Replicated Distributed Processes in Manetho

Elmootazbellah N. Elnozahy
Willy Zwaenepoel

Department of Computer Science
Rice University
Houston, Texas*

Abstract

This paper presents the process-replication protocol of
Manetho, a system whose goal is to provide efficient,
application-transparent fault tolerance to long-running
distributed computations. Manetho uses a new negative-
acknowledgment multicast protocol to enforce the same
receipt order of application messages among all replicas
of a process. The protocol depends on a combination of
antecedence graph maintenance, a form of sender-based
message logging, and the fact that the receivers of each
multicast execute the same deterministic program. This
combination allows our protocol to avoid the delay in
application message delivery that is common in exist-
ing negative-acknowledgment multicast protocols, without
giving up the advantage of requiring only a small number
of control messages.

1 Introduction

This paper presents the process-replication protocol of
Manetho.
vide efficient, application-transparent fault tolerance for

The goal of the Manetho system is to pro-
long-running distributed applications [12]. The system
uses a combination of process-replication and rollback-
recovery: process-replication is used for server processes
that are constrained by high availability requirements; and
rollback-recovery is used for all other client processes. In
this paper, we concentrate on the process-replication as-
pects of Manetho; the rollback-recovery protocol has been
published elsewhere [12].

In Manetho, process-replication follows the leader-
cohort model [4, 7]. Each application process is replicated
by a troupe [8] that consists of a leader and v — 1 cohorts,
where each troupe member executes the same application

*This work was supported in part by NF'S Grants CDA-8619893
and CCR-~9116343, and by an IBM Graduate Fellowship.

program.’ Manetho assumes that the application process
is deterministic in the sense that its execution is completely
defined by its initial state and the sequence of messages it
receives. Manetho tolerates r — 1 fail-stop [20] failures in
each troupe,® but it does not currently tolerate network
partition.

Every application message between two application
processes 1s translated internally into an application-
multicast between the troupes implementing the two
processes. To maintain the consistency among the
troupe members, it is sufficient that each of them re-
ceives the same application-multicasts in the same order.
Manetho uses a new negative-acknowledgment, ordered-
multicast protocol to implement inter-troupe multicasts.
Manetho’s multicast protocol depends on a combination
of antecedence graph maintenance [12], a form of sender-
based message logging [14, 15], and the fact that a leader
and its cohorts execute the same deterministic program.
The graph at one troupe records the receipt order of
application-multicasts in other troupes on which the local
state of the troupe depends. The message logs are used to
retransmit application-multicasts to recover from commu-
nication and processor failures. This combination allows
the protocol to avoid the delay in application message de-
livery that is common in existing negative-acknowledgment
protocols, without giving up the advantage of requiring
only a small number of control messages.

The paper is organized as follows. Section 2 motivates
the need for a new multicast protocol. Section 3 states the
assumptions about the distributed system and distributed
computations. Section 4 defines the new multicast proto-
col. Sections 5 and 6 show how the system recovers from
failures. Section 7 describes how the system reclaims the
storage used by the antecedence graph and message logs.

1We use the term troupe instead of group to stress that all
replicas execute the same program.

2Throughout this paper, we assume that the degree of replica-
tion 7 is the same for each troupe to simplify the presentation,
although the algorithms presented in this paper do not depend
on this fact.

Section 8 compares our system with related work. Finally,
Section 9 presents conclusions.

2 Why a New Multicast Protocol?

To enforce consistency among troupe members in the ab-
sence of any information about the application program,
the system requires a multicast protocol that satisfies the
agreement and order conditions [10, 22]. The former con-
dition requires that each troupe member receive the same
set of messages, while the latter requires that each troupe
member receive the messages in the same order.

Existing multicast protocols that satisfy the agreement
and order conditions trade latency in delivery of multicast
messages to the application program against the number
of control messages. In positive-acknowledgment proto-
cols, such as the original implementation of ABCAST of
ISIS [5], the receivers run an agreement protocol to deter-
mine the receipt order of each application-multicast. The
multicast can be delivered as soon as its receipt order is
agreed upon, at the expense of the overhead caused by the
control messages that are used to reach agreement. For
example, the two-phase agreement protocol of this imple-
mentation of ABCAST requires r point-to-point messages
and one overhead multicast to determine the receipt order
of an application-multicast sent to r receivers. In contrast,
negative-acknowledgment protocols [7, 17] attempt to re-
duce the number of control messages by piggybacking the
ordering information on application-multicasts. However,
reducing the number of control messages or eliminating
them altogether introduces latency in achieving agreement
on the receipt order of an application-multicast, which in
turn introduces latency in delivering the multicast to the
application program. For example, the r-resilient protocol
by Chang and Maxemchuck requires only one overhead
message per application-multicast, but it cannot deliver
a message to the application program until r — 1 “token
transfers” have occurred, each requiring one message [7].

Realizing that satisfying the agreement and order con-
ditions is expensive, some researchers have introduced effi-
cient multicast protocols that provide weaker ordering. An
example is ISIS’s CBCAST protocol which provides causal
ordering [3]. However, CBCAST does not enforce identi-
cal receipt orders for two multicasts sent from two sources
that are not causally related [21]. Another example is the
Psync multicast protocol based on the contest order [19].
Analogous to CBCAST, two multicasts that are not re-
lated by the context order may not have a unique receipt
order. To enforce such a unique order, a deterministic filter
function must be applied on top of the protocol, which de-
lays the delivery of the application-multicast until several
subsequent multicasts [19].

Thus, existing multicast protocols that satisfy the agree-
ment and order conditions are expensive, and cheaper pro-

tocols based on weaker ordering do not guarantee the or-
dering required by process-replication in the absence of
information about the application program.

3 Assumptions

Manetho assumes that a distributed computation con-
sists of a number of application processes that communi-
cate only through messages. The processes are determin-
istic and do not have real-time requirements.

Each application process is replicated by a troupe [8] of
r fail-stop [20] process replicas. Each replica has a dis-
tinct ordinal position within the troupe and executes the
same application program. Because each troupe member
executes the same deterministic program, it follows that if
all members receive the same set of messages in the same
order, no execution of a replica will diverge from that of
the other troupe members. In each troupe, a distinguished
member is called the leader, while the remaining r—1 repli-
cas are called cohorts. Manetho tolerates r — 1 failures in
each troupe, but it does not currently tolerate network
partition.

Manetho assumes that each troupe has access to a lo-
cal group membership protocol that maintains a list of
the members in the troupe [5, 9, 18]. The group member-
ship protocol detects the changes in the troupe member-
ship (due to failures and recoveries) and reliably notifies
its members of such changes.

The communication subsystem supports multicast ad-
dressing and unreliable multicast delivery. Every troupe
subscribes to a multicast address and exclusively uses mul-
ticast for inter-troupe communication. The communica-
tion subsystem may deliver a multicast message to all,
some, or none of the troupe members, and multicasts
may be arbitrarily delayed. FEach multicast message has
a unique identifier.

The execution of a troupe consists of a sequence of piece-
wise deterministic state intervals [14], each started by the

P P
[%o |
P >
my m3
q q q
q | %o 71 | %2 -
[I
mi m]
[70 o7
I I >
Figure 1 Example Execution

receipt of an application-multicast. Figure 1 shows the
execution of three troupes and their state intervals. The
horizontal lines represent the execution of the troupes, and
arrows between troupes denote multicasts. For clarity,
we do not show the individual members of each troupe.

th

The notation ¥ denotes the " state interval of troupe

p, where 1 is referred to as the indexr of of. The notation
m? denotes the ith application-multicast sent by troupe p.
We will refer to this example throughout the paper.

4 Protocol Specification

4.1 The Antecedence Graph

The directed, acyclic antecedence graph (AG) of a state
interval of, AG(o?F), is defined recursively as follows [12]:

1 = 0: The graph consists of a node that repre-
sents o} with no incoming edges. The node con-
tains the troupe identifier p and the state interval
index ¢ = 0.

i # 0: Suppose o?

k2
ticast m} from troupe ¢ sent at state interval

o?. AG(or) consists of the union of AG(o?),

AG(O’;Z), and a node representing ¢ with two in-

coming edges: one from o , and one from crj.

The node representing ¢f contains the troupe
identifier p, the state index ¢, and the multicast

identifier k.

is created by receiving a mul-

The graph does not contain a copy of the multicast
message itself. Figure 2 shows the graph AG(o7) in the
example of Figure 1.

4.2 Sending an Application-Multicast

Each troupe member maintains a volatile copy of the
AG of its current state interval and a volatile log in which
it stores a copy of the data of each multicast the troupe
sends. When the application program sends a message
from process p to process ¢, the leader of the troupe im-
plementing p sends the message in an application-multicast
addressed to troupe ¢. The cohorts of p do not send the

ap oy
q q q
9 0 0y
-~ >
> >
g9 oy

Figure 2 Antecedence Graph of state interval
ol AG(oh).

message over the network; they only add the message to
their volatile message logs. When a troupe leader sends a
multicast, it (conceptually) piggybacks the AG of its cur-
rent state interval on the message.

4.3 Receiving an Application-Multicast

When a troupe receives an application-multicast, the
leader defines the order in which it should be delivered to
the application program and sends a sequence-multicast to
its cohorts. The sequence-multicast contains the defined
receipt order, the application-multicast’s unique identifier,
and the identifier of the sender troupe. The leader delivers
the message to the application program without waiting
for the sequence-multicast to reach the cohorts.

After a cohort receives an application-multicast, it
expects the corresponding sequence-multicast from the
leader within a short period. When the cohort receives
the sequence-multicast, it delivers the message to the ap-
plication program. The cohort does not acknowledge the
sequence-multicast.

The leader does not
application-multicast to the sending troupe.

receiving the
Manetho
only provides delivery of multicast messages subject to

acknowledge

the agreement and order conditions. It does not, by it-
self, ensure reliable inter-troupe communication. Reliable
FIFO inter-troupe channels can be easily provided on top
of Manetho by an end-to-end protocol that uses sequence
numbers and acknowledgments.

4.4 Antecedence Graph Maintenance

When a replica (leader or cohort) receives an
application-multicast and its receipt order becomes avail-
able, a new state interval starts at that replica. The replica
merges the AG piggybacked on the message with the AG
of the previous state interval. The replica then creates a
node representing the new state interval, with two incom-

ing edges as described in Section 4.1.
4.5 Cohort Synchronization

Because communication failures are possible, a co-
hort may miss an application-multicast, its corresponding
sequence-multicast, or both. To prevent a cohort from
“falling behind” the leader by missing both of these multi-
casts for several consecutive messages, the leader expects
each cohort to periodically send a one-to-one synchroniza-
tion message that shows the maximum state interval index
known to the cohort. The leader’s reply to a synchro-
nization message contains the unique identifier, the sender
troupe identifier, and receipt order for each application-
multicast that the cohort has missed, if any.

4.6 Incremental Piggybacking of the Graph

The full AG need not be appended on every application-
multicast. Instead, incremental piggybacking is used. The
operation of the protocol specifies two techniques for prun-
ing the graph appended to application-multicasts.

The first technique is applicable between any pair of
troupes. As defined in Section 4.1, AG(oF) is a proper
subset of AG(o},;). Thus, if the leader of a troupe p
detects that troupe ¢ has received a prior application-
multicast that was sent from state interval o7, then p need
not append AG(o?) on future application-multicasts sent
to troupe ¢. Each troupe ¢ that communicates with p in-
cludes with each message sent to p the maximum state in-
terval index j such that the node representing af is present
When p
sends an application-multicast from o7, it includes only
AG(e?) — AG(crf).

The second technique relies on cohort synchronization.

in the AG of the current state interval of g¢.

When the leader sends an application-multicast, the AG
that corresponds to the state interval of the slowest troupe
member need not be appended to the outgoing multicast.
The leader determines the slowest troupe member as the
one with the smallest state interval index as indicated in
its last synchronization message. The information in the
AG of that state interval is available to each troupe mem-
ber, since for any p and i, AG(s¥) is a proper subset of
AG(Jf_H). This graph will be available regardless of future
failures, since Manetho assumes that no more than r — 1
failures can occur in each troupe.

The period between each synchronization by a particu-
lar cohort is an implementation concern. The implementor
must weigh the overhead of processing the graph informa-
tion and the probability of failures against the overhead of
processing synchronization messages.

4.7 Handling Communication Failures

Manetho detects and recovers lost multicasts as follows:

e When a cohort receives a sequence-multicast for
an application-multicast that it has not received,
the sequence-multicast contains the identifiers of the
application-multicast and the sender troupe. The co-
hort uses these identifiers to request a retransmission
of the application-multicast from the sender troupe’s
message log.

e If a cohort receives a sequence-multicast that is out
of order, it will detect that it has missed more
than one application-multicast. In this case, the

cohort synchronizes with the leader by sending a

synchronization-message as described in Section 4.5.

e When a cohort receives an application-multicast,
it expects to receive the corresponding sequence-
multicast shortly thereafter. If the sequence-multicast

is not received, the cohort requests it from the leader.
The request contains the identifiers of the application-
multicast and the sender troupe.

o The leader will determine that it has missed an
application-multicast if it receives from one of its co-
horts a request for a sequence-multicast corresponding
to an application-multicast that the leader has not re-
ceived. The leader requests the retransmission of the
multicast from the corresponding sender’s log.

e During cohort synchronization, a cohort determines
the set of missed application or sequence-multicasts,
if any. The leader’s reply to the synchronization-

message contains sufficient information for the cohort

to request the missing application-multicasts from
their senders and to deliver them to the application

program in the correct order.
4.8 Advantages of the Protocol

Like other negative-acknowledgment multicast proto-
cols, Manetho reduces the overhead during failure-free op-
eration. In the normal case, a cohort does not acknowl-
edge receiving application-multicasts and it acknowledges
the sequence-multicasts only during synchronization. By
assuming that multicasts are seldom lost, the overhead
of the acknowledgments is eliminated. This matches well
with modern networks where communication failures are
infrequent.

Manetho’s multicast avoids the latency in message de-
livery common in negative-acknowledgment multicast pro-
tocols. The leader delivers the messages to the application
program without waiting for the corresponding sequence-
multicasts to reach every cohort. Similarly, a cohort deliv-
ers the message to the application program as soon as the
corresponding sequence-multicast is available, even if the
latter does not reach the rest of the cohorts.

5 Cohort Failure and Recovery

Detecting the failure of a cohort and integrating a new
one into a troupe is done by the underlying group member-
ship protocol. The ordinal position occupied by the failed
cohort is not reused. The leader discards delayed messages
from failed cohorts by checking if the sender’s cohort iden-
tifier belongs to the current troupe membership. The new
cohort starts normal processing after copying the state of
the leader.

6 Leader Failure and Recovery

If the leader fails, the cohorts will need to deter-
mine whether the leader has accepted some application-
multicasts that they have missed because of combined

communication and leader failures. A troupe is considered
to have failed when its leader has failed, and a recovery
protocol must be run to bring the surviving cohorts to a
state consistent with the leader’s state before failure.

Recovery of a failed troupe takes place in two phases.
First, the troupe elects a new leader. Second, the new
leader runs a troupe recovery protocol. During this pro-
tocol, the elected leader represents the troupe in commu-
nicating with other troupes to retrieve the receipt order
information that might have been lost due to the failure.
This information is distributed across the AG’s of the other
troupes in the system. During both phases, the troupe
does not accept application-multicasts from any troupe.

The recovery protocol 1s complicated by the possibility
of concurrent failures and recoveries in other troupes and
that application-multicasts sent from failed troupes are not
bounded by a finite network delay.

6.1 Incarnation Numbers

Because application-multicasts are not bounded by a fi-
nite network delay, it is necessary to order the perception
of a troupe failure with application-multicasts that were
sent from that troupe. For this purpose, Manetho uses
an incarnation number for each troupe. During troupe re-
covery, the troupe increments its incarnation number and
does not resume normal processing before it reliably in-
forms all other troupes of its new incarnation number (see
Section 6.3). Each application-multicast is tagged with the
current incarnation number of the sending troupe. Thus,
all other troupes in the system are able to detect the mul-
ticasts that were sent before the failure of their senders
and reject them.

6.2 Phase One: Leader Election

If one or more cohorts detect the leader failure, they
will use the following protocol to elect a new leader. The
protocol is an adaptation of the invitation protocol [13] in
which the winner of the election is the cohort that has the

highest state interval index.

e One cohort (or more) starts leader election by send-
ing a recovery-multicast to the troupe. The multicast
contains the cohort’s current state interval index and
ordinal position within the troupe.

o When a replica receives a recovery-multicast carrying
a state interval index larger than its own, it sends back
a leadership-acknowledgment message, and aborts its
own leadership election, if it has started one. Oth-
erwise, when a replica receives a recovery-multicast
with a state interval smaller than its own, it starts its
own leadership election, if it has not already done so.
Ties are broken in favor of the cohort with the smaller
ordinal position.

e The initiator collects the responses from every mem-

ber of the troupe. The initiator retransmits the
recovery-multicast until it receives a correspond-
ing leadership-acknowledgment from every surviving
member of the troupe, as determined by the underly-

ing troupe membership protocol.

e The new leader increments the troupe incarnation
number.

e The new leader forces each cohort to synchronize to
bring all cohorts to the most recent state interval.
The leader informs the cohorts of the new incarna-
tion number during synchronization.

Provided that there is at least one surviving troupe
member, the protocol elects a single leader and termi-
nates [13]. If the initiator of the protocol fails, the protocol
is restarted.

6.3 Phase Two: Troupe Recovery

The recovery protocol is based on the following obser-
vation [12]: Define a state interval of as vistble outside
of troupe p if the AG of the current state interval of
some other troupe ¢ contains a node that represents o7.
Then, AG(oF) is a subgraph of the AG of the current
and all subsequent state intervals of ¢. If the leader of
troupe p fails; the newly elected leader negotiates with all
other troupes to determine the AG’s of its visible state
intervals. By merging these AG’s, the troupe can re-
construct the AG of the most recent visible state inter-
val. The new leader uses this AG to determine the re-
ceipt order of application-multicasts whose corresponding
sequence-multicasts were lost. Using the unique identifier
of each application-multicast as indicated by the AG, the
newly elected leader requests them from their correspond-
ing senders. If the sender has also failed, its message log
will be reconstructed during its recovery, and the message
will become available, as will be shown in Section 6.4. The
recovering troupe executes up to its most recent “visible”
state interval from before failure. This brings the troupe to
a state consistent [6] with the other troupes in the system.”

6.4 Protocol Description

Figure 3 shows the troupe recovery protocol. The newly
elected leader starts recovery by calling the procedure
RECOVER with arguments p, S, INCNUM, AG and
STATEINDFEX . The recovering troupe’s identifier is p. Set

3The rollback-recovery protocol of Manetho uses the same
concepts presented here, although the replication aspects re-
quire special treatment in the recovery algorithm. This allows
Manetho to conceptually use the same recovery protocol, de-
spite whether the process is using replication or rollback-
recovery.

S contains a list of the troupes that participate in the com-
putation. INCNUM is the new incarnation number of the
recovering troupe. AG is the graph of the current state
interval of the troupe, and STATEINDEX is the index of
that state interval. The new leader of troupe p performs
a GET_AG remote procedure call (RPC) at the leader of
every troupe. Messages exchanged for the purpose of re-
covery are considered out-of-band and do not carry AG in-
formation. Recovering troupes respond to GET_AG calls.

In GET_AG at each troupe ¢, the leader of troupe
q determines m, the index of the most recent state
interval o, of troupe p in ¢’s AG. The leader then

procedure RECOVER(p, S, AG, INCNUM, STATEINDEX)
INCLIST[p] «— INCNUM;
for all ¢ € S, q # p, do in parallel
(QAG, QINC) — RPC at leader of ¢ : GET_AG(p);
AG — AG U QAG,
INCLIST[q] — QINC;
for all ¢ € S, q # p, do in parallel
RPC at g : CONFIRM (p, INCLIST);
RPC at every cohort RECOVER_.COHORT (INCLIST);
v « max j such that crf € AG,
SI «— STATEINDEX;
while SI < v do
execute up to next message receipt without
sending application-multicasts;
update message log;
ST — ST +1;
request multicast that started interval ST from sender;
receive and process application-multicast;
return;

procedure GET_AG(p)
m + max j such that 0¥ € AG;
RPC at each cohort: SYNC_.COHORT (p,m,AG);
REJECTLIST[p) — m;
return (AG(oh,), INCNUM);

procedure CONFIRM (p, ILIST)
for all » € S, do
INCLIST[r] — max(ILIST[r], INCLIST[r]);
RPC at each cohort: UNSYNC_.COHORT (p, INCLIST);
REJECTLIST[p] « co;3
return;

procedure RECOVER_COHORT (ILIST)
INCLIST « ILIST;
return;

procedure SYNC_COHORT (p,m, LAG)
AG — LAG;
discard application-multicasts with unspecified receipt order;
REJECTLIST[p] « m;
return;

procedure UNSYNC_COHORT (p, ILIST)
INCLIST «— ILIST;
REJECTLISTIp] — oo;
return;

Figure 3 The Troupe Recovery Protocol.

calls SYNC_.COHORT at each of its cohorts. In
SYNC_COHORT, each cohort copies the argument LAG
into its local AG, and discards every application-multicast
whose order has not been defined in LAG. The cohort
then adds m to REJECT_LIST. Until it receives an UN-
SYNC_COHORT call from the leader, the cohort does
not accept any application-multicast (from any sender)
whose appended AG contains a state interval of troupe
p whose index is greater than m. While waiting for the
SYNC_COHORT calls to return, the leader does not pro-
cess application-multicasts and postpones its response to
any GFET_AG call. When all SYNC.COHORT calls re-
turn, the leader of troupe ¢ returns its current incarna-
tion number and AG(ok,) to the leader of troupe p. The
leader of troupe ¢ adds m to REJECTLIST. Until ¢ re-
ceives a CONFIRM call from the leader of p, ¢ rejects
any application-multicast (from any sender) whose ap-
pended AG contains a state interval of troupe p whose
index is greater than m. The SYNC_COHORT call makes
the cohorts “witness” the answer returned by ¢’s leader.
The REJECTLIST prevents troupe g from observing a
state of troupe p that was not reflected in ¢’s response
to p’s GFEFT_AG call.

any application-multicast, for which the corresponding

The cohorts also do not retain

sequence-multicast has not been received. If the current
leader of ¢ fails, the state of each cohort will show of, as
the most recent state interval of troupe of p in the AG of
troupe gq.

When each GET_AG call returns to p, it merges the
returned graph into AG and updates its list of incarna-
tion numbers INCLIST. When all GET_AG calls have re-
turned, p performs a CONFIRM remote procedure call at
the leader of every troupe ¢. In CONFIRM, the leader of
¢ updates its incarnation list and updates REJECTLIST
to indicate that it no longer has any restriction on accept-
ing messages that contain state intervals of p, provided
they belong to its new incarnation. The leader of ¢ then
calls UNSYNC_COHORT at every cohort to update the
cohort’s REJECTLIST and INCLIST.

The leader of troupe p calls RECOVER_.COHORT at
each of its cohorts to update the cohort’s INCLIST. The
leader of troupe p determines v, the largest state inter-
val index among the troupe’s visible state intervals. It
proceeds to re-run the pre-failure execution, requesting
messages as indicated by the reconstructed AG from their
senders, which retransmit the corresponding application-
multicasts from their log to p. The leader uses the AG
to define the receipt order of these multicasts and sends
the corresponding sequence-multicasts to the troupe. The
leader of p does not send application-multicasts while it is
recovering, but it stores these messages in its volatile log.

Throughout recovery, the troupe restarts the recovery
protocol if its leader fails. If a cohort fails, it is eliminated
from the troupe as described in Section 5.

6.5 Correctness

Definition 1 Two distributed computations are equiva-
lent if and only if the final state of each process is the
same in both computations.

Consider the failure and recovery of some troupe p:

Definition 2 Let GF be the graph computed by p during
RECOVER.

Definition 3 All state intervals o¥

., t > v, that occurred

before failure are called lost state intervals.

Definition 4 A i¢roupe ¢ whose leader was not recover-
ing when it responded to p’s GET_AG call is called a live
troupe.

Let C be the computation as executed by the system in-
cluding failures and recoveries. We show that there exists
some legal computation C’ in which no failures occur, and
which starts in the same state as C, such that C and C’
are equivalent.

We first show that the graph computed by RECOVER
is indeed AG(0D).

Lemma 1 GF = AG(0}).

Proof There are two cases to consider:

Case 1: v = STATEINDEX. Running RECOVER in this
case did not add to the knowledge of the new leader about
the execution of the failed leader, and AG(o?}) is available
at each cohort after the end of the election protocol.
Case 2: v > STATEINDEX. Let troupe ¢ be some troupe
that returned AG(o?) in its response to p’s GET_AG call.
If ¢ has the complete subgraph representing AG(o}) in ¢’s
own graph, then the lemma is true. Otherwise, AG(c?)
must be missing one or more subgraphs, since some other
troupes have synchronized their cohorts before sending
the application-multicasts that should have included these
missing subgraphs. In this case, these troupes must have
the missing subgraphs available despite any failure (up to
r — 1 failures in each troupe). Therefore, p will receive the
missing subgraphs of AG(s?) during the GET_AG calls at
these troupes. [

Lemma 2 After all GET_AG calls return but before any
CONFIRM call is issued during p’s recovery, no lost state
interval of appears in the AG of any troupe q.

Proof Consider the point in RECOVFER at which p
has received all the results of GET_AG calls but has not
sent any CONFIRM calls. No state interval of that oc-
curred after o2 has a corresponding node in the AG of any

troupe g, or else, ¢ should have returned AG(o?) during its
reply to p’s GET_AG call. After returning p’s GET_AG

call and before receiving the CONFIRM call, the use of
REJECTLIST prevents every member of troupe ¢ from
accepting any application-multicast whose appended AG
carries a node that corresponds to ¥, where 1 > v. [

Because of the unbounded network delays, there may be
some application-multicasts still in transit in the commu-
nication channels that carry a node that represents a lost
state interval in the appended AG. We show that these
multicasts will be rejected.

Lemma 3 A message whose appended AG carries a node
that corresponds to a lost state interval of p will be rejected
by any troupe that receives it.

Proof Assume that r sends to ¢ an application-multicast
mj, whose appended AG contains a node that represents a
lost state interval of. From Lemma 2, the multicast can-
not originate from the current incarnation of r. Hence,
the multicast originates from a previous incarnation of r.
There are three cases:

Case 1: mj, arrives at troupe ¢ before p’s GET_AG call
executes at ¢. In this case, the leader of ¢ did not receive
the message, while one or more cohorts did. No cohort will
retain mj, after it synchronizes with the leader and discards
the unordered messages during the SYNC_.COHORT call.
Case 2: mj, arrives at troupe ¢ after p’s GET_AG call
executes at ¢, but before p’s CONFIRM call executes at
¢. The multicast will be rejected because of the use of
REJECTLIST asin Lemma 2.

Case 3: mj, arrives at troupe ¢ after p’s CONFIRM call
executes at ¢. Because p broadcasts the current incar-
nation of every troupe in CONFIRM, ¢ detects that the
incarnation of r tagging my, is old and rejects it. [J

Lemmas 2 and 3 establish a safety property of the pro-
tocol: Lost state intervals cannot affect the computation.

We now show that despite an arbitrary number of fail-
ures in the troupe leaders, including additional failures
during recovery, troupe p restores a state consistent with
the rest of the computation.

Lemma 4 Vi, ¢ suchthat o} € G*, AG(c]) will always be
available at q.

Proof
GET_AG call, then the lemma is true despite of any subse-

If ¢ was a live troupe when it returned p’s

quent failures in p or ¢, because all ¢’s cohorts synchronize
with their leader before returning p’s call, making AG(a¥)
available to all replicas of ¢. Subsequent failures of ¢ will
not affect the availability of AG(a).

Otherwise, troupe ¢ was recovering when it returned p’s
GFET_AG call. There are two cases:
Case 1: AG(o!) is a subgraph of the AG of a state inter-
val of some troupe r, and r was live when it returned p’s

GET_AG call. There are two cases:

Case 1: r returned p’s GET_AG call before ¢’s
GET_AG call executed at r. Thus, troupe r’s
synchronization made AG(o!) available at each
cohort of r despite of future failures in r. AG(s)
will be returned to ¢ because of ¢’s call at r (de-
spite of any subsequent failures of r or ¢).

Case ii: r returned p’s GFEFT_AG call after ¢’s.
AG(s?) must have been returned to ¢’s call, since
7 could not have added AG(c) to its own AG af-
ter ¢’s call, because of the use of REJECTLIST.
This also holds if r fails after ¢’s call has returned
but before p’s call, because a recovering troupe
does not accept application-multicasts until it fin-
ishes recovery.

Case 2: AG(o}) is not a subgraph of the AG of the cur-
rent state interval of any live troupe. Hence, p must have
received AG(s?) from some troupe s that was recovering
and had AG(sY) as a subgraph of the AG of the state in-
terval of the new leader before it started troupe recovery.
Hence, both p and ¢ will receive AG(g?) from s, despite
of any subsequent failures of p, ¢ or s. I

Lemma 5 The troupe recovery protocol restores the exe-
cution up to state interval of.

Proof

nodes that correspond to state intervals in live troupes

Construct graph F? by removing from G? the

or that occurred before the current state intervals of the
new leaders in recovering troupes. Every state interval in
F? will be recreated. The proof proceeds by induction on
the topological sort of F'*, which must exist because F? is
acyclic.

Base case: Each node at level 0 of the topological sort
represents a state interval o7 such that troupe p is recover-
ing and the current state interval of p is of_,. To recreate
or, p must receive some application-multicast m}, such
that either ¢ is a live troupe or the application-multicast
was sent from a previous state interval at some recovering
troupe. In both cases, a copy of m] must be available in
the volatile message log of q. Thus, p can request a replay
of mi.

Induction hypothesis: Assume that the lemma is true
for all nodes of topological level n.

Induction step: For each node at topological level n+1,
the application-multicast that created the corresponding
state interval is available either because it was recreated
and added to its sender’s log during recovery by the induc-
tion hypothesis, or was already available in the log of the
sender as in the base case. [J

Lemma 6 The protocol is deadlock-free.

Proof No deadlock can occur during the phase of collect-
ing the AG, because recovering troupes return GET_AG

calls. Cohort synchronization during SYNC_.COHORT is
internal to the troupe and does not block. Lemma 5 shows
that no deadlock can occur while recreating the state in-
tervals. [

Lemmas 4, 5 and 6 establish the liveness property
of the protocol: Each troupe that fails will recover to its
maximum visible state interval.

Lemma 7 No troupe’s state becomes inconsistent with the
rest of the system because of p’s failure.

Proof Follows immediately from Lemma 4, Lemma 5,
and the definition of ¢f. O

Lemma 7 establishes the remaining safety property of
the protocol:

Theorem 1 Computation C s equivalent to some legal
computation C' that starts from the same initial state.

Proof

system is consistent [6]. After the failure of a troupe p, it

Before any failure occurs in C, the state of the

recovers to a state consistent with the rest of the system,
and no other troupe becomes inconsistent with the rest of
the system because of p’s failure, as shown by Lemma 7.
Furthermore, the effects of lost state intervals of previous
incarnations cannot affect the computation, by Lemmas 2
and 3. Lemmas 4, 5, and 6 establish that the recov-
ery of each troupe eventually completes. Therefore C, the
execution of the system after all failures and recoveries
have completed, is a possible execution of the system C’
in which no failures have occurred. Since all processes are
assumed to be deterministic, by executing C and C’ from
the same initial state and with the same sequence of ex-
changed multicasts, C' and C' must both complete in the
same final states. [

7 Garbage Collection

We state without proof the conditions for removing a
message from the message log and for removing an edge

from the AG.

Lemma 8 If the slowest member of a troupe p has al-
ready received and delivered application-multicast m, then
troupe ¢ may remove the message from its log.

Lemma 9 If the state interval of the slowest member in a
troupe p 1s o¥, then all nodes that correspond to af, where
7 <1, are no longer needed for recovery.

Lemmas 8 and 9 form the basis for many possible
garbage collection protocols. For example, two troupes can

periodically exchange the information about the state in-
terval and the identifiers of messages received by the slow-
est member of either troupe. Alternatively, this informa-
tion can be periodically propagated with the AG appended
on application-multicasts. The implementation must bal-
ance the frequency of exchanging garbage collection infor-
mation against the resulting overhead and the available
storage.

8 Comparison with Related Work

Unlike many other multicast protocols, Manetho’s mul-
ticast is specifically designed for process-replication. For
this purpose, the combination of antecedence graph main-
tenance and message logging at the sender offers a better
tradeoff in terms of the number of overhead messages and
the delay in message delivery than the protocols that have
been published in the literature. We restrict the com-
parison to systems that operate in environments similar
to the one assumed in this paper, namely, an unreliable
asynchronous network and applications with no real-time
requirements.

CIRCUS was one of the earlier systems to support
process-teplication in an asynchronous network [8]. CIR-
CUS uses replicated remote procedure calls (RPCs) to im-
plement inter-troupe communication. If no identical re-
ceipt order at each replica is required, a many-to-many
RPC incurs between 7 4+ 1 to 27 multicasts. Identical re-
ceipt order is achieved by structuring the many-to-many
RPC as a transaction that deadlocks if two members of
the troupe receive messages in different orders. Commit-
ting this transaction requires at least r additional multi-
casts. In contrast, Manetho provides ordered multicast
delivery with only one overhead multicast per application-
multicast.

The protocol of Ahamad et al. [1] uses transactions to
structure the replicas. At commit time, only one replica
succeeds while the remaining cohorts abort. This allows
non-deterministic execution in each replica, but the ap-
plication must be structured as a sequence of transac-
tions. In contrast, Manetho adds replication to determin-
istic processes in an application-transparent manner.

The idea of having a sequencer define the receipt order
of a multicast was used in the multicast protocol of Chang
and Maxemchuck [7], the Amoeba atomic broadcast pro-
tocol [16], and the Delta-4 XPA system [2]. The r-resilient
protocol of Chang and Maxemchuck relies on negative-
acknowledgment and leadership transfer to achieve reliable
total ordering. However, a multicast must be delayed for
r — 1 leadership transfers before it can be delivered. Like
Chang and Maxemchuck, our protocol incurs few over-
head control messages, but it avoids the delay in delivering
the multicast by using the information in the antecedence
graph.

Amoeba’s atomic broadcast protocol uses negative-
acknowledgment for the O-resilient version, and positive
acknowledgments for the r-resilient version. The Amoeba
protocol is highly tuned for the 0-resilient operation mode.
The r-resilient version of Amoeba requires r — 1 overhead
messages for each application-multicast. Manetho does

not require such overhead messages.

The Delta-4 XPA multicast protocol uses positive ac-
knowledgments. Delta-4 XPA relies on a special network
adapter to provide the ordering and reliability, and to mask
the overhead of acknowledgment messages from the appli-
cation program. In contrast, Manetho does not depend on
special network support.

Both Manetho and the new implementation of ISIS’s
ABCAST [3] rely on a single site to define the multicast’s
receipt order. ABCAST relies on an underlying transport
protocol that guarantees that messages are reliably deliv-
ered in FIFO order. This transport protocol is a major
source of overhead in ISIS [3]. In contrast, Manetho adopts
weaker assumption about the network reliability.

The context graph of the z-kernel’s Psync protocol [19]
is the basis of another general-purpose multicast protocol.
Unlike our protocol, Psync does not guarantee the identi-
cal receipt ordering required by process-replication in the
absence of information about the application’s semantics.
Such ordering can be provided in Psync by applying an
ordering filter on the context graph, which delays the de-
livery of the application-multicast at each site for several
application-multicasts [19].

The atomic broadcast protocol of Melliar-Smith et
al. [17] uses no control messages during normal operation
at the expense of a large delay in message delivery. This
delay depends mainly on the rate of incoming application-
broadcasts. Manetho pays the overhead of maintaining the
graph and one overhead multicast, in return for reducing
the latency in message delivery independently of the rate
of incoming multicasts.

9 Conclusion

This paper has presented the process-replication proto-
col of Manetho, a fault-tolerant distributed system whose
purpose is to provide application-transparent fault toler-
ance to long-running applications. The system uses a
new ordered-multicast protocol which is designed specif-
ically to support process-replication. The protocol re-
lies on a combination of antecedence graph maintenance,
volatile message logging at the sender, and the fact that
the receivers of the multicast execute the same determin-
istic program. Unlike many general-purpose multicast
protocols published in the literature, ours is able to use
negative acknowledgments to reduce the number of over-

head messages, and at the same time avoids the delays in

message delivery typically incurred by negative acknowl-
edgment protocols. These advantages come at the expense
of maintaining the antecedence graph and the need for
a more elaborate recovery protocol under some rare fail-
ure scenarios. Nevertheless, an implementation of the an-
tecedence graph shows that, by using incremental piggy-
backing, the cost of maintaining the graph is only a small
fraction of the cost of receiving a message [11]. Further-
more, assuming that failures are rare, the recovery protocol
will seldom have to be run.

Acknowledgments

We are indebted to J. Carter, A. Cox, K. Fletcher,
P. Keleher, M. Mazina, H. Garcia-Molina, A. Schaffer,
R. Schlichting, H. Youssef and the anonymous referees
for many useful comments about earlier drafts of this
manuscript. The insightful comments of David Johnson
helped improve the clarity of the proofs and the presenta-
tion.

References

[1] M. Ahamad, P. Dasgupta, and R.J. LeBlanc. Fault-
tolerant atomic computations in an object-based dis-
tributed system. Distributed Computing, 4:69-80, 1990.

[2] P.A. Barrett, A.M. Hilborne, P. Verissimo, L. Rodrigues,
P.G. Bond, D.T. Seaton, and N.A. Speirs. The Delta-4 ex-
tra performance architecture XPA. In Proceedings of the
20th International Symposium on Fault-Tolerant Comput-
g, pages 481-488, June 1990.

[3] K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicast. ACM Transactions on
Computer Systems, 9(3):272-314, August 1991.

[4] K.P. Birman. Replication and fault-tolerance in the ISIS
In Proceedings of the 10th ACM Symposium
on Operating Systems Principles, pages 79-86, December
1985.

system.

[5] K.P. Birman and T.A. Joseph. Reliable communication in
the presence of failures. ACM Transactions on Computer
Systems, 5(1):47-76, February 1987.

[6] K.M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Transactions on Computer Systems, 3(1):63-75, February
1985.

[7] J. Chang and N.F. Maxemchuck. Reliable broadcast proto-
cols. ACM Transactions on Computer Systems, 2(3):251—
273, August 1984.

[8] E.C. Cooper. Replicated distributed programs. In Pro-
ceedings of the 10th ACM Symposium on Operating Sys-
tems Principles, pages 6378, December 1985.

[9] F. Cristian. Agreeing on who is present and who is absent
in a synchronous distributed system. In Proceedings of the
18th International Symposium on Fault-Tolerant Comput-
g, pages 206—211, June 1988.

[10] F. Cristian, R. Aghili, R. Strong, and D. Dolev. Atomic
broadcast: From simple message diffusion to byzantine
agreement. In Proceedings of the 15th International Sym-
posium on Fault-Tolerant Computing, June 1985.

[11] E.N. Elnozahy and W. Zwaenepoel. Manetho: A low over-
head rollback-recovery system with fast output commit.
Technical Report TR91-152, Rice University, March 1991.

[12] E.N. Elnozahy and W. Zwaenepoel. Manetho: Transpar-
ent rollback-recovery with low overhead, limited rollback,
and fast output commit. IEEE Transactions on Com-
puters Special Issue On Fault-Tolerant Computing, 41(5),
May 1992.

[13] H. Garcia-Molina. Elections in a distributed computing
system. IEEE Transactions on Computers, 31(1):48-59,
January 1982.

[14] D.B. Johnson. Distributed System Fault Tolerance Using
Message Logging and Checkpointing. PhD thesis, Rice
University, December 1989.

[15] D.B. Johnson and W. Zwaenepoel. Sender-based message
logging. In Proceedings of the 17th International Sym-
postum on Fault-Tolerant Computing, pages 14-19, June
1987.

[16] M.F. Kaashoek and A.S. Tanenbaum. Group communi-
cation in the Amoeba distributed operating system. In
Proceedings of the 11th International Conference on Dis-
tributed Computing Systems, pages 222—230, May 1991.

[17] P. M. Melliar-Smith, L.E. Moser, and V. Agrawala. Broad-
cast protocols for distributed systems. IEEE Transactions
on Parallel and Distributed Systems, 1(1):17-25, January
1990.

[18] L.E. Moser, P. M. Melliar-Smith, and V. Agrawala. Mem-
bership algorithms for asynchronous distributed systems.
In Proceedings of the 11th International Conference on
Distributed Computing Systems, pages 480-489, May 1991.

[19] L.L. Peterson, N.C. Bucholz, and R.D. Schlichting. Pre-
serving and using context information in interprocess com-
munication. ACM Transactions on Computer Systems,
7(3):217-246, August 1989.

[20] R.D. Schlichting and F.B. Schneider. Fail-stop processors:
An approach to designing fault-tolerant computing sys-
tems. ACM Transactions on Computer Systems, 1(3):222—
238, August 1983.

[21] F. Schmuck. The Use of Efficient Broadcast Primitives in
Asynchronous Distributed Systems. PhD thesis, Cornell
University, 1988.

[22] F.B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299-320, December 1990.

