Munin: Distributed Shared Memory Based on
Type—Specific Memory Coherence

John K. Bennett*

John B. Carter™
Willy Zwaenepoel™

*Department of Electrical and Computer Engineering
“*Department of Computer Science
Rice University
Houston, Texas

Abstract

We are developing Munin', a system that allows pro-
grams written for shared memory multiprocessors to
be executed efficiently on distributed memory ma-
chines. Thus, Munin overcomes the architectural lim-
itations of shared memory machines, while maintain-
ing their advantages in terms of ease of programming.
A unique characteristic of Munin is the mechanism
by which the shared memory programming model is
translated to the distributed memory hardware. This
translation 1s performed by runtime software, with
the aid of semantic hints provided by the user. Each
shared data object is supported by a memory coher-
ence mechanism appropriate to the manner in which
the object is accessed. This paper focuses on Munin’s
memory coherence mechanisms, and compares our
approach to previous work in this area.

This research was supported in part by the National Science
Foundation under Grants CCR-8716914 and DCA-8619893 and
by a National Science Foundation Fellowship.

t In Norse mythology, the ravens Munin (Memory) and Hugin
(Thought) perched on Odin’s shoulder, and each evening they
flew across the world to bring Odin knowledge of man’s mem-
ories and thoughts. Thus, the raven Munin can be considered
to have been the first distributed shared memory mechanism.

1 Introduction

We are developing Munin, a system that allows pro-
grams written for shared memory multiprocessors to
be executed efficiently on distributed memory ma-
chines. Shared memory programs are easier to de-
velop than distributed memory (message passing)
programs, because the programmer need not worry
about the explicit movement of data. Distributed me-
mory machines, however, scale better in terms of the
number of processors that can be supported. Antici-
pated increases in processor speed relative to memory
speed, and the advent of very fast networks, also ar-
gue 1n favor of distributed memory machines. Hence,
our goal is to provide the best of both worlds: the
relative ease of programming of the shared memory
model and the scalability of a distributed memory
machine. We approach this goal through a runtime
system for a distributed memory machine that pro-
vides the illusion of shared memory to the program-
mer and to the compiler. In essence, the runtime
system provides a single large virtual address space,
distributed over many machines and memory mod-
ules, with overall memory coherence similar to that
provided by hardware cache coherence mechanisms
on shared memory machines. All data movement nec-
essary to achieve memory coherence is performed au-
tomatically by the runtime system, and need not be
visible at the application level. Munin programmers
aid the system by providing semantic hints about the
anticipated access pattern of the program’s shared
data objects.

This paper focuses on Munin’s memory coherence
mechanisms, and compares our approach to previous
work in this area. What distinguishes Munin from
previous distributed shared memory systems is the

means by which memory coherence is achieved. In-
stead of a single memory coherence mechanism for
all shared data objects, Munin employs several dif-
ferent mechanisms, each appropriate for a different
class of shared data object. We contend that this ap-
proach provides a an abstraction of shared memory
on a distributed memory machine, that is more ef-
ficient than can be achieved with a static coherence
method. This use of type-specific coherence mecha-
nisms is the primary distinction between Munin and
Ivy [12], Clouds [14], and Amber [4]. For this ap-
proach to work, a large percentage of shared data ac-
cesses must fall into a relatively small number of ac-
cess type categories, that can be supported efficiently.
A detailed study of the sharing behavior of parallel
programs [2] supports this claim.

Many of the coherence mechanisms used in Munin
are well known (e.g. replication, migration, invalida-
tion, remote load/store), but we have also developed
a powerful new mechanism that we call delayed up-
dates that significantly reduces the amount of unnec-
essary message traffic and synchronization imposed
by a distributed shared memory system. The ba-
sic premise behind the delayed update mechanism
is that programmers use explicit synchronization to
specify a partial ordering on access to shared data
objects, which allows Munin to delay updating re-
mote copies of an object when it 1s changed without
affecting program correctness. Delaying updates al-
lows the system to combine updates to the same ob-
ject, and allows the data motion to be combined with
the synchronization that prompted the update(s) to
be propagated. Ideally, this would reduce the amount
of network traffic to that achieved by a hand-coded
message passing implementation.

Section 2 briefly summarizes the results of our
study of sharing in parallel programs. Section 3 de-
fines the notions of loose coherence and delayed up-
dates, and presents the various type-specific coher-
ence mechanisms. Section 4 describes the current
status of the project and the anticipated directions
for implementation. We compare Munin with related
work in Section 5 and draw conclusiosn in Section 6.

2 Sharing in Parallel Programs

Type-specific memory coherence requires that there
be a relatively small number of identifiable shared
memory access patterns, for which corresponding me-
mory coherence mechanisms can be developed, that
characterize the majority of shared data objects. We
studied six shared memory parallel programs written
in the C++ language [15] using the Presto program-

ming system [3] on the Sequent Symmetry shared
memory multiprocessor [?]. We selected programs
written specifically for a shared memory multipro-
cessor so that our results would not be influenced
by the program being written with distribution in
mind and would accurately reflect the memory ac-
cess behavior that occurs when programmers do not
expend special effort towards distributing the data
across processors. The programs that we studied in
detail were: Matrix multiply, Gaussian elimination,
Fast Fourier Transform (FFT), Quicksort, Traveling
salesman, and Life. Matrix multiply, Gaussian elim-
ination and Fast Fourier Transform are well under-
stood numeric problems that distribute the data to
separate threads and access shared memory in pre-
dictable patterns. Quicksort is a representative sort-
ing problem that uses divide-and-conquer to dynam-
ically subdivide the problem. Traveling salesman is a
representative graph problem that uses central work
queues protected by locks to control access to prob-
lem data. Life is a representative “nearest-neighbors”
problem in which data is shared amongst neighboring
processes.

We have identified a limited variety of shared data
objects: Write-once, Write-many, Result, Migratory,
Producer-Consumer, Private, Read-mostly, General
Read-Write and Synchronization. Intuitively, Write-
once objects are read but never written after ini-
tialization. Write-many objects are frequently mod-
ified by multiple threads between synchronization
points. Producer-Consumer objects are characteristi-
cally written (produced) by one thread and read (con-
sumed) by a fixed set of other threads. Migratory ob-
jects are accessed in phases, where each phase corre-
sponds to a run of accesses by a single thread. Result
objects collect results. Once they are written, they
are only read by a single thread that uses the results.
Private objects are shared data objects that are only
accessed by a single thread even though they are ac-
cessible to all threads. Synchronization objects, such
as locks and monitors, are used by programmers to
denote explicit inter-thread synchronization points.
Read-mostly objects are read significantly more fre-
quently than they are written. General Read-Write
objects are those objects that are accessed in a way
such that we could not characterize them as being
in one of the previous categories. For our adaptive
caching mechanism to work well, relatively few shared
objects can fall into this class.

The general results of our analysis can be summa-
rized as follows:

1. There are very few General Read-Write objects.

2. The notion of an object natural to the program-

mer often does not correspond to the appropri-
ate granularity of data decomposition for par-
allelism. In particular, many objects that are
write-shared are shared in such a way that differ-
ent threads update independent portions of the
object.

3. Parallel programs behave differently during dif-
ferent phases of their execution, and in particu-
lar exhibit significantly different access behavior
during initialization than during the rest of their
execution. The overwhelming majority of all ac-
cesses are reads, ezcept during initialization.

4. The latency between accesses to synchronization
objects (mainly locks) is significantly higher than
the latency between accesses of other shared data
items, even for programs with heavy use of syn-
chronization.

These results strongly support our hypothesis that a
distributed shared memory system employing a type-
specific memory coherence scheme will outperform
one that does not.

3 Memory Coherence

3.1 Overview

Munin treats the collection of all memories in the dis-
tributed system as a single address space, with coher-
ence enforced by software. The virtual address space
of each processor is partitioned into shared and pri-
vate areas. The private area is local to each processor
and contains non-shared data, the runtime structures
used to manage memory coherence, and the system
memory map used to record which segments of global
shared memory are currently mapped into the local
portion of shared memory. The system map may also
contains hints about other processors’ shared memory
areas, but these hints may not always be reliable.

Munin views memory on each machine as a col-
lection of disjoint segments. Munin servers on each
machine interact with the applications program and
the underlying distributed operating system to ensure
that segments are correctly mapped into local me-
mory when they are accessed. Munin performs fault
handling in a manner analogous to page fault han-
dling in a virtual memory system. When a thread
accesses an object for which there is no local copy,
a memory fault occurs. This causes Munin to sus-
pend the faulting thread and invoke the associated
server to handle the fault. The server checks what
type of object the thread faulted on and invokes the
appropriate fault handler. When Munin is unable to

select a special memory coherence mechanism, a de-
fault mechanism similar to Ivy’s is employed. In ei-
ther case, Munin resumes the suspended thread after
handling the fault.

Software coherence control exacts a certain cost,
but it allows us to support more flexible ways of shar-
ing than is possible in hardware. In particular, it
allows us to support objects with coherence mecha-
nisms tailored to their access characteristics, includ-
ing using variable-sized cache items, and making dy-
namic decisions about coherence methods that adapt
to the behavior of the program.

3.2 Loose Coherence and Delayed
Updates

Delayed updates result from a relaxed definition of
memory coherence:

Memory is loosely coherent if the value
returned by a read operation is the value
written by an update operation to the same
object that could have immediately preceded
the read operation in some legal schedule of
the threads in execution.

This contrasts with the more common definition
used in Ivy [12] and Clouds [14]:

Memory is strictly coherent if the value
returned by a read operation is the value
written by the most recent write operation
to the same object.

Figure 1 illustrates the difference between these
two definitions of coherence. R1 through R3 and WO
through W4 represent successive reads and writes, re-
spectively, of the same object, and 4, B, and C are
threads attempting to access the object. Strict co-
herence requires that thread C at R1 read the value
written by thread B at W2, and that thread C at R2 and
R3 read the value written by thread B at W4. Loose co-
herence, on the other hand, requires only that thread
C at R1 and R2 read the value written at any of WO
through W4 such that the value read at R2 does not
logically precede the value read at R1, and that thread
C at R3 read either the value written by thread A at
W3 or the value written by thread B at W4. KEssen-
tially, strict coherence describes the implicit synchro-
nization usually associated with message passing, and
loose coherence describes the explicit synchronization
normally associated with shared memory multipro-
cessors. Strict and loose coherence are closely related
to the concepts of strong and weak ordering of events
as described by Dubois et al. [8]. Programmers using

Munin specify only a partial order on the reads and
writes of shared data objects.

As a result of their strict definition of coherence,
Ivy and Clouds allow only one thread at a time to
have write access to an object. This often leads to
unnecessary memory coherence overhead when the
programmer, knowing that the writes are indepen-
dent, allows two threads to write to the same object
without synchronization. In contrast, our loose def-
inition of coherence allows updates to remote copies
of a shared object to be delayed until it is convenient
to perform them, or until the program’s semantics re-
quires them. For example, a synchronization event in
a program requires that the delayed updates be prop-
agated first. Delaying updates allows the system to
combine updates to the same object, and allows the
data motion to be combined with the synchroniza-
tion that prompted the updates to be propagated. A
simple example of this phenomenon occurs with ma-
trix multiplication, where every thread computes a
single element of the result matrix. With strict me-
mory coherence, the result matrix (or cached portions
With
delayed updates, the results are propagated once to

thereof) travels between different machines.

their final destination.

We use a delayed update queue for each thread to
maintain a list of the updates that have not yet been
propagated. Whenever a thread modifies a shared
object, we can delay sending out the update to re-
mote copies of the object until remote threads could
otherwise indirectly detect that the object has been
modified before they receive its new value. Specifi-
cally, updates must be propagated in the order that
they occur in the program execution, so that remote
threads do not decide (erroneously) that an object
has changed, and use the old value (believing it to
be the new value). For example, if thread & up-

‘:'JO ‘:YM ‘:'173
A A A
W2 W4
B Y Y
R1 R2 R3
\ 4 Y Y Yy
SYNCH SYNCH
TIME—

FIGURE 1: Strict and Loose Coherence

dates object X and then updates object Y, the up-
date to X must be propagated before the update to
object Y because the program may make use of the
fact that object X is modified before object Y. Anal-
ogously, the delayed update queue must be flushed
whenever a thread synchronizes. The delayed up-
date mechanism guarantees that updates eventually
get propagated, because whenever a thread synchro-
nizes (including during thread exit), the delayed up-
date queue is flushed. Delaying updates allows the
system to combine updates to the same object, thus
reducing the network traffic. It also allows the data
motion to be combined with the synchronization that
prompted the updates to be propagated, which allows
our system to benefit from the implicit synchroniza-
tion provided by message passing.

Compare how write sharing is handled by Ivy and
Munin. Ivy enforcement of strict coherence only al-
lows a thread to update a piece of data when no other
thread is updating or reading it. In Munin, if two
threads A and B attempt to update an object X, and
one thread C attempts to read it such that the accesses
to X are not synchronized, then C’s read can legally
return the value written by A, the value written by B,
or the original value of X. This is because there is no
guarantee of the order in which the threads are sched-
uled, and our loose definition of coherence allows any
of these values to be returned. In Ivy, if process 4
happens to write to X before C reads X, C is guaran-
teed to see the value written by A. This difference has
a major effect on how the system can handle objects
that are updated by multiple threads. In particu-
lar, Ivy introduces unnecessary synchronization that
is avoided by Munin.

3.3 Type-specific Coherence Mecha-
nisms

3.3.1 Write-once Objects

Write-once objects are written during initialization,
but afterwards only read. Write-once data objects are
frequently read concurrently by many threads. This
can be supported efficiently via replication. When a
thread tries to read an object for which there is no
local copy, the local Munin server gets a copy of the
object, without disturbing any copies of the object
stored at other nodes. Replicating an object allows
it to be accessed locally at each site. However, repli-
cation of large objects can lead to inefficient memory
utilization, and can restrict the size of the problems
that can be solved. It 1s also difficult to keep repli-
cated objects coherent. When a write is done to an
object, all of its copies must be updated or invali-

dated. Munin addresses these problems by allowing
portions of large read-only objects to “page-out”.

3.3.2 Write-many Objects

It is common for multiple threads to write to a single
object concurrently. This can occur when the pro-
grammer knows that updates to different parts of the
same object do not conflict. Programs written for
shared memory multiprocessors must take into ac-
count arbitrary thread scheduling, and synchronize
access to an object whenever different threads could
simultaneously read from or write to it. Data ac-
cess and synchronization are logically separate. Com-
bining data motion and synchronization is one way
that programs written on distributed systems achieve
good performance. We believe that for distributed
shared memory to be efficient, the underlying pat-
tern of message passing used to support the illusion
of shared memory for a particular program should
closely resemble the pattern of message passing for an
efficient message-passing implementation of the same
program. We use delayed updates to combine data
motion and synchronization in Munin.

3.3.3 Migratory Objects

Migratory objects [16] are accessed by a single pro-
cessor at a time, as would be the case with an object
accessed within a critical section of code. Migratory
objects can be handled efficiently by integrating their
movement with that of the lock associated with their
critical section. If the lock queue is non-empty when
a processor unlocks the critical section, then the ob-
ject is “migrated”, together with the lock itself, to
the next thread in the lock queue. If the queue is
empty, and assuming the system has no other knowl-
edge about which thread will acquire the lock next,
then the object 1s migrated with the lock to the next
thread requesting the lock.

3.3.4 Producer-Consumer Objects

In some algorithms, processors only share data along
object boundaries. For example, in a “nearest neigh-
bors” algorithm, the new value for a particular matrix
element is a function of the old values of neighboring
elements. Thus, if the matrix is divided into a number
submatrices, communication between processors only
occurs at submatrix boundaries. “Wavefront” algo-
rithms have similar data sharing characteristics. In
all previous systems, efficiently handling this type of
algorithm requires the programmer to substantially

modify the algorithm to reduce the amount of syn-
chronization required in passing data across bound-
aries.

If the system knows the producer-consumer rela-
tionship, it can perform eager object movement. Ea-
ger object movement is a mechanism that moves ob-
jects to the node at which they are going to be used
before when they are required. In the nearest neigh-
bors example, this involves propagating the boundary
element updates as soon as they occur. In the best
case, the new values are always available before they
are needed, and threads never wait to receive the cur-
rent values.

3.3.5 Read-mostly Objects

A Read-mostly is not accessed in a pattern that can
be exploited with one of the above mechanisms, but
is read far more often than it is written. They po-
tentially can be handled relatively efficiently in a va-
riety of ways, including via replication using delayed
updates to keep the copies coherent or via remote
load-store. The Munin prototype system uses remote
load-store to handle read-mostly objects.

3.3.6 General Read-Write Objects

General Read-Write sharing is the general of arbi-
trary data sharing. It occurs when multiple threads
are reading from and writing to the same data ob-
jects, and there is no particular pattern to the shar-
ing that can be exploited. Munin handles general
read-write objects using a mechanism based on the
Berkeley Ownership cache consistency protocol [11].
By default, objects that are not recognized as some
other specific type will be treated as general read-
write. Our study showed that general read-write ob-
jects account for a very small percentage of all ac-
cesses to shared data.

3.3.7 Synchronization Objects

Synchronization objects are used to give threads
exclusive access to other objects. When multiple
threads access a single synchronization object, these
accesses must be ordered while allowing threads to
get fair access.

Munin supports distributed synchronization with
distributed locks. More elaborate synchronization ob-
jects, such as monitors and atomic integers, are built
on top of this. Our distributed locks employs prozy
objects [1] to reduce network overhead. When a

thread wants to acquire or test a global lock, it per-
forms the lock operation on a local proxy for the dis-
tributed lock. Proxy objects are maintained by a col-
lection of distributed lock servers, one per processor.
When a lock server detects an attempt to lock a local
proxy object, it interacts with the other lock servers
to acquire the global lock associated with the local
proxy. When it has acquired the global lock, 1t al-
lows the blocked thread to continue by releasing the
local proxy lock to the thread. Unlocking is handled
similarly.

Munin passes lock ownership amongst the dis-
tributed lock servers. Each lock has a queue asso-
ciated with it that contains a list of the servers re-
quiring access to the lock. This queue facilitates ef-
ficient exchange of ownership. Our distributed syn-
chronization protocol also benefits from semantic in-
formation. For example, if the system can determine
which thread is most likely to attempt to acquire a
particular lock next, ownership of the lock can be
migrated to the distributed lock server on the same
processor as that thread. We plan to study several
variants of this protocol to determine which is most
efficient. The functional separation that the proxy
mechanism provides facilitates this experimentation.

3.4 Dynamic System Decisions

Even objects with the same access type are not used
in the same way by all programs. Munin must make
dynamic decisions in handling objects to efficiently
support a wide variety of programs. In this section we
discuss two of these decisions, and their implications.

3.4.1 Replication vs. Remote Load Store

As we have discussed, replication is often useful in
supporting read-shared objects. In some circum-
stances, replication may also be an appropriate mech-
anism for general read-write objects. In such cases,
replication reduces read latency, but increases update
(write) latency due to the added expense of updating
or invalidating all remote copies of the object. In-
stead, when there is only a single remote copy of an
object, it is relatively inexpensive to perform updates
by performing a remote store to the single copy. How-
ever, this approach makes reads relatively expensive
because every read requires a remote load. There are
instances when each of these techniques is most ap-
propriate. Since most programs perform many more
reads than writes, replication will be the dominant
mechanism for handling sharing. However, when an
object is primarily written to, such as an object that

collects results, maintaining a single copy is more effi-
cient. Updates can be merged using our delayed write
scheme to reduce the number of network packets re-
quired.

Previous systems have used only replication, but
we believe that each approach 1s optimal under differ-
ent circumstances. It is often possible to determine
when replication or a single remote copy is preferable
in a given situation based on program semantic infor-
mation. Munin makes this decision on a per-object
basis so the system can take advantage of any seman-
tic knowledge that it obtains, either by inference, or
directly from the user.

3.4.2 Invalidation vs Refresh

There are two fundamentally different ways to per-
form an update to a replicated object. One approach
is to invalidate all remote copies of the object. If re-
mote threads need to access the object after the up-
date, they “page” 1t back in again. This approach is
inefficient when a large number of threads frequently
read the object. Another approach for handling re-
mote updates is to refresh every remote copy of the
object by propagating the new value of the object to
each node maintaining a copy. This is more difficult
than invalidation, because the new value rather than
an invalidation message must be sent. Refresh using
multicast reduces the amount of network traffic when
many threads will request the new information even-
tually, but is not always a good idea. If the remote
copies are not going to be used, or if several updates
are going to occur between uses, invalidation iss bet-
ter.

Previous distributed shared memory systems have
assumed that only invalidation is appropriate, but
again, each approach is preferable under different cir-
cumstances. Eggers and Katz [10] have shown that
invalidation is preferable when the program exhibits
a high degree of per-processor locality. Conversely,
refresh is preferable when there is a high degree of
fine-grained sharing.

4 Status and Directions

We are currently implementing Munin on an Ether-
net network of SUN workstations. This implementa-
tion will allow us to assess the runtime costs of the
delayed update queue and the other type-specific co-
herence mechanisms, as well as their benefits relative
to standard static coherence mechanisms. We are us-
ing the V kernel [6] to provide high-speed communi-

cation between the different processors, and we have
chosen to support the Presto [3] parallel program-
ming environment to develop our shared memory par-
allel programs. Presto is a shared memory parallel
programming environment that provides parallelism
(lightweight processes) and synchronization (locks
and Mesa-style monitors) for the object-oriented lan-
guage C++ [15]. Programmers write their programs
using a shared memory model, inserting declarations
to provide object-specific information to the Munin
runtime system. These declarations are processed by
the compiler, and allow the runtime system to select
the appropriate coherence mechanism for each object.
Munin allows programs to be written in essentially
the same way that they are written for shared me-
mory multiprocessors. At the lower levels, our sys-
tem uses only generic send and receive message pass-
ing primitives, and thus it can easily be ported to a
variety of message passing architectures.

We chose Presto as our parallel programming en-
vironment for three reasons. First, the natural data
encapsulation and inherent synchronization provided
by object oriented programming languages makes
them good candidates for distributed implementa-
tion. Data encapsulation makes it relatively easy for
the system to determine the amount of memory that
needs to be loaded or remotely updated. Second,
it allows us to compare our system’s performance
with that of a true shared memory multiprocessor,
as Presto currently runs on our Sequent Symmetry.
Finally, we have experience using Presto and have a
local community of users. We anticipate that this will
make development and testing easier.

In the Munin prototype system, the server associ-
ated with each processor is a user-level process run-
ning in the same address space as the threads on that
processor. This makes the servers easier to debug and
modify, which serves our goal of making the prototype
system expandable, flexible and adaptable. We will
be able to add mechanisms should we discover addi-
tional typical memory access patterns. We will be
able to profile the system to evaluate system perfor-
mance, and determine the performance bottlenecks.
Running at user-level; the Munin servers will have
access to all operating systems facilities, such as the
fileserver and display manager, which will facilitate
gathering system performance information.

When Munin is fully operational we anticipate
several related investigations. We currently rely on
the programmer to provide all of the semantic infor-
mation required by the Munin runtime system. In the
future we plan to integrate a more powerful compiler
into our system, in order to relieve the programmer of

some of this burden. We plan to investigate the pos-
sibility of using the runtime system to determine the
type of an object. Profiling information may enable
Munin to “learn” about objects in the system. For ex-
ample, the system might be able to detect that an ob-
ject 1s being continuously updated by one thread and
read by another. Upon noticing this, Munin could de-
fine the object as a producer-consumer shared object
and treat it accordingly. We also plan to study what
underlying system and/or hardware support would
significantly improve Munin’s performance. For ex-
ample, a well designed network interface could re-
duce the overhead on each processor by performing
some useful functions itself, such as reliable multicast
and distributed locks. Performance on hardware with
different performance characteristics, such as higher
network bandwidth or increased processor speed, re-
tains our active interest. Finally, the provision of
fault tolerance and support for heterogeneity might
be required in an operational system.

5 Related Work

The Ivy system [12] provides shared memory on a
collection of Apollo workstations using a distributed
memory manager. Ivy’s shared virtual memory pro-
vides a virtual address space that is shared among
all the processors in the system. Global virtual me-
mory is divided into pages corresponding to physical
pages. Each processor has a memory mapping man-
ager that views local memory as a cache of the shared
virtual address space. Ivy essentially uses a directory-
based write-invalidate approach. Unlike Munin, Ivy
enforces strict coherence and does not use any knowl-
edge of access patterns of shared data (other than
reads and writes). As a result, there are no special
provisions for synchronization objects, and all shar-
ing 18 on a per-page basis, entailing the possibility
of significant amounts of false sharing. While less
“transparent” than Ivy, because of the need for user
annotations, we believe Munin provides a more effi-
cient abstraction of distributed shared memory for a
large variety of shared data types and the programs
that use them.

The Clouds distributed operating system was ex-
tended to provide a form of shared memory [14]. The
distributed shared memory controller allows objects
to be mapped into the address space of any thread
(process). Shared memory is divided into logical seg-
ments corresponding to Clouds objects, reducing the
potential for false sharing. Objects may be locked
to a particular processor while performing a series of
operations on 1it, allowing the programmer to utilize

application specific knowledge to reduce the poten-
tial for “thrashing”. Munin uses loose coherence to
efficiently support multiple independent threads up-
dating a single object, and also provides a general-
purpose synchronization mechanism.

Amber [4] uses an object model as a basis for
providing a shared address space spanning multiple
processors. It enforces strict coherence by always mi-
grating threads to the objects that they access. This
works well for some programs, but often requires pro-
grammers to substantially modify their algorithms in
order to reduce the overhead of migration and ensure
that all of the threads do not migrate to the same
host, thus eliminating all parallelism.

Cheriton et al. show that a software-controlled
cache using a very large cache page size (an en-
tire physical page) can provide the high performance
needed to support fast multiprocessors [5]. This sup-
ports our claim that Munin, which is essentially a dis-
tributed caching mechanism provided in software, can
efficiently provide a shared memory abstraction on a
distributed system. The VMP scheme works well for
many programs, but the large cache line size causes
poor performance if there is a significant amount of
fine-grained sharing. They did not investigate the
possibility of having different cache coherence mech-
anisms available to handle different types of shared
objects because their cache controller had no way of
getting program-specific semantic information.

Our use of type-specific cache coherence mecha-
nisms is further supported by earlier studies of the
performance of snooping caches for parallel programs
on shared memory multiprocessors. The designers
of the Berkeley cache consistency protocol [11] found
that their protocol can perform significantly better
with a limited amount of information about how dif-
ferent data objects are accessed. Furthermore, Eggers
and Katz [10] found that no single cache coherence
protocol performed best for all types of shared data
objects.

6 Conclusions

We have described the motivation and memory coher-
ence mechanisms of Munin, a distributed shared me-
mory system that selects a memory coherence mech-
anism for each data object based on the manner in
which that object is expected to be accessed. We have
argued that this provides distributed shared memory
more efficiently than using a single memory coher-
ence mechanism. We have selected these mechanisms
based on the observed behavior of a a variety of par-

allel programs. We have found that a small num-
ber of mechanisms is sufficient to support most data
sharing behavior that we have observed. We have de-
scribed out delayed update mechanism, and showed
that it allows data motion and synchronization to be
combined, which reduces the amount of unnecessary
network traffic needed to support distributed shared
memory.

References

[1] John K. Bennett. The design and implemen-
tation of Distributed Smalltalk. In Proceed-
wngs of the Second ACM Conference on Object-
Oriented Programming Systems, Languages and

Applications, pages 318-330, October 1987.

[2] John K. Bennett, John B. Carter, and Willy
Zwaenepoel. Shared memory access charac-
teristics. Technical Report COMP TR89-99,
Rice University, September 1989. Submitted
to 1990 International Symposium on Computer
Architecture.

[3] Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. PRESTO: A system for object-
oriented parallel programming. Software -
Practice and Frperience, 18(8):713-732, Au-
gust 1988.

[4] Jeffrey S. Chase, Franz G. Amador, Edward D.
Lazowska, Henry M. Levy, and Richard J. Lit-
tlefield. The Amber system: Parallel program-
ming on a network of multiprocessors. In Pro-
ceedings of the Twelfth ACM Symposium on
Operating Systems Principles, pages 147-158,
December 1989.

[5] David R. Cheriton, Gert A. Slavenburg, and
Patrick D. Boyle. Software-controlled caches
in the VMP multiprocessor. In Proceedings of
the 13th Annual International Symposium on
Computer Architecture, December 1986.

[6] David R. Cheriton and Willy Zwaenepoel. The
distributed V kernel and its performance for
diskless workstations. In Proceedings of the
Ninth ACM Symposium on Operating Systems
Principles, pages 129-140, October 1983.

[7] Ron Cytron, Steve Karlovsky, and Kevin P.
McAuliffe. Automatic management of pro-
grammable caches. In Proceedings of the 1988
International Conference on Parallel Program-
ming, pages 229-238, August 1988.

[8] Michel Dubois, Christoph Scheurich, and

Fayé A. Briggs. Synchronization, coherence,

[10]

and event ordering in multiprocessors. [FEFE
Computer, 21(2):9-21, February 1988.

Susan J. Eggers and Randy H. Katz. A charac-
terization of sharing in parallel programs and
its application to coherency protocol evalua-
tion. In Proceedings of the 15th Annual Inter-
national Symposium on Computer Architecture,

pages 373-383, May 1988.

Susan J. Eggers and Randy H. Katz. The effect
of sharing on the cache and bus performance
of parallel programs. In Proceedings of the 3rd
International Conference on Architectural Sup-
port for Programming Languages and Systems,

pages 257-270, April 1989.
R. Katz, S. Eggers, D. Wood, C.L. Perkins, and

R. Sheldon. Implementing a cache consistency
protocol. In Proceedings of the 12th Annual In-
ternational Symposium on Computer Architec-

ture, pages 276283, June 1985.

Kai Li. Shared Virtual Memory on Loosely
Coupled Multiprocessors. PhD thesis, Yale Uni-
versity, September 1986.

Susan Owicki and Anant Agarwal. Evaluating
the performance of software cache coherence.
In Proceedings of the 3rd International Confer-
ence on Architectural Support for Programming
Languages and Systems, pages 230-242, May
1989.

Umakishore Ramachandran, Mustaque
Ahamad, and M. Yousef A. Khalidi. Unifying
synchronization and data transfer in maintain-
ing coherence of distributed shared memory.
Technical Report GIT-CS-88/23, Georgia Insti-
tute of Technology, June 1988.

Bjarne Stroustrup. The C++ Programming
Language. Addison-Wesley, 1987.

Wolf-Dietrich Weber and Anoop Gupta. Anal-
ysis of cache invalidation patterns in multipro-
cessors. In Proceedings of the 3rd International
Conference on Architectural Support for Pro-
gramming Languages and Systems, pages 243—
256, April 1989.

