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Abstract

We have realised a microsystem for the culture and electrical characterisation of epithelial cell layers for cell-based diagnostic
applications. The main goal of this work is to achieve both cell culture and impedimetric and potentiometric characterisation on
a single device. The miniaturised cell culture system enables the uses of scarce epithelial cells, as obtained from transgenic mice
or from human biopsies. The device is completely modular and offers high flexibility: a polycarbonate membrane used as cell
substrate is glued in between two moulded Polydimethylsiloxane (PDMS) layers to form a sandwich, which is placed between two
stacks, containing the microfluidic channels and integrated measurement electrodes. The polycarbonate membrane sandwich can
be removed, replaced or analysed at any time. We have characterised the impedimetric properties of our microsystem,
demonstrated epithelial cell layer growth within it, and have done the initial electrical characterisation of epithelial cell layers.

© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Miniaturised bio-chemical and cell-based measure-
ment systems will have a large impact on the way
medical diagnostics will be done in the near future.
More particularly, in the field of clinical diagnostics
and pharmacology, the use of living cells for fast spe-
cific and non-specific chemical sensing is an area of
increasing importance (Fuhr, 1996; Fuhr and Shirley,
1995; Standen et al., 1987). A cell or cell layer is a
complex system with appropriate response to a variety
of external physical and chemical excitations. Experi-
ments on such living biological systems [for example
using electrical resistance or fluorescence measurements
(Hediger et al., 1999, 2000; Grimmes and Martinsen,
2000)] can lead to the study of diffusion and transport
of biological or pharmacological molecules through the
cell or cell layer (Misfeldt et al., 1976; Milks et al.,
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1983). In general, all these experiments are done in
macroscopic tissue resistance measurement chambers
(Corning Costar®, 1999; Falcon®, 1998), with a diame-
ter ranging from a few millimetres up to some centime-
tres. In these devices, a cell tissue layer is grown on a
nano-porous membrane placed at the bottom of the
chamber and measured with two pairs of electrodes,
which are mechanically inserted in the system after cell
culture. The progress in three-dimensional microfabri-
cation technology has opened new possibilities for
miniaturising these epithelial cell culture and analysis
devices. Miniaturisation offers high potential for both
fundamental research and clinical diagnostics. In recent
work, the potential of miniaturised systems for the
non-invasive analysis of cells has been well exploited in
devices such as the PhysioControl-Microsystem
(PCM®) (Wolf et al., 1998; Ehret et al., 1998). In this
miniaturised device, cell parameters such as growth and
viability or extracellular acidification and respiration
rates can be monitored in a continuous way.

The aim of our device is to enable epithelial cell layer
culture on small (1 mm?) surfaces and to characterise
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the ionic transport properties of such cell layers, more
specifically the Na transport through the epithelial cell
Na* channel (Mall et al., 2000). When biological tis-
sues to be tested are scarce, for example in the case of
cell cultures from transgenic mice or from biopsies
taken from patients (Mall et al., 2000), there is a
tremendous advantage in having a cell culture mini-
chamber, which permits physiological measurements on
epithelial cell surfaces of the order of 1 mm? or smaller.
Our system is with integrated electrical electrodes, mi-
cro-fluidic channels and feed-throughs, making it ex-
tremely compact. Moreover we have chosen a modular
set-up, in which the cell culture membranes can be
reversibly placed within or removed from the system,
thereby offering flexibility and economic interest.

In this paper, we present this modular option [an
integrated disposable device has been presented previ-
ously (Hediger et al., 2000)] for the realisation of minia-
turised cell culture applications. The substrate chosen
for the cell layer growth is a nano-porous polycarbon-
ate membrane, as used for macroscopic cell tissue cul-
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Fig. 1. Schematic cross-section of the modular tissue measurement
structure showing the PDMS sandwiched nano-porous membrane,
assembled with top and bottom microfluidic reservoirs. The three
different levels are detachable and mechanically pressed together
during the cell culture and electrical characterisation experiments.
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Fig. 2. Schematic diagram of the batch process for the realisation of
the modular tissue culture device.
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Fig. 3. Optical photograph mounting showing schematically the
different levels of the modular tissue culture device and the attach-
ment by mechanical pressing on an Al base block.

ture and measurements. In this modular device,
micro-fluidic channels and electrical contacts can be
reversibly assembled with the cell culture membrane.
This approach allows re-use of the micro-fluidic and
electrode patterns, when changing the culture mem-
brane, and the use of the separated membrane for a
different type of analysis. The structure facilitates con-
trol of the cell layer growth, the measurement of the
cell layer resistance, the transport and diffusion of
biological or pharmacological molecules through the
cell layer and accurate measurement of (bio-)chemically
induced resistance variations. We have realised this
microsystem using photolithography, various etching
procedures [among which powder-blasting (Belloy et
al., 2000b,a)], thin film deposition, and gluing technolo-
gies. Also, we have compared the efficiency of different
electrode materials, like Pt, Ag and Ag/AgCl. Finally
we have cultured layers of mCCD cells (cortical collect-
ing tact cells) of transgenic mice on our devices and
have measured the evolution in time of transepithelial
resistance Rte and voltage Vte.

2. Design

The main parts of the modular tissue measurement
device are the polycarbonate porous membrane for the
support of the cell culture, fluidic access structures to
the membrane and a four-point impedance and voltage
probe set-up integrated within the device. We use Ag
electrodes for the injection of current (I, and I,) and
Ag/AgCl electrodes for the voltage measurements
(Grimmes and Martinsen, 2000). Fig. 1 shows a sche-
matic cross-section of the basic modular tissue measure-
ment structure: it consists of an assembly of three
different stacks. The first level is a glued assembly of a
floatglass wafer and a machined 2 mm thick polycar-
bonate plate. Micro-patterned electrodes are previously
deposited on the floatglass wafer, namely the lower
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Fig. 4. (a) Optical photograph showing the finalised PCB mounted
first level with external fluidic and electrical connectors, as well as the
concentrical pairs of electrodes (I; et V,). (b) Optical photograph
showing the finalised PCB mounted third level with external electrical
connectors and top PDMS reservoir. (c) Optical photograph of the
third level showing the concentrical pairs of electrodes (I, et V,) and
the powder blasted via.

current electrode (I,) and the concentrical lower voltage
electrode (V). The polycarbonate plate is manufactured
in order to obtain a sufficiently large bottom fluidic
reservoir in order to have enough physiological solution
for the cells. The second level of the device is composed
of two PDMS moulded layers with a nano-porous
polycarbonate membrane glued in between. The diame-
ter J of a single culture site (determined by the free area
of the membrane) is 1 mm. The third level is similar to
the first one with two concentrical electrodes (I, and V,)
and vias. The basic structure of Fig. 1 is repeated to form

four separate and identical cell culture wells on one
modular tissue measurement device.

3. Microfabrication technology

Fig. 2 shows the batch process (represented for the
basic structure of one culture site) for the realisation of
the modular tissue culture device. Two lithographic
masks, one metallic mask (for powder blasting) and three
plastic moulding steps are used for the whole processing
sequence. Two floatglass 4” wafers are the substrates for
the electrodes in the first and the third level. Wafer n°l1
is 500 um thick, while wafer n°2 is 2 mm thick in order
to withstand the stress applied during the mounting of
the complete structure. A lift-off photoresist step is used
to pattern a 0.5 um deep recess in the glass wafers n°l
and 2 by Hydrofluoric acid (HF) etching (Fig. 2a and b),
prior to the deposition of the Ti/Ag film, in order to
obtain recessed electrical contacts (Fig. 2¢ and d). This
procedure gives rise to a flat wafer surface, which lends
itself excellently for planar assembly with other layers
within the stack. The hole structure of wafer n°2 in Fig.
2e is made by powder blasting through a metallic contact
mask. Through-holes for the screw assembly step are
powder blasted as well. Using a previously published
gluing technology (Hediger et al., 2000), two moulded
PDMS layers with vias are attached to the polycarbonate
membrane, defining four different 1 mm? culture sites per
microsystem. A mechanically machined polycarbonate
structure is glued on wafer n°1, forming a lower reservoir
and vias to the culturing membrane. The top reservoir
is realised by combining the third level with a moulded
PDMS part. The complete stack (Fig. 2f) is formed
simply by mechanically pressing the three levels together,
thereby using the elastic properties of the PDMS to have
a microfluidic seal. The stack can be separated after
culture and electrical characterisation to enable optical
investigation of the cell layer using only the second level.
The final step before use is the chlorination of the voltage
electrodes (V, and V,). We use a galvanostatic growth
of a AgCl layer on Ag in a NaCl 1M solution and using
a Pt counter electrode. The current density used is 0.5
nA/em? for a period of 10 s for chlorination of about 50%
of the 300 nm thick Ag film, resulting in electrodes with
a good open voltage stability.

4. Results and discussion

Fig. 3 is an optical photograph mounting, showing
schematically the different levels of the modular tissue
culture device. The structures of levels 1 and 3 are to be
cleaned for each cell culture experiment and are re-us-
able; level 2, the PDMS sandwiched membrane, is to be
changed for each new experiment. The three levels of the
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Fig. 5. Voltage response to + 1 pA and 1 s current pulses for three
different electrode materials.

structure are mounted on an Al base using four nuts.
Fig. 4a and b are optical photographs of the finalised
first and third level, respectively, mounted on a printed
circuit board (PCB), showing the outward electrical
connectors, as well as the two fluidic connections to the
lower channel. Fig. 4c is an optical photograph of the
third level, where a powder blasted via and the concen-
trical top current and voltage electrodes can be seen.

Before cell culture, we have clectrically characterised
our microsystems. Fig. 5 shows the voltage response to
+ 1 pA and 1 s controlled input current pulses for three
different electrode materials in a test device filled with a
NaCl 0.1 M solution. The application of such current
pattern is standard for the measurements of the
transepithelial resistance and transepithelial voltage for
the cell layers grown in our device. One can observe the
better stability of Ag/AgCl electrodes compared to Ag
and Pt electrodes (Grimmes and Martinsen, 2000). As
we want the voltage changes in a real cell experiment to
be a response to transepithelial currents (Ite) flowing
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through the cell membrane, one can easily understand
the preferred choice of Ag/AgCl as an electrode mate-
rial. Fig. 6a shows the transepithelial resistance (Rte)
evolution of three culture sites seeded with mCCD cells
(cortical collecting tact cells) of transgenic mice in a
standard mammalian physiological solution (Hummler
et al., 1997). The resistance increases gradually until the
7th day, when 10 mM of amiloride (A) is added to each
site. This product is meant to block temporarily the
active transport of Na*t and then has to be rinsed
before continuation of further cell growth. Amiloride
does not affect the Rte, as expected. The resistance is
then quite stable until the 10th day when 10 mM more
amiloride is added again to each culture site. The
resistance drops after one more day in the incubator
(probably due to bad rinsing of amiloride). Fig. 6b
shows the transepithelial voltage (Vte) evolution for the
same experiment as for Fig. 6a. Vte is the voltage
induced in the device by the transepithelial current (Ite),
which has its origin in the spontaneous transport of
ions through the cell layer. This voltage strongly in-
creases after the 4th day of culture, when a considerable
number of epithelial cells have grown on the polycar-
bonate membrane; these cells are characterised by an
active Na™* transport, which is the origin for the mea-
sured potential difference across the membrane. The
consequence of the amiloride addition to the cells after
7 and 10 days is a voltage drop which confirms the
temporary suppression of transport through the cells,
although we would expect a drop to initial voltage. The
presence of Cl~ ion transepithelial transport (not af-
fected by amiloride) or the drift of the open voltage
potential of the Ag/AgCl electrodes can be the origin of
the relatively small decrease of Vte. Further cell cul-
tures and characterisation experiments are being
planned at the Institute of Pharmacology and toxicol-
ogy at the University of Lausanne in the near future.
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Fig. 6. (a) Transepithelial resistance (Rte) evolution of three culture sites seeded with mCCD cells. 10 mM of amiloride (A) are added to each site
after the 7th and 10th day. (b) Transepithelial voltage (Vte) evolution of three culture sites seeded with mCCD cells. 10 mM of amiloride (A) are

added to each site after the 7th and 10th day.
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5. Conclusions

We have designed and realised a microsystem for the
electrical characterisation of epithelial cell layers for
biomedical diagnostic purposes. We have used several
fabrication technologies such as photolithography, wet
etching procedures and powder-blasting, as well as
metal thin film deposition and galvanostatic deposition
in order to obtain micro-fluidic channels in glass sub-
strates, with integrated patterned electrodes. Using a
well studied gluing procedure (Hediger et al., 2000), we
have realised a modular device for easy changing of the
cell culture membrane. Finally we have demonstrated
scarce mCCD epithelial cell layer growth on a minia-
turised culture area (1 mm?) within our microsystem
and have performed transepithelial resistance and
voltage measurements of the cell mono-layer. We hope
that our device will open new perspectives both for
fundamental research and cell based diagnostic
applications.
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