
Munin� Distributed Shared Memory Based on

Type�Speci�c Memory Coherence

John K� Bennett�

John B� Carter��

Willy Zwaenepoel��

�Department of Electrical and Computer Engineering
��Department of Computer Science

Rice University

Houston� Texas

Abstract

We are developing Muniny� a system that allows pro�
grams written for shared memory multiprocessors to
be executed e�ciently on distributed memory ma�
chines� Thus� Munin overcomes the architectural lim�
itations of shared memory machines� while maintain�
ing their advantages in terms of ease of programming�
A unique characteristic of Munin is the mechanism
by which the shared memory programming model is
translated to the distributed memory hardware� This
translation is performed by runtime software� with
the aid of semantic hints provided by the user� Each
shared data object is supported by a memory coher�
ence mechanism appropriate to the manner in which
the object is accessed� This paper focuses on Munin�s
memory coherence mechanisms� and compares our
approach to previous work in this area�

This research was supported in part by the National Science
FoundationunderGrants CCR�������� and DCA�������� and
by a National Science Foundation Fellowship�
y In Norse mythology	 the ravens Munin 
Memory� and Hugin

Thought� perched on Odin�s shoulder	 and each evening they

ew across the world to bring Odin knowledge of man�s mem�
ories and thoughts� Thus	 the raven Munin can be considered
to have been the �rst distributed shared memory mechanism�

� Introduction

We are developing Munin� a system that allows pro�
grams written for shared memory multiprocessors to
be executed e�ciently on distributed memory ma�
chines� Shared memory programs are easier to de�
velop than distributed memory �message passing�
programs� because the programmer need not worry
about the explicit movement of data� Distributed me�
mory machines� however� scale better in terms of the
number of processors that can be supported� Antici�
pated increases in processor speed relative to memory
speed� and the advent of very fast networks� also ar�
gue in favor of distributed memory machines� Hence�
our goal is to provide the best of both worlds� the
relative ease of programming of the shared memory
model and the scalability of a distributed memory
machine� We approach this goal through a runtime
system for a distributed memory machine that pro�
vides the illusion of shared memory to the program�
mer and to the compiler� In essence� the runtime
system provides a single large virtual address space�
distributed over many machines and memory mod�
ules� with overall memory coherence similar to that
provided by hardware cache coherence mechanisms
on shared memorymachines� All data movement nec�
essary to achieve memory coherence is performed au�
tomatically by the runtime system� and need not be
visible at the application level� Munin programmers
aid the system by providing semantic hints about the
anticipated access pattern of the program�s shared
data objects�

This paper focuses on Munin�s memory coherence
mechanisms� and compares our approach to previous
work in this area� What distinguishes Munin from
previous distributed shared memory systems is the



means by which memory coherence is achieved� In�
stead of a single memory coherence mechanism for
all shared data objects� Munin employs several dif�
ferent mechanisms� each appropriate for a di�erent
class of shared data object� We contend that this ap�
proach provides a an abstraction of shared memory
on a distributed memory machine� that is more ef�
	cient than can be achieved with a static coherence
method� This use of type�speci	c coherence mecha�
nisms is the primary distinction between Munin and
Ivy 
��
� Clouds 
��
� and Amber 
�
� For this ap�
proach to work� a large percentage of shared data ac�
cesses must fall into a relatively small number of ac�
cess type categories� that can be supported e�ciently�
A detailed study of the sharing behavior of parallel
programs 
�
 supports this claim�

Many of the coherence mechanisms used in Munin
are well known �e�g� replication� migration� invalida�
tion� remote load�store�� but we have also developed
a powerful new mechanism that we call delayed up�

dates that signi	cantly reduces the amount of unnec�
essary message tra�c and synchronization imposed
by a distributed shared memory system� The ba�
sic premise behind the delayed update mechanism
is that programmers use explicit synchronization to
specify a partial ordering on access to shared data
objects� which allows Munin to delay updating re�
mote copies of an object when it is changed without
a�ecting program correctness� Delaying updates al�
lows the system to combine updates to the same ob�
ject� and allows the data motion to be combined with
the synchronization that prompted the update�s� to
be propagated� Ideally� this would reduce the amount
of network tra�c to that achieved by a hand�coded
message passing implementation�

Section � brie�y summarizes the results of our
study of sharing in parallel programs� Section � de�
	nes the notions of loose coherence and delayed up�
dates� and presents the various type�speci	c coher�
ence mechanisms� Section � describes the current
status of the project and the anticipated directions
for implementation� We compare Munin with related
work in Section � and draw conclusiosn in Section ��

� Sharing in Parallel Programs

Type�speci	c memory coherence requires that there
be a relatively small number of identi	able shared
memory access patterns� for which corresponding me�
mory coherence mechanisms can be developed� that
characterize the majority of shared data objects� We
studied six shared memory parallel programs written
in the C�� language 
��
 using the Presto program�

ming system 
�
 on the Sequent Symmetry shared
memory multiprocessor 
�
� We selected programs
written speci	cally for a shared memory multipro�
cessor so that our results would not be in�uenced
by the program being written with distribution in
mind and would accurately re�ect the memory ac�
cess behavior that occurs when programmers do not
expend special e�ort towards distributing the data
across processors� The programs that we studied in
detail were� Matrix multiply� Gaussian elimination�
Fast Fourier Transform �FFT�� Quicksort� Traveling
salesman� and Life� Matrix multiply� Gaussian elim�
ination and Fast Fourier Transform are well under�
stood numeric problems that distribute the data to
separate threads and access shared memory in pre�
dictable patterns� Quicksort is a representative sort�
ing problem that uses divide�and�conquer to dynam�
ically subdivide the problem� Traveling salesman is a
representative graph problem that uses central work
queues protected by locks to control access to prob�
lem data� Life is a representative �nearest�neighbors�
problem in which data is shared amongst neighboring
processes�

We have identi	ed a limited variety of shared data
objects� Write�once�Write�many � Result �Migratory �
Producer�Consumer � Private� Read�mostly � General
Read�Write and Synchronization� Intuitively� Write�

once objects are read but never written after ini�
tialization� Write�many objects are frequently mod�
i	ed by multiple threads between synchronization
points� Producer�Consumer objects are characteristi�
cally written �produced� by one thread and read �con�
sumed� by a 	xed set of other threads� Migratory ob�
jects are accessed in phases� where each phase corre�
sponds to a run of accesses by a single thread� Result
objects collect results� Once they are written� they
are only read by a single thread that uses the results�
Private objects are shared data objects that are only
accessed by a single thread even though they are ac�
cessible to all threads� Synchronization objects� such
as locks and monitors� are used by programmers to
denote explicit inter�thread synchronization points�
Read�mostly objects are read signi	cantly more fre�
quently than they are written� General Read�Write

objects are those objects that are accessed in a way
such that we could not characterize them as being
in one of the previous categories� For our adaptive
caching mechanism to work well� relatively few shared
objects can fall into this class�

The general results of our analysis can be summa�
rized as follows�

�� There are very few General Read�Write objects�

�� The notion of an object natural to the program�



mer often does not correspond to the appropri�
ate granularity of data decomposition for par�
allelism� In particular� many objects that are
write�shared are shared in such a way that di�er�
ent threads update independent portions of the
object�

�� Parallel programs behave di�erently during dif�
ferent phases of their execution� and in particu�
lar exhibit signi	cantly di�erent access behavior
during initialization than during the rest of their
execution� The overwhelming majority of all ac�
cesses are reads� except during initialization�

�� The latency between accesses to synchronization
objects �mainly locks� is signi	cantly higher than
the latency between accesses of other shared data
items� even for programs with heavy use of syn�
chronization�

These results strongly support our hypothesis that a
distributed shared memory system employing a type�
speci	c memory coherence scheme will outperform
one that does not�

� Memory Coherence

��� Overview

Munin treats the collection of all memories in the dis�
tributed system as a single address space� with coher�
ence enforced by software� The virtual address space
of each processor is partitioned into shared and pri�
vate areas� The private area is local to each processor
and contains non�shared data� the runtime structures
used to manage memory coherence� and the system
memory map used to record which segments of global
shared memory are currently mapped into the local
portion of shared memory� The system map may also
contains hints about other processors� shared memory
areas� but these hints may not always be reliable�

Munin views memory on each machine as a col�
lection of disjoint segments� Munin servers on each
machine interact with the applications program and
the underlying distributed operating system to ensure
that segments are correctly mapped into local me�
mory when they are accessed� Munin performs fault
handling in a manner analogous to page fault han�
dling in a virtual memory system� When a thread
accesses an object for which there is no local copy�
a memory fault occurs� This causes Munin to sus�
pend the faulting thread and invoke the associated
server to handle the fault� The server checks what
type of object the thread faulted on and invokes the
appropriate fault handler� When Munin is unable to

select a special memory coherence mechanism� a de�
fault mechanism similar to Ivy�s is employed� In ei�
ther case� Munin resumes the suspended thread after
handling the fault�

Software coherence control exacts a certain cost�
but it allows us to support more �exible ways of shar�
ing than is possible in hardware� In particular� it
allows us to support objects with coherence mecha�
nisms tailored to their access characteristics� includ�
ing using variable�sized cache items� and making dy�
namic decisions about coherence methods that adapt
to the behavior of the program�

��� Loose Coherence and Delayed

Updates

Delayed updates result from a relaxed de	nition of
memory coherence�

Memory is loosely coherent if the value
returned by a read operation is the value
written by an update operation to the same
object that could have immediatelypreceded
the read operation in some legal schedule of
the threads in execution�

This contrasts with the more common de	nition
used in Ivy 
��
 and Clouds 
��
�

Memory is strictly coherent if the value
returned by a read operation is the value
written by the most recent write operation
to the same object�

Figure � illustrates the di�erence between these
two de	nitions of coherence� R� through R� and W�

through W� represent successive reads and writes� re�
spectively� of the same object� and A� B� and C are
threads attempting to access the object� Strict co�
herence requires that thread C at R� read the value
written by thread B at W�� and that thread C at R� and
R� read the value written by thread B at W�� Loose co�
herence� on the other hand� requires only that thread
C at R� and R� read the value written at any of W�
through W� such that the value read at R� does not
logically precede the value read at R�� and that thread
C at R� read either the value written by thread A at
W� or the value written by thread B at W�� Essen�
tially� strict coherence describes the implicit synchro�
nization usually associated with message passing� and
loose coherence describes the explicit synchronization
normally associated with shared memory multipro�
cessors� Strict and loose coherence are closely related
to the concepts of strong and weak ordering of events
as described by Dubois et al� 
�
� Programmers using



Munin specify only a partial order on the reads and
writes of shared data objects�

As a result of their strict de	nition of coherence�
Ivy and Clouds allow only one thread at a time to
have write access to an object� This often leads to
unnecessary memory coherence overhead when the
programmer� knowing that the writes are indepen�
dent� allows two threads to write to the same object
without synchronization� In contrast� our loose def�
inition of coherence allows updates to remote copies
of a shared object to be delayed until it is convenient
to perform them� or until the program�s semantics re�
quires them� For example� a synchronization event in
a program requires that the delayed updates be prop�
agated 	rst� Delaying updates allows the system to
combine updates to the same object� and allows the
data motion to be combined with the synchroniza�
tion that prompted the updates to be propagated� A
simple example of this phenomenon occurs with ma�
trix multiplication� where every thread computes a
single element of the result matrix� With strict me�
mory coherence� the result matrix �or cached portions
thereof� travels between di�erent machines� With
delayed updates� the results are propagated once to
their 	nal destination�

We use a delayed update queue for each thread to
maintain a list of the updates that have not yet been
propagated� Whenever a thread modi	es a shared
object� we can delay sending out the update to re�
mote copies of the object until remote threads could
otherwise indirectly detect that the object has been
modi	ed before they receive its new value� Speci	�
cally� updates must be propagated in the order that
they occur in the program execution� so that remote
threads do not decide �erroneously� that an object
has changed� and use the old value �believing it to
be the new value�� For example� if thread A up�

�

���

��

���

�

�

�

�

TIME

C

B

A

SYNCHSYNCH

R�R�R�

W�W�

W�W�W�

Figure �� Strict and Loose Coherence

dates object X and then updates object Y� the up�
date to X must be propagated before the update to
object Y because the program may make use of the
fact that object X is modi	ed before object Y� Anal�
ogously� the delayed update queue must be �ushed
whenever a thread synchronizes� The delayed up�
date mechanism guarantees that updates eventually
get propagated� because whenever a thread synchro�
nizes �including during thread exit�� the delayed up�
date queue is �ushed� Delaying updates allows the
system to combine updates to the same object� thus
reducing the network tra�c� It also allows the data
motion to be combined with the synchronization that
prompted the updates to be propagated� which allows
our system to bene	t from the implicit synchroniza�
tion provided by message passing�

Compare how write sharing is handled by Ivy and
Munin� Ivy enforcement of strict coherence only al�
lows a thread to update a piece of data when no other
thread is updating or reading it� In Munin� if two
threads A and B attempt to update an object X� and
one thread C attempts to read it such that the accesses
to X are not synchronized� then C�s read can legally
return the value written by A� the value written by B�
or the original value of X� This is because there is no
guarantee of the order in which the threads are sched�
uled� and our loose de	nition of coherence allows any
of these values to be returned� In Ivy� if process A

happens to write to X before C reads X� C is guaran�
teed to see the value written by A� This di�erence has
a major e�ect on how the system can handle objects
that are updated by multiple threads� In particu�
lar� Ivy introduces unnecessary synchronization that
is avoided by Munin�

��� Type�speci�c Coherence Mecha�

nisms

����� Write�once Objects

Write�once objects are written during initialization�
but afterwards only read� Write�once data objects are
frequently read concurrently by many threads� This
can be supported e�ciently via replication� When a
thread tries to read an object for which there is no
local copy� the local Munin server gets a copy of the
object� without disturbing any copies of the object
stored at other nodes� Replicating an object allows
it to be accessed locally at each site� However� repli�
cation of large objects can lead to ine�cient memory
utilization� and can restrict the size of the problems
that can be solved� It is also di�cult to keep repli�
cated objects coherent� When a write is done to an
object� all of its copies must be updated or invali�



dated� Munin addresses these problems by allowing
portions of large read�only objects to �page�out��

����� Write�many Objects

It is common for multiple threads to write to a single
object concurrently� This can occur when the pro�
grammer knows that updates to di�erent parts of the
same object do not con�ict� Programs written for
shared memory multiprocessors must take into ac�
count arbitrary thread scheduling� and synchronize
access to an object whenever di�erent threads could
simultaneously read from or write to it� Data ac�
cess and synchronization are logically separate� Com�
bining data motion and synchronization is one way
that programs written on distributed systems achieve
good performance� We believe that for distributed
shared memory to be e�cient� the underlying pat�
tern of message passing used to support the illusion
of shared memory for a particular program should
closely resemble the pattern of message passing for an
e�cient message�passing implementation of the same
program� We use delayed updates to combine data
motion and synchronization in Munin�

����� Migratory Objects

Migratory objects 
��
 are accessed by a single pro�
cessor at a time� as would be the case with an object
accessed within a critical section of code� Migratory
objects can be handled e�ciently by integrating their
movement with that of the lock associated with their
critical section� If the lock queue is non�empty when
a processor unlocks the critical section� then the ob�
ject is �migrated�� together with the lock itself� to
the next thread in the lock queue� If the queue is
empty� and assuming the system has no other knowl�
edge about which thread will acquire the lock next�
then the object is migrated with the lock to the next
thread requesting the lock�

����� Producer�Consumer Objects

In some algorithms� processors only share data along
object boundaries� For example� in a �nearest neigh�
bors� algorithm� the new value for a particular matrix
element is a function of the old values of neighboring
elements� Thus� if the matrix is divided into a number
submatrices� communication between processors only
occurs at submatrix boundaries� �Wavefront� algo�
rithms have similar data sharing characteristics� In
all previous systems� e�ciently handling this type of
algorithm requires the programmer to substantially

modify the algorithm to reduce the amount of syn�
chronization required in passing data across bound�
aries�

If the system knows the producer�consumer rela�
tionship� it can perform eager object movement� Ea�
ger object movement is a mechanism that moves ob�
jects to the node at which they are going to be used
before when they are required� In the nearest neigh�
bors example� this involves propagating the boundary
element updates as soon as they occur� In the best
case� the new values are always available before they
are needed� and threads never wait to receive the cur�
rent values�

����� Read�mostly Objects

A Read�mostly is not accessed in a pattern that can
be exploited with one of the above mechanisms� but
is read far more often than it is written� They po�
tentially can be handled relatively e�ciently in a va�
riety of ways� including via replication using delayed
updates to keep the copies coherent or via remote
load�store� The Munin prototype system uses remote
load�store to handle read�mostly objects�

����� General Read�Write Objects

General Read�Write sharing is the general of arbi�
trary data sharing� It occurs when multiple threads
are reading from and writing to the same data ob�
jects� and there is no particular pattern to the shar�
ing that can be exploited� Munin handles general
read�write objects using a mechanism based on the
Berkeley Ownership cache consistency protocol 
��
�
By default� objects that are not recognized as some
other speci	c type will be treated as general read�
write� Our study showed that general read�write ob�
jects account for a very small percentage of all ac�
cesses to shared data�

����	 Synchronization Objects

Synchronization objects are used to give threads
exclusive access to other objects� When multiple
threads access a single synchronization object� these
accesses must be ordered while allowing threads to
get fair access�

Munin supports distributed synchronization with
distributed locks� More elaborate synchronization ob�
jects� such as monitors and atomic integers� are built
on top of this� Our distributed locks employs proxy
objects 
�
 to reduce network overhead� When a



thread wants to acquire or test a global lock� it per�
forms the lock operation on a local proxy for the dis�
tributed lock� Proxy objects are maintained by a col�
lection of distributed lock servers� one per processor�
When a lock server detects an attempt to lock a local
proxy object� it interacts with the other lock servers
to acquire the global lock associated with the local
proxy� When it has acquired the global lock� it al�
lows the blocked thread to continue by releasing the
local proxy lock to the thread� Unlocking is handled
similarly�

Munin passes lock ownership amongst the dis�
tributed lock servers� Each lock has a queue asso�
ciated with it that contains a list of the servers re�
quiring access to the lock� This queue facilitates ef�
	cient exchange of ownership� Our distributed syn�
chronization protocol also bene	ts from semantic in�
formation� For example� if the system can determine
which thread is most likely to attempt to acquire a
particular lock next� ownership of the lock can be
migrated to the distributed lock server on the same
processor as that thread� We plan to study several
variants of this protocol to determine which is most
e�cient� The functional separation that the proxy
mechanism provides facilitates this experimentation�

��� Dynamic System Decisions

Even objects with the same access type are not used
in the same way by all programs� Munin must make
dynamic decisions in handling objects to e�ciently
support a wide variety of programs� In this section we
discuss two of these decisions� and their implications�

����� Replication vs� Remote Load Store

As we have discussed� replication is often useful in
supporting read�shared objects� In some circum�
stances� replication may also be an appropriate mech�
anism for general read�write objects� In such cases�
replication reduces read latency� but increases update
�write� latency due to the added expense of updating
or invalidating all remote copies of the object� In�
stead� when there is only a single remote copy of an
object� it is relatively inexpensive to perform updates
by performing a remote store to the single copy� How�
ever� this approach makes reads relatively expensive
because every read requires a remote load� There are
instances when each of these techniques is most ap�
propriate� Since most programs perform many more
reads than writes� replication will be the dominant
mechanism for handling sharing� However� when an
object is primarily written to� such as an object that

collects results� maintaining a single copy is more e��
cient� Updates can be merged using our delayed write
scheme to reduce the number of network packets re�
quired�

Previous systems have used only replication� but
we believe that each approach is optimal under di�er�
ent circumstances� It is often possible to determine
when replication or a single remote copy is preferable
in a given situation based on program semantic infor�
mation� Munin makes this decision on a per�object
basis so the system can take advantage of any seman�
tic knowledge that it obtains� either by inference� or
directly from the user�

����� Invalidation vs Refresh

There are two fundamentally di�erent ways to per�
form an update to a replicated object� One approach
is to invalidate all remote copies of the object� If re�
mote threads need to access the object after the up�
date� they �page� it back in again� This approach is
ine�cient when a large number of threads frequently
read the object� Another approach for handling re�
mote updates is to refresh every remote copy of the
object by propagating the new value of the object to
each node maintaining a copy� This is more di�cult
than invalidation� because the new value rather than
an invalidation message must be sent� Refresh using
multicast reduces the amount of network tra�c when
many threads will request the new information even�
tually� but is not always a good idea� If the remote
copies are not going to be used� or if several updates
are going to occur between uses� invalidation iss bet�
ter�

Previous distributed shared memory systems have
assumed that only invalidation is appropriate� but
again� each approach is preferable under di�erent cir�
cumstances� Eggers and Katz 
��
 have shown that
invalidation is preferable when the program exhibits
a high degree of per�processor locality� Conversely�
refresh is preferable when there is a high degree of
	ne�grained sharing�

� Status and Directions

We are currently implementing Munin on an Ether�
net network of SUN workstations� This implementa�
tion will allow us to assess the runtime costs of the
delayed update queue and the other type�speci	c co�
herence mechanisms� as well as their bene	ts relative
to standard static coherence mechanisms� We are us�
ing the V kernel 
�
 to provide high�speed communi�



cation between the di�erent processors� and we have
chosen to support the Presto 
�
 parallel program�
ming environment to develop our shared memory par�
allel programs� Presto is a shared memory parallel
programming environment that provides parallelism
�lightweight processes� and synchronization �locks
and Mesa�style monitors� for the object�oriented lan�
guage C�� 
��
� Programmers write their programs
using a shared memory model� inserting declarations
to provide object�speci	c information to the Munin
runtime system� These declarations are processed by
the compiler� and allow the runtime system to select
the appropriate coherence mechanism for each object�
Munin allows programs to be written in essentially
the same way that they are written for shared me�
mory multiprocessors� At the lower levels� our sys�
tem uses only generic send and receive message pass�
ing primitives� and thus it can easily be ported to a
variety of message passing architectures�

We chose Presto as our parallel programming en�
vironment for three reasons� First� the natural data
encapsulation and inherent synchronization provided
by object oriented programming languages makes
them good candidates for distributed implementa�
tion� Data encapsulation makes it relatively easy for
the system to determine the amount of memory that
needs to be loaded or remotely updated� Second�
it allows us to compare our system�s performance
with that of a true shared memory multiprocessor�
as Presto currently runs on our Sequent Symmetry�
Finally� we have experience using Presto and have a
local community of users� We anticipate that this will
make development and testing easier�

In the Munin prototype system� the server associ�
ated with each processor is a user�level process run�
ning in the same address space as the threads on that
processor� This makes the servers easier to debug and
modify� which serves our goal of making the prototype
system expandable� �exible and adaptable� We will
be able to add mechanisms should we discover addi�
tional typical memory access patterns� We will be
able to pro	le the system to evaluate system perfor�
mance� and determine the performance bottlenecks�
Running at user�level� the Munin servers will have
access to all operating systems facilities� such as the
	leserver and display manager� which will facilitate
gathering system performance information�

When Munin is fully operational we anticipate
several related investigations� We currently rely on
the programmer to provide all of the semantic infor�
mation required by the Munin runtime system� In the
future we plan to integrate a more powerful compiler
into our system� in order to relieve the programmer of

some of this burden� We plan to investigate the pos�
sibility of using the runtime system to determine the
type of an object� Pro	ling information may enable
Munin to �learn� about objects in the system� For ex�
ample� the system might be able to detect that an ob�
ject is being continuously updated by one thread and
read by another� Upon noticing this� Munin could de�
	ne the object as a producer�consumer shared object
and treat it accordingly� We also plan to study what
underlying system and�or hardware support would
signi	cantly improve Munin�s performance� For ex�
ample� a well designed network interface could re�
duce the overhead on each processor by performing
some useful functions itself� such as reliable multicast
and distributed locks� Performance on hardware with
di�erent performance characteristics� such as higher
network bandwidth or increased processor speed� re�
tains our active interest� Finally� the provision of
fault tolerance and support for heterogeneity might
be required in an operational system�

� Related Work

The Ivy system 
��
 provides shared memory on a
collection of Apollo workstations using a distributed
memory manager� Ivy�s shared virtual memory pro�
vides a virtual address space that is shared among
all the processors in the system� Global virtual me�
mory is divided into pages corresponding to physical
pages� Each processor has a memory mapping man�
ager that views local memory as a cache of the shared
virtual address space� Ivy essentially uses a directory�
based write�invalidate approach� Unlike Munin� Ivy
enforces strict coherence and does not use any knowl�
edge of access patterns of shared data �other than
reads and writes�� As a result� there are no special
provisions for synchronization objects� and all shar�
ing is on a per�page basis� entailing the possibility
of signi	cant amounts of false sharing� While less
�transparent� than Ivy� because of the need for user
annotations� we believe Munin provides a more e��
cient abstraction of distributed shared memory for a
large variety of shared data types and the programs
that use them�

The Clouds distributed operating system was ex�
tended to provide a form of shared memory 
��
� The
distributed shared memory controller allows objects
to be mapped into the address space of any thread
�process�� Shared memory is divided into logical seg�
ments corresponding to Clouds objects� reducing the
potential for false sharing� Objects may be locked
to a particular processor while performing a series of
operations on it� allowing the programmer to utilize



application speci	c knowledge to reduce the poten�
tial for �thrashing�� Munin uses loose coherence to
e�ciently support multiple independent threads up�
dating a single object� and also provides a general�
purpose synchronization mechanism�

Amber 
�
 uses an object model as a basis for
providing a shared address space spanning multiple
processors� It enforces strict coherence by always mi�
grating threads to the objects that they access� This
works well for some programs� but often requires pro�
grammers to substantially modify their algorithms in
order to reduce the overhead of migration and ensure
that all of the threads do not migrate to the same
host� thus eliminating all parallelism�

Cheriton et al� show that a software�controlled
cache using a very large cache page size �an en�
tire physical page� can provide the high performance
needed to support fast multiprocessors 
�
� This sup�
ports our claim that Munin� which is essentially a dis�
tributed caching mechanism provided in software� can
e�ciently provide a shared memory abstraction on a
distributed system� The VMP scheme works well for
many programs� but the large cache line size causes
poor performance if there is a signi	cant amount of
	ne�grained sharing� They did not investigate the
possibility of having di�erent cache coherence mech�
anisms available to handle di�erent types of shared
objects because their cache controller had no way of
getting program�speci	c semantic information�

Our use of type�speci	c cache coherence mecha�
nisms is further supported by earlier studies of the
performance of snooping caches for parallel programs
on shared memory multiprocessors� The designers
of the Berkeley cache consistency protocol 
��
 found
that their protocol can perform signi	cantly better
with a limited amount of information about how dif�
ferent data objects are accessed� Furthermore� Eggers
and Katz 
��
 found that no single cache coherence
protocol performed best for all types of shared data
objects�

� Conclusions

We have described the motivation and memory coher�
ence mechanisms of Munin� a distributed shared me�
mory system that selects a memory coherence mech�
anism for each data object based on the manner in
which that object is expected to be accessed� We have
argued that this provides distributed shared memory
more e�ciently than using a single memory coher�
ence mechanism� We have selected these mechanisms
based on the observed behavior of a a variety of par�

allel programs� We have found that a small num�
ber of mechanisms is su�cient to support most data
sharing behavior that we have observed� We have de�
scribed out delayed update mechanism� and showed
that it allows data motion and synchronization to be
combined� which reduces the amount of unnecessary
network tra�c needed to support distributed shared
memory�

References


�
 John K� Bennett� The design and implemen�
tation of Distributed Smalltalk� In Proceed�

ings of the Second ACM Conference on Object�

Oriented Programming Systems� Languages and

Applications� pages �������� October �����


�
 John K� Bennett� John B� Carter� and Willy
Zwaenepoel� Shared memory access charac�
teristics� Technical Report COMP TR������
Rice University� September ����� Submitted
to ���� International Symposium on Computer
Architecture�


�
 Brian N� Bershad� Edward D� Lazowska� and
Henry M� Levy� PRESTO� A system for object�
oriented parallel programming� Software �

Practice and Experience� �������������� Au�
gust �����


�
 Je�rey S� Chase� Franz G� Amador� Edward D�
Lazowska� Henry M� Levy� and Richard J� Lit�
tle	eld� The Amber system� Parallel program�
ming on a network of multiprocessors� In Pro�

ceedings of the Twelfth ACM Symposium on

Operating Systems Principles� pages ��������
December �����


�
 David R� Cheriton� Gert A� Slavenburg� and
Patrick D� Boyle� Software�controlled caches
in the VMP multiprocessor� In Proceedings of

the ��th Annual International Symposium on

Computer Architecture� December �����


�
 David R� Cheriton and Willy Zwaenepoel� The
distributed V kernel and its performance for
diskless workstations� In Proceedings of the

Ninth ACM Symposium on Operating Systems

Principles� pages �������� October �����


�
 Ron Cytron� Steve Karlovsky� and Kevin P�
McAuli�e� Automatic management of pro�
grammable caches� In Proceedings of the ����

International Conference on Parallel Program�

ming� pages �������� August �����


�
 Michel Dubois� Christoph Scheurich� and
Fay�e A� Briggs� Synchronization� coherence�



and event ordering in multiprocessors� IEEE

Computer� ����������� February �����


�
 Susan J� Eggers and Randy H� Katz� A charac�
terization of sharing in parallel programs and
its application to coherency protocol evalua�
tion� In Proceedings of the ��th Annual Inter�

national Symposium on Computer Architecture�
pages �������� May �����


��
 Susan J� Eggers and Randy H� Katz� The e�ect
of sharing on the cache and bus performance
of parallel programs� In Proceedings of the �rd

International Conference on Architectural Sup�

port for Programming Languages and Systems�
pages �������� April �����


��
 R� Katz� S� Eggers� D� Wood� C�L� Perkins� and
R� Sheldon� Implementing a cache consistency
protocol� In Proceedings of the ��th Annual In�

ternational Symposium on Computer Architec�

ture� pages �������� June �����


��
 Kai Li� Shared Virtual Memory on Loosely

Coupled Multiprocessors� PhD thesis� Yale Uni�
versity� September �����


��
 Susan Owicki and Anant Agarwal� Evaluating
the performance of software cache coherence�
In Proceedings of the �rd International Confer�

ence on Architectural Support for Programming

Languages and Systems� pages �������� May
�����


��
 Umakishore Ramachandran� Mustaque
Ahamad� and M� Yousef A� Khalidi� Unifying
synchronization and data transfer in maintain�
ing coherence of distributed shared memory�
Technical Report GIT�CS������� Georgia Insti�
tute of Technology� June �����


��
 Bjarne Stroustrup� The C�� Programming

Language� Addison�Wesley� �����


��
 Wolf�Dietrich Weber and Anoop Gupta� Anal�
ysis of cache invalidation patterns in multipro�
cessors� In Proceedings of the �rd International

Conference on Architectural Support for Pro�

gramming Languages and Systems� pages ����
���� April �����


