Semantics of Optimistic Computation

Rick Bubenik
Department of Computer Science
Washington University
St. Louis, Missouri 63130-4899

Abstract

We address the issue of deriving a semantically equiv-
alent optimistic computation from a pessimistic com-
putation by application-independent transformations.
Computations are modeled by program dependence
graphs (pdgs). The semantics of a computation is de-
fined by a mapping from an initial state to a final state,
and is realized by a graph rewriting system. Semantics-
preserving transformations are applied to the pdgs of
the pessimistic computation to produce an optimistic
version. The transformations result from guessing data
values and control flow decisions in the computation.

We use our transformations to derive an optimistic
version of fault tolerance based on message logging
and checkpointing. The transformations yield an op-
timistic version similar to optimistic fault tolerance al-
gorithms reported in the literature, although additional
application-dependent transformations are necessary to
produce a realistic optimistic implementation.

1 Introduction

Optimistic computations use guesses about their future
behavior, and proceed with computation based on those
guesses before they can be verified. Output to the ex-
ternal world resulting from computation based on un-
verified guesses must be kept hidden. If a guess turns
out to be incorrect, computation and output based on
it are discarded. Otherwise, the output is committed to
the outside world. Optimistic computations allow in-
creased parallelism since constraints forcing sequential
execution are removed. The performance characteristics
of an optimistic computation, compared to an equiva-
lent pessimistic computation, depend on the percentage
of correct guesses, the performance gains resulting from
correct guesses, and the losses resulting from incorrect
guesses. Performance is also affected by the availabil-
ity of idle resources for optimistic computation and the
amount of bookkeeping necessary. Optimistic solutions

This work was supported in part by the National Science Founda-
tion under Grants CDA-8619893 and CCR-8716914, and by IBM
Corporation under Research Agreement No. 16140046.

CH2878-7/90/0000/0020$01.00 © 1990 IEEE

20

Willy Zwaenepoel
Department of Computer Science
Rice University
Houston, Texas 77251-1892

for several problems have appeared in the literature, in-
cluding bulk data transfer [4], concurrency control [9],
distributed simulation [7], fault tolerance (8,11}, and
software maintenance [3].

We explore the extent to which an optimistic compu-
tation can be derived by application-independent trans-
formations from a pessimistic computation. We model
computations by their program dependence graphs
(pdgs) [6], and define their semantics by means of a
graph rewriting system [10]. A number of application-
independent, semantics-preserving transformations on
the pdg transform a pessimistic computation into an op-
timistic one. These transformations result from guess-
ing data values or control flow decisions before they are
known. While the transformations resulting from these
guesses are application-independent, where in the com-
putation to make such guesses and what guesses to make
in order to obtain performance improvements remain
necessarily application-dependent issues.

We illustrate our technique by applying our trans-
formations to fault tolerance based on message logging
and checkpointing [1, 8, 11]. Our transformations derive
an optimistic algorithm for such fault tolerance that 1s
similar to algorithms presented in the literature [8, 11].
However, in order to achieve a realistic implementation,
further application-specific transformations are neces-
sary. We have obtained similar results by applying these
transformations to other problems [2].

The rest of this paper is organized as follows. In
Section 2, we describe program dependence graphs and
their semantics. In Section 3, we present our optimistic
transformations. We extend pdgs to accommodate non-
deterministic message exchange between deterministic
processes in Section 4. In Section 5, we demonstrate
our optimistic transformations by applying them to dis-
tributed fault tolerance based on message logging and
checkpointing. Finally, we draw conclusions in Sec-
tion 6.

2 Program Dependence Graphs

We specify computations by a variant of the program
dependence graph (pdg) as defined by Selke [10], with

extensions to handle inputs and nondeterministic mes-
sage exchange between deterministic processes. We do
not address the problem of mapping other specifications
into the pdg model.!

The semantics of a program is defined by a mapping
from the initial state to the final state, for all possible
initial states. The initial state is specified as an input
vector, IV, containing {ezternal_id, value) pairs, where
erternal_id is an external object identifier and value is
its associated value. Likewise, the final state produced
by pdg evaluation is specified as an output vector, OV,
of similar (ezternal_id,value) pairs. This semantics is
realized as a system of graph rewriting rules. The rules
describe how an evaluation of a pdg modifies the graph
and produces the output vector.

Pdgs contain nodes, corresponding to operations,
and edges that partially order the evaluation of nodes.
Internally, the pdg is a dataflow computation, in which
the values produced by one node flow along certain
edges to other nodes. There is no shared store inter-
nal to the pdg. To distinguish multiple values flowing
into and out of a single node, values are labeled with an
internal identifier (internalid) and nodes reference the
particular values consumed and produced by specifying
the appropriate internal identifiers. Input operations
transfer values from the input vector (referenced by ez-
ternal_ids) into internally accessible values (referenced
by internal_ids). Oulpui operations transfer internally
computed values to the output vector.

2.1 Graph Description

Formally, a pdg is tuple (N, E,IV,0V), where N is a
set of nodes, E is a set of edges, I'V is the input vector,
and OV is the output vector. Nodes in the pdg are
uniquely labeled and have the form:

node = (assignment,e, I1D) | (valve, IID) |
(define, ¢, I1D) | (input, EID,1ID) |

(output, IID, FI1D) | (decision, p)

where e is an ezpression over the domain of internal_ids,
p is a predicate over the domain of internal_ids, ¢ is a
set of constants, I1D is a set of internal_ids, and EID
is a set of ezternal_ids.

Edges in the pdg have the form:

edge = (flow,1,j) | (control i, j,b)
where i is the head node, j is the tail node, and b is a
boolean, either T (true) or F (false).

!The problem of mapping programs to pdgs is discussed by
Selke [10], who proves that a pdg preserves the sequential se-
mantics implied by the textual representation of a program.

21

An assignment node computes a value for each in-
ternal_td z; € IID by evaluating the expression e. Eval-
uation of this expression is deterministic in that it pro-
duces the same values if all incoming internal_ids are
bound to the same values when evaluation begins.

The wvalve node is a distinguished type of assignment
node, in which each internalid z; € 11D is assigned its
own value. As discussed by Cartwright and Felleisen [5],
only one value is allowed to flow into a node for each in-
ternal_id. This restriction is enforced by inserting valve
nodes in the branches of a decision construct in which
no assignment is made to a particular internal_id, if the
internal_id is assigned to in the other branch.

The define node assigns a constant from the set ¢ to
each internal_id z; € IID.

Input nodes assign to each internaliid z; € IID
the value read from an external object referenced by a
corresponding ezlernal_id y; € EID. Input nodes do
not have any incoming flow edges since they do not
reference values computed previously in the pdg.

Output nodes modify the output vector OV by
transferring the value referenced by each internal.id
z; € I1D to a corresponding external object referenced
by y; € EID. Output nodes do not have any outgoing
edges since no values are passed from oufput nodes to
other nodes in the pdg.

Decision nodes have a predicate, along with T con-
trol edges leading to all nodes that are evaluated only if
the predicate evaluates to T and F control edges lead-
ing to all nodes that are evaluated only if the predicate
evaluates to F.

Flow edges order nodes based on data constraints.
A flow edge is placed from node i to node j if i produces
a value labeled z and j consumes this value.

Our pdg model lacks a specific construct for mod-
eling iteration. Loops are represented by the infinite
expansion of the loop into nested decision constructs.

When exactly one value for any identifier is allowed
to flow into each node, the pdg is deterministic in that
it always generates the same output vector for a given
input vector, assuming each ezternal_id is output only
once. For now, we assume all pdgs are deterministic.
In Section 4, we augment pdgs to accommodate non-
deterministic message exchange between deterministic
processes.

2.2 Graph Rewriting Rules

During each rewriting step, some enabled node i is eval-
uated, and 7 and all its outgoing edges are removed from
the pdg. A node becomes enabled when all incoming
edges have been removed. At any time, all enabled
nodes may be rewritten in parallel. Additional nodes
and edges may be removed from the graph or modified

during a rewriting step, based on the node type, accord-
ing to the following rules:

o i = (assignment, e, I1D)

N = N-{i} - {jl(i,j) € E}
U {FIID/VilellG, 5) € B} 2
E' = E-{{i,)l(ij) € E}

The notation j[IID/Vi[e]] denotes a substitution in
node j, where the identifiers IID = {z1,...,za} ap-
pearing in j’s expression or predicate are replaced with
the values computed by the evaluation function Vi[e].
The rewriting of an assignment node is shown in Fig-
ure 1.

o i = (valve, [ID). Analogous to the assignment node
rewriting step, with Vi[e] replaced by the values of each
internal_id in IID.

o i = (define,c, IID). Analogous to the assignment
node rewriting step, with Vi[e] replaced by c.

e i = (input, EID, 11D). Analogous to the assignment
node rewriting step, with Vi[e] replaced by IV(EID),
assigning the values read from the external objects spec-
ified in the set EID to the internal_ids in I1D.

o i = (outputl, 1D, EID).
N —{i}
OVI[EID/IID]

N/
ov' =

The notation OV[EID/IID] denotes the assignment of
the value of each internal_id z; € IID to the corre-
sponding external_id y; € EID.

o i = (decision, p). Assume b = Vy[p], where V; is the
predicate evaluation function.

N —{i} = {jl(i,4,b) € E}
E—{(i,)|(i,5) € E}
— {5, b) € B}
- {(k, D13, 4,b) € E}

N/
El

Il

<D
& @

Figure 1 Assignment Node Rewriting, [1D = {z}.

2For simplicity, we frequently include only the head node and
tail node fields in edge specifications, assuming that the omitted
field(s) can be bound to any legal value. If a specific binding is
required, additional fields are specified.

22

The rewriting of a decision node is shown in Figure 2,
where the predicate evaluates to T (Control edges are
shown dotted). All nodes reachable by F edges from i
are removed from the graph, as well as edges into and
out of these nodes, and all T edges from i are removed.

3 Optimistic Transformations

Two main transformations, together with some auxil-
jary transformations, are used to derive optimistic com-
putations from pessimistic ones.

1. The data guess transformation results from guess-
ing the values produced by an assignment node so
that these values can be used in the optimistic eval-
uation of subsequent nodes.

2. The T (F) branch prediction transformation results
from guessing the value of the predicate of a deci-
sion node to be T (F) so that nodes reachable from
the decision node by T (F) control edges can be
evaluated optimistically.

Until the correctness of a guess is verified, the trans-
formations prevent values computed by optimistically
executed nodes from flowing into the rest of the com-
putation, or from being written into the output vector.
The values are discarded, if the guess is incorrect.

Optimistic transformations allow certain nodes in
the pdg to be evaluated earlier than they would be with-
out the transformations. The transformations remove
flow and control edges leading into these nodes, thus
increasing the available parallelism in the computation.
The transformations are application-independent since
they are applied to all pdgs identically, without regard
to the operations appearing in the pdgs. However, the
guesses that drive the transformations are necessarily
application-dependent.

For the example given in this paper (Section 5),
the branch prediction transformation suffices. The data
guess transformation is similar, and a detailed descrip-
tion of it is omitted for brevity. A description appears
elsewhere [2].

Figure 2 Decision Node Rewriting, V3[p] = T.

The following definition is used in the description
of the transformations. Let N denote the node set of
G and E denote the edge set of G. A region R of a
pdg G is a subgraph of G containing a set of nodes
Nr C N and a set of edges Er, where (i,j) € Ex if
and only if (7, j) € EA(i € NrVj € Ng). Additionally,
regions have no outgoing conirol edges and no paths
along outgoing edges that lead back into the region.
Examples of regions include:

e One or more assignment, valve, define, input, or
output nodes, plus interconnecting edges (if any).

e A decision construct, consisting of a decision
node ¢, an F-region (the portion evaluated only
if s predicate is F'), and a T-region (the portion
evaluated only if s predicate is T).

3.1 Branch Prediction Transformation

The T (F) branch prediction iransformation allows
nodes reachable by T (F) control edges of a decision
node to be evaluated optimistically, before the decision
node is evaluated. Figure 3 shows the effect of a T
branch prediction transformation. All nodes reachable
by T control edges (region 7), minus the oufput nodes
(region T,yu:), can be evaluated before the predicate out-
come at node i is determined. Valve nodes prevent the
optimistically computed values from flowing into region
R before the correctness of the guess is verified, and
control edges prevent the optimistically computed val-
ues from being output.

Correctness (Sketch) If the branch prediction is
incorrect, none of the optimistic evaluations can affect
the output vector or the remainder of the pdg, region
R, since the output nodes are removed and the opti-
mistically computed values are discarded by removing
the valve nodes. Region F executes the same in the
original and the transformed pdg. Hence, the same val-
ues flow into region R, and region R evaluates the same
in both pdgs. If the branch prediction is correct, region

Figure 3 T Branch Prediction Transformation.

23

T evaluates the same in both pdgs since the same val-
ues flow into 7 from region P. Consequently, the same
values flow into region R, and therefore R evaluates the
same in both pdgs. Therefore, regardless of the correct-
ness of the prediction, pdg evaluation is the same before
and after this transformation.

3.2 Region Copy Transformation

The region copy transformation copies a region R fol-
lowing the decision construct such that one copy of R
is placed in the F-region and the other copy is placed
in the T-region. This transformation is shown in Fig-
ure 4. A region copy transformation may be followed
by an additional branch prediction transformation to
allow nodes that were originally following the decision
construct to be evaluated optimistically.

Correctness (Sketch) Region P, the decision
node 7, and region 7 or F (depending upon the out-
come of ¢) all evaluate the same in the original and the
transformed pdgs since the values flowing into these re-
gions are unaltered. In either case, we are left with a
single copy of region R followed by R’. Since all other
parts of the pdg have evaluated the same both in the
original and in the transformed pdg, the same values
flow into R and R’, and therefore both regions evaluate
the same in the original and in the transformed pdg.

4 Send/Receive Nondeterminism

We extend the deterministic pdg model to accommodate
a restricted form of nondeterminism, arising from mes-
sage exchange between deterministic processes. In this
extended model, a computation is defined as a collection
of processes, and a process is defined as a deterministic
pdg containing send and receive nodes. Each process
is uniquely labeled with a process identifier pid. Values
are passed between processes in messages, by means of

Figure 4 Region Copy Transformation.

send and receive nodes. Each process is determinisiic
in the sense that if it is given an input vector IV and an
ordered set of messages received by the receive nodes,
then the process produces the same output vector OV
and sends the same sequence of messages to other pro-
cesses during evaluation.

4.1 Definitions
The send and receive node types are defined as follows:

node = (send,m) | (receive, M,R,IID)
where m is a message, M is a message set, R is a
received-message set, and IID is a set of internalids.
The send node passes message m to all receive nodes
that are directly reachable from the send node by a flow
edge, placing the message in the receive node’s message
set M. The message contains a unique send identifier
SID, the pids of the source and destination processes,
and possibly other values.

All receive nodes of a given process are totally or-
dered. A receive node has a distinguished incoming flow
edge, called the enable edge. The value flowing into the
recetve node over this edge is the received-message set
R containing the SIDs of all messages previously re-
ceived by this process. A receive node is enabled when
the incoming enable edge and all incoming control edges
have been removed. When a receive node is enabled, it
chooses any message in the message set M whose SID
is not in the received-message set R and whose desti-
nation pid matches the pid of the process performing
the receive. If no such message exists, evaluation of
the receive node is suspended until an appropriate mes-
sage becomes available. When evaluation of the node
is resumed by the arrival of a message, the internal_ids
z; € IID are assigned the values in the incoming mes-
sage, and these values flow over the appropriate flow
edges to subsequent nodes, as in an assignment node
evaluation. After receive node evaluation completes, an
assignment node adds the SID of the received message
m to the received-message set R, and passes this new
set to the subsequent receive node over the subsequent
node’s incoming enable edge.

4.2 Discussion

Since computations can be nondeterministic, several
possible output vectors can be produced for a given in-
put vector. We define the semantics of a nondetermin-
istic computation as the set of possible output vectors.

The optimistic transformations are essentially the
same as in Section 3. Send and receive nodes are trans-
formed in the same way as assignment nodes. However,
we prevent the region copy transformation from copying
a receive node if there is a path from the receive node
to the decision node where the region copy transforma-

24

tion is applied (indicating a cycle in the graph). This
restriction is necessary for correctness [2].

5 Fault Tolerance Using Message
Logging and Checkpointing

We demonstrate the use of our optimistic transforma-
tions by applying them to a pessimistic fault-tolerant
computation. We show elsewhere [2] how optimistic
variants of distributed simulation, concurrency control,
and the make program can be derived.

5.1 Pessimistic Algorithm

With fault tolerance methods based on pessimistic mes-
sage logging and checkpointing, each message received
by a process is logged before the process is allowed to
act on that message. Processes are occasionally check-
pointed, but no coordination is needed between the
checkpoints of different processes. After a failure, a pro-
cess is restarted from its latest checkpoint and the se-
quence of messages it received since that checkpoint are
replayed from the log. Duplicate messages sent during
recovery are ignored.

Each process in such a fault-tolerant computation
consists of a number of receives, each followed by a check
to determine if the message is logged, and, if so, by the
necessary computation in response to the received mes-
sage. Figure 5(a) shows, in outline, the pdg for such
a process. Flow edges are labeled with the values that
flow over these edges. The region labeled C represents
the computation occurring as a result of an incoming
message. Computation C is an arbitrary function of
the process’s state vector S and the incoming message
m,, and produces a new value of the state vector S.
The node labeled “if m; logged” is a decision node
that evaluates to T if the message is logged before a
failure and to F otherwise. We refer to this decision
node as the if-logged node. The msg_set is the set of
messages received so far by the process. The newly re-
ceived message gets added to msg.set only in the T
branch of the if-logged node. Region R contains subse-
quent receive/log/computation intervals, similar to the
one shown. The pdg for the entire fault-tolerant com-
putation consists of a number of similar pdgs, one for
each process, with send and receive nodes appropriately
connected.

5.2 Optimistic Transformations

Optimistic fault tolerance methods based on message
logging and checkpointing [8, 11] guess that messages
are logged before a failure, and allow the processes to act
on a message before it is guaranteed that the message

has been logged.

We initially restrict our attention to a process that
does not perform any outputs or any sends, and receives

S, msg_set

(b)

Figure 5 Fault-Tolerant Computation Pdg With Transformations.

no messages that have been sent optimistically as the
result of a guess that has not been verified. In essence,
we are restricting the optimism to a single process and
do not let it “spread” to other processes. We will remove
these restrictions shortly.

Figure 5(b) shows the pdg of a process after receiv-
ing a message and after a T branch prediction transfor-
mation has been applied to the if-logged node. While
in the pessimistic version computation C cannot be ex-
ecuted until the preceding if-logged node returns T, C
is enabled in the optimistic version, regardless of the
execution of the if-logged node.

If the message gets logged before a failure occurs, the
tf-logged node evaluates to T. The T control edges from
the if-logged node are removed, and the walve nodes
reachable by these T control edges can pass the val-
ues of S and msg._set on to the region R. The valve
nodes reachable by F edges from the if-logged node are
removed.

Otherwise, if there is a failure before the message
gets logged, the if-logged node returns F. The wvalve
nodes reachable by T edges from the if-logged node are
removed and the values of S and msg_set computed by
the optimistic computation based on the receipt of that
message cannot reach region R. The F control edges
from the if-logged node are removed, and the values of
S and msg_set prior to this receive node flow into re-
gion R.

To allow continued optimistic evaluation beyond re-
gion C, we first apply several region copy and valve dele-

tion transformations,® copying some or all of the nodes
in R into both branches of the if-logged node. Then,

3The valve deletion transformation is an auxiliary transformation
that removes the superfluous valve nodes [2].

25

we apply a branch prediction transformation, allowing
nodes in the T branch to be evaluated optimistically
based on the guess that message m; gets logged. If
region R contains receive nodes, additional branch pre-
diction transformations can be applied, as above.

We now allow C to contain output and send nodes. If
C contains output nodes, then, as a result of the branch
prediction transformation, a T control edge from the
corresponding if-logged node remains directed at those
output nodes, preventing their execution until the mes-
sage has been logged.

Figure 6 depicts the case in which a send node ap-
pears as part of C. In Figure 6(a), the graph has been
transformed to the point where the send node is enabled
in the sending process. In Figure 6(b), several region
copy transformations have been applied to the appro-
priate receive node in the receiving process, and to the
region R’ following the receive node. In Figure 6(c), a T
branch prediction transformation and a valve deletion
transformation have been applied, allowing the receive
node and region R’ to execute optimistically.

Assume the send node depends on a single uncon-
firmed guess (as in Figure 6). If the guess is incorrect,
the nodes reachable by the T control edges from the
if-logged node are removed, and hence the optimistic
execution of the receive node and all further nodes in
region R’ do not modify the output vector and do not
flow beyond region R’/. The copy of the receive node
and all further nodes following it in the F branch of
the if-logged node become enabled. These nodes receive
the state vector S and msg_set prior to the receipt of
the message. If the guess is correct, all nodes in the F
branch are deleted and all T control edges from the if-
logged node are removed. If the send node depends on
multiple unconfirmed guesses, control edges from each
of the if-logged nodes at which a guess was made are di-

sender
process

receiver
process

sender
process

receiver
process

sender
process

receiver
process

(©

Figure 6 Additional Transformations
Applied to Fault-Tolerant Computation Pdg.

26

rected at the nodes dependent on those guesses. Since
the control edges have a conjunctive effect, the correct-
ness of all guesses has to be verified. As soon as any
one of these fails, the node is removed.

5.3 Towards A Realistic Implementation

The creation of nodes in the F branch of the if-logged
node (as a result of the region copy transformation),
along with the values of S and msg-set that flow into
the wvalve nodes in the F branch of the if-logged node,
represent the saving of the process’s state, prior to the
receipt of the corresponding message. In an implemen-
tation, this is the state that is restored in the event of a
failure by restarting the failed process and replaying the
logged messages in the order they were received. The
nodes of the pdg that are evaluated optimistically af-
ter the transformations are applied correspond to the
continuing execution using the message just received.
After the message has been logged, the removal of all
nodes reachable by F control edges from the if-logged
node corresponds to the garbage collection of the saved
state, which is no longer needed. Removal of the T
control edges leading to output nodes corresponds to
the commitment of output.

If processes execute at different sites, the confirma-
tion of a guess can be implemented by a message sent
from the site where the guess was made and verified to
the site where the guess was “inherited” by the receipt
of the message. One may view the T control edge ema-
nating from the if-logged node as the channel over which
this confirmation message is sent. The F conirol edges
can be viewed as the channels on which to send a mes-
sage notifying the receiver that the guess was incorrect.
Here the mapping to a real implementation is not as di-
rect since the failure typically causes the process to lose
knowledge of which processes it sent messages to based
on the receipt of messages that had not been logged.

Several application-specific transformations can be
performed to improve the efficiency of optimistic mes-
sage logging, and to provide notification of incorrect
guesses. The information as to which guesses a par-
ticular node’s execution depends on can be much more
efficiently encoded by a dependency vector [8, 11]. With
every receive, and thus with every guess, a counter in
the receiving process, the state interval indez, is incre-
mented. With every message sent, the state interval
index of the sender at the time of sending the message
is included. This effectively summarizes all guesses on
which the sending of this message is based. It suffices to
include the last such guess, since an incorrect outcome
of any of the earlier guesses is sufficient to render all sub-
sequent guesses incorrect. The receiver of the message
records the highest state interval index it has received in
a message from each other process in a dependency vec-
tor. The dependency vector indicates the last guess of

each other process that the receiver depends on. When
messages get logged, the receiver of these messages can,
for instance, announce this information in a message,
and other processes can decide which optimistically ex-
ecuted nodes are now confirmed, by inspection of their
dependency vectors.

In order to handle notification of failures, Strom and
Yemini [11] increment a process’s incarnation number
after every failure. This incarnation number is sent
along with all messages. When a process receives a
message with a later incarnation number, it deduces
that the sender has failed, and asks for the initial state
interval index of the new incarnation This informs the
process of those guesses of the failed process that were
rendered incorrect by the failure. The process then
discards any of its execution based on such incorrect
guesses.

6 Conclusion

We have derived optimistic computations from equiva-
lent pessimistic ones by performing optimistic transfor-
mations on the program dependence graph of the pes-
simistic computation. These optimistic transformations
result from guessing data values or control flow deci-
sions before they are known, and preserve the semantics
of the pessimistic computation. While the transforma-
tions are application-independent, the guesses remain
application-dependent. We have used our transforma-
tions to derive an optimistic version of fault tolerance
based on message logging and checkpointing.. Addi-
tional application-specific transformations are necessary
to derive an efficient optimistic version. Our work im-
proves on earlier work by Strom and Yemini [12] on
optimistic transformations, in that we have identified
application-independent transformations and in that we
have shown that these transformations preserve the se-
mantics of the computation.

Acknowledgements

We would like to thank several of our colleagues
for their contributions to this work and their help-
ful comments on earlier drafts of this paper. Spe-
cial thanks goes to John Carter, Corky Cartwright,
Elmootazbellah Elnozahy, Matthias Felleisen, Jerry
Fowler, Dave Johnson, Pete Keleher, Mark Mazina, and

Becky Selke.

References

(1] A. Borg, W. Blau, W. Graetsch, F. Herrmann,
and W. Oberle. Fault tolerance under UNIX.
ACM Transactions on Computer Systems, 7(1):1-
24, February 1989.

[2] R. Bubenik. Optimistic Computation. PhD thesis,
Rice University, March 1990.

27

[3] R. Bubenik and W. Zwaenepoel. Performance
of optimistic make. In Proceedings of the ACM
SIGMETRICS and PERFORMANCE ‘89 Interna-
tional Conference on Measurement and Modeling of
Computer Systems, pages 39-48, May 1989.

J. Carter and W. Zwaenepoel. Optimistic imple-
mentation of bulk data transfer protocols. In Pro-
ceedings of the ACM SIGMETRICS and PERFOR-
MANCE ‘89 International Conference on Measure-
ment and Modeling of Computer Systems, pages
61-69, May 1989.

[4]

R. Cartwright and M. Felleisen. The semantics of
program dependence. In Proceedings of the SIG-
PLAN ‘89 Conference on Programming Language
Design and Implementation, pages 13-27, June
1989.

(5]

J. Ferrante, K.J. Ottenstein, and J.D. Warren. The
program dependence graph and its use in optimiza-
tion. ACM Transactions on Programming Lan-
guages and Systems, 9(3):319-349, July 1987.

D.R. Jefferson. Virtual time. ACM Transactions
on Programming Languages and Systems, 7(3):404—
425, July 1985.

D.B. Johnson and W. Zwaenepoel. Recovery in dis-
tributed systems using optimistic message logging
and checkpointing. In Proceedings of the Seventh
Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 171-181, August 1988.

[9] H.T. Kung and J.T. Robinson. On optimistic meth-

ods for concurrency control. ACM Transactions on

Data Base Systems, 6(2):213-226, June 1981.

[10] R.P. Selke. A rewriting semantics for program de-
pendence graphs. In Proceedings of the Sirteenth
Annual ACM Symposium on Principles of Pro-

gramming Languages, pages 12-24, January 1989.

[11] R.E. Strom and S. Yemini. Optimistic recovery in
distributed systems. ACM Transactions on Com-

puter Systems, 3(3):204-226, August 1985.

[12] R.E.Strom and S. Yemini. Synthesizing distributed
and parallel programs through optimistic transfor-
mations. In Current Advances in Distributed Com-
puting and Communications, pages 234-256. Com-

puter Science Press, 1987.

