse support and thus
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a subset of the dictionary. Let us name D∗ such sub-dictionary composed by the atoms correspond-

ing to the non-zero elements of b∗. Given this, there are no guarantees that the coefficients that

represent f are optimal. The best result one can obtain is a bound on the maximum distance they

can have with respect to the optimal approximation cΓ, as can be seen in point 3 of Theorem 4.4.

It is however possible to overcome this limit by simply projecting f onto the subspace generated by

D∗. Doing so, a new approximation with the same support as the previous one is computed: b∗∗.

Formally the approximant found by BPDN after the projection step is given by:

f∗∗ = D∗D
+
∗ f = Db∗∗, (4.40)

where D∗ is of course the synthesis matrix corresponding to the sub-dictionary D∗. This orthogonal

projection usually allows a quite significant improvement on the BPDN decomposition (e.g. see

[52]). This is also the case in our example, where computing again the approximants by means of

(4.40) leads to the results of Figure 4.14. The MSE are 0.078 for m = 15 and 0.009 for m = 23.

Figure 4.15 shows the amplitudes of b∗∗ for the 15-term approximation (on the left) and the 23-term

approximation (on the right), computed respectively with γ = 3.1 and 1.1, as well as the ones of

Figure 4.13. Note that the supports of the coefficient vectors shown in Figure 4.13 and 4.15 are the

same (respectively for m = 15 and m = 23). However this is not clear from the pictures because of

the very small amplitude of certain coefficients in Fig. 4.13.
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Figure 4.14: Original signal and reconstructions obtained with 15 and 23 coefficients by a BPDN

decomposition followed by a projection step. The MSE are respectively 0.078 and 0.009.

4.6 Relaxed Approximation Using an L1 Data-Fidelity Term

In this section we propose a slightly different problem we introduced in [86], where an L1 data-fidelity

term substitutes for the classical L2 measure of the error:

(P1−1) min
b∈Rd

‖f −Db‖1 + γ‖b‖1. (4.41)
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Figure 4.15: BPDN decomposition followed by a projection step. On the left: the amplitudes

of the coefficients for the approximation with 15 elements. On the right: the amplitudes of the

coefficients for the approximation with 23 elements.

In this way less importance is given to outliers, or “wild” signal samples, while keeping the same

penalization for the sparseness of the coefficient vector.

In Section 4.5.3 we have seen a Bayesian formulation of the BPDN paradigm. We showed that,

assuming the residual r to be an iid Gaussian set of variables, if the standard deviations of the

Laplacian distribution of bi are constant for every index i, the most probable signal approximation

is the one found by BPDN. The assumption made about the Gaussianity of the residual is quite

restrictive. For another particular problem, one could make the hypothesis that this residual has a

Laplacian distribution. It is then possible to prove that the most probable signal representation can

be found substituting the L2 measure of the error with the L1. This leads to the problem (P1−1).

Recently the total variation based image denoising model of Rudin, Osher, and Fatemi (see [157])

has been modified by using the L1 norm to calculate the fidelity term in the cost function [32, 137].

This modification brings new interesting implications, as can be seen for example in the works of

Nikolova [138]. In [76] the problem of image restoration is considered, where an original scene f has

to be recovered given its observation f̂ . The problem can be written as:

f̂ = Hf + w, (4.42)

where H is a blurring matrix and w the additive noise. The authors of [76] propose to solve this

problem minimizing the following cost function:

min
f

‖f̂ −Hf‖1 + γ‖Rf‖1, (4.43)

where R is a regularization operator, usually a difference operator. Note the similarity between

Eq. (4.43) and (P1−1). Our choice to introduce (P1−1) from (P2−1), follows a similar idea, even if

the background of the two problems is different.

The measure of the approximation error with `1 norm has been also used by Candes and Tao

in [28, 29]. Moreover, in the Discussion of [175] Tropp imagines the situation where the `2 norm is

not the most appropriate way to measure the error in approximating the input signal, but without

giving further details.

It is important to observe that the minimization of (P1−1) can be written as a Linear Program-
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ming problem of the following form:

min
x

vT x s.t. Ax = f and x ≥ 0, (4.44)

where v is a vector of known coefficients. In order to show this equivalence (see also [159]) one

should create a vector u = (u+,u−) with u+,u− ≥ 0 such that b = u+ − u−. The vector u+

contains only the positive components of b, while the negative ones are in u−, but with a positive

sign. In this way one can see that ‖b‖1 = 1T u, where 1 is a column-vector of ones. The same can

be done defining a vector r = (r+, r−), with r+, r− ≥ 0 and

r+ − r− = f − (D,−D) · u.

It is now clear that Eq. (4.41) can be written as

min
u,r

1T r + γ1T u s.t. A · (r,u) = f and u, r ≥ 0,

with A = (I,−I,D,−D), where I is a n× n identity matrix. Here we find the form of (4.44), with

v = (1, γ1) and x = (r,u).

4.6.1 An Application to Signal Denoising

In this section we offer an example of the use of the proposed minimization problem, in the framework

of signal denoising. Exactly as it was done for BPDN, the approximation found by solving (P1−1) is

thresholded, removing the numerically negligible components. In this way we are able to individuate

a vector b∗ with a sparse support and thus a subset of the dictionary. Let us label D∗ the sub-

dictionary composed by the all atoms corresponding to the non-zero elements of b∗. There are

no guarantees that the coefficients found by solving (P1−1) that represent f over D∗ are optimal.

These are, thus, recomputed projecting the signal onto the subspace spanned by the elements of

D∗ and a new approximation b∗∗ is found. Of course, support(b∗) = support(b∗∗). Formally the

approximant found after the projection step is:

f∗∗ = D∗(D∗)
+f = Db∗∗. (4.45)

Thus, the minimization of Eq. (4.41) is used only to select the dictionary subset. Note that this

equation is the same as Eq. (4.40). The difference is that here b∗ is found by thresholding the

solution of (P1−1), while in (4.40) it is found by thresholding the solution of (P2−1).

We now decompose a piecewise smooth signal affected by impulse noise. The dictionary used

has redundancy factor 2 and is composed by the union of a wavelet Symmlet-4 orthonormal basis

[118] and the respective family of footprints for all the possible translations of the Heaviside function

(see [64]). At the beginning of this Section we have given a constructive proof of how (P1−1) can

be written as a Linear Programming. The results presented here as well as in Section 4.6.3 have

been obtained using a LP technique based on the interior-point method [185]. Figure 4.16 shows

the original noisy signal, and two reconstructions obtained by solving (P1−1) on the left and (P2−1)

on the right, and then recomputing the coefficients by orthogonal projection as in (4.45). It can be

seen how (P1−1) is less sensible to wild samples given by the impulse noise, thanks to the `1 error

penalization that allows the algorithm to select a better subset of functions. The MSE is 0.37 and

0.61 for (P1−1) and (P2−1) respectively, and remark that the MSE is not an error measure favorable

to (P1−1) since it is based on the Euclidean norm.
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Figure 4.16: The original, noisy signal and the approximations obtained with 9 coefficients by

solving (P1−1) on the left and (P2−1) on the right

4.6.2 Special Recovery Conditions

Let us now study the relationship between (P1−1) and the following non relaxed minimization

problem, where the error is still measured with the `1 norm, but the sparsity penalty factor is based

on the `0 norm:

(P1−0) min
c∈Rd

‖f −Dc‖1 + τ2‖c‖0. (4.46)

The cost function of this problem is a trade-off between the sparseness of the approximation and

its distance from the input signal. Again (P1−0) is not convex and here we wonder when and how

solving (P1−1) can help us in finding the solution of (4.46). An answer is provided by next theorem.

Theorem 4.5 Let b∗ be the coefficient vector that minimizes (P1−1) and let Γ ⊂ Ω be the optimal

function subset found by solving the non-convex problem (P1−0). DΓ will be the sub-dictionary

containing only the functions indexed in Γ. Suppose that supi/∈Γ ‖D+
Γ gi‖1 < 1, then we can state

that if

γ >

√
n

1 − supi/∈Γ ‖D+
Γ gi‖1

(4.47)

then support(b∗) ⊂ Γ.

Proof: This proof is inspired by the proof of the Correlation Condition Lemma that appears

in [175]. Let us call DΓ the complementary of DΓ on D, such that D = DΓ ∪ DΓ. Suppose that b∗
contains (at least) one element out of Γ, so we can write the cost function of (P1−1) for both b∗ and

its projection onto DΓ, that is D+
ΓDb∗. Since b∗ minimizes (P1−1), we have:

γ
(
‖b∗‖1 − ‖D+

ΓDb∗‖1

)
≤ ‖f −DD+

ΓDb∗‖1 − ‖f −Db∗‖1. (4.48)

Let us now split the coefficient vector into two parts: b∗ = bΓ+bΓ, where the former vector contains

the components with indexes in Γ, while the latter the remaining components from Γ = Ω \ Γ. The

left-hand term of (4.48) can be bounded as in [175] obtaining:

γ

(
(1 − sup

i/∈Γ

‖D+
Γ gi‖1) · ‖bΓ‖1

)
≤ γ

(
‖b∗‖1 − ‖D+

ΓDb∗‖1

)
. (4.49)
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We now work with the right-hand side of (4.48):

‖f −DD+
ΓDb∗‖1 − ‖f −Db∗‖1 ≤ ‖Db∗ − PΓDb∗‖1 =

‖(I − PΓ)DbΓ‖1 ≤ ‖(I − PΓ)D‖1,1 · ‖bΓ‖1,
(4.50)

where PΓ = DD+
Γ = DΓD

+
Γ is an orthogonal projector. Using this result together with (4.48) and

(4.49) we obtain:

γ(1 − sup
i/∈Γ

‖D+
Γ gi‖1) ≤ ‖(I − PΓ)D‖1,1. (4.51)

The right-hand side of the previous equation is the maximum `1 norm of the columns of (I −PΓD),

that is:

‖(I − PΓ)D‖1,1 = max
g∈DΓ

‖g − PΓg‖1 ≤ max
g∈DΓ

‖g − PΓg‖2 ·
√
n ≤ max

g∈DΓ

‖g‖2 ·
√
n =

√
n. (4.52)

Finally, we have

γ(1 − sup
i/∈Γ

‖D+
Γ gi‖1) ≤

√
n. (4.53)

If this inequality fails, then b∗ is supported in Γ.

Unfortunately, since the optimal set of functions is not known, this condition can not be tested

before decomposing a signal. This is exactly the same situation found for the recovery conditions of

BP, BPDN and greedy algorithms. However, the following corollary helps us, finding an additional

condition based on the cumulative coherence µ1(m).

Corollary 4.2 If |Γ| ≤ m and µ1(m− 1) + µ1(m) < 1, then support(b∗) ⊂ Γ if

γ =

√
n(1 − µ1(m− 1))

1 − µ1(m− 1) − µ1(m)
. (4.54)

Proof: Equation (4.54) can be simply obtained by applying Proposition 4.1 to the result of

Theorem 4.5.

The new sufficient condition of Eq. (4.54), even if more pessimistic than (4.47), can be numerically

checked. However, also computing µ1(m) for m and D not too small can be quite computationally

demanding.

4.6.3 Example

We conclude this section by facing the signal decomposition we previously solved using the Thresh-

olding method, MP, OMP and BPDN. As well as done for BPDN and explained in Section 4.6.1,

we solve (P1−1) in order to select a dictionary subset with the help of a thresholding. At this point

the approximants are computed following Eq. (4.45).

Figure 4.17 shows the original signal along with its approximants obtained by selecting 15 and

23 atoms. The errors are respectively 0.170 and 0.077. The approximation coefficients b∗∗ can

be seen in Figure 4.18. The trade-off parameter γ equals 11.6 for the 15-term approximation and

11.22 for the other one, while the value used for thresholding the coefficients obtained by solving

(P1−1) is 10−9. Obviously. the approximation obtained by this method is worse than many of the

previous ones. However, as shown above, such an approach can be useful for particular situations

like denoising.

Table 4.1 summarizes all the results obtained in this section when approximating the signal

illustrated in Sec. 4.3.1. These results have no general relevance, since they refer to a particular
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Figure 4.17: Original signal and reconstructions obtained with 15 and 23 coefficients. Approxima-

tions are found by defining a sub-dictionary solving (P1−1) and then projecting the signal onto the

subspace spanned by the atoms in the sub-dictionary (see Eq. (4.45)). The MSE are respectively

0.170 and 0.077.
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Figure 4.18: Signal decomposition solving (P1−1) followed by a projection step. On the left: the

amplitudes of the coefficients for the approximation with 15 elements. On the right: the amplitudes

of the coefficients for the approximation with 23 elements.
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signal and a particular dictionary. However they show how BPDN is not always superior to greedy

algorithms and how thresholding can still have interesting performances. It is not easy to make

comparisons concerning the computational complexity, since thay strongly depend on the technique

adopted to solve (P2−1) and (P1−1). In general, while thresholding turns out to be the faster method,

greedy algorithms require less computational load than LP and QP strategies.

Table 4.1: MSE obtained by all the presented methods for the approximation presented in

Sec. 4.3.1.

m Threshold MP OMP (P2−1) (P2−1) + Proj (P1−1)

15 0.080 0.016 0.012 0.448 0.078 0.170

23 0.071 0.003 0.003 0.107 0.009 0.077

4.7 Other Methods

In this chapter we have seen many approaches to the problem of signal decomposition. In particular

we presented several techniques for selecting few functions among the ones that compose a redundant

dictionary. The selected atoms should be able to give an approximation as sparse as possible. Of

course there are other possible approaches and in this last section we briefly present three other

interesting methods for signal decomposition. For these no numerical example will be provided.

4.7.1 Method of Frames

A very common technique for function selection is the Method of Frames (MOF) [39], or Least

Squares. Among all the possible solutions of Equation (4.2), the MOF picks out the one that has a

minimal `2 norm:

cMOF = arg min
c∈Rd

‖c‖2 s.t. Dc = f. (4.55)

The solution to this problem is unique and can be expressed as:

cMOF = D+f = DT (DDT )−1f. (4.56)

In general, the numerical computation of the pseudo-inverse in (4.56) involves expensive oper-

ations like the Singular Value Decomposition (SVD) and has a complexity of the order of O(n3).

However, if D is not ill-conditioned, there exist faster techniques based on the conjugate gradient

method. In the case of “tight frames” dictionaries, the solution of the MOF can be expressed in a

closed form and can be calculated in about n log2 n operations.

In an approximation framework we can write the MOF as:

(P2−2) min
c∈Rd

‖f −Dc‖2
2 + γ‖c‖2

2. (4.57)

This method was frequently used, since it has low computational cost, but generally results obtained

by the MOF are far from being sparse. This can be simply explained since, as saw in Section 4.1.2,

the `2 norm is not a sparsity-preserving function. Figure 4.7, in the graphic on top right, shows

a clear example of a situation where the MOF fails in finding a sparse representation of a simple

signal.
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4.7.2 Best Orthogonal Basis

For specific dictionaries, it is possible to develop decomposition techniques custom-tailored to the

dictionary. Two examples are wavelet packet and cosine packet, that can be seen as a union of many

orthogonal bases. In [37] Coifman and Wickerhauser have presented a method of adaptively select

a single basis from among all the many orthogonal bases that compose the dictionary. The selected

basis is the “best” one, and this gives the name to the algorithm: Best Orthogonal Basis (BOB).

There exists a fast algorithm to select the best basis, whose complexity is O(n log2(n)).

When the signal f has a sparse representation in one orthogonal basis of the dictionary BOB

is in general able to give a near-optimal decomposition. If this is not the case the performances of

BOB definitively decreases.

4.7.3 FOCUSS

Another interesting approach for solving exact representation problem is a variation of the MOF

called FOCal Underdetermined System Solver (FOCUSS) [82]. This is a non-parametric, iterative

algorithm for finding localized solutions to undetermined problems with limited data. It is composed

of two main parts:

1. Retrieval of a low resolution estimate of the sparse signal by means of a simple MOF approach.

2. Pruning process of the first estimation using a generalized affine scaling transformation. That

is, an iterated solution is found by scaling the entries with the solution of previous iterations.

Formally, at every iteration k the following problem is solved:

arg min
b

‖(Wak
Wpk

)+b‖2
2 s.t. Db = f, (4.58)

where Wak
is a diagonal matrix containing some a priori, and Wpk

is another diagonal matrix

composed the weights obtained from the solution retrieved in the precedent iteration. The procedure

to solve (4.58) is:

Step I: Wpk
= diag(bl

k−1)

Step II: qk = (DWak
Wpk

)+f

Step III: bk = Wak
Wpk

qk,

(4.59)

where Wp0
is assumed to be the identity matrix and l is an user defined parameter which modifies

the strength of the re-weighting feed-back. Note that for l = 1/2, FOCUSS provides the solution to

the BP problem (see [42, 43]).

If one sees the weights in Wpk
as some kind of a priori knowledge about the solution, then an

interpretation can be that the algorithm computes its own a priori information from iteration to

iteration.

The version of the algorithm we just described is suited for exact representation. However, there

is a slight modification of FOCUSS which allows to find signal approximations. This can be found

in [81, 82].



62 Chapter 4. Function Selection Methods



Chapter 5

Image and Video Coding using

Redundant Dictionaries

Coding an image is difficult because images are complex and catching their structure is a hard task

which entails an elaborate analysis. This was pointed out in the previous chapters. What we can add

here is the fact that the use of ad-hoc redundant dictionaries, if from one side allows a much more

flexible representation, on the other side makes the coding procedure even more complex. Moreover,

the relation between sparse approximation and efficient compression is not straightforward. In fact

we do not only need (quantized) coefficients, but it is also necessary to specify which functions these

coefficients refer to. This task in general requires more information as the size of the dictionary

increases. Thus the importance of combining approximation techniques with appropriate coding

strategies in order to obtain an efficient compression is evident [36].

This chapter faces the problem of low bit-rate coding for both still pictures and videos. This is

done by using redundant dictionaries and the function selection tools illustrated in the first part of

the dissertation.

Why do we care about lossy compression? This is a natural question, since storage capacities and

networks speeds are growing more and more quickly. Just think that few months ago a mobile phone

achieved 1 giga bit-per-second real-time packet transmission in down-link [4]. And this moving at

about 20 km/h!

The first point motivating lossy image and video compression is our imperfect vision system,

which is not able to detect all the information contained in a picture (still or moving). Neverthe-

less, this does not extend to very low bit-rate coding, where the information loss is undoubtedly

perceptible. We investigated in this direction for three main reasons. Firstly, it is a more challeng-

ing problem since the high bit-rate compression is nowadays almost a dismissed case for the latest

codecs. Secondly, it is matching the signal analysis strategies we adopted carrying out this research

and it is close to the principle of sparseness. Finally, low bit-rate compression is still relevant for

certain classes of applications. Among them we can cite video surveillance or compression of iden-

tity pictures for very low memory devices. In general, additionally, if compression alone is loosing

interest, its association with feature extraction is lively and more and more important. Consider for

example a large database where images are at the same time compressed and easy to detect thanks

to their representation.

63
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Figure 5.1: Encoding scheme: W HP is the high-pass filter using Wavelets, MP Dec and MP Rec are

respectively the Matching Pursuit decomposition and reconstruction, Q represents the quantization

operation, W Dec is the Wavelet decomposition, RD is the rate-distortion optimization and AC

stands for Arithmetic Coding.

5.1 Still Image Compression

The state of the art in image compression is based on transform coding using orthonormal basis

such as DCT or wavelets. These schemes have achieved high compression ratios thanks to the

huge research work that has been performed in efficiently coding the transform coefficients and

parameters. Nevertheless these traditional approaches suffer some severe limitations. As shown in

Chapter 2, bidimensional wavelets, for example, fail to capture regularities of contours, since they

are not able to sparsely represent one-dimensional singularities of 2-D signals. We have already

seen that many research efforts were aimed at representing a natural image exploiting its inherent

geometrical structure. Only very few of them, up to now, have given results in terms of compression.

In particular, the most relevant approaches that follow this idea can be found in the already cited

works [181], [162] and [110].

In this section we aim at obtaining an efficient encoding of natural images by approximating

the contours by a sum of bidimensional, non-separable functions. The residual, that we suppose

constituted by the smooth part of the image and textures, is then coded using wavelets. This

representation method, illustrated in Figure 5.1, follows the image model introduced in Chapter 3

that we repeat here for the ease of the reader:

I ' Ismooth + Iedge + Itexture. (5.1)

The dictionary, described in Section 5.1.1, has been designed to match the object contours.

These discontinuities have most of their energy at high frequencies. Therefore, before coding the

edges, the image is decomposed with wavelets and reconstructed keeping all the subbands but the

low-pass. This step is equivalent to a high-pass filtering and it is labeled as “W HP” in Fig. 5.1. The

high frequency content of the signal is thus decomposed over the edge-oriented dictionary using the

Matching Pursuit algorithm. After that MP projection coefficients have been quantized, a residual

image is computed by subtracting the quantized MP reconstruction from the original input image.

This residual contains the low frequencies of the signal, the textures and the artifacts introduced

by MP (the latter also include quantization errors). As can be seen in the scheme of Fig. 5.1 the

residual is decomposed with wavelets. The wavelet functions, used for both decomposing the residual

and computing the high-frequency input for MP, are the Cohen-Daubechies-Feauveau 9,7 [35]. At

this point we have low-pass wavelet coefficients (projections on the scaling function) representing

Ismooth, atoms from the edge-oriented dictionary representing Iedge and the high frequency wavelet

coefficients representing Itexture and correcting the MP artifacts, if any. Note that the quantization



5.1. Still Image Compression 65

of the MP indexes and projections is fixed. The coefficients of the coarse version representing the

smooth part of the image are quantized in a differential way (DPCM), while the wavelet coefficients

are subject to a deadzone quantization with the deadzone step twice the quantization step. The

quantization steps for the coarse signal and wavelet coefficients are independent.

All these parameters are subject to a rate-distortion optimization that establishes the number

of atoms to code, the quantization step for the DPCM of the coarse version and the step for the

wavelet deadzone quantization. All the parameters and the quantized coefficients are entropy coded

using an adaptive arithmetic coding algorithm [79].

5.1.1 The Dictionary

We use a multi-component dictionary resulting of the union of the Cohen-Daubechies-Feauveau 9,7

biorthogonal wavelet basis with an edge-oriented dictionary. The latter is built by anisotropically

scaling, orienting and bending a generating function, resulting in an overcomplete basis set. Such

dictionary was illustrated in detail in Section 3.2. The two generating functions are described in

Equation (3.46). Figure 3.9 shows five atoms of the edge-oriented dictionary in both space and

frequency domain, illustrating also the effect of bending, rotation and anisotropic scaling.

Finally we obtain a highly redundant dictionary, with a redundancy factor s ' 17000. The size

of the dictionary increases dramatically allowing big scaling factor along x2, indeed the number of

rotations is proportional to the scale parameter a2. A dictionary including elongated atoms is able

to better represents long edge structures.

Even if big dictionaries can be built with a small coherence [92], our dictionary has high coherence

since we adopt a geometric oriented design. Thus, we cannot theoretically assure that MP recovers

the best sparse approximation of the signal. Nevertheless we notice a fast energy decay of the

residual at first iterations, which means that the dictionary copes well with natural data. MP is

able to select good atoms, at least during first iterations.

5.1.2 Searching Algorithm

A greedy algorithm is used to decompose the detail version of the image in its most important

features. As seen in Section 4.4, this selects at each iteration an atom from the dictionary such that

the projection coefficient |〈gik
, rk〉| is maximum. To find such gik

we use a full search algorithm that

computes the inner products between the residual and all the functions of the dictionary. Since the

dictionary is composed of all the translations of the transformed generating functions (TGF), it is

clear that all the inner products between the TGF translated all over the residual and the residual

itself, correspond to the convolution of the TGF with the residual. To speed up the search, we

compute the convolutions as products in the frequency domain. To avoid problems with the regions

at the border of the image a padding of ten pixels is added. The Fourier transform of all the TGF

is computed only once and stored.

The complexity of a MP decomposition of a signal of n samples results to be of the order of

C ·m · s · n log2 n, (5.2)

where m is the number of chosen atoms, the constant C depends on the strategy adopted for atom

selection and s depends on the size of the dictionary. In fact, s = |D|/n is the redundancy of the

dictionary and it corresponds to the size of D without considering translations. Note that in our

implementation s does not depend on n! In particular we use the modified version of Matching

Pursuit illustrated in Section 4.4.3, which at each iteration selects more than one quasi-orthogonal
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atoms. This algorithm turns out to be much less computationally expensive, having in Eq. (5.2) a

constant C � 1.

In order to further speed up the atom selection, another algorithm, based on a tree-based pursuit

decomposition, may be taken into account [104]. But since the quality loss is not negligible, especially

in the range of bit-rate we are interested in, we decided not to use this searching method.

5.1.3 Rate-Distortion Optimization

The choice of the number of atoms to code and the quantization step for the wavelet coefficients is

based on a rate-distortion optimization. In order to study the RD of our representation method, we

take into account the image model expressed in Equation (5.1).

We indicate with Ĩedge(m) the m-term approximation of the edge part of the image obtained

by the MP decomposition of Iedge over the contour oriented dictionary. Thereby, the input of

the wavelet decomposition (Ist), supposed to contain the smooth and texture part, is obtained by

subtracting Ĩedge from the original image:

Ist(m) = I − Ĩedge(m) = Ismooth + Itexture + (Iedge − Ĩedge(m)). (5.3)

Since Ĩedge(m) is the superposition of m atoms with quantized projections, the final error is given

by

Ierr = I − Ĩst(m,∆), (5.4)

where Ĩst(m,∆) is the approximation of Ist(m) given by the quantization of the wavelet coefficients.

Let RMP the rate due to the atoms and RW the one due to the wavelet coefficients, the total

rate is R = RMP + RW . It depends on the number of atoms used to approximate Iedge and on

the quantization steps of the wavelet coefficients. Before investigating the rate-distortion of our

representation method, we study the rate related to the MP expansion, and we recall the RD theory

concerning wavelet coding.

MP Rate

Our signal approximation over D is represented by the atom indexes, positions and projections.

The indexes or parameters that characterize the atoms shape are entropy coded using an adaptive

arithmetic coding algorithm. We choose to make the x2-scale parameter depend on the radius

used for bending the atoms. Therefore, the arithmetic coder uses the conditional probability p(x2-

scale|radius) to code the x2-scale, and p(rotation|x2-scale) for the rotation parameter. In order to

code the positions and projection coefficients, two different approaches can be taken into account.

The first one consists in ordering the atoms in decreasing absolute projection values; then the

projections can be quantized either by using an exponential quantizer [75] or in a differential way

(DPCM) as done in [146]. The quantization is followed by arithmetic coding. The x1 and x2

coordinates of the atoms positions are then simply stored without any particular coding scheme.

The second approach performs a different sorting of the atoms in such a way to take advantage

in coding their positions [133]. The atoms are ordered by raster scanning, then the x1 and x2

coordinates are coded in a differential way followed by arithmetic coding. The drawback is that the

SNR scalability is lost [69, 75]. In this case a simple uniform quantization and arithmetic coding of

the projections is performed.

As shown on the left-hand side of Figure 5.2, the position oriented coding method outperforms

the projection coding, thus we chose to use the former to code atoms positions and projections.

Finally the right-hand side of Figure 5.2 gives the total bit-rate per atom Ra(m) as a function of

the number of atoms used to approximate the edge component Iedge. The exponential decay of
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Figure 5.2: Left: Comparison between projections oriented and positions oriented coding. Right:

Total number of bits per atom as a function of the number of atoms used to approximate Iedge. The

position oriented method is used to code positions and projections.

Ra(m) is due to the fact that increasing m, the grid representing the atoms positions becomes more

dense and the entropy of the displacements between adjacent atoms decreases. At the limit we can

say that the bits required to code an atom get close to the coding rate of the projection and shape

parameters.

Wavelet Rate-Distortion

The wavelet functions used to decompose the residual are the Cohen-Daubechies-Feauveau 9,7 with

normalization (
√

2,
√

2). This biorthogonal wavelet basis is nearly orthogonal and thus we suppose

that the distortion given by the quantization in the wavelet domain coincides with the distortion in

the original domain. In order to have a hint on the real rate-distortion behavior, let us make the

hypothesis of high resolution quantization, although it is not always satisfied in the compression

domain. Using a uniform quantizer, we can approximate the distortion or MSE as a function of the

quantization step ∆ (see [118]):

DW =
∆2

12
. (5.5)

The rate, that corresponds to the entropy of the output indexes, depends on the quantization step

and on the differential entropy

RW =

∑
k Nk(hk − log2 ∆)

n
=

∑
Nkhk

n
− log2 ∆, (5.6)

where hk is the differential entropy, Nk is the number of wavelet coefficients at resolution k and n

is the size of the signal.

MP+Wavelet Rate-Distortion

Now we can formulate the rate-distortion of our coder based on MP and wavelet decomposition. The

final distortion depends on the quantization step of the wavelet coefficients, and for fine quantization
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Figure 5.3: Left: Differential entropy of the wavelet coefficients at different resolution levels. Right:

bpp of our representation method as a functions of the number of atoms. The quantization step is

fixed, and so the final distortion.

we have that D = DW = ∆2

12 . Selecting m atoms, the total rate R = RMP (m)+RW (m,∆) depends

on the number of atoms approximating Iedge and obviously on the quantization step ∆,

RMP (m) =
Ra(m)m

n
, (5.7)

RW (m,∆) =

∑
Nkhk(m)

n
− log2 ∆. (5.8)

It is important to notice that the differential entropy hk(m) associated to wavelet resolution

level k, depends on the number of atoms that represent Ĩedge(m). Indeed the statistic of Ist(m) =

I − Ĩedge(m) changes with m, especially at the resolution levels that contain the energy of the edge

structures. The left-hand side of Figure 5.3 illustrates how the differential entropy depends on m.

When an atom is subtracted from the image, the entropy decays in all the subbands except level 1

(the high frequencies) where it stays more or less constant. The reason is because at high frequencies

the influence of the atoms is very small: let us say, even if it is not completely exact, that this is

the range of textures. One can also observe how, in general, the impact of subtracting an atom

decreases with iterations, which intuitively corresponds to the exponential decay of the residual

energy discussed in [120].

We now write the Lagrangian cost as

L(m,∆) = D(∆) + λ (R(m,∆) −Rbpp) = (5.9)

∆2

12
+ λ

(
Ra(m)m

n
+
∑

k

Nk

n
hw(m) − log2 ∆ −Rbpp

)
,

where Rbpp is the bit budget per pixel. Differentiating with respect to ∆ and m (neglecting the

integer constraint on m), we obtain

∂L

∂∆
=

2∆

12
− λ

∆ln 2
, (5.10)

∂L

∂m
= λ

(
R′

a(m)m+Ra(m)

n
+
∑

k

Nk

n
h′w(m)

)
(5.11)
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and setting the derivative to 0 we have

∆ =

√
6λ

ln 2
(5.12)

and

R′
a(m)m+Ra(m) +

∑

k

Nkh
′
k(m) = 0. (5.13)

Solving Equation (5.13) we find the optimal number of atoms that minimizes the rate for a given

distortion. It is important to notice that the solution of (5.13) does not depend on the final distortion

D. This is due to the assumption of fine quantization of the wavelet coefficients. Once we get the

optimal number of atoms mopt, setting to zero the derivative of Equation (5.9) with respect to λ,

we obtain the quantization step as a function of the bit budget,

∆ = 2

“

Ra(mopt)mopt
n

+
P Nk

n
hk(mopt)−Rbpp

”

. (5.14)

Remark that this is true only at high bit-rate, and that the functions Ra(m) and hk(m) have

to be estimated. Figure 5.3 shows on the left-hand side the behavior of the differential entropy at

different resolution levels, and on the right-hand side shows the total rate as a function of m for a

fixed step ∆ (changing ∆ corresponds to a vertical translation of the wavelet rate). The minimum

rate is reached coding mopt atoms: for the studied examples this minimum occurs between 100 and

150 atoms.

In practice, at low bit-rates the fine quantization hypothesis is not satisfied and the simple

model for the wavelet RD does not fit its real behavior. Moreover, we use a deadzone uniform

quantizer, which improves the rate distortion at low bit-rate quantization [119], and different steps

of quantization for the coarse and wavelet coefficients can be chosen. Implementing a numerical rate

distortion optimization, it turns out that the optimal number of atoms changes depending on the

bit-rate. All the graphics in this section show the mean of the results obtained using three standard

images Lena, cameraman and peppers.

5.1.4 Results and Comparisons

Combining the MP approximation properties with an accurate design of the dictionary makes it

possible to achieve high compression ratios, catching the most visually relevant structures of natural

images.

This section provides some results obtained with the presented algorithm; in the following, for

the sake of semplicity, it will be shortly called MPW. A comparison is made with the standard

JPEG2000, following the implementation in [8]. Another point of comparison is a pure wavelet

encoder we have developed which uses exactly the same coding options and RD optimization we

adopted in the MPW coding scheme. In the following, we refer to it as “Wavelets”. Table 5.1

shows the PSNR vs. bit-rate results for the images peppers and cameraman. Both images have size

256 × 256 pixels. For this size, the computational time for MPW coding is around one hour, using

a 2GHz processor.

At very low bit-rates, our algorithm obtains good results because it is capable to catch the main

features of a natural image with few functions. It is fair to observe that at less than 0.1 bpp the gap

between JPEG2000 and MPW is also partly due to the bigger size of the JPEG2000 header: in fact

one can notice that even our very simple “Wavelets” encoder outperforms the standard. The size of

the JPG2000 header is 148 byte, meanwhile MPW has a simple header of size 22 byte. Regarding

JPEG2000, if we take into account only the bit stream due to the quantized wavelets coefficients,

we observe an increase of about 0.6 dB, 0.4 dB and 0.2 dB respectively at 0.1 bpp, 0.2 bpp and 0.3
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Table 5.1: PSNR vs. bit-rate for the images cameraman and peppers: comparisons between MPW,

JPEG2000 and a coding scheme based on DWT.

cameraman (256 × 256)

Rate (bpp) MPW JPEG2000 Wavelets

0.05 22.50 21.00 21.50

0.10 25.06 23.63 23.79

0.15 26.45 25.23 24.96

0.20 27.38 26.45 26.10

0.25 28.11 27.38 27.02

0.30 28.76 28.53 27.80

0.35 29.27 29.57 28.51

0.50 30.61 31.16 30.21

peppers (256 × 256)

Rate (bpp) MPW JPEG2000 Wavelets

0.06 23.13 21.36 22.10

0.10 25.33 23.83 23.90

0.15 27.03 25.89 25.68

0.20 28.25 27.25 27.00

0.25 29.09 28.62 28.05

0.30 29.91 29.79 29.00

0.35 30.56 30.62 29.80

0.50 32.24 32.85 31.89

bpp. This difference between JPEG2000 and MPW disappears for bigger images (e.g. 512 × 512

pixels). In general, observing Figures 5.4, 5.5, 5.6 and 5.7, one can see that the proposed scheme

outperforms JPEG2000 not only in terms of PSNR but also and especially of visual quality. But

some problems also arises. Figure 5.4 (bottom left) shows some artifacts presented by the proposed

MPW method: at very low bit-rate edges can be not completely coded. Other kinds of artifacts can

be seen in Figure 5.6 (bottom left): again concerning contours, it can happen that edge-oriented

atoms are misplaced. In addition the same picture presents wavelets artifacts along contours (e.g.

look at the arm) that came from the use of the “W HP”filter at the beginning of the coding scheme.

Such problem can be strongly reduced by using better high-pass filters, as shown in the next section.

Another visual annoying element in the same picture is given by the background, but it can be solved

by using a finer quantization for the low-pass coefficients.

We compare results up to 0.5 bpp, where there is no relevant visual difference between the

images compressed with our method and JPEG2000. In addition, at higher bit-rates, the original

and compressed images are visually identical. Results for a bigger image are shown in Figure 5.7,

where a picture of Lena [163] of size 512 × 512 is compressed at 0.1 bpp. All the test images are

available in my web page (http://lts2www.epfl.ch/~granai/research.htm) where one can also

find further compression results and comparisons.

http://lts2www.epfl.ch/~granai/research.htm


5.1. Still Image Compression 71

Figure 5.4: Comparison between JPEG2000 and MPW at about 0.05 bpp. Top: original peppers

image (256 × 256). Bottom left: image compressed with MPW (PSNR = 23.13). Bottom right:

image compressed with JPEG2000 (PSNR = 21.36).
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Figure 5.5: Comparison between JPEG2000 and MPW at 0.15 (top) and 0.3 (bottom) bpp. Top

left: image compressed with MPW at 0.15 bpp (PSNR = 27.03). Top right: image compressed with

JPEG2000 at 0.15 bpp (PSNR = 25.89). Bottom left: image compressed with MPW at 0.3 bpp

(PSNR = 29.91). Bottom right: image compressed with JPEG2000 at 0.3 bpp (PSNR = 29.79) The

original image can be seen on the top of Fig. 5.4
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Figure 5.6: Comparison between JPEG2000 and MPW at 0.15 bpp. Top: original cameraman

image (256 × 256). Bottom left: image compressed with MPW. Bottom right: image compressed

with JPEG2000.
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Figure 5.7: Comparison between JPEG2000 and MPW at 0.1 bpp for the image Lena of size

512× 512 (on the top). Bottom left: image compressed with MPW (PSNR = 29.84). Bottom right:

image compressed with JPEG2000 (PSNR = 30.00).
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5.1.5 Reprise

In [146] we proposed a similar but less elaborate coding approach also based on Matching Pursuit.

The main difference is that this time textures are not taken into account and the approximation

wants to capture only smooth parts and edges. This can be effective at and only at very low bit-

rates. The coding scheme, already introduced in Section 3.3 simply consists on deriving from an

original image a coarse approximation by low-pass filtering and downsampling. Based on this coarse

version, it predicts the original by upsampling and filtering and calculates the difference as the

high-pass version or detail version. The detail version is then represented using the atoms from the

edge-oriented dictionary on the model of the one illustrated in Section 3.2. Figure 5.8 illustrates

this alternative compression scheme. Details on the filters A(~ω) and B(~ω) can be found in Sec. 3.3

or directly in [146].

x

+

−

B(~ω) A(~ω)

N↓ N↑

Q

MP

EC

EC

coarse

version

detail

version

xd

xc

Figure 5.8: Laplacian Pyramid. Only the encoding part is shown. B(~ω) is the 2-D low-pass filter,

A(~ω) is the 2-D interpolation filter, N is the downsampling factor. Q represents the quantization

operation, MP the Matching Pursuit and EC stands for Entropy Coding.

Other minor differences between these two approaches are that the edge-oriented overcomplete

dictionary in MPW has a slightly bigger redundancy factor and the generating functions are not

exactly the same (see again Section 3.2). Moreover the projection coefficients of the selected atoms

are ordered in a decreasing order and quantized in a differential way (DPCM).

The results obtained at very low bit-rates with this second approach are quite similar but slightly

worse in terms of PSNR as can be seen in Table 5.2, where they are compared with JPEG2000.

Figures 5.9 and 5.10 show some compressed images that visually illustrates the advantage of the

proposed method at very low bit-rates. Thanks to the use of the wavelets for coding the residual

(see Figure 5.1), the gain of MPW is not only limited at very low bit-rates.
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Table 5.2: PSNR vs. bit-rate for the images cameraman and Lena: comparison between the

proposed algorithm based on MP and JPEG2000.

cameraman (256 × 256)

Rate (bpp) MP JPEG2000

0.030 20.45 18.41

0.052 22.46 21.07

0.077 23.92 22.62

0.100 24.75 23.63

0.125 25.46 24.53

0.147 25.61 25.13

Lena (256 × 256)

Rate (bpp) MP JPEG2000

0.036 22.43 21.02

0.062 24.71 23.40

0.079 25.51 24.32

0.100 26.30 25.28

0.125 27.15 26.14

0.150 27.70 26.89

Figure 5.9: Comparison between JPEG2000 and the proposed scheme based on MP at 0.079 bpp

for the image Lena of size 256 × 256. Left: image compressed with MP (PSNR = 25.51). Right:

image compressed with JPEG2000 (PSNR = 24.32).
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Figure 5.10: Comparison between JPEG2000 and the proposed scheme based on MP at 0.077

(top) and 0.147 (bottom) bpp. Top left: image compressed with MP at 0.077 bpp (PSNR =

23.92). Top right: image compressed with JPEG2000 at 0.077 bpp (PSNR = 22.62). Bottom left:

image compressed with MP at 0.147 bpp (PSNR = 25.61). Bottom right: image compressed with

JPEG2000 at 0.3 bpp (PSNR = 25.13). The original image can be seen on the top of Fig. 5.6
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5.2 Video Coding

Motion video data is essentially a time-ordered sequence of pictures. The most successful class of

video compression algorithms is based on hybrid methods consisting in the combination of predic-

tion loops in the temporal dimension (motion estimation/motion compensation) with a suitable

uncorrelation technique in the spatial domain (transform coder), as illustrated in Figure 5.11. For

coding purposes, quantization and dequantization are inserted after the 2-D transform and before

the inverse 2-D transform respectively. Highly nonlinear predictors are used in order to adapt the

representations as much as possible to the structure of video signals. As a major tool, motion com-

pensation is used to capture and represent efficiently temporal video geometric changes. Often in

video signals, few motion parameters are able to model frame to frame changes (up to some accu-

racy) and, thus, supply good frame approximations that generate small residual errors when used

within hybrid predictive video representations. Commonly, simple translational models together

with block matching are used in predictive video coding (but many efforts have been spent also in

other directions).

Residual

Video Rep.

Predictor Memory Parameters

+

+
Video 2D Tr.

2D Inv.Tr.

Figure 5.11: Block diagram of a predictive video representation scheme.

The state of the art for hybrid video coding is specified by the recent standard H.264, also named

Advanced Video Coding (AVC) (ITU-T Rec. H.264, or ISO MPEG-4, part 10).

In this section we present a work aimed at exploiting the advantages of coding the Displaced

Frame Difference (DFD), output of the motion compensation (MC) algorithm, using a redundant

dictionary. In order to remain as close as possible to the state of the art, we adopt a motion

estimation that is compatible with H.264 (see Section 5.2.1). The output of this block is then coded

using a pursuit algorithm and an appositely designed bidimensional, anisotropic dictionary. Thanks

to this technique we achieve a sparse representation of the signal and therefore a more compact

energy concentration.

5.2.1 Motion Estimation

High compression efficiency in video coding is achieved by adopting hybrid systems which combine

two stages. In the first stage motion estimation and compensation predict each frame from the

neighboring frames. At the second one the prediction error is coded. Current video compression
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standards use block-based orthogonal transforms to code the residual error. These two stages are

then followed by appropriate entropy coding.

Relative to prior coding methods, the standard H.264/AVC has an enhanced motion estimation

that allows higher compression ratios [183]. In particular we can attribute this improvement to the

new variable block-size motion compensation with small block sizes, the quarter-sample-accurate

motion compensation and the use of multiple reference frames. Moreover the 4x4 integer transform

turns out to be well adapted to this kind of motion compensation [121].

In the proposed coding scheme, we adopt some of the new features introduced by this standard

and obtain a motion compensation scheme that is compatible with H.264. In particular the following

features are used:

• variable block-size motion compensation, with a minimum size of 4x4,

• tree-based MC,

• MC with quarter-pel accuracy,

• use of improved “skipped” motion inference [183].

Our encoder allows I and P-pictures only. An I picture (or I-frame, short for intraframe, also

called keyframe) is a single frame of a video that the compressor examines independent of the frames

that precede and follow it and stores all of the data needed to display that frame. This means that

there is no reduction of the temporal redundancy. I-frames allows to stop the error propagation due

to the motion estimation and can have a better quality but the price is a much higher amount of

bit required for their coding. A P-frame is encoded relative to the past reference frame. A reference

frame is a P or I-frame. For more details we refer to [173].

Moreover, due to the frame-based structure of our MP codec, intra-blocks are not permitted.

I-pictures are fully compliant with the H.264/AVC standard, using the integer transform illustrated

in [121]. Only three of the nine prediction directions are used and only the 4 × 4 predicted block

mode is implemented (not the 16 × 16 one) [183].

5.2.2 Coding of Displaced Frame Differences

The residual error of the motion compensated prediction still contains spatial redundancy: to reduce

the amount of resources needed for transmission, this error is typically coded via block-based DCT.

In H.264/AVC, this transform is replaced by an integer orthogonal approximation of the DCT, able

to work with 4x4 blocks and so compatible with the finest motion compensation segmentation. The

advantage of this transform is that it can be computed exactly in integer arithmetic, so avoiding

inverse transform mismatch problems; moreover, it reduces the computational complexity thanks to

the fact that it can be calculated without multiplications, in 16-bit arithmetic [121].

However, linear invariant block-based transforms are far from optimal for representing (and then

compressing) bidimensional signals such as natural images or motion compensated images [118].

In an important series of papers [15, 134, 135, 136] the authors have shown that improved coding

efficiency can be achieved by replacing the DCT with an overcomplete non-orthogonal transform.

This kind of approach, together with a suitable dictionary design, can represent a valid alternative

to DCT or wavelet based schemes, especially (but not necessarily only) at low bit-rates, where most

of the signal energy can be captured by only a few elements of the dictionary.

In the proposed scheme, the output of the motion estimation is a predicted image that is sub-

tracted from the current frame. The DFD, difference between these two images, is then coded by

using atoms selected over a redundant dictionary. Such selection is performed using the Matching



80 Chapter 5. Image and Video Coding using Redundant Dictionaries

−60

−40

−20

0

20

40

60

80

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 5.12: A displaced frame difference output of the motion compensation of H.256/AVC. From

the sequence Stefan in QCIF format.

Pursuit algorithm already described in Section 4.4. Note that this method is not block-based: both

the coding and the atom selection procedures work on the full frame, without any spatial subdivision.

5.2.3 Dictionary Design

Dictionary design is a crucial item for MP, since it strongly affects its convergence and visual

performances. The dictionary used in our experiments is particularly suited for exploiting the signal

structures of DFDs, mainly thanks to the use of peculiar generating functions and anisotropy (see

also [130]). Figure 5.12 shows a DFD output of the motion compensation of H.264/AVC. The

possible range of the pixel values is [−255, 255], even if usually it turns out to be much smaller.

Moreover a DFD commonly has a mean close to zero. Plainly, the structures of such kind of signals

are very different from the ones analyzed in natural images: more specifically DFD pictures are, of

course, much less correlated, more spiky and they present some artifacts due to the MC.

The dictionary (D) used to decomposed the DFD is designed along the lines of the one for natural

images, described in Section 3.2. It is thus composed of a set of real bidimensional functions, built

by applying the following three types of transformations to the generating function φ(~x) : R
2 → R

with ~x = (x1, x2).

a) Translation T~b, to move the atom all over the frame:

T~b φ(~x) = φ(~x−~b). (5.15)

b) Rotation Rθ, to locally orient the atom:

Rθ φ(~x) = φ(rθ(~x)), (5.16)

where rθ is a rotation matrix

rθ(~x) =

[
cos θ − sin θ

sin θ cos θ

][
x1

x2

]
. (5.17)
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c) Anisotropic scaling Sa1,a2
:

S~a φ(~x) = Sa1,a2
φ (x1, x2) = φ

(
x1

a1
,
x2

a2

)
. (5.18)

Atoms are generated varying the parameters ~b, θ,~a of the three previous transforms in the following

order:

g(~b,θ,~a)(~x) = T~b Rθ S~a φ(~x). (5.19)

Finally the obtained waveforms are normalized as follows:

gnorm

(~b,θ,~a)
(~x) =

g(~b,θ,~a)(~x)

‖g(~b,θ,~a)(~x)‖2
. (5.20)

The dictionary used by the MP algorithm is obtained by uniformly discretizing the parameters θ

and ~a:

D = {gnorm

(~b,θ,~a)
(~x)}~b,θ,~a . (5.21)

We saw in the study of the dictionary for still images that bended atoms can improve the quality

of the approximation. This option has been tested also for video signals, finding that only an

extremely small gain in terms of error and visual quality is obtained, but with the drawback of a

tremendous increase of the dictionary size. Thus, we chose not to include this transformation in our

set.

The functions which generate the whole dictionary with the previous transformations have been

selected in order to best match the characteristics of the input signal, i.e. the DFD coming out from

the motion compensation block. In particular three functions have been chosen:

• A second derivative of a B-Spline on the x1 axes, times a bivariate exponential, see Eq. (5.22)

and the left-hand side of Fig. 5.13. It is a spiky function that fits the usual behavior of

DFD; it is but a small variation of the piecewise function we introduced in [130] for coding

motion-compensated prediction errors:

φ1(x1, x2) = φbs(x1)e
−(x2

1+x2
2), (5.22)

where φbs is

φbs(x) =





−2 + 3 |x| if 0 ≤ |x| < 1

2 − |x| if 1 ≤ |x| < 2

0 if |x| ≥ 2

. (5.23)

• A Gabor function with oscillations in both the x1 and the x2 directions and with a frequency

independent of the scaling factors (see Fig. 5.13). Note that this function has an additional

parameter for the frequency but has only two possible rotations that correspond to the vertical

and horizontal positions:

φ2(x1, x2) = cos(ωxx)cos(ωyy)e
−(x2

1+x2
2). (5.24)

In our implementation, we set ωx = ωy, but remark that the rotations are still useful because

of the anisotropic scaling.

• A simple rectangular function expressed by Eq. (5.25), able to code errors due to the block-

based nature of the motion compensation:

φ3(x1, x2) =





1 if |x1| < 1 ∧ |x2| < 1

0 otherwise

. (5.25)
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Figure 5.13: Generating functions φ1 and φ2

Note that this generating function, like the previous one and unlike the second derivative

of a B-Spline, has a reduced set of possible rotations since the only two orientations we are

interested in are vertical and horizontal.

The whole dictionary is composed by 2-D atoms whose spatial support is limited since, where

the normalized atom has a value smaller than a certain threshold, it is set to zero. It is important

to observe that, given a very small threshold, this choice does not affect at all the quality of the

decomposition but, on the other hand, reduces the computational time.

Taking into account all atom parameters and the three generating functions, the dictionary can

be written as:

D = {gnorm

(φ,~b,θ,ω,~a)
(~x)}φ,~b,θ,ω,~a . (5.26)

Here the index φ specifies which function has been chosen to create the atom, ω is the frequency,

used only for the Gabor functions, while the other values are the same as in (5.21). Finally the

number of waveforms in our dictionary (the parameter s in Eq. (4.25)) is approximately 1000: each

of them can additionally be translated in any location of the image (see Eq. (5.15)). This set of

atoms proves to be highly redundant.

5.2.4 Searching Algorithm

Matching Pursuit decomposes a DFD into its most important features. As was observed for still

pictures in Section 5.1.2, since the dictionary is composed of all the translations of the transformed

generating functions, all the inner products between the TGF translated all over the residual and

the residual itself, correspond to the convolution of the TGF with the residual.

In order to speed up the search, convolutions are computed as products in the frequency domain,

as done for still images and as depicted in Fig. 5.14. The Fourier transform of the entire dictionary

is computed only once at the beginning of the video sequence and stored. Direct and inverse Fourier

transforms are computed in a fast way using the FFTW package (http://www.fftw.org) (version

3.0.1, see [72]).

Even with this method the atom selection is still too slow for our purposes. Here we propose two

solutions to speed up the algorithm. The first method is the Multiple Atom MP algorithm described

in Section 4.4.3. It consists into a slightly modified version of MP: at each iteration more than one

http://www.fftw.org
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Figure 5.14: Scheme for the atom selection in the Fourier domain

atom is selected and used to decompose the residual. This can be done since in an image there are

structures that are definitely separated in the spatial domain, and this is even more evident in a

DFD where the features to code are usually small. Selecting on average kj atoms at once it turns

out that MP only needs m/kj iterations, reducing in this way the number of inner products which

constitute the most computationally demanding part of the algorithm. For example, decomposing a

QCIF sequence, we observed a speed-up factor of around 10. The drawback of this method is that

there is no more guaranty that at each iteration the best atom will be selected as in the case of the

full search MP. However, the resulting loss in image quality is almost negligible.

A second possible strategy to speed up the searching algorithm can be found considering that

from one iteration to another usually only a small area of the residual image changes. At the first

iteration, all the convolutions between the image and each atom are computed; the main idea of

this method is to store these values and at the next iteration update them only in the region where

the best atom has been placed. The gain lays in performing the convolution and the inverse Fourier

transform on a smaller area. The gain increases as selected atoms get smaller (have a smaller

surface). This solution is possible only because the atoms in use have a limited spatial support.

Such method has no quality loss and, according to our simulations, gives a gain in computational

time of around 20% compared with the full search in the Fourier domain [116]. On the other hand,

the required memory increases by around 30%.

The two presented algorithms permit to speed up the atom selection procedure, but unfortu-

nately they are not compatible. The “multiple atom” search gives a higher reduction in terms of

computational load and therefore is perhaps the most useful. However the second method is still

interesting since it turns out to be completely lossless with respect to the full search.

5.2.5 Quantization and Entropy Coding

As said above, the parameters that specify an atom in the dictionary are the generating function

type, two scale factors, the rotation angle and, only for Gabor atoms, the frequency. Moreover, we

have to add to this list the atom position (two natural numbers whose range is determined by the

frame size) and its projection coefficient. The indexes that characterize the atom shape are entropy

coded using an adaptive arithmetic coding algorithm. Exactly as in the case of still pictures, since

the rotation depends on the x2-scale, the arithmetic algorithm uses the conditioned probability

p(rotation|x2-scale) to code the rotation parameter.

In order to code the positions and projections of the atoms, two different approaches can be
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Figure 5.15: Bytes per atom necessary to code 19 frames of container QCIF using different encoding

styles

taken into account. The first one consists in ordering the atoms according to their decreasing

projection absolute values, then the projections are quantized in a differential way (DPCM) followed

by arithmetic coding; the x1 and x2 coordinates are simply stored without any particular coding

scheme. We will refer to this scheme as “projection DPCM” coding. The second approach performs

a different sorting of the atoms in such a way to take advantage in coding the atoms positions [133],

coding the coordinates in a differential way followed by arithmetic coding. We will refer to this

scheme as “position” coding. Another interesting approach for coding the atoms is presented in

[114], where bit-plane quantization of atom projections and quadtree prediction of atom positions

are combined.

For both “projection DPCM” and “position” coding, quantization is performed in-loop: this

provokes the re-injection of quantization error in the coding loop and permits to encode such error.

For a detailed study about in-loop quantization for MP we recommend [45, 46]. Yet, we have to

emphasize that our approach is independent and does not follow the modelization that is proposed

in the cited paper.

“Position” vs. “Projection” Coding

Empirically, at very low bit-rates, when just few atoms per frame are coded, the projection DPCM

method gives the best results. When the number of atoms per frame increases, the position encoding

improves and finally outperforms the projection DPCM; later, the gap between these two coding

styles increases together with the number of atoms selected (see Fig. 5.15). This phenomenon is

easily explicable, since the position DPCM performances are related to the atoms density in the

frame.

For example, simulations showed that for QCIF sequences usually the switching point is around

50 atoms/frame, after this threshold position encoding starts to outperform projection DPCM. With

200 atoms/frame the average gain is around 10% of the rate [116]. Fig. 5.16 shows the percentage

of bits allocated to code the atoms parameters, positions and projections in both cases.

Remark that this situation is different from the one observed for still pictures where “position
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Figure 5.16: Example of typical bit allocations for “position” and “projection DPCM” encoding

styles

coding” turns out to be the best solution at any bit-rate, as shown in the previous section.

An adaptive solution

The situation illustrated in Fig. 5.15 suggests that we can optimize the coding procedure by running

both the previously illustrated entropy encoders and choosing the best one. In practice, after the

position coding has been selected for few consecutive iterations we can stop checking and start to

use this method only. In this way we always adopt the best coding solution, and from a rate point of

view the only price to be payed is absolutely negligible: one bit per frame to specify the coding style.

The possibility to switch from one encoding method to the other is integrated in the rate-distortion

optimization, explained in next section.

5.2.6 Rate-Distortion Optimization

In a video sequence some consecutive frames are very similar one to each other: in this case the DFD

contains very few information and, in our MP implementation, it can be coded with a small number

of atoms. On the other hand, there are situations in which the amount of information to code

strongly increases, requiring more atoms. Hence, given a certain target bit-rate, or a fixed quality,

we have to face the problem of choosing the number of atoms per frame. A classical approach to

this kind of issues is based on the minimization of a Lagrangian rate-distortion functional [143]:

min{J = D + λR}, with λ ≥ 0. (5.27)

In Eq. (5.27), D is the distortion (MSE) and R is the rate (byte/second); λ is constant for the

whole sequence. For a convex problem, the necessary and sufficient condition to find the absolute

minimum of J is:
∂D

∂m
= −λ ∂R

∂m
. (5.28)

The first term in (5.28) is the variation of MSE through iterations, a negative number whose value

is linked to the energy of the residual that an atom is able to catch. The second term represents the

weighted differential rate. We can state that ∂R
∂m is always positive and in average decreases with n.

Hence −λ ∂R
∂m is negative and increases. In order to minimize J we need a last consideration: the two
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(a) (b)

Figure 5.17: Left: rate-distortion optimization: J(m) for two frames of Stefan. Right: MSE for

the first 100 frames of news coded with and without RD optimization

terms of Eq. (5.28) are both negative and they increase in average with decreasing first derivative,

but their limit when n→ ∞ is different (the first limit comes from Lemma 2 in [120]):

lim
m→∞

∂D

∂m
= 0 and lim

m→∞
−λ ∂R

∂m
= C. (5.29)

Let assume that the constant C is negative. Now we can have two cases: either

lim
m→0

∂D

∂m
< lim

m→0
−λ ∂R

∂m
, (5.30)

and it means that we do not have to code any atom, or

lim
m→0

∂D

∂m
≥ lim

m→0
−λ ∂R

∂m
, (5.31)

and we have to stop the expansion when the condition in (5.28) is respected. From Eq. (5.29),

thanks to the continuity of the first derivative of R and D, and assuming that both ∂R
∂m and −λ ∂R

∂m

with their first derivatives are monotonically decreasing (and not only in average), it comes that

it exists only one point m̃ which solves Eq. (5.28) and this point is the absolute minimum we are

looking for. In theory, since the dictionary is finite, the constant C in (5.29) can assume the value

0, depending solution adopted for coding the atoms. Anyway this situation has no practical interest

since we never use a number of atoms which can be comparable with the size of the dictionary.

From an implementation point of view, we have the problem that the differential MSE has

a monotone trend but it does not always increase with m. The same observation holds for the

differential rate. These small deviations from the ideal behavior imply the possible existence of local

minima. However this problem can be easily solved, since J(m) always shows a precise trend, as

can be seen in Fig. 5.17(a). The only precaution we take is not to stop the coding process exactly

when J starts to increase, but to go on for few iterations in order to be sure that we are not in a

local minimum.

Concluding, given a required quality factor, the master coder fixes the value of the parameter λ.

An amount of bits is then assigned to each frame according to the rate control of the master coder.

It is important to point out that this RD approach can be used even when the atom selection is

performed by turning to the “multiple atom” algorithm (see subsection 5.2.4). In this case, however,
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(a)
(b)

Figure 5.18: Left: MSE obtained coding the first 100 frames of container using MP (0.190

KBytes/frame) and the 8x8 DCT (0.194 KBytes/frame); no I-frames. Right: RD curves obtained

coding the first 100 frames of traffic using 8x8 DCT and MP with the same motion estimation and

H.264. I-frames enabled

some changes are required, due to the fact that atoms are not necessarily selected in decreasing

order of projection absolute value. Hence at the first step we subtract all the selected atoms from

the residual but we code only the best one, and we put all the others in a list sorted by decreasing

projections. In the following steps we code the best of the current step plus all the atoms in the list

whose projection is higher than the projection of the best atom of the current step.

In order to compute the rate, two different situations have to be taken into account since we do

not know a-priori if a position or projection DPCM coding style will be adopted (see section 5.2.5).

Also the choice between these methods is then left to the RD algorithm.

Figure 5.17(b) shows the MSE behavior of the test sequence news. It is easy to observe the

improvement achieved by the RD optimization with respect to the case in which a fixed number of

atom per frame is coded.

5.2.7 Results and Comparisons

The first comparisons are aimed at testing the quality of the MP codec with respect to a standard

8x8 DCT. So we adopt the same motion estimation described in Section 5.2.1 and we code then the

DFDs using either MP or a classical DCT block-based scheme. The MP atom selection is performed

using the fast multiple atom algorithm, explained in Section 5.2.4. In this case, for all the tested

sequences the MP outperforms DCT. For example Fig. 5.18(a) shows the MSE behavior for the

sequence container in QCIF format: even if the DCT has a slightly higher rate, it is outperformed

by MP in terms of both visual quality and mean square error.

In Fig. 5.18(b) one can see the RD curve obtained by coding a video-surveillance traffic sequence

(QCIF format), allowing the encoders to put I-frames when necessary. Comparisons show the

superiority of MP versus DCT, especially at very low bit-rates. Figure 5.19 shows a frame of the

sequence container in QCIF format (176× 144 pixels) compressed with the proposed method based

on MP (on the left) and 8x8 DCT (right). The motion compensation used to obtain the DFD is, of

course, the same. The quality of the video obtained with the proposed method is higher, even if the

single picture in the figure might not able to show it out properly.

Moreover, for a video codec time constraints are critical, especially at the decoder side. Matching
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Figure 5.19: 16th frame of the sequence container in QCIF format coded with MP (left) and 8x8

DCT (right)

Pursuit is an asymmetric algorithm in the sense that the complexity of the encoder is much more

higher that the one of the decoder. Indeed, while the selection of the atoms approximating a

signal has to follow the procedure explained in Section 4.4, the reconstruction just implies a linear

combination of the functions corresponding to the received indexes. A reduced redundancy factor

of the dictionary with respect to one used for still pictures together with the fact that the spatial

support of the atoms is limited by setting to zero their value when it is below a certain threshold help

in moderating the complexity. These factors have to be added to the use of a fast algorithm and of

the fast Fourier transform for the atom selection. Thanks also to others technical minor algorithm

optimizations [116] a real time decoding is possible for sequences up to CIF format (352×288 pixels).

In order to compare the MP video coder with H.264 we disabled some of the options not yet

implemented in our motion estimation. Following settings have been used:

• Hadamar transform: enabled,

• Search range: 16,

• Number of reference frames: 1,

• Block sizes (for motion estimation): all enabled,

• B frames: disabled,

• CABAC: disabled.

Results clearly show that H.264 obtains better performances than our encoder. For example

coding the sequence traffic in QCIF format we can observe a gap of more than 1.5 dB (see Fig.

5.18(b)). This gap can be explained assuming that the H.264 encoder is fully optimized for the

block-based integer transform, while we work in a frame-based way. In fact we notice that, especially

at low bit-rates, the losses due to a coding syntax not suited for the overall coder heavily affect the

performances of MP. We also have to consider that, even with some disabled option, the motion

estimation of H.264 is still more accurate than the one we used in our MP implementation (see also

Section 5.2.1). In fact we did not disable all the features missing in our MC algorithm and this

results in a not completely fair comparison between the two approaches.
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5.3 Discussion

In this chapter we have seen two methods of coding for still pictures and videos. Both are based on

the use of a very redundant geometric-oriented dictionary and the function selection is entrusted to

a greedy algorithm. The promising results obtained by these examples confirm of the considerations

made in the previous chapters. In addition, the fact that the compression quality obtained is good

in spite of the huge size of the dictionary shows the pertinence of the representation techniques.

It is worth emphasizing that the families of basis function composing the dictionary, together

with decomposition by means of greedy algorithms can offer the advantage of generating progressive

stream. This is a key feature in the design of adaptive visual communication applications, where

rate scalability (also known as SNR scalability) in general is becoming an important requirement.

This functionality is not directly implemented in the encoders we heve presented here, but it is

strongly connected to the representation method we use. Therefore it can be achieved by minor

modifications. An example of a coding scheme where rate and spatial scalabilities are effectively

present is given in [74, 75].

Only results concerning gray-scale pictures are presented. The reason is that we are interested

more in the structure of the images than in their color components. Nevertheless the extension to

the crominance components is feasible. Let us just cite [70], where a color image coder based on a

MP expansion is studied.
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Chapter 6

On the use of a priori information

for sparse signal decomposition

Throughout this dissertation we have been looking for an efficient representation or approximation of

a signal by means of a linear expansion into a possibly overcomplete family of functions. In Chapter

4 we have seen that efficiency is often characterized by sparseness and that, in general, the problem

of recovering the sparsest signal approximation (or representation) over a redundant dictionary is

an NP-hard problem. We have also seen that there exist several faster methods, which can solve

this problem, provided that the dictionary respects certain conditions. Such recovery conditions can

be roughly summarized by the assumption of quasi-incoherence.

However, experience and intuition dictate that good dictionaries for approximations of natural

signals can be very redundant and, depending on the kind of structures we want to describe, they may

be highly coherent. We can observe a strong gap between these characteristics and the theoretical

recovery conditions stated in Chapter 4, asking for a quasi-incoherent dictionary. How can we handle

this discrepancy between theory and practice? The question of achieving sparseness in some class

of coherent dictionaries is already faced in [78], but for the particular case of Vandermonde and

Fourier dictionaries. The solution that we propose and discuss here is based on the potentiality of

using a priori knowledge in the atom selection procedure. Intuitively, a huge amount of information

is available about the natural signals we are dealing with. This can come from the knowledge of its

physical background as well as from an empirical study. Exploiting such a priori information can

help us in finding better approximations and representations.

The main points we face in this chapter are how to represent the a priori information, with which

algorithm it can be used and which improvements it can bring. Theoretical and practical sides of

the problem are studied and in addition we provide several examples that show the achievable

benefits and functional ways to compute reliable and useful priors about a signal. The first part

of the chapter describes the Weighted Basis Pursuit Denoising and Weighted Matching Pursuit

principles, studying their approximation properties. In the second part the exact representation

case is briefly examined. Finally we give a hint about two applications of the presented framework

and comprehensively discuss it.

91
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6.1 Mathematical Setting

Let us firstly recall some notations and definitions that will be useful for the rest of the chapter. We

analyze again the two problems introduced in Chapter 4:

• sparse m-term approximation:

min
c∈Rd

‖f −Dc‖2
2 s.t. ‖c‖0 ≤ m, (6.1)

• exact sparse representation:

min
c∈Rd

‖c‖0 s.t. Dc = f. (6.2)

In the previous expressions f ∈ H is the function to be analyzed and H is a Hilbert space (unless

otherwise stated, it is assumed that H ≡ R
n). The dictionary is defined as D = {gi : i ∈ Ω} where

∀i ‖gi‖2 = 1 and |Ω| = d. D is the n× d synthesis matrix of the dictionary, where each one of the

columns corresponds to an atom. Finally, c is the vector of coefficients to be recovered.

The a priori knowledge is expressed by the diagonal matrix W (f,D), defined as follows:

Definition 6.1 A weighting matrix W = W (f,D) is a square diagonal matrix of size d× d. Each

of the entries wi ∈ (0, 1] from the diagonal corresponds to some measure of the a priori likelihood of

a particular atom gi ∈ D to be part of the sparsest decomposition of f .

Notice that, given some f , all the atoms in the dictionary are assumed to have some non-zero

a priori probability. In effect, those that would have a zero weight are considered to be excluded

from the dictionary.

Consistently with the notation adopted in Chapter 4, Γ stands for the optimal subset of the index

set Ω. Optimality has to be interpreted in the sense of (6.1) when speaking about approximation

and of (6.2) when dealing with the exact representation problem. We also define wmax
Γ

as the biggest

weight corresponding to the subset of atoms indexed in Γ = Ω \ Γ, hence:

wmax
Γ

= max
γ∈Γ

wγ . (6.3)

Moreover, an additional quantity is required in the results depicted below:

εmax = max
γ∈Γ

(
1 − w2

γ

)
. (6.4)

Eqs. (6.3) and (6.4) concern the goodness of the a priori information about the signal f (and tus

thay do depend on f even if not explicitly stated). The reader will notice that these quantities

also depend on the optimal set of atoms Γ, preventing from establishing a rule to compute them

in advance. The role of these magnitudes is to represent the influence of the prior in the results

obtained below. Notice that 0 ≤ εmax < 1 and 0 < wmax
Γ

≤ 1.

Definition 6.2 εmax is close to zero if “good” atoms (the ones belonging to Γ) are not penalized by

the a priori information. In such a case we state that the a priori knowledge is “reliable”.

The quantity wmax
Γ

becomes small if all “bad” atoms are strongly penalized by the a priori

knowledge. Notice that the “reliability” does not impose any condition on wmax
Γ

.

The weights are not arbitrary and are not supposed to be independently and blindly optimized by

the algorithm during the subset selection procedure. These values alone are not meant to determine
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whether an atom shall be included in the selection or not. They introduce a fuzzy likelihood that

could be derived from a good parametric model on the interaction between signals and the dictionary.

The a priori matrix W allows a new signal dependent definition of the cumulative coherence

µ1(m). Indeed, the conditions that ensure the recoverability of the best m-term approximant relay

on this quantity. Using a priori information, some atom interactions can be penalized or even

dismissed in the cumulative coherence measure:

Definition 6.3 The Weighted Cumulative Coherence function of D is defined as the following data

dependent measure:

µw
1 (m,D,W ) = sup

|Λ|=m

sup
i∈Ω\Λ

∑

λ∈Λ

|〈gλ, gi〉| · wλ · wi. (6.5)

Note that if W = I, then µw
1 (m,D, I) = µ1(m,D). Moreover, ∀m,D,W we have that µw

1 (m,D,W )

≤ µ1(m,D).

6.2 Approximation by Weighted Basis Pursuit Denoising

We investigate now the effects of inserting a priori knowledge in the convex relaxation of the subset

selection problem. In Section 4.5.3 we have seen a Bayesian formulation of Basis Pursuit Denoising,

observing how the most probable coefficients for representing a signal f can be found as (see Eq.

(4.37)):

bP = arg max
b

(
ln(p(f |D,b)) +

∑

i

ln p(bi)

)
= arg min

b

(
‖f −Db‖2

2

2σ2
r

+
∑

i

√
2|bi|
σi

)
.

Making the hypothesis that the variance of bi (σ2
i ) is constant for every index i means that the most

probable coefficient vector b is the one found by the BPDN principle. But this hypothesis does not

often correspond to reality. On the contrary, if the variances of the coefficients are not forced to be

all the same, it turns out that the most probable signal representation can be found by solving the

following problem:

(Pw
2−1) min

b∈Rd

1

2
‖f −Db‖2

2 + γ‖W−1b‖1, (6.6)

where the diagonal matrix with entries in (0, 1] is defined in Section 6.1. One can notice that in

Eq. (6.6), the introduction of weights allows to individually model the components of b. Since

this approach introduces a priori information under the form of weights in the BPDN paradigm,

therefore from now on, we will refer to (Pw
2−1) as Weighted Basis Pursuit Denoising or WBPDN.

Let us now study the relationship between the results obtained by solving problem (P w
2−1) and

(P2−0). In general we refer with b to the coefficient vector of the relaxed problem and with c to the

one of the problem (P2−0):

(P2−0) min
c∈Rd

‖f −Dc‖2
2 + τ2‖c‖0.

Note that, given an arbitrary index subset Λ ⊂ Ω, in the following cΛ and bΛ lay in R
Λ but

sometimes these are extended to R
Ω by padding with zeros. The same is valid for the matrix WΛ.

First, let us introduce the Weighted Recovery Factor:

Definition 6.4 Given a dictionary D indexed in Ω and an index subset Λ ⊂ Ω, we define the

Weighted Recovery Factor (WRF) as:

WRF (Λ) = sup
i/∈Λ

∥∥∥(DΛWΛ)
+
gi · wi

∥∥∥
1
. (6.7)



94 Chapter 6. On the use of a priori information for sparse signal decomposition

6.2.1 Preliminary Propositions

Here, some preliminary propositions are presented, allowing us to prove the results of the following.

Given Λ ⊂ Ω, let us call fΛ the approximant of f that uses the coefficients indexed in Λ, i.e.fΛ =

DD+
Λf . Let us also call WΛ the weighting matrix restricted to the indexes in Λ.

The next lemma, similarly to the “Correlation Condition Lemma” in [175], basically states that,

if the atoms of Λ have a small correlation with the residual (f − fΛ), then the support of any vector

that solves (Pw
2−1) is a subset of Λ. This result will be used to prove Theorem 6.1.

Lemma 6.1 Given an index subset Λ ⊂ Ω, suppose that the following condition is satisfied:

‖DT (f − fΛ)‖∞ <
γ

wmax
Λ

· (1 −WRF (Λ)), (6.8)

where wmax
Λ

∈ (0, 1] is the quantity defined by equation (6.3). Then, any coefficient vector b∗ that

minimizes the cost function of problem (Pw
2−1) must have a support contained in Λ.

Proof: Assume that b∗ minimizes (6.6), but it uses an index outside Λ. One can compare b∗
with its projection D+

ΛDb∗, which is supported in Λ, obtaining:

2γ
(∥∥W−1b∗

∥∥
1
−
∥∥W−1

Λ (D+
ΛDb∗)

∥∥
1

)
≤
∥∥f −DD+

ΛDb∗
∥∥2

2
− ‖f −Db∗‖2

2 . (6.9)

First, we shall provide a lower bound on the left-hand side of the previous inequality. Let us split

the vector b∗ into two parts: b∗ = bΛ +bΛ, where the former vector contains the components with

indexes in Λ, while the latter the remaining components from Λ = Ω \ Λ. Acting as in the proof of

the Correlation Condition Lemma in [175] it follows that:

∥∥W−1b∗
∥∥

1
−
∥∥W−1

Λ (D+
ΛDb∗)

∥∥
1
≥ (1 −WRF (Λ)) ·

∥∥W−1bΛ

∥∥
1
. (6.10)

For more details, see [50]. The quantity appearing on the right-hand side of (6.9) does not depend on

the weighting matrix, thus, exactly as in [175], it can be upper bounded by 2‖bΛ‖1 ·
∥∥DT (f − fΛ)

∥∥
∞.

This, together with (6.9) and (6.10), gives:

γ (1 −WRF (Λ)) ·
∥∥W−1bΛ

∥∥
1
≤ ‖bΛ‖1

·
∥∥DT (f − fΛ)

∥∥
∞ . (6.11)

Since the weights are in (0, 1], and the vector bΛ, by assumption, cannot be null, it can be

written:

γ (1 −WRF (Λ)) ≤ ‖bΛ‖1

‖W−1bΛ‖1

·
∥∥DT (f − fΛ)

∥∥
∞ ≤ wmax

Λ
·
∥∥DT (f − fΛ)

∥∥
∞ . (6.12)

If (6.8) is valid , then (6.12) fails and so one must discard the hypothesis that b∗ is non-zero for an

index in Λ.

We now focus on finding a necessary and sufficient condition for the existence and uniqueness of

a minimum of (Pw
2−1). The presence of the `1 norm implies that the cost function of this problem

is non-smooth at zero: for this reason the concept of subdifferential is used. Given a real vector

variable x, the subdifferential of ‖x‖1 is denoted by ∂‖x‖1 and defined as:

∂‖x‖1 = {u|u∗x = ‖x‖1, ‖u‖∞ ≤ 1} .

The vectors u that compose the subdifferential are called subgradients [109].
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Lemma 6.2 A necessary and sufficient condition for b∗ to globally minimize the objective function

of (Pw
2−1) over all coefficient vectors with support Λ is that:

cΛ − b∗ = γ
(
DT

ΛDΛ

)−1
W−1

Λ u, (6.13)

where u is a vector from ∂‖b∗‖1. Moreover, the minimizer is unique.

The proof of this lemma, technical and very similar to the proof made by Fuchs in [77], can be

found in the Appendix.

If W = I, then this result coincides with the one developed by Fuchs in [77] and by Tropp in

[175], in the complex case. Next lemma concludes the preliminary propositions bounding the error

in the coefficients domain.

Lemma 6.3 Suppose that b∗ minimizes the cost function of problem (Pw
2−1). Then the following

bound holds:

‖cΛ − b∗‖∞ ≤ γ

wmin
Λ

·
∥∥∥
(
DT

ΛDΛ

)−1
∥∥∥
∞,∞

,

where wmin
Λ is defined as

wmin
Λ = inf

i∈Λ
wi. (6.14)

Proof: Let us consider the necessary and sufficient condition of Lemma 6.2: taking the `∞
norm of (6.13) we obtain:

‖cΛ − b∗‖∞ = γ
∥∥∥
(
DT

ΛDΛ

)−1
W−1

Λ u

∥∥∥
∞

≤ γ
∥∥∥
(
DT

ΛDΛ

)−1
W−1

Λ

∥∥∥
∞,∞

· ‖u‖∞ .

By definition of subdifferential, ‖u‖∞ ≤ 1. Inserting this into the previous equation and using the

sub-multiplicative property of matrix norms (‖AB‖p,q ≤ ‖A‖p,q · ‖B‖p,q), we can prove that

‖cΛ − b∗‖∞ ≤ γ
∥∥∥
(
DT

ΛDΛ

)−1
∥∥∥
∞,∞

·
∥∥W−1

Λ

∥∥
∞,∞ .

Just apply the fact that
∥∥W−1

Λ

∥∥
∞,∞ = sup

i∈Λ
(1/wi) =

1

wmin
Λ

to reach the result.

6.2.2 Recovery Conditions of WBPDN

Suppose now that cΓ is the sparsest solution to (P2−0) and that its support is Γ, with |Γ| = m. DΓ

will be the matrix containing all the atoms participating to the sparsest approximation of f and f opt
m

will be the approximant given by cΓ, i.e fopt
m = DcΓ = DD+

Γ f = DΓD
+
Γ f . Assuming WRF (Γ) < 1,

we have the following result.

Theorem 6.1 Given τ > 0, trade-off parameter of the problem (P2−0), suppose that b∗ minimizes

the cost function of problem (Pw
2−1) with threshold

γ =
τ · wmax

Γ

1 −WRF (Γ)
, (6.15)

where wmax
Γ

is defined in (6.3). Then:

1. WBPDN never selects a non optimal atom since support(b∗) ⊂ Γ.

2. The solution of WBPDN is unique.
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3. The following upper bound is valid:

‖cΓ − b∗‖∞ ≤
τ · wmax

Γ

wmin
Γ

·
∥∥∥
(
DT

ΓDΓ

)−1
∥∥∥
∞,∞

1 −WRF (Γ)
. (6.16)

4. The support of b∗ contains every index j for which

|cΓ(j)| >
τ · wmax

Γ

wmin
Γ

·
∥∥∥
(
DT

ΓDΓ

)−1
∥∥∥
∞,∞

1 −WRF (Γ)
. (6.17)

The scalar wmin
Γ appearing in Eqs. (6.16) and (6.17) is defined in (6.14).

Proof: Considering the first stated result, note that every atom indexed by Γ has zero inner

product with the optimal residual (ropt
m = f − fopt

m ) since fopt
m is the best approximation of f using

the atoms in Γ. Using Proposition 5.1 in [175] and recalling that D is finite, it can be stated that

∥∥DT (f − fopt
m )

∥∥
∞ < τ. (6.18)

Moreover, Lemma 6.1 guarantees that for any γ satisfying

∥∥DT (f − fopt
m )

∥∥
∞ <

γ

wmax
Γ

· (1 −WRF (Γ)), (6.19)

the solution b∗ to the convex problem (Pw
2−1) is supported on Γ. From (6.18) and (6.19) it follows

that for any γ that satisfies the following condition, it is insured that support(b∗) ⊂ Γ:

γ ≥
τ · wmax

Γ

1 −WRF (Γ)
. (6.20)

In the following, the smallest possible value for γ is chosen, so that, Eq. (6.20) becomes an equality.

The uniqueness of the solution follows from Lemma 6.2. With regard to the third point, Lemma 6.3

yields

‖cΓ − b∗‖∞ ≤ γ

wmin
Γ

∥∥∥
(
DT

ΓDΓ

)−1
∥∥∥
∞,∞

≤
τ · wmax

Γ

wmin
Γ

1 −WRF (Γ)
·
∥∥∥
(
DT

ΓDΓ

)−1
∥∥∥
∞,∞

.

Using Equation (6.20), the fourth result of the theorem can be proved exactly as in [175].

This theorem states two important concepts. First, if the trade-off parameter is correct and

the weighted cumulative coherence of the dictionary is small enough, WBPDN is able to select the

correct atoms to obtain the sparsest signal approximation. Furthermore, the error made by the

algorithm to compute the coefficients with respect to the optimal ones is bounded. The quantities

wmin
Γ and wmax

Γ
depend on the reliability and goodness of the a priori respectively. In particular,

if W tends to be optimal (i.e. its diagonal entries tend to 1 for the elements that should appear in

the sparsest approximation and to 0 for the ones that should not), wmin
Γ → 1 and wmax

Γ
→ 0. This

results in an improved bound for the error of the coefficients and a condition for γ in Eq. (6.15) that

is easier to respect. The reader will notice that it is quite improbable that such an“optimal”W exist

in practice. Indeed, the typical information supplied by an a priori model will be quite imprecise

(this, however, does not prevent a prior of being reliable and helpful). This aspect is discussed and

justified at the end of Section 6.2.3. Compare these results with Theorem 4.4 in order to see the

improvements brought by the use of a priori information. Indeed, if W = I, Theorem 6.1 boils

down to Theorem 4.4.
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Note that, once the algorithm has recovered the atom subset, the appropriate amplitudes of the

coefficients can be computed by the orthogonal projection of the signal onto the space generated

by the selected atoms. Hence, the error made by the algorithm in the coefficients computation is

avoided (see Eq. (6.16)). This method is illustrated in Sections 4.5.5 and 6.2.4.

6.2.3 Relation with the Weighted Cumulative Coherence

In this subsection, previous results are described using the weighted cumulative coherence function

defined in (6.5). In this way a comparison is made between the results achievable by BPDN and

WBPDN.

Theorem 6.2 Assume that the real vector b∗ solves (Pw
2−1) with

γ =
wmax

Γ
· τ(1 − εmax − µw

1 (m− 1))

1 − εmax − µw
1 (m) − µw

1 (m− 1)
.

Then support(b∗) ⊂ Γ and

‖b∗ − cΓ‖∞ ≤
τ · wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m− 1))

(1 − εmax − µw
1 (m) − µw

1 (m− 1))(1 − µ1(m− 1))
. (6.21)

Proof: This result can be obtained from [175] and Theorem 6.1, since:

‖b∗ − cΓ‖∞ ≤ γ

wmin
Γ

∥∥∥
(
DT

ΓDΓ

)−1
∥∥∥
∞,∞

=
τ · wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m− 1)) ·

∥∥∥
(
DT

ΓDΓ

)−1
∥∥∥
∞,∞

(1 − εmax − µw
1 (m) − µw

1 (m− 1))
.

Considering that

‖
(
DT

ΓDΓ

)−1 ‖∞,∞ = ‖
(
DT

ΓDΓ

)−1 ‖1,1 ≤ 1

1 − µ1(m− 1)
,

(see [77, 175]) proves equation (6.21).

This result illustrates how the distance between the optimal coefficients and the solution found

by solving (Pw
2−1) can be bounded. In case no prior is given, the bound on the coefficient error is

obtained from Eq. (6.21) setting W = I. Consequently, wmin
Γ = 1, εmax = 0 and wmax

Γ
= 1, and we

obtain the very same result as in Corollary 4.1:

‖b∗ − cΓ‖∞ ≤ τ

1 − µ1(m) − µ1(m− 1)
. (6.22)

Comparing the two bounds, one can observe how the availability of a reliable prior on the signal

can help in finding a sparser signal approximation. This concept is emphasized in the following

corollary.

Corollary 6.1 Let W (f,D) be a reliable a priori knowledge, with wmax
Γ

/wmin
Γ ≤ 1 . Then for any

positive integer m such that

µw
1 (m− 1) + µw

1 (m) + εmax < µ1(m− 1) + µ1(m) < 1,

the error ‖b∗ − cΓ‖∞ given by the coefficients found by WBPDN is smaller than the one obtained

by BPDN. Hence, the bound stated by Eq. (6.21) is lower than the one in Eq. (6.22), i.e.

τ · wmax

Γ

wmin
Γ

(1 − εmax − µw
1 (m− 1))

(1 − εmax − µw
1 (m) − µw

1 (m− 1))(1 − µ1(m− 1))
≤ τ

1 − µ1(m) − µ1(m− 1)
. (6.23)
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This result is proved in the appendix.

The reader may notice that if
wmax

Γ

wmin
Γ

< 1 the a priori information already tells which is the right

support of the solution. Indeed, a simple threshold on the weights would find the appropriate set of

atoms. This is an unrealistic situation in practice. However, provided that the a priori information

is reliable, we do not need
wmax

Γ

wmin
Γ

< 1 to justify an improvement on the behavior of the algorithm.

Suppose that the weights do not penalize the optimal atoms, but only some (not all) of the “wrong”

ones: in this case
wmax

Γ

wmin
Γ

= 1. In such a situation, given that µw
1 (m− 1) + µw

1 (m) + εmax < µ1(m−
1)+µ1(m) < 1, Eq. (6.23) is still valid. This means that, even if the a priori knowledge is imprecise

(but reliable), WBPDN can behave significantly better than BPDN. The same consideration applies

to Eqs. (6.16) and (6.17).

6.2.4 Example: Use of Footprints and WBPDN for Sparse Approxima-

tion

It is time to give an example of approximation using a priori information; we thus consider the case

where a piecewise-smooth signal is decomposed over an overcomplete dictionary. The dictionary is

built by the union of an orthonormal basis defined by the Symmlet-4 family of wavelets [118] and

the respective family of footprints for all the possible translations of the Heaviside function (see

[64]). The former is intended to represent the smooth part of the signal, while the latter is used

to model the discontinuities. Footprints are functions composed by the superposition of all wavelet

coefficients that a given deterministic singularity model (translations of the Heaviside function in

our case) generates on a wavelet basis (see Fig. 6.1). The graphical representation of the dictionary

matrix can be seen in Fig. 6.2, where the columns are the waveforms that compose the dictionary.

Such a dictionary is far from satisfying the sufficient conditions required to ensure the recovery of

an optimal approximant with more than one term. Moreover, even if the best a priori was available,

it is also far from satisfying the sufficient condition based on the weighted cumulative coherence.

Nevertheless, we consider this example because of two main reasons. The first concerns the fact that

sufficient theoretical conditions exposed in the literature are very pessimistic and reflect the worst

possible case. The second reason is that, as previously discussed, experience seems to teach us that

good dictionaries for efficient approximation of signals, are likely to be highly coherent. This fact

conflicts with the requirement of incoherence for the good behavior of greedy algorithms. Hence,

we find this example of special interest to underline the benefits of using a priori information and

additional signal modeling for nonlinear expansions.

W
avelet subbands

Piecewise−constant Function

Footprint

Figure 6.1: Wavelet Footprints description scheme for a piecewise-constant signal [64].
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Figure 6.2: Dictionary formed by wavelets (left half) and its respective footprints for piecewise

constant singularities (right half).

The estimation of the a priori information is based on a signal adaptive parametric model

that establishes a relationship between the dictionary, its internal structure and the input data.

Roughly speaking, the a priori model used here is composed of two steps: first, an estimate of the

location of edges in the signal is generated; then, W is configured so that footprints are favored

to describe discontinuities, while wavelets are privileged for smooth regions. For a more detailed

explanation of the model configuration as well as for the parameter optimization, we refer to Section

6.4, Algorithm 6.1.

The signal f is decomposed by solving BPDN (problem (P2−1)) and WBPDN (Pw
2−1), where the a

priori knowledge is introduced. Both solutions are numerically found using Quadratic Programming

techniques. The trade-off parameter γ controls the `1 norm of the coefficient vector and indirectly

its sparseness. The signal approximations present many components with negligible values due

to the numerical computation: a hard thresholding is thus performed in order to get rid of these

insignificant elements. In this way, it is possible to measure the `0 norm of the vector b. The

data reported here refer to a threshold value of 10−9. However, the question of how to fix such a

threshold is in general still open. Of course, the reconstructions are computed starting from the

thresholded coefficients. Fig. 6.3 shows the reconstructions of the input signal given by a 10-terms

approximation found by BPDN and WBPDN. The left-hand side of Fig. 6.4 illustrates the mean

square error of the approximations.

Let us call b∗ the approximation found by BPDN and bw
∗ the one found by WBPDN. As just

explained, these vectors are thresholded removing the numerically negligible components, and in

this way we are able to individuate a sparse support and thus a subset of the dictionary. Exactly

as explained in Section 4.5.5 it is possible to use BPDN or WBPDN only for selecting a subset of

the dictionary and then recompute the coefficients by a simple projection.

Let us label the sub-dictionary found by WBPDN with Dw
∗ (composed by the atoms correspond-

ing to the non-zero elements of bw
∗ ). Once this is given, there are no guarantees that the coefficients

that represent f are optimal (see Theorems 4.4 and 6.1). These are, thus, recomputed projecting

the signal onto the subspace spanned by the atoms of Dw
∗ and a new approximation of f named

bw
∗∗ is found. Exactly the same is done for BPDN, ending up with a sub-dictionary D∗ and a new

approximation b∗∗. Of course, support(b∗) = support(b∗∗) and support(bw
∗ ) = support(bw

∗∗). For-

mally the approximants found by BPDN and WBPDN after the projection step are respectively:
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Figure 6.3: The original signal reconstructed from a 10-terms approximation computed by BPDN

(left) and WBPDN (right). The comparison shows the improvement given by recomputing the

projections once that the algorithm has selected a sub-dictionary.

f∗∗ = D∗D+
∗ f = Db∗∗ and

fw
∗∗ = Dw

∗ (Dw
∗ )+f = Dbw

∗∗.
(6.24)

Figures 6.3 and 6.4, show how this technique considerably improves the results obtained by solving

problems (P2−1) and (Pw
2−1). Moreover they confirm the advantages of the weighted algorithm.
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Figure 6.4: Errors (in log scale) of the m-term approximations found by BPDN and WBPDN.

On the right-hand, the approximations are computed projecting the signal onto the sub-dictionary

selected by the algorithm (see Eq. (6.24)).

6.3 Approximation by Weighted Greedy Algorithms

In this section we explore the effect of using a priori knowledge in greedy algorithms for the recovery

of the best m-term approximant (f opt
m = D · copt) of a signal f . This work appears in [49, 52], to

which we refer for a more wide exposure of the theoretical results that we report here in short and

for all the proofs.

Following [52], we define a Bayesian formulation of Matching Pursuit that we will call Weighted

Matching Pursuit (Weighted-MP). In Sec. 4.4, we have recalled how MP and OMP use the scalar

product as similarity measure for the selection of the most appropriate atom. This bears some
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resemblance with searching the atom gik
with Maximum Likelihood for a given residual rk. Indeed,

the selection procedure in MP may be seen as a maximization of the probability p (gi|rk), that is

as considering C(rk, gi) ∼ p (gi|rk) in Eq. (4.19). At the same time, |〈rk, gi〉| may be intuitively

considered as a measure of the conditional probability p (rk|gi). In the case where all the atoms are

a priori equiprobable, maximizing p (rk|gi) is equivalent to maximize p (gi|rk). Let us now study

the case where the atoms do not necessarily have the same a priori probability to appear in the

optimal set Γ, and let us assume that we have at our disposal a prior knowledge about the likelihood

of each gi. By means of the Bayes’ Rule, when some a priori p (gi) is available, the probability to

maximize becomes

p (gi|rk) =
p (rk|gi) p (gi)

p (rk)
, (6.25)

where the denominator has a constant value once that rk is given. Emulating this, the selection rule

of MP can, thus, be modified multiplying the modulus of the scalar product by a weighting factor

wi ∈ (0, 1], which depends on the atom index i. This is done in order to represent the insertion of

some heuristic measure of prior information. Hence, now C(rk, gi) in Eq. (4.19) can be considered

such that:

C (rk, gi) = |〈rk, gi〉| · wi.

We call this family of weighted greedy algorithms Weighted-MP. The Weighted-MP approach

does not modify the projection step of the algorithm, allowing to freely select the MP or OMP

projection strategy. For the sake of simplicity, Weighted-MP will be used in the remaining of

the dissertation as a general term to refer to both projection approaches. The kind of projection

will not be specified unless judged relevant. In this work, we assume that the a priori knowledge

(appearing under the form of weights wi) is independent of the iteration of the algorithm (hence,

p (rk) = constant). However, one could decide to update the atom weights at every iteration,

leading to take also into account, in some way, p (rk). This would introduce more flexibility in the

formulation of Weighted-MP.

Unit norm atoms are re-weighted according to some heuristic measure of prior information,

which gives some hint about their likelihood to belong to the optimal set Γ. One may also interpret

Weighted-MP as a greedy algorithm where the use of non-unit norm atoms within the dictionary is

allowed. In the following, sufficient conditions for the recovery of a “correct” atom from the sparsest

m-term approximant are established. Later, we study how a priori knowledge affects the rate of

convergence of greedy algorithms, and finally, an example is presented. As we will see, Weighted-MP

is able to perform better than Pure MP.

6.3.1 Influence of a priori Information on Recovery Conditions

We can now observe the behavior of greedy algorithms when a priori information taken into account.

Theorem 6.3 Let {rk} : k ≥ 0, be the set of residuals generated by Weighted-MP in the approxi-

mation of a signal f , and let f opt
m be its best m-term approximant. Then, for any positive integer m

such that µw
1 (m− 1) + µw

1 (m) < 1 − εmax and

‖rk‖2
2 >

∥∥f − fopt
m

∥∥2

2

(
1 +

m (1 − (µw
1 (m− 1) + εmax))

(
wmax

Γ

)2

(1 − (µw
1 (m− 1) + µw

1 (m) + εmax))
2

)
, (6.26)

Weighted-MP will recover an atom that belongs to the optimal set Γ (in the sense of (6.1)).

In the case that fopt
m can not be reached or just an approximate solution exists, a sub-optimality

factor η ≥ 0 can be introduced by substituting ‖f − f opt
m ‖2

2 by ‖f − fopt
m ‖2

2 (1 + η)
2

in Eq. (6.26).
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Theorem 6.3 means that, if the approximation error at the kth iteration is still bigger than a

certain quantity, then another term of the best m-term approximant can be recovered. This is

similar to the result of [98], but here the use of a priori information results in a smaller bound.

More terms may, thus, be recovered. Finally, the general effect of using a priori knowledge can be

summarized by the following corollary.

Corollary 6.2 Let W (f,D) express a reliable a priori knowledge and assume α = 1, then for any

positive integer m such that µ1(m−1)+µ1(m) ≥ 1 but µw
1 (m−1)+µw

1 (m) < 1−εmax, Weighted-MP

(unlike MP) will recover the atoms belonging to the best m-term approximant f opt
m . Moreover, for

any positive integer m such that µw
1 (m−1)+µw

1 (m)+ εmax ≤ µ1(m−1)+µ1(m) < 1, Weighted-MP

has a weaker sufficient condition than MP for the recovery of correct atoms from the best m-term

approximant. Hence, the correction factor of the right-hand side of expression (6.26) is equal or

smaller in the weighted case for any value of wmax
Γ

∈ (0, 1]:


1 +

m
(
1 − (µw

1 (m− 1) + εmax)
(
wmax

Γ

)2)

(1 − (µw
1 (m− 1) + µw

1 (m) + εmax))
2


 ≤

(
1 +

m (1 − µ1(m− 1))

(1 − (µ1(m− 1) + µ1(m)))
2

)
. (6.27)

Therefore, Weighted-MP is guaranteed to recover equally good or better approximants than

classic MP when reliable a priori information is used (if µw
1 (m) + µw

1 (m+ 1) + εmax < µ1(m− 1) +

µ1(m) < 1, then the better behavior is guaranteed).

6.3.2 Rate of Convergence of Weighted-MP

The energy of the series of residuals rk generated by the greedy algorithm progressively converges

toward zero as k increases. In the same way, Weighted-MP with reliable a priori information

is expected to have a better behavior and a faster convergence rate than the Weak-MP for the

approximation case. A tighter measure of the dictionary coherence conditioned to the signal to

be analyzed is available: µw
1 (m) (where µw

1 (m) ≤ µ1(m)). Then a better bound for the rate of

convergence can be found for the case of Weighted-MP. To prove this, we follow the path suggested in

[174] and [98], introducing as before the consideration of the a priori information in the formulation.

The results formally show how Weighted-MP can outperform Weak-MP when the a priori knowledge

is reliable.

Theorem 6.4 Let W (f,D) be a reliable a priori information matrix and {rk} : k ≥ 0 a sequence of

residuals produced by Weighted-MP, then as long as ‖rk‖2
2 satisfies Eq. (6.26), Weighted-MP picks

up a correct atom and

(
‖rk‖2

2 −
∥∥ropt

m

∥∥2

2

)
≤
(

1 − α2 (1 − µw
1 (m− 1) − εmax)

m

)k−l (
‖rl‖2

2 −
∥∥ropt

m

∥∥2

2

)
, (6.28)

where k ≥ l.

As observed for Theorem 6.3, if fopt
m can not be reached or just an approximate solution exist,

‖ropt
m ‖2

2 is substituted by ‖ropt
m ‖2

2 (1 + η)
2

in Eq. (6.28).

Theorem 6.4 implies that the rate of convergence of Weighted-MP has an upper bound with

exponential decay, as well as Weak-MP. Moreover, in the case where reliable a priori information is

used, the bound appears to be lower. This result suggests that the convergence of suitably weighted

greedy algorithms is faster than in the case of pure greedy algorithms. Of course, this is subject to

the use of a model that puts in relation both the signal and dictionary.
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Depending on the sufficient conditions previously specified, it will be possible to recover the op-

timal set Γ. However, it is not yet clear how long a non-orthogonalized greedy algorithm (Weighted-

MP in our case) will last iterating over the optimal set of atoms in the approximation case. Let us

define the number of correct iterations as follows:

Definition 6.5 Consider a Weighted-MP algorithm used for the approximation of signals. We

define the number of provably correct steps Nm as the smallest positive integer such that

‖rNm
‖2
2 ≤

∥∥f − fopt
m

∥∥2

2


1 +

m
(
1 − (µw

1 (m− 1) + εmax)
(
wmax

Γ

)2)

(1 − (µw
1 (m− 1) + µw

1 (m) + εmax))
2


 ,

which corresponds to the number of atoms belonging to the optimal set that can be recovered given a

signal f , a dictionary D and an a priori information matrix W (f,D).

In the case of OMP and Weighted-OMP, Nm will be always smaller or equal to the cardinality

of Γ. For Weak -MP and Weighted-MP, provided that µw
1 (m− 1) + µw

1 (m) + εmax < 1, the provable

number of correct iterations will depend on the final error of the best m-term approximation. In

the following theorem, bounds on the quantity Nm are given for Weighted-MP.

Before stating the theorem, the reader should note that from now on, wmax
Γl

defines the same

concept as in (6.3) for an optimal set of atoms Γ of size l, i.e. for Γl.

Theorem 6.5 Let W (f,D) be a reliable a priori information and {rk} : k ≥ 0 a sequence of

residuals produced by Weighted-MP when approximating f . Then, for any integer m such that

µw
1 (m− 1) + µw

1 (m) + εmax < 1, we have N1 ≤ 1 and for m ≥ 2:

• if 3
∥∥ropt

1

∥∥2

2
≥ m ·

∥∥ropt
m

∥∥2

2
(1 − εmaxm

) ·
(
wmax

Γ

)2
, then

2 ≤ Nm < 2 +
m

1 − µw
1 (m− 1) − εmax

log




3
∥∥ropt

1

∥∥2

2

m ·
∥∥ropt

m

∥∥2

2
(1 − εmaxm

) ·
(
wmax

Γ

)2


 . (6.29)

• else Nm ≤ 1.

From (6.29) we can draw that the upper bound on the provably correct number of steps Nm

is tighter for Weighted-MP if a reliable a priori knowledge is used. Indeed, in accordance with

Theorem 6.4, which states a tighter residual error convergence bound for Weighted-MP, one can also

have a tighter estimate for Weighted-MP about which is the maximum number of good iterations

the algorithm might do. If some a priori is available, some atom interactions will not influence

µw
1 (m− 1) in Eq. (6.29), unlike in the case of Theorem 7 in [98] where µ1(m− 1) was used.

Moreover, in a situation where the reliable a priori model was discriminative enough, we are

sure that there would be additional room for an improvement on the number of correct iterations

recovered by the greedy algorithm with respect to [98]. The term wmax
Γ

helps to increase the value of

the bound, describing the fact that Weighted-MP can recover a higher number of correct iterations

than MP. In addition, compared to the case when no a priori information is available, the condition

for the validity of bound (6.29) is softened. The assumption of good discrimination capabilities of

the a priori model is somehow unrealistic in practice, i.e. a small value for wmax
Γ

indicates that the

model can already discriminate between Γ and Γ. Nevertheless, the result of Theorem 6.5, gives a

better estimate on the upper bound of Nm thanks to the use of µw
1 (m−1) instead of µ1(m−1), and

furthermore it suggests that using an a priori model should have a positive effect on the stability of
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Weighted-MP. In practice, if the prior is capable to handle some punctual ambiguity that may affect

the choice of the appropriate function at a given MP step, then the benefits for the convergence of

the algorithm can be of extreme relevance. This can be the case even if the a priori model does not

supply a good discrimination between Γ and Γ. Examples in Sections 6.3.3 and 6.4 illustrate this

situation.

6.3.3 Example: Use of Footprints and Weighted-OMP for Sparse Ap-

proximations

We examine again the example presented in Section 6.2.4, but this time using Weighted-MP. The

dictionary and the input signal are illustrated in Section 6.2.4. For an explanation of the prior model

and the extraction of the a priori matrix, see Sec. 6.4.

Figure 6.5 presents, from left to right, the original signal and the two approximants obtained

by OMP without and with a priori information. The input signal has a polynomial degree which

is higher than the number of vanishing moments of the Symmlet-4. With very few components,

the algorithm benefits from the a priori information estimated from the signal, and gives a much

better approximation. A more global view of this enhancement can be seen in Fig. 6.6 where the

convergence of the approximation error is presented. The use of weights is definitively helpful and

a considerable reduction of the error is achieved for a small number of terms.
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Figure 6.5: Comparison of OMP based approximation with 10 terms using the footprints dictionary

(Fig. 6.2). Left: Original signal. Middle: “blind” OMP approximation. Right: OMP with prior

knowledge of the footprints location.

6.4 Natural Signal Approximation with an A Priori Model

In this section we apply the methodology introduced in Sections 6.2 and 6.3 to natural signals. We

also discuss the problem of finding reliable a priori information on a concrete example. Moreover,

we show how the a priori weights can be automatically extracted from the data and optimized

in order to maximize the performance of the weighted algorithms. We approximate several 1-D

signals, extracted from a variety of columns of cameraman and Lena images that can be considered

as piecewise-smooth, by using an overcomplete, coherent dictionary.

6.4.1 Modeling the Relation Signal-Dictionary

The dictionary is composed by the union of the Symmlet-4 orthonormal basis, used to model smooth

parts of the signal, and the set of piecewise-constant footprints meant to model discontinuities (see

Sec. 6.2.4 and Fig. 6.2). Since the input signal has 256 samples, D is a matrix of size 256×512. The
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Figure 6.6: Rate of convergence of the error with respect to the iteration number in the experiment

of Fig. 6.5

weighting matrix W (f,D) is generated by means of an estimation of the locations where footprints

are likely to be used, assuming that in such locations wavelets have less probability to appear.

This discrimination does not penalize locations where a footprint is likely to be placed (thus the

weighting factor remains 1). On the contrary, wavelets that overlap the footprint, as well as footprints

considered unlikely to be used, get a penalizing factor β ∈ (0, 1]. The modeling of the interaction

between the signal and the dictionary is performed using the Algorithm 6.1.

Algorithm 6.1: W (f,D) estimation

Require: D = DSymmlet ∪ DFootprints, define a threshold λ , define a penalty factor β

1: vdiff = D+
Footprints · f {Footprints location estimation (edge detection)}

2: Threshold vdiff by λ putting greater values to 1 or β otherwise.

3: W diag
footprints = vdiff {Diagonal of the sub-matrix of W (f,D) corresponding to footprints.}

4: Create W diag
wave s.t. all wavelets intersecting the found footprints locations equal β, set to 1

otherwise.

5: W (f,D) = diag
([
W diag

wave W diag
footprints

])
;

As one can observe, two parameters configure the model that generates W (f,D): a threshold λ

and a penalty weight β. We will show later that these can be selected by an optimization procedure

that minimizes the average energy of the approximation error.

6.4.2 Signal Approximation

We resume the general procedure for the signal approximation by these two steps:

1. Estimation of the a priori information from the “real world” signal using an a priori model.

2. Use of a weighted algorithm (greedy or relaxed) based on the estimated a priori knowledge to

find the appropriate atoms subset. Optionally, once these have been selected, their coefficients

can be computed again, by means of a simple projection.
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Furthermore, an iterative version of this algorithm can be considered in order to optimize the

parameters that configure the a priori model used in the first step (λ and β in our examples). This

can be seen as a kind of Expectation Maximization algorithm. The simplest approach for parameter

tuning can be a grid search, or a multi-scale grid search. Nevertheless, much more sophisticated and

efficient search techniques may be used to optimize the a priori models. See [149] for some global

optimization techniques.

6.4.3 Results

Now quantitative impact of using weighted algorithms is illustrated in terms of the residual error

energy. Than, we describe how atoms can represent the main features of a signal, and finally, we

explore the influence of tuning the two parameters that configure our penalty model.

Approximation Results with OMP

The improvement of Weighted-OMP in the case of sparse approximations is assessed by the rate of

convergence of the residual energy, on the right-hand side of Fig. 6.7: the graph shows that after

few iterations, Weighted-OMP selects better atoms than classic OMP. Hence the convergence of the

error improves and this yields a gain of up to 2 dB.
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Figure 6.7: Experiment of approximating the 1-D signal extracted from the 140th column of

cameraman (On the left). On the right, the rate of convergence of the residual error for OMP and

Weighted-OMP.

We want to stress again that, extracting relevant footprints and wavelets by simply selecting

those with higher a priori weights does not yield good sparse approximations. The a priori model

is just supposed to give rough hints about which functions are useful for every particular signal

feature. The a priori model is not supposed in any case to give a precise profile of the exact

atoms to be used in a particular signal approximation. For instance, the weights computed in our

example equal 1 for more than 200 functions, making thus impossible to use thresholding on W as

a self-standing selection criterion. Indeed, the use of simple thresholding would imply that β = 0

in the model. As one can see in Fig. 6.10 (“probability weight” axis), β = 0 does not supply the

best approximation error average. The model must be used in conjunction with the atom selection

procedure of an appropriate nonlinear subset selection algorithm.
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Approximation Results with BPDN

The same signal is now approximated by BPDN and WBPDN. As explained in Section 6.2.4, the

pursuit algorithm is used only to select a dictionary subset and then the coefficients of the approxi-

mation are computed again, by means of a simple projection. Fig. 6.8 shows the decay of the error

versus the number of atoms. It is clear how the use of the a priori helps the algorithm in finding

a better approximation of the signal. The results concerning WBPDN are obtained by adopting a

weighting matrix that corresponds to λ = 90 and β = 0.2. Notice that these values are not optimal

for all the numbers of non-zero coefficients, as can be seen in the area between 34th and 43rd coef-

ficients in the graph of Fig. 6.8. Better results can be achieved by tuning appropriately β and γ for

any desired m.
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Figure 6.8: Error (in dB) obtained by BPDN and WBPDN. Both results are obtained by using

quadratic programming for selecting a dictionary subset and then recomputing the coefficients by

projecting the signal onto the span of the sub-dictionary. The procedure is illustrated in Sec. 6.2.4.

Capturing the Piecewise-smooth Component with Footprints Basis

Here, the results intend to underline the importance of selecting the appropriate atom to represent

a particular signal feature. In the top row of Fig. 6.9 we can see the resulting approximants after

50 iterations of OMP (left) and Weighted-OMP (right). The result obtained by including the a

priori is about 1.5 dB better than the one obtained by OMP. At this point, it is important to

observe the bottom row of Fig. 6.9. These waveforms represent the signal components captured

exclusively by the footprints and wavelet scaling functions. These components should correspond to

the piecewise-smooth parts of the signal. However, in the case of OMP (bottom left) the piecewise-

smooth component captured by footprints and low-pass functions is far from what one could expect.

Intuitively one can understand that OMP is failing in the selection of atoms. On the other hand,

the result obtained by Weighted-OMP (bottom right) clearly shows that footprints and Symmlet-4

scaling functions capture a much more accurate approximant of the piecewise-smooth component

of the signal. We can thus argue that a better approximation is achieved by using the a priori

information, and this leads to a sparser approximation too.
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Figure 6.9: Top: Approximation after 50 iterations of OMP with (right) and without (left) a

priori information. Bottom left: Signal components captured by Symmlet scaling functions and

Footprints using OMP. Bottom right: Signal components captured by Symmlet scaling functions

and Footprints using Weighted-OMP.
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Parameter Search

Let us now consider the influence of the parameters λ and β in the average quadratic error of the

residues obtained by Weighted-OMP, i.e.

E {rk|λ′, β′} =

K−1∑

k=0

‖rk‖2
2

K
, (6.30)

such that rk is obtained fixing λ = λ′ and β = β′.

In Fig. 6.10, the magnitude of Eq. (6.30) is shown as a function of λ (model threshold) and

β (probability weight). The lower the value of E {rk|λ′, β′}, the higher the probability of the

parameters to be the good ones.
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Figure 6.10: Representation of the expectation map depending on the parameters that configure

the a priori model in the experiment set up in Fig. 6.7. The expectation corresponds to the average

energy of the residual error.

Hence, it can be easily observed that a unique global optimum in the parameter space exists. In

this example, thanks to the convexity of the solution, the set of parameters which best fit the data

model can be found by some iterative procedure. However the choice of the optimal values for λ

and β is not straightforward since it is signal-dependent. Additional experimental results may be

found in [50, 52].

6.5 Including a Priori Information in Exact Representation

Problems

Up to now, in this chapter we have analyzed the effects of introducing a priori information in sparse

approximation algorithms. This section focuses on the exact representation problem. To show the

impact of reliable priors, we study the behavior of Weighted Basis Pursuit and Weighted-MP.
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6.5.1 Exact Recovery via WBP

The BP principle selects the signal representation b that has minimal `1 norm, as sown in Eq. (4.31).

A variation of this method which allows to take into account the likelihood matrix W (f,D), is given

by Weighted Basis Pursuit (WBP). This method consists on minimizing the `1 norm of a weighted

vector, leaving the constraints unchanged:

(Pw
1 ) arg min

b∈Rd

‖W−1b‖1 s.t. Db = f. (6.31)

We recall that the entries of W (f,D) are in (0, 1]. In this way the atoms with low probability to be

selected are penalized by inducing a small weighting factor in W . It can be proved that WBP can

be equivalently reformulated as a Linear Programming problem [85], just as BP.

In [117] the authors propose a minimization problem formally identical to (6.31), however it is

not aimed at improving the `0 sparsity of the representation but at using a different cost function,

for example considering the Total Variation. Moreover, they also study the case where the matrix

that plays the role of W−1 is not rectangular.

It is possible to establish an exact recovery condition for Weighted Basis Pursuit. Next theorem

basically states which is the sufficient condition such that, given the weights W (f,D), WBP is a

correct algorithm for recovering an exact sparse superposition of m atoms from D. Let us just point

out that, in the following, we will call bΓ the vector giving the optimal signal representation. It

thus contains the coefficients corresponding to the functions in DΓ and its size is m.

Theorem 6.6 Given a dictionary D and an a priori matrix W (f,D), Weighted Basis Pursuit re-

covers the optimal representation of a sparse signal f = DΓbΓ if:

sup
gi∈DΓ

∥∥∥(DΓWΓ)
+
gi · wi

∥∥∥
1
< 1. (6.32)

Proof: Suppose that the optimal representation of f is given by DΓbΓ and that condition

(6.32) is respected. Suppose also that there exists a different representation f = Daltbalt: there

should be at least one atom that belongs to Dalt but does not appear in DΓ. Let us call it gx. What

we want to prove is that ∥∥W−1
Γ bΓ

∥∥
1
<
∥∥W−1

alt balt

∥∥
1
, (6.33)

where Walt is the square diagonal matrix containing the weights corresponding to the atoms in Dalt

. ∥∥W−1
Γ bΓ

∥∥
1

=
∥∥W−1

Γ D+
ΓDΓbΓ

∥∥
1

=

∥∥W−1
Γ D+

ΓDaltbalt

∥∥
1

=

∥∥W−1
Γ D+

ΓDaltWaltW
−1
alt balt

∥∥
1

=

∥∥∥(DΓWΓ)
+

(DaltWalt)W
−1
alt balt

∥∥∥
1
.

If the columns of M = (DΓWΓ)
+

(DaltWalt) do not have identical `1 norms, using Lemma 3.4 in

[174] we can state that: ∥∥W−1
Γ bopt

∥∥
1
< ‖M‖1,1 ·

∥∥W−1
alt balt

∥∥
1
,
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but

‖M‖1,1 = sup
gi∈Dalt

∥∥∥(DΓWΓ)
+
gi · wi

∥∥∥
1
.

There are now two possibilities: either gi ∈ DΓ and so the supremum is ≤ 1, either gi ∈ DΓ and so

the supremum is smaller than 1 thanks to (6.32). In both cases we obtain that (6.33) is respected.

On the other hand, if all the columns of the matrix M have the same `1 norm, this must equal∥∥∥(DΓWΓ)
+
gx · wx

∥∥∥
1
, where wx is the weight corresponding to gx. Hypothesis (6.32) ensures that

this norm is strictly smaller than 1, thus:

∥∥W−1
Γ bΓ

∥∥
1
≤ ‖M‖1,1 ·

∥∥W−1
alt balt

∥∥
1
,

but this time ‖M‖1,1 < 1. We can therefore conclude that in both cases (6.33) is valid and so WBP

finds the sparsest solution.

6.5.2 Exact Recovery via Weighted-MP

It is possible to prove that Weighted-MP/OMP is also able to give an exact representation of a

signal, i.e. to find all the “good” atoms. In this section we report the main theoretical result

that describes the capacity of Weighted-MP/OMP to exactly recover a given signal. It establishes

the Exact Recovery Condition for Weighted-MP/OMP, a sufficient condition for recovering at each

iteration the atoms in the optimal index subset Γ. However, we do not include the proof, which can

be found in [51] and [49], toghether with a more detailed explanation.

Theorem 6.7 Given an a priori matrix W (f,D) and a sub-optimality search factor α ∈ (0, 1], then,

for any index set Γ such that f ∈ span(gγ , γ ∈ Γ), Weighted-MP/OMP will recover a “correct” atom

at each iteration if

sup
gi∈DΓ

∥∥∥(DΓWΓ)
+
gi · wi

∥∥∥
1
< α. (6.34)

Theorem 6.7 states, as depicted by (6.34), that the use of a priori weights will help meeting the

sufficient condition that guarantees that a greedy algorithm will recover the elements of the sparsest

representation of f . Indeed, as can be observed in (6.34), given a dictionary and an appropriate

WΓ associated to f , the weights that multiply each gi ∈ DΓ may help reducing the supremum in

Eq. (6.34).

Finally, we can observe that there is a single sufficient condition, valid for both WBP and

Weighted-MP/OMP, for recovering the “correct” set of atoms involved in the optimal representation

of a signal. Such condition corresponds to Equation (4.33) for the case without weights.

6.5.3 Exact Recovery Bounds for WBP and Weighted Greedy Algorithms

In the following we provide a sufficient condition based on the weighted cumulative coherence for the

recovery of the sparsest exact representation. Such condition is valid for both WBP and Weighted

Greedy Algorithms.

Theorem 6.8 Let W (f,D) be the data dependent weighting matrix and let εmax = sup
γ∈Γ

∣∣1 − w2
γ

∣∣.

If, for any index set Γ of size at most m, such that f =
∑

γ∈Γ

bγgγ , we have

µw
1 (m) + µw

1 (m− 1) < 1 − εmax, (6.35)
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then (6.32) holds and WBP recovers the optimal representation of the sparse signal f . Furthermore,

if
µw

1 (m)

1 − (µw
1 (m− 1) + εmax)

< α (6.36)

is also enforced, then (6.34) holds and Weighted-MP will pick up an atom belonging to the optimal

set Γ at each step. Moreover, Weighted-OMP will exactly recover the sparsest representation of f .

Since µw
1 (m) ≤ µ1(m), one can intuitively see that a reliable a priori knowledge can help a

greedy algorithm or BP when the dictionary does not satisfy the hypothesis of Eq. (4.33). This will

be possible when the weights corresponding to the atoms in D \DΓ are sufficiently small.

Proof: Theorems 6.7 and 6.6 give the conditions under which Weighted Weak -MP and WBP

recover the optimal set of atoms. In this proof the factor α is conserved independently of the

algorithm in use. Note that for the particular results of WBP and Weighted-MP/OMP this value

equals 1.

Starting from (6.34) and following the procedure suggested in [174] an upper bound based on

µw
1 can be obtained:

sup
gi∈DΓ

∥∥∥(DΓWΓ)
+
gi · wi

∥∥∥
1

=

sup
gi∈DΓ

∥∥∥∥
((
DΓW

T
Γ

)T (
DΓW

T
Γ

))−1 (
WΓD

T
Γ

)
gi · wi

∥∥∥∥
1

≤

∥∥∥∥
((
WΓD

T
Γ

) (
WΓD

T
Γ

)T)−1
∥∥∥∥

1,1

· sup
gi∈DΓ

∥∥(WΓD
T
Γ

)
gi · wi

∥∥
1
.

(6.37)

The first term on the right hand side of the inequality corresponds to the 1, 1-norm of the inverse

Gram matrix of the weighted sub-dictionary of optimal functions. This can be expressed as:
((
WΓD

T
Γ

) (
WΓD

T
Γ

)T)−1

= (I +Aw)
−1
, (6.38)

where I denotes the identity matrix and Aw is a symmetric matrix. Due to the diagonal weight ma-

trices WΓ, the matrix Aw is not composed only of the off-diagonal elements. Adding and subtracting

the identity matrix, we can rewrite (6.38) in the following way:

(I +Aw)
−1

=
(
I +

(((
WΓD

T
Γ

) (
WΓD

T
Γ

)T)− I
))−1

.

Akin to [174] this can be expanded by means of Neumann series [99] and, if ‖Aw‖1,1<1, we have:
∥∥∥(I +Aw)

−1
∥∥∥

1,1
=

∥∥∥
∑∞

k=0 (−Aw)
k
∥∥∥

1,1

≤
∞∑

k=0

‖Aw‖k
1,1 =

1

1 − ‖Aw‖1,1
.

Thus, ∥∥∥∥
((
WΓD

T
Γ

) (
WΓD

T
Γ

)T)−1
∥∥∥∥

1,1

≤ 1

1 − ‖Aw‖1,1
. (6.39)

The 1, 1-norm of Aw can be expressed as:

‖Aw‖1,1 = sup
gγ∈DΓ


∑

l 6=γ

| < gl, gγ > | · wl · wγ + |1 − w2
γ |


 , (6.40)
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where the summation comes from the off-diagonal elements and the last term comes from the

diagonal part. Note that for convergence of the Neumann series we need ‖Aw‖1,1<1. This is

ensured by hypothesis since ‖Aw‖1,1 ≤ µw
1 (m− 1) + εmax and

µw
1 (m− 1) + εmax < 1

by (6.35) and (6.36). From (6.39) it follows that:

∥∥∥∥
((
WΓD

T
Γ

) (
WΓD

T
Γ

)T)−1
∥∥∥∥

1,1

≤ 1

1 − (µw
1 (m− 1) + εmax)

. (6.41)

Coming back to Eq. (6.37), the second term can be bounded as

sup
gi∈DΓ

∥∥(WΓD
T
Γ

)
gi · wi

∥∥
1
≤ µw

1 (m). (6.42)

Finally, from (6.41) and (6.42) we obtain

µw
1 (m)

1 − (µw
1 (m− 1) + εmax)

< α, (6.43)

and this proves the theorem.

Since µw
1 (m) ≤ µ1(m), we claim that considering reliable a priori information can help a dic-

tionary unable to satisfy Eq. (4.33) to recover the right set of functions. In other words, reliable

weights allow for using less incoherent dictionaries.

Corollary 6.3 Given a dictionary D and the data dependent diagonal matrix W (f,D), where wi ∈
(0, 1], we can state the following:

• For a Weighted MP/OMP with weakness α = 1 and WBP a better behavior in the recovery of

exact sparse representations is expected with respect to the classical algorithms if:

µw
1 (m) + µw

1 (m− 1) < 1 − εmax

and

µ1(m) + µ1(m− 1) ≥ 1.

• For a Weighted Weak-MP a better behavior in the recovery of exact sparse representations is

expected with respect to the classical algorithms if:

µw
1 (m)

1 − (µw
1 (m− 1) + εmax)

< α

and
µ1(m)

1 − µ1(m− 1)
≥ α.

Note that, when no a priori information is available (i.e. W (f,D) = I), and consequently

εmax = 0, Theorem 6.8 boils down to the results found by Tropp [174] and stated in Chapter 4.
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6.5.4 A Toy Example for WBP in R
5

Let us now illustrate Theorems 6.6 and 6.8 with a toy example of exact signal recovery via (Weighted)

Basis Pursuit. Suppose we have a signal f = [0,M,A,M, 0]′ ∈ R
5 depicted in Figure 6.11 and we

want to decompose it with BP over the following dictionary D = {gi}i=1,...,10:

D =




1 0 0 0 0 1√
2

0 0 0 0

0 1 0 0 0 1√
2

1√
2

0 0 1√
2

0 0 1 0 0 0 1√
2

1√
2

0 0

0 0 0 1 0 0 0 1√
2

1√
2

1√
2

0 0 0 0 1 0 0 0 1√
2

0



.

A

M

0

Figure 6.11: Signal f ∈ R
5 to decompose over D

The signal f has, of course, multiple representations over D; let us focus on two of them, setting

M = 1 and A = 3:

f = (g3, g10) ·
(

3√
2

)
= DΓ · bΓ

= (g3, g7, g8) ·




1√
2√
2


 = Dalt · balt.

(6.44)

Computing (4.33) for m = 2 we obtain a value around 2.1, thus bigger than 1. Hence, we have

no guarantee that BP finds the sparsest solution, and in fact, BP selects the second representation

in (6.44) which has a smaller `1 norm.

Let us now insert a weighting matrix W with the diagonal elements wi equal to:

wi =





1 if i = 1, 10

0.95 if i = 3

v < 1 otherwise

. (6.45)

We know that the optimal support is given by Γ = {3, 10}. In this situation we can compute

εmax using Eq. (6.4), obtaining εmax = 1 − w2
3 = 0.0975. Let us now set v = 0.4: we thus have

µw
1 (2) + µw

1 (1) ' 0.85 < 1− εmax. Therefore the hypothesis of Theorem 6.8 is respected and in fact

WBP selects the sparsest representation.

This toy example shows how the use of a priori knowledge can lead the decomposition algorithm

to find the sparsest solution. Here we do not question how we obtained the a priori provided by

W , but note that the weights themselves do not contain sufficient information to select the optimal
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subset of atoms. As a matter of fact, just selection the waveform corresponding to the biggest

weights would have not provided the set {g3, g10}, but the set {g1, g10}.
We conclude by observing that WBP is able to find the sparsest signal representation of f even

with a higher value of v, for example v = 0.8. However in this case µw
1 (2) + µw

1 (1) ' 1.48 and

the hypothesis of Theorem 6.8 are no longer verified. This bears out the fact that the condition of

Theorem 6.8 is quite pessimistic. The same is valid for the the case without weights in Eq. (4.33).

6.6 Applications

In this section we have a closer look to how the framework of weighted algorithm can be applied

to solve real problems. We work with two very different kinds of structured signals: first images,

then Electrocardiograms (ECG). These examples also give practical ways of computing the weights

exploiting the a priori information we have about the signals.

6.6.1 Images

Following the WBPDN paradigm, we can decompose images over a redundant multi-component

dictionary composed by a sub-dictionary Dedge aimed at representing the edges and one Dsmooth for

representing the smooth parts.

BPDN and its weighted version can be solved by QP, but if the size of the signal is big and the

dictionary highly redundant the complexity is indeed prohibitive. This makes practically infeasible

working with images and dictionaries similar to the ones introduced in Section 3.2. Solutions to this

problem can be either splitting the image into blocks or partitioning the dictionary and minimizing

the cost function in several step. The first method has the drawback of introducing blocking artifacts,

moreover the possibility to catch long structures (longer than the block size) runs out. The second

method is similar to the one used in the previously cited papers [160, 165, 166] and suffers from

some restrictions concerning the convergence, as explained in Section 4.

Given the too high complexity of the problem, in this section we just give an example with a

small toy image of size 16 × 16. Furthermore, we use a much smaller dictionary. More in details,

Dedge is generated by translating, anisotropically scaling and rotating a 2-D mother function on

the model of the dictionary presented in Section 3.2. Only one generating function is used (the

one in Eq. (3.44)), the number of rotations and scaling factor is strongly reduced and the bending

avoided. The sub-dictionary Dsmooth is composed by translated and isotropically scaled versions of

a bidimensional Gaussian (see Eq. (3.51)).

Edginess

The algorithm we adopt for computing the weights is based on the edginess of the image, i.e. a

quantity that says how much a certain position in the image can be considered like an edge. From

our point of view we can interpret a (non binary) edginess value as an indication about how much

a given location (x1, x2) is likely to be a center of an edge-oriented basis function.

The edginess is computed through the analysis of the dual local autocovariance matrix, following

the method of [38, 182]. Differences in the eigenvalues of an autocovariance matrix indicate directions

at which the local Fourier power spectrum of a function is slowly decreasing. It is therefore possible

to assign a certain degree of edginess to any location in an image by looking at the relationship

between these eigenvalues. Thanks to a slight variation of the method described in [38] we define an

edginess e(x1, x2) with values in [0, 1] which tends to 1 when the point (x1, x2) has high probability
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to lie on an edge:

e(x1, x2) = 1 −
(
λmin

λmax

)2

. (6.46)

λmin and λmax are respectively the minimum and maximum eigenvalue of the dual local autoco-

variance matrix centered in (x1, x2).

Since we are working with a dictionary composed of functions well localized in the space, we can

assign e(x1, x2) as weight to the functions of Dedge centered in (x1, x2). Consequently the corre-

sponding functions in Dsmooth will be weighted by 1 − e(x1, x2). In practice, as done in Algorithm

6.1 the edginess value above a certain value are set to 1. Note that according to the definition

of Weighting matrix, its diagonal elements cannot be zero, because this will cause a problem in

Eqs. (6.6) and (6.31). Practically setting wi to zero is equivalent to removing the atom gi from the

dictionary.

Results

We now briefly show some results, approximating the 16× 16 image on the left-hand side of Figure

6.12 with 31 atoms from the MCD. The right-hand side of the figure displays the edginess computed

by using Eq. (6.46).

Figure 6.13 shows the image reconstructed by the coefficient selected by WBPDN and BPDN.

The MSE is respectively 42.7 and 89.5, reflecting the advantages of properly exploiting the a priori

information coming from the edginess. The gain of WBPDN is in fact given by the placement of

more atoms on the contours. Remark that the recovery conditions are not satisfied for BPDN nor

for WBPDN, so there is no guarantee that they find the optimal approximation. Incidentally, we

observe that WBPDN is also faster than its non weighted version. Such speed-up can be explained

by the fact that the convergence to the final solution is helped by the weights. Anyway this depends

on the implementation strategy adopted for solving the QP problem and it is not necessarily always

true.
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Figure 6.12: Original image and its edginess.

Of course there exist many other methods to measure the edginess and nothing constraint us to

this particular technique and for example we can make use of the method of Canny [30]. However, the

technique of Czaja and Wickerhauser that we adopted here can offer some interesting development.

In fact, the dual local autocovariance matrix which determines the edginess through Eq. (6.46) can
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Figure 6.13: Images approximated by 31 atoms selected by WBPDN (left) and BPDN (right).

also give informations about the orientation of the edge. Again in [38] it is proved that the eigenvector

of the larger eigenvalue will be normal to the edge (of course when such a normal exists). Thus, one

can determine the edginess of each pixel and at the same time estimate the direction of the edge.

We can then imagine a more general way to assign weights to the atoms: if we have a sub-dictionary

parametrized as follows

Dj = {g(~b,θ,~a,...)(x1, x2)}~b,θ,~a,... , (6.47)

we can also consider the weights as:

W = W (~b, θ,~a, ...). (6.48)

In this case the weights do not only depend on the location of the atoms but potentially on all its

parameters. This model can certainly expand the horizon of the framework and improve the power

of the weighted algorithms.

6.6.2 Electrocardiograms

The standard 12-lead ECG is a representation of the electrical activity of the heart, recorded from

electrodes on the body surface. In Figure 6.14 we can see the evolution of the electrical activity

during a healthy cardiac activation sequence (sinus rhythm) by means of its ECG representation.

The depolarization of the atria manifests itself as the P wave and the depolarization of the ventricles

causes the feature known as the QRS complex. The subsequent repolarization of the ventricular

mass produces the T wave and the cardiac cycle concludes, while the repolarization of the atrium is

hidden in the QRS complex. The U wave in the figure rises from the late ventricular repolarization

which, however, is not always present and can be neglected for our purposes.

The atrial fibrillation (AF) is a supraventricular arrhythmia associated with the asynchronous

contraction of the atrial muscle fibers. Without giving further clinical details which can be found for

example in [186] we just observe that on the ECG, AF is described by the replacement of consistent

P waves by rapid oscillations or fibrillatory waves that vary in size, shape, and timing, associated

with an irregular, frequently rapid ventricular response.

The suitable analysis and characterization of atrial fibrillation from ECG recordings needs a

previous isolation of the atrial activity component, due to the much higher amplitude of the elec-

trical ventricular activity. Unfortunately, this low amplitude and the fact that both signals possess
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Figure 6.14: A scheme of an ECG signal exhibiting normal sinus rhythm.

spectral distributions that notably overlap, making linear filtering solutions unsuccessful, hinder this

operation. Several methods have already been proposed to isolate the atrial activity when atrial

fibrillation occurs. For example we can cite [31, 111, 112, 167].

In the following, we show how this problem can be treated as a source separation issue. Starting

from the ECG signal, we aim at obtaining two different signals containing the isolated components of

the ventricular activity (VA) and the atrial activity (AA). This task turns out to be very challenging

since both components overlap in the frequency domain and are not orthogonal.

We model the input ECG signal f as a superposition of signal containing only AA and a signal

containing only VA:

f ' fAA + fV A. (6.49)

This model is the counterpart of Eq. (3.48) for images and it thus opens for the use of a multi-

component dictionary. Suppose we have a MCD composed by two sub-dictionaries: DV A suited for

representing the ventricular activity and DAA, of course, suited for representing the atrial activity.

We can therefore use an analysis algorithm to obtain a sparse m-term approximation (b) of an

ECG signal:

f ' D · b = DAA · bAA +DV A · bV A.

Observe that b is composed of two parts, containing the coefficients concerning DAA and DV A. Now

we can just recover the two components of the ECG signal by means of a simple reconstruction using

only one sub-dictionary. Formally:

fAA ' DAA · bAA

fV A ' DV A · bV A.
(6.50)

Dictionary design

The sub-dictionary oriented to represent the ventricular activity is generated by all possible trans-

lation of Generalized Gaussian functions:

gV A(t) = C1 exp

(
−
( |t− p|

α

)β
)
, (6.51)

where C1 is a normalizing constant, α determines the scale and β the peakiness. This waveform

allows to well approximate the structure of a VA complex using few atoms. Fig. 6.15 shows on the

left a QRST complex and its approximation by using only 3 atoms. With respect to the Gabor
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function, the parameter β lets us approximate with more accuracy the Q and R peaks. The values

of the two parameters of the generalized Gaussian have been chosen heuristically after an extensive

set of tests [125]: α ∈ {3, 4, 5, 6, 7} for the Q and R waves and α ∈ {49, 50, 51, 52, 53, 54} for the

T wave, while β ∈ {1.5, 1.6, ...2.2}. Together with p, this makes DV A highly coherent, but also

very flexible for VA approximation. However, such dictionary is far from being optimal, and several

improvements are still possible, mainly concerning the approximation of T waves.
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Figure 6.15: Left: QRST VA complex and its approximation using 3 atoms. Right: Effect of β on

the GGF (see Eq. (6.51)).

The sub-dictionary designed to catch the structures of the AA is built by scaling, translating

and modulating a Gabor function, its atoms having the following form:

gAA(t) = C2 exp

(
−
(
t− p

α
√

2

)2
)

cos

(
2πk(t− p)

N
− ∆ψ

)
, (6.52)

where C2 is a normalizing constant, n the length of the signal,α tunes the scale, k the frequency and

∆ψ the phase. The values of these parameters has been determined through a technical analysis

and experiments on several real and simulated ECG signals. This waveform is specially adapted for

AA approximation. Indeed, as can be observed in Fig. 6.16, fibrillating AA is of oscillatory nature,

which is a perfect fit for the optimal spatio-temporal frequency localization of Gabor functions ( see

Fig. 6.16).
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Figure 6.16: Left: Example of a simulated AA wave during fibrillation. Right: Gabor atom.
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The dictionary we propose here is the result of empirical and theoretical studies on real and

simulated ECG signals. Its design has been deeply studied in [125], where a particular care is

reserved in bounding the coherence between DAA and DV A. Finally the MCD turns out to be

highly redundant and able to well represent the ECG signals. However some problems are still

present mainly concerning the T waves.

A priori information and sparse decomposition

Where does the a priori information come from? Mainly from medical knowledge about the position

of the Q, R, S and T waves (see also [155]). In practice we also know that there are intervals where

only AA is present, and it is easy to localize the QRS starting points.

Thanks to the structure of VA, fECG can be divided in VA periods. In addition, each VA

period can be divided in a set of intervals corresponding to the different VA waves (Q, R, S and

T) and an interval without ventricular activity. VA intervals can be estimated and identified in

practice through the use of QRST point estimators. This information can thus be used to generate

the weights of the dictionary atoms, i.e. the diagonal elements of the matrix W . The a priori

knowledge obtained from [155] needs to be related with D in the following way. D is divided in DAA

and DV A. Due to dynamics of AF, AA can be found through all the VA period. Hence, DAA atoms

cannot be penalized. This is the reason why in this study we force: wl = 1 ∀l : gl ∈ DAA. To the

contrary, the selection of gl ∈ DV A can be successfully influenced by the use of the available a priori

information. DV A is composed of a block optimized for QRS waves (ventricular depolarization)

and a block designed for T waves (ventricular repolarization). Depending on the VA interval, wl

can be set to 1 for every gl ∈ DV A belonging to the appropriate kind for that interval. In case a

gl is unsuitable for a given interval, wl can be set to a penalizing factor 0 ≤ τ < 1. Thanks to

the reliability of the estimators used in this work, it turned out that the best value for τ in our

experiments is 0. For more details see [54, 125].

The signal is then decomposed by Weighted-Orthogonal Matching Pursuit. The weights stay

constant through iterations, even if making them evolve can be interesting in order to better drive

the iterative decomposition process.

Some Results

A biophysical computer model of the atria was used to obtain a realistic atrial electrical activity on

the torso [101]. The AF signals that were generated in the 12-lead ECG were added to a clinical

4-second standard 12-lead ECG of an AF paroxysmal patient (78 years old) in sinus rhythm in which

the P waves (AA) were removed. The clinical ECG was selected to represent the VA in AF as closely

as possible. The ratio between the power of the original signal (simulated AA) and the estimation

error (estimated AA - simulated AA) was used to evaluate the performance of our method.

First of all, we want to underline that we validated our choice of Weighted-OMP instead of

OMP with these simulated measured 4-second ECG signals. By using Weighted-OMP, we increased

the SNR in the recovery of VA (respectively, AA) by 0.81 dB (respectively, 0.65 dB). All the

following results were obtained by approximating ECG signals with 50 atoms. However further

research could be spent in order to select the optimal number of selected coefficients which should

be, in general, signal dependent. Figure 6.17 shows the resulting separation of VA and AA of

the simulated measured 4-second ECG signal on lead V1. One can see how the proposed method

succeeds in approximating each one of the VA periods separating, at the same time, the AA with

surprising fidelity. In order to study the influence of the AA amplitude on the method, three different

simulated AA signals were created; 50, 100 and 150 % of the original simulated AA amplitude. The
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ratio between the power of the original activity (VA or AA) and the error on the estimated one

was evaluated on leads VR, V1 and V4 (see Table 6.1). We can observe that the quality of the AA

estimation depends on the lead and its original amplitude. The AA SNRs are much higher with

the 150% original amplitude and the overall performance on lead V1 is better than those of other

two leads. Of course, the SNR values are directly related to the signal amplitude and in V1, the

AA amplitude is higher compared to other leads. However, we observe a decrease of VA estimation

performance in lead V1.

1 mV

1 sec

(a)

(b)

(c)

(d)

(e)

Figure 6.17: (a) Simulated measured 4-second ECG signal on V1. (b) Original VA on V1. (c)

Estimated VA on V1 (SNR : 8.69 dB). (d) Simulated AA on V1. (e) Estimated AA on V1 (SNR :

6.81 dB)

Figure 6.18 shows the resulting separation of VA and AA of the clinical 4-second ECG signal

on lead V2. These resulting signals have been validated using estimated power spectral densities

(PSD). The dominant frequency of VA (respectively, AA) is between 1 and 2.5 Hz (respectively,

between 3 and 10 Hz). The fact that there is no presence of VA dominant frequencies in the AA

estimated PSD demonstrates the quality of our clinical results. For more experiments we refer again

to [125].

0.5·AA+VA 1·AA+VA 1.5·AA+VA

lead VR

VA SNR(dB) 11.06 10.88 11.08

AA SNR(dB) -6.94 -1.05 2.61

lead V1

VA SNR(dB) 11.13 8.69 2.41

AA SNR(dB) 3.61 6.81 4.28

lead V4

VA SNR(dB) 12.33 11.94 11.66

AA SNR(dB) -6.53 -0.8 2.4

Table 6.1: Signal-to-noise ratio (dB) on lead VR, V1 and V4. The performance of our method is

tested on 3 different AA amplitudes (50, 100 and 150 % of the original simulated signal).
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X: 1.56 Hz
Y: 0.0100 mV2/Hz

X: 1.56 Hz
Y: 0.0100 mV2/Hz

X: 7.55 Hz
Y: 0.0002 mV2/Hz
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(a)

(b)

(c)

(d)
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(e)

(f)
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Figure 6.18: (a) Clinical 4-second ECG signal on V2 with a dominant frequency of 1.56 Hz (see

its PSD (e)). (b) Estimated VA on V2 with a dominant frequency of 1.56 Hz (see its PSD (f)). (c)

Estimated AA on V2 with a dominant frequency of 7.55 Hz (see its PSD (g)). (d) Estimated AA

on V2 magnified 5 times.

6.7 Discussion

In this chapter we presented a method to take into account the information we have about the

structure of a signal that we want to decompose. Many evidences prove that often the analysis

algorithms fail in capturing the signal’s characteristics. Here we propose a solution to solve this

problem. We already stressed how a natural signal is not only an array of numbers, but an expression

of a physical event about which we usually have a deep knowledge. Therefore it is worth trying to

exploit such knowledge, driving the decomposition to a better, more significant solution. Part of

such knowledge is spent for the dictionary design, but usually it is not enough. In fact a dictionary,

even if well suited for the class of data we want to work with, must be general and able to well

represent all the members of that class. Here we propose a method to better link a very specific

signal with the dictionary.

Remark that we use the expression a priori meaning“before the decomposition”. The information

we refer to, comes from the very specific signal in use and can be extracted by a pre-analysis step,

as shown in the examples. Of course the a priori information also depends on the dictionary. The

utility of considering the a priori information is manifold and it can be particularly important when

working with MCD. For another application we refer to [49].

The use of weights into some highly nonlinear approximation algorithms was previously suggested

in [82]: in the FOCUSS algorithm (see Sec. 4.7.3) one can see the weights in Wpk
as some kind of

a priori knowledge about the solution. In this case an interpretation can be that the algorithm

computes its own a priori information from iteration to iteration.

Another consideration concerns the algorithms based on QP, like Basis Pursuit Denoising and

Weighted Basis Pursuit Denoising whose complexity is too high for many applications, as observed

in Sec. 6.6.1. For this reason a greater applicability can be given by weighted greedy algorithms. In

addition, it is easy to imagine including a weighting procedure in the thresholding algorithm. If the

a priori information expressed by the weights is reliable one can claim that weighted thresholding

is able to find good signal approximations, and of course at an extremely low computational cost.

Aside from complexity issues, personal experience and intuition suggest that the performances of
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BPDN with huge and very redundant dictionaries like many of the ones presented in the examples

are definitely worse than the ones of greedy algorithms. This in spite of the considerations about

the myopia and the locality of greedy algorithms and, of course, independently of the use of weights.

However, up to now there is no proof of this observation, but neither its contrary is verified.

Finally, we conclude this chapter saying how other forms of weighted algorithms are possible.

for example in [85] we have used a weighted version of (P1−1), also solvable by Linear Programming

methods.
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Chapter 7

Conclusion

A natural signal, even in its digital form, is not only an array of numbers, but an organized com-

bination of mutually connected and dependent parts having, in general, a physical meaning. This

dissertation investigates the problem of approximating and simplifying these signals taking advan-

tage of their structure and, at the same time, preserving it.

The main contribution of this work is a decomposition framework based on multi-component

redundant dictionaries, where any dictionary component is inspired by a signal characteristic. Such

a concept depends on a predefined signal model and can be implemented either by using algorithms

that take into account the a priori information available as shown in Chapter 6, or by dividing the

decomposition in more steps, as done in Chapter 5 for natural images. In particular, the a priori

information can appear under the form of weights: we propose weighted algorithms whose selection

procedure is driven by the knowledge we have about the signal we are decomposing. This setting

is studied from a theoretical and practical point of view, showing how important improvements

upon the non-weighted case are achievable when reliable priors are available. Specifically, the class

of redundant dictionaries for which it is possible to recover the sparsest approximation can be

enlarged. Applications are presented for both 1-D and 2-D signals.

Secondly, a particular decomposition principle is proposed, consisting into a minimization of a

cost function which is a trade-off between a sparsity measure and the error, both measured with

the `1 norm. Its recovery properties are studied and examples show how it can be used for specific

applications, such as denoising.

Moreover, this dissertation presents promising results in the area of still picture and video coding.

For example, the algorithm for image compression described in Chapter 5 considerably outperforms

the state of the art and it provides results that, up to my knowledge, none of the recently proposed

coding technique is able to achieve. All these are evidences that the proposed framework offers

strong and interesting potentialities.

In the Introduction, a random and a natural image appear in Figures 1.1 and 1.2. By the way

the possible combinations of pixels that can be randomly generated are 2524288, or, more clearly,

2256×256×8! Throughout the course of this dissertation we hope to have contributed to illustrate

the difference between these two pictures and to develop a way of dealing with structured natural

signals.

In short, we claim that when working with structured information, it is worth exploiting the

mutual relation of its constituent elements, because it can be advantageous not only in helping

125
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the analysis process but also in making the representation of such information more accessible and

meaningful, determining its peculiar nature or character.

7.1 Possible Developments

One does not finish a thesis, s/he stops it! Thus, now I have in my mind very many possible

developments and the list of future works can be long. Far from intending to further extend this

work, I will anyhow briefly suggest some, in my opinion, interesting evolutions.

A good test for the proposed framework should be its application to other kinds of structured

signals. Given its flexibility it can be fruitful provided that a signal model is available, a MCD can be

designed and in case a priori weights can be computed. Specifically, one can think about standard

applications in signal processing, as audio signals, rather than quite novel fields as computational

linguistics.

When working with huge signals and dictionaries, the complexity of a decomposition by Matching

Pursuit or Basis Pursuit (or equivalently their weighted versions) can be excessive. In these cases, if

reliable a priori information is available, it can be interesting to study the approximation properties

and performances of a Weighted Thresholding algorithm. It should be also possible to theoretically

analyze its recovery capacities starting from the works in [52, 97].

To conclude, and this is really the right place to use this expression, one can observe that there is

a deep link between sparse approximation and classification [80], and I believe that such relationship

becomes even stronger when redundant MCD are in use. Decomposing a signal over a dictionary

whose components reflect its constituent elements implies a strong similarity with the task of feature

extraction and classification. Moreover, in the framework illustrated through this dissertation, this

means to use meaningful features. It can be interesting to further explore such connection, as well

as the relationship that may exist with the general problem of dimensionality reduction.



Appendix A

Two Proofs

A.1 Proof of Lemma 6.2

In this section we prove Lemma 6.2.

Proof: One can observe that solving (Pw
1 ) is equivalent to minimize the following function over

coefficient vectors from R
Λ:

F (b) =
1

2
‖fΛ −DΛb‖2

2 + γ‖W−1
Λ b‖1.

A point b∗ minimizes the second term of F (b) if and only if the following Fermat criterion holds

(see [71, 109]): 0 ∈ ∂‖b∗‖1. Moreover, b∗ minimizes F (b) if and only if 0 ∈ ∂F (b∗). In our case

this means that

∃ u ∈ ∂‖b∗‖1 s.t. DT
ΛDΛb∗ −DT

ΛfΛ + γW−1
Λ u = 0, (A.1)

for some vector u taken from ∂‖b∗‖1. Let the atoms in Λ be linearly independent, from (A.1) it

follows:

b∗ −
(
DT

ΛDΛ

)−1
DT

ΛfΛ + γ
(
DT

ΛDΛ

)−1
W−1

Λ u = 0,

and so

D+
ΛfΛ − b∗ = γ

(
WΛD

T
ΛDΛ

)−1
u.

To conclude the proof it is sufficient to recall that cΛ = D+
ΛfΛ.

A.2 Proof of Corollary 6.1

We report here the proof of Corollary 6.1. We also refer to [50].

Proof: We want to prove that

τ

1 − µ1(m) − µ1(m− 1)
≥

τ · wmax

Γ

wmin
Γ

· (1 − µw
1 (m− 1) − εmax)

(1 − εmax − µw
1 (m) − µw

1 (m− 1))(1 − µ1(m− 1))
, (A.2)

If the a priori is reliable the weights corresponding to the atoms indexed by Γ are big. We have

made the hypothesis that µw
1 (m− 1) + µw

1 (m) + εmax < µ1(m− 1) + µ1(m) < 1, from which we can

assume:
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µw
1 (m− 1) + µw

1 (m) + εmax ≤ µ1(m− 1) + µ1(m) < 1, (A.3)

µw
1 (m− 1) + εmax ≤ µ1(m− 1). (A.4)

Let us write (A.2) as:

1 ≤ 1 − µw
1 (m) − µw

1 (m− 1) − εmax

1 − µ1(m) − µ1(m− 1)
· 1 − µ1(m− 1)

1 − µw
1 (m− 1) − εmax

· w
min
Γ

wmax
Γ

, (A.5)

Analyzing the right-hand side of the previous expression we see that the third term is bigger than

or equal to 1 by hypothesis. One just have to prove that

1 − µw
1 (m− 1) − εmax

1 − µ1(m− 1)
≤ 1 − µw

1 (m) − µw
1 (m− 1) − εmax

1 − µ1(m) − µ1(m− 1)
,

which is true since µw
1 (m) ≤ µ1(m). Therefore the Corollary 6.1 is proved.
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