
Network Multicomputing Using
Recoverable Distributed Shared Memory

John B. Carter*, Alan L. Cox, Sandhya Dwarkadas,
Elmootazbellah N. Elnozahy, David B. Johnson+, Pete Keleher,

Steven Rodrigues, Weimin Yu, and Willy Zwaenepoel

Department of Computer Science
Rice University

Houston, Texas 7725 1 - 1892

Abstract
A network multicomputer is a multiprocessor in which the
processors are connected by general-purpose networking
technology, in contrast to current distributedmemory multi-
processors where a dedicated special-purpose interconnect
is used. The advent of high-speed general-purpose net-
works provides the impetus for a new look at the network
multiprocessor model, by removing the bottleneck of cur-
rent slow networks. However, major software issues re-
main unsolved. A convenient machine abstraction must
be developed that hides from the application programmer
low-level details such as message passing or machine fail-
ures. We use distributed shared memory as a program-
ming abstraction, and rollback recovery through consislenl
checkpointing to provide fault tolerance. Measurements
of our implementations of distributed shared memory and
consistent checkpointing show that these abstractions can
be implemented efficiently.

1 Introduction

In most current distributed memory multicomputers [2] the
processors are connected by a dedicated, special-purpose
interconnection network, such as a hypercube network or
a mesh. In contrast, we are exploring the possibility of
building a network multicomputer using general-purpose
networking technology to interconnect the processors [22].

*Current address: Department of Computer Science, University of Utah,
Salt Lake City, UT 841 12.
t Current address: School of Computer Science, Camegie Mellon Univer-
sity, Pittsburgh,PA 15213-3891.
This work is supportedin part by the National Science Foundation under
Grants CCR-91163343 and CCR-9211004, and by the Texas Advanced
Technology Program under Grant 0036404013. John B. Carter and
Pete Keleher were supported by NASA Fellowships. Elmootazbellah
N. Elnozahy was suppolled by an IBM Fellowship.

Such a network multicomputer may be realized as a pro-
cessor bank [32] , a number of processors dedicated for
the purpose of providing computing cycles. Altematively,
it may consist of a dynamically varying set of machines
on which idle cycles are used to perform long-running
computations [28]. In either form, such a network mul-
ticomputer should be significantly cheaper than current
distributed memory multiprocessors since it can be built
out of general-purpose commodity technology.

The idea of such a network multicomputer is not new,
but its potential has remained largely unrealized. The band-
width available on general-purpose networks was, until re-
cently, orders of magnitude inferior to the bandwidth pro-
vided by special-purpose interconnection networks, such as
those present in dedicated multiprocessors. Furthermore,
commodity workstations lagged far behind uniprocessor
supercomputers in terms of processor speed and floating
point support. As a result, it was not uncommon to find
that, after months of effort, a carefully parallelized appli-
cation would run (much) more slowly on a network mul-
ticomputer than a sequential implementation of the same
application on a conventional supercomputer.

We believe that recent technological breakthroughs have
removed, or are about to remove, many of the factors in-
hibiting network multicomputing. In particular, general-
purpose networks with bandwidths in the hundreds of
megabits per second are becoming available, and band-
widths in the gigabit range are predicted within a few years.
Furthermore, current workstation processors are approach-
ing 100 MIPS and feature much improved floating point
hardware. As a result, a much larger class of applica-
tions can be supported efficiently on a network multicom-
puter. It is by no means our position that such loosely
coupled multicomputers will render obsolete more tightly
coupled designs [7, U] . In particular, the lower latencies
and higher bandwidths of these tightly coupled designs

519

1063-6390193 $3.00 (3 1993 IEEE

allow efficient execution of applications with more strin-
gent synchronization and communication requirements.'
However, we argue that the advances in networking tech-
nology and processor performance will greatly expand the
class of applications that can be executed efficiently on a
network multicomputer.

Although the enabling hardware breakthroughs appear
to be on the horizon, many software problems remain to
be solved before network multicomputing can become a
viable technology. Foremost among these problems is the
need for a convenient machine abstraction that eases the
burden of parallel programming on a network multicom-
puter, but at the same time allows efficient execution of a
large class of applications. Equally important, this machine
abstraction should allow a simple migration path for pro-
grams already developed for conventional shared memory
multiprocessors. In light of these considerations, we have
chosen distributed shared memory (DSM) as our program-
ming abstraction. We have built a DSM system, called
Munin [lo], that provides good performance while requir-
ing only minimal departures from the traditional shared
memory model. Sections 2 to 5 describe our approaches to
DSM and some of our results.

A machine abstraction for a network multicomputer
should also hide one of the most annoying aspects of a
distributed system, namely failures. On a general-purpose
network with a large number of machines, hardware fail-
ures, software crashes, and network partitions present per-
plexing problems. It is prohibitively expensive in terms
of program development cost to expect application pro-
grammers to address these problems anew for each appli-
cation. For this reason we believe that rollback recovery
using consisrent checkpointing should be provided as an
integral part of the network multicomputer's software. We
have chosen this style of fault tolerance because it is trans-
parent-it does not require any effort of the application
programmer - and because it provides good performance
for typical long-running, noninteractive multicomputer ap-
plications. Sections 6 and 7 present our approach and some
performance measurements from our implementation of
consistent checkpointing.

2 Distributed shared memory
Distribufed shared memory (DSM) allows processes to
share memory even though they execute on nodes that do
not physically share memory [25]. For example, Figure 1
illustrates a DSM system consisting of N separate proces-
sors, each with their own memory, connected by a network.
DSM provides a more transparent and fine-grained degree

' In fact, one of our interests is to also incorporate more tightly-coupled
multiprocessors into a network multicomputer.

_..-

Network
i Shared Memory

Figure 1 Distributed shared memory

of communication than message passing or remote proce-
dure calls (RPC) [6]. The message passing and RPC ap-
proaches relieve the programmer from having to deal with
low-level networking details, but data movement must still
be programmed explicitly. In contrast, DSM systems move
data automatically in response to data access requests by
the application. While message passing and RPC are ad-
equate for client-server applications, they lack the desired
transparency for parallel programming.

Not only does DSM provide a more convenient pro-
gramming model, the trend towards fast processors, large
memories, and fast networks also holds out the promise
of improved DSM performance. Underlying DSM is a
dura shipping paradigm: data is moved to the location per-
forming operations on it. Message passing or RPC often
use afunction shipping paradigm, whereby the operation is
moved to the data location. On a low-bandwidth network,
the function shipping approach often results in better per-
formance since it is very expensive to move large amounts
of data. On higher-bandwidth networks, the cost of data
shipping is often negligible when compared to the latency
and software overheads involved per message communi-
cation. The expense of data shipping can also easily be
amortized over multiple accesses by exploiting memory
access locality. Modem machines with large main mem-
ory sizes provide the ability to cache large portions of the
global shared address space, thusallowing aDSM system to
aggressively take advantage of the locality of memory ac-
cesses. Finally, we anticipate that future computing nodes
will be (hardware) shared memory multiprocessors with a
small number of processors. DSM appears to be the ideal
vehicle for integrating locally shared memory and globally
distributed memory.

3 Memory consistency

The provision of memory consistency is at the heart of a
DSM system: the DSM software must move data amon9
the processors in a manner that provides the illusion of
globally shared memory. For instance, in a page-based

520

system, when a page is not present in the local memory of
a processor, a page fault occurs. The DSM software brings
an up-to-datecopy of that page from its remote location into
local memory and restarts the process. For example, Fig-
ure 2 shows the result of a page fault at processor 1, which
results in a copy of the necessary page being retrieved from
the local memory of processor 3.

To provide memory consistency effrcienrly is one of the
key challenges in building DSM. Three key problems must
be addressed. First, sending messages is expensive, and
thus the number of messages must be kept low. Send-
ing a message may involve traps into the operating sys-
tem kernel, interrupts, context switches, and the execution
of possibly several layers of networking software. Sec-
ond, the high latency involved in accessing non-resident
memory locations makes it essential to mask the latency
of such memory accesses. Finally, the consistency units
are large (the size of a virtual memory page), and there-
forefalse sharing is a potentially serious problem. False
sharing occurs when two or more unrelated data objects
are located in the same page and are written concurrently
by separate processors, causing the page to ping-pong
back and forth between the processors. Our approach to
DSM provides efficient solutions to address each of these
problems.

Early DSM systems have provided consistency by imi-
tating approaches designed for implementing cache coher-
ence in shared memory multiprocessors [25]. We believe
that in order to adequately address the problems specific
to DSM it is necessary to take a fresh look at consistency
implementations for DSM. In particular, we have exper-

...........I ...

DSM Software

..........

...
Local Physical Memories

Figure 2 Operation of a page-based DSM system

imented with novel implementations of relaxed memory
consistency models, and we have designed protocols bet-
ter suited to the needs of DSM. In the next section we
describe a prototype DSM system called Munin, which
we have built on an Ethemet network of Sun-3/60 work-
stations. In Section 5 , we describe some of the ideas
we are experimenting with in our second-generation DSM
system.

4 Munin: a prototype DSM system

4.1 Software release consistency

One of the solutions to hiding memory access latency for ac-
tively shared data is the use of a relaxed consistency model.
Over the past few years, researchers in hardware DSM have
adopted relaxed memory consistency models to reduce the
latency associated with shared memory accesses [l, 13,16,
271. In therelease consistency (RC) model [16], updates to
shared memory must be performed (become visible) only
when a subsequent release is performed. A release in this
context can be thought of as a lock release for simplicity,
but more sophisticated synchronization mechanisms could
also be used. The DASH implementation of RC [16], for
example, allows updates to shared memory to be pipelined
and overlapped with computation (by allowing reads to by-
pass writes), thereby reducing latency. Lock acquisition
requests for the released lock must, however, be delayed
until all previous updates have been performed. For exam-
ple, Figure 3 shows the pipelined updates sent to proces-
sor 2 when processor 1 writes objects z, y, and z under the
DASH hardware DSM implementation.

In software DSM systems, it is also important to reduce
the number of messages exchanged. Therefore, in Munin’s
software implementation of release consistency [101, up-
dates are not pipelinedas in the DASH implementation, but
rather are buffered until the release, at which time different
updates going to the same destination are merged into a
single message. In comparison to Figure 3, Figure 4 shows
the same updates to objects 2, y, and z merged into a single
message sent after the release, using the Munin software
DSM implementation.

Procl

Proc2

Figure 3 Pipelining of remote
memory accesses under DASH RC

521

Proc2 I ,

Figure 4 Merging of remote
memory updates under Munin RC

4.2 Multiple consistency protocols

In order to further reduce the number of messages ex-
changed for maintaining consistency, Munin uses multi-
ple consistency protocols, even within a single program
execution. Munin allows a separate consistency proto-
col for each shared object, tuned to the access pattern
of that particular object. Munin uses program annota-
tions, provided by the programmer, to choose the con-
sistency protocol parameters for each shared object. Nor-
mally, annotations are only needed on object declarations
(rather than on each object use), but the programmer may
also change the protocol associated with a particular ob-
ject during the program’s execution. These annotations
specify the expected access pattern for that particular ob-
ject, which depends on the program and expected input
data.

The system currently recognizes a number of such an-
notations: read-only, migratory, write-shared, and con-
ventional. A read-only object avoids the overhead of con-
sistency maintenance and can be replicated. A migratory
object implies that a single thread performs multiple ac-
cesses to the object, including one or more writes, before
another thread accesses the object [3,33]. Such an access
pattern is typical of shared objects that are accessed only
inside a critical section. The consistency protocol for mi-
gratory objects is to migrate the single copy of the object
to the new thread, provide it with read and write access
(even if the first access is a read), and invalidate the orig-
inal copy. Compared to a conventional write-invalidate
protocol [251, this protocol avoids a write miss and a
message to invalidate the old copy when the new thread
first modifies the object. A write-shared object is written
by many processors and is usually the result of false shar-
ing. The consistency protocol exploits the use of release
consistency by delaying the updates until a synchroniza-
tion point (at which point the modifications from different
processors are merged), thereby avoiding the ping-pong of
those pages between processors. A conventional object
simply uses a conventional write-invalidate protocol [25].
If no annotation is used for some object, that object defaults
to conventional.

4.3 Performance
Munin was implemented on top of the V kernel [12] on
an Ethernet network of Sun-3/60 workstations. A set of li-
brary routines linked with the application program, together
with some kernel support, forms the core of the Munin sys-
tem [lo]. The system was evaluated by comparing the
execution time on Munin of a number of shared memory
programs to the execution time of the same applications im-
plemented directly in terms of the underlying message pass-
ing primitives of the V kernel. The performance numbers
in Table 1 are taken from Carter’s Ph.D. dissertation [9],
which contains a detailed analysis of the performance of
Munin. The table shows the speedup achieved by each ap-
plication running on 16 processors in each of three cases:
using Munin, using a conventional DSM implementation
with a single write-invalidate protocol 115,251, and using
message passing.

5 Beyond Munin: lazy release consistency

Munin’s implementation of RC may still send more
messages than needed for the correct execution of the ap-
plication. Consider the example of Figure 5 , in which
processes repeatedly acquire a lock, write the shared object
t, and then release the lock. If RC is used in conjunction
with an update protocol, and t is present in the caches
of all four processors, then these cached copies of z are
updated at every release, causing the process that releases
the lock to send a message to all other processes. Also,
these updates delay the time at which the lock can be re-
leased until acknowledgements for all updates have been
received. Logically, however, it suffices to update each
process’s copy only when that process acquires the lock.
This problem is not peculiar to the use of an update pro-
tocol. Similar examples can be constructed for invalidate
protocols. For instance, assume that false sharing exists
between objects c and y. The invalidations that are sent at
each release after an access to z will cause the entire page,
including y, to become invalid. If y is then accessed by
another processor, an unnecessary cache miss and reload
will occur for that page.

Table 1 Comparison of Munin, conventional
DSM, and message passing speedups

Program I Name

matmult
g r i d
gu i cks or t

Munin

14.6
12.3
8.9

12.6

Conventional
DSM

14.5
8.4
3.9

11.3

Message
Passing

15.6
12.8
13.4
13.2

522

w(x) re1

Prm3

Figure 5 Repeated updates of
cached copies under RC

5.1 Lazy release consistency
Munin attempts to alleviate these problems by using dif-
ferent protocols. In the update protocol example above,
the data item z should be annotated as migratory. Lazy
release consistency (LRC) is a new algorithm for imple-
menting the RC model, aimed at reducing both the number
of messages and the amount of data exchanged, without
requiring such annotations. Unlike eager algorithms such
as Munin’s implementation, LRC does not make modifi-
cations globally visible at the time of a release. Instead,
LRC guarantees only that a processor that acquires a lock
will see all modifications that “precede” the lock acquire.
The term ‘preceding” in this context is to be interpreted
in the transitive sense: informally, a modification precedes
an acquire if it occurs before any release such that there
is a chain of release-acquire operations on the same lock,
ending with the current acquire. For instance, in Figure 5 ,
all modifications that occur in program order before any
of the releases in processors 1 through 3 precede the lock
acquisition in processor 4. With LRC, modifications are
propagated at the time of an acquire, and only the modifi-
cations that ‘precede” the acquire are sent to the acquiring
processor. The modifications can be piggybacked on the
message that grants the lock, furtherreducing message traf-
fic. Figure 6 shows the message traffic under LRC for the
same shared data accesses as in Figure 5 . The lock and 2
are sent in a single message at each acquire.

5.2 Current status
We are currently implementing LRC on SunOS and on
Mach-3.0. The SunOS implementation runs on SPARC
workstations connected by an Ethernet. Our goal is to
develop an efficient implementation running on an unmod-
ified SunOS kernel and using the standard Unix sockets
and memory management interfaces. The Mach imple-
mentation will run on DECstation workstations connected
by <an Ethernet and by a 100-megabit per second Fore ATM
network. Again, the goal is to use the standard Mach ex-

w(x) re1
Procl *

acq w(x) re1

Figure 6 Message traffic under LRC

ternal pager and IPC facilities so that the implementation
can be used without kernel changes.

Keleher et al. [20] presents some simulation results
showing a notable reduction of message traffic as a result
of using LRC compared to RC for the SPLASH benchmark
suite [31]. Using a more sophisticated simulator that takes
into account software communication latency and network
bandwidth, we are currently studying possible speedups.
Preliminary results indicate the absolute necessity of using
networks with much larger bandwidth than Ethernet, such
as ATM, in order to get reasonable speedups with state-of-
the-art workstations.

6 Fault tolerance
The need for the programmer to worry about fault toler-
ance has been another principal inhibitor for workstation
multicomputing. Although machine hardware failures are
relatively rare, many outages do occur, for example, due
to power failures, software crashes, and software main-
tenance causing the machine to reboot. Furthermore, if
the distributed computation is executed as a collection of
guest processes on workstations, the return of the worksta-
tion’s owner may cause processes to be evicted from that
machine [28]. If no special precautions are taken, the com-
putation will either “hang” or terminate abnormally, and
will need to be restarted from the beginning.

We argue that for parallel programs running on a network
multicomputer, fault tolerance should be provided by trans-
parent mechanisms, freeing the programmer completely
from having to worry about failures. In fact, our imple-
mentation of fault tolerance is transparent to the underlying
DSM system, and can be used equally well with message
passing application programs. Providing transparent fault
tolerance also concentrates the code for implementing fault
tolerance in a single system module, avoiding needless and
error-prone replication of the fault-tolerance support within
every application program.

The alternative approach is for the application program-
mer to deal explicitly with the possibility of failures during

523

program execution. We argue that the complexity of doing
so and the attendant program development cost are simply
too high. Even for a sequential program this approach is
quite burdensome. It requires code for periodically writ-
ing the values of key state variables to stable storage dur-
ing program execution, and code for reading the values of
these v'xiables after a failure to allow the program's exe-
cution to be continued. Furthermore, the machine reboot
procedure must be modified to restart the program after a
failure, with the program's recovery routine as the entry
point. The problem becomes immensely more complex for
a distributedapplication because a consistent snapshot [111
of the application must be saved? For instance, it would
be inappropriate to restart a process from a state in which
a p,articular message was received and to restart the sender
from a state in which that message had not yet been sent.

A more structured approach to fault tolerance is pro-
vided by mechanisms such as recovery blocks [l8], rrans-
actions [17], or reliable broadcasting facilities [5] . These
systems provide the application programmer with a set of
basic primitives on which to build fault tolerance. While
these approaches certainly have merit for other application
areas, for parallel programming they present too much of
8 burden on the application programmer. Furthermore, as
we will show in Section 7, tr'msparent methods cause only
very minor performance degradation, calling into question
the need for application-specific techniques.

7 Consistent checkpointing

Consistent checkpointing is an attractive approach for
transparently adding fault tolerance to distributed appli-
cations [14,21]. With consistent checkpointing, the state
of each process is saved separately on stable storage as
a process checkpoint, and the checkpointing of individ-
ual processes is synchronized such that the collection of
checkpoints represents a consistenr state of the whole sys-
tem [l 11. A set of checkpoints records a consistent state
if all messages recorded in the checkpoint as having been
received are also recorded as having been sent in the state
of the sender. For example, the system state indicated by
the first dotted line in Figure 7 is inconsistent, whereas the
second system state shown is consistent. After a failure,
failed processes are restarted on any available machine and
their address space is restored from their latest checkpoint
on stable storage. Surviving processes may also have to roll
back to their latest checkpoint on stable storage in order to
remain consistent with recovering processes [21].

'?he term comkfency is used here with a different meaning than when
discussing distributed shared memory earlier in the paper. We will con-
tinue to use the word combfrncybecauseit is standard terminology in the
fault-tolerance literature.

I
Procl -,

I
I

8 Proc2 /
\

b

I h $

Proc3
I I
I I
I I
I I
I I
I I
I I Proc4

Inconsistent Consistent

Figure 7 Consistent and
inconsistent system states

7.1 Implementation

Many consistent checkpointing protocols have appeared
in the literature (e.g., [l l , 211). In our protocol [14J.
each consistent checkpoint is identified by a monotonically
increasing Consistent Checkpoint Number (CCN). One
distinguished process acts as a coordinator. In the first
phase of the protocol, the coordinator starts a new con-
sistent checkpoint by incrementing the CCN and sending
marker messages [111 that contain the CCN to all other
processes. Upon receiving a marker message, a process
takes a tentative checkpoint. Furthermore, every appli-
cation message is tagged with the CCN of its sender [8,
231. A process also takes a tentative checkpoint if it re-
ceives an application message whose appended CCN is
greater than the local CCN. The resulting checkpoints
form a consistent state. Figure 8 shows an example exe-
cution of the fust phase of the protocol, in which a sys-
tem of three processes take consistent checkpoint number
9. In the second phase of the protocol, processes inform
the coordinator that they have taken the checkpoint, and
the coordinator then instructs all processes to make their
tentative checkpoint permanent and to delete the previous
checkpoint.

n
Procl b , -.

',9 **.. 9

Proc3 * *
U - Application Message

_ - - - - -m Marker Message
1 Checkpoint n

Figure 8 Consistent checkpointing protocol

524

The coordination of the different checkpoints so that
they form a consistent state entails relatively little over-
head. The key to efficiency in checkpointing is to avoid
interference between the execution of the process and the
recording of its checkpoint. We use two techniques, incre-
mental checkpointing [14, 191 and nonblocking copy-on-
write checkpointing [26], to reduce this interference. In-
cremental checkpointing writes to stable storage only those
pages of the address space that have been modified since
the previous checkpoint. The set of pages to be written is
determined using the dirty bit maintained by the memory
management hardware in each page table entry. Copy-
on-write checkpointing allows the application to continue
executing while its checkpoint is being written to stable
storage. Copy-on-write memory protection is used to pre-
vent a process from overwriting part of its address space
before it is written to the checkpoint.

The fault-tolerance support is transparent to the DSM
support, and we have thus been able to implement the two
independently. Both implementations, though, involved
modifications to the V kernel [12], and we have not yet
integrated the two into a single kernel. We have therefore
not yet been able to measure the overhead of consistent
checkpointing for shared memory applications, but we be-
lieve that it will be similar to that for message passing
applications. In effect, the DSM support and the shared
memory application program together act as a message
passing application on top of the consistent checkpointing
implementation.

In addition, we are exploring a number of areas in which
the DSM support can provide assistance for improving the
performance of consistent checkpointing. For example,
when copies of a read-only object are replicated, the hard-
ware dirty bit in the page table entry for the corresponding
page at each destination processor could be turned off at
the same time as the page is made read-only, preventing
the copy-on-write checkpointing from writing that page to
stable storage on the next checkpoint of that processor. A
similar opportunity arises, for example, when a migrufory
object is moved from one processor to another. If there
are no other objects in the page from which the migru-
tory object is being moved, the dirty bit in that page table
entry could be turned off to prevent that page from being
written to stable storage on the next checkpoint of that pro-
cessor; the object will instead be written to stable storage
as a part of the checkpoint of the processor to which the
object was moved. No object can mistakenly be left out of
a checkpoint as a result of such optimizations performed
by the DSM support, since each checkpoint records a con-
sistent state of the application program, with respect to the
messages sent and received by the application program and
those sent and received by the DSM support.

7.2 Performance

We have measured the performance of our implementa-
tion of consistent checkpointing on an Ethernet network
of 16 Sun-3/60 workstations. The results demonstrate
that consistent checkpointing is an efficient approach for
providing fault-tolerance for long-running distributed ap-
plications. Table 2, taken from Elnozahy et al. [14],
shows the increase in the running times of eight large,
message passing application programs relative to the run-
ning times for the same programs without checkpointing.
In these experiments, checkpoints were taken every 2 min-
utes. Even with this small checkpoint interval, consistent
checkpointing on average increased the running time of the
applications by only 1%. The worst overhead measured
was 5.8%.

Elnozahy et al. [14] presents a detailed analysis of the
measurements of the performance of consistent checkpoint-
ing, which further demonstrates the benefits of nonblock-
ing copy-on-write checkpointing and incremental check-
pointing. Copy-on-write checkpointing avoids a high
penalty for checkpointing for processes with large check-
points, a penalty that reached as high as 85% for one of
our applications. Using incremental checkpointing re-
duces the load on the stable storage server and the im-
pact of the checkpointing on the execution of the pro-
gram. Without incremental checkpointing, the worst over-
head measured for any application increased from 5.8%
to 17%. Synchronizing the checkpoints to form a consis-
tent checkpoint increased the running time of the appli-
cations by very little, 3% at most, compared to indepen-
dent checkpointing with no synchronization [4]. In return,
consistent checkpointing limits rollback to the most re-
cent consistent checkpoint, avoids the domino effect [29,
301, and does not require garbage collection of obsolete
checkpoints.

Table 2 Comparison of running times
with and without checkpointing

Program
Name

fft
gauss
grid
ma tmul t
nqueens
primes
sparse
t SP

Without With
Checkp. Checkp.

(sec.) (sec.)

11157 11184
2875 2885
3552 3618
8203 8219
4600 4600
3181 3193
3893 4119
4362 4362

Difference I
27
10
66
16
0

12
226

0

0.0
0.4
5.8

525

.- -. - ~-

8 Concluding remarks
Technological breakthroughs, especially in the area of high-
speed networking, allow us to design a multicomputer using
general-purpose networking technology with the attendant
benefits in cost compared to dedicated interconnection net-
works. Major software problems remain to be resolved
before such a network multicomputer can become prac-
tical. In particular, application programmers should not
be expected to deal with low-level message passing or
with recovery from failures. We use disrribured shared
memory to hide the message passing, and consistent check-
pointing to recover from failures. We have shown that
by using novel implementations of consistency models
and protocols, DSM systems with good performance can
be built. Furthermore, we have shown that through the
use of nonblocking, incremental checkpointing, consistent
checkpointing adds very little overhead to the program's
execution.

References
[l] S . Adve and M. Hill. Weak ordering: A new definition. In

Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 2-14, May 1990.

[21 W.C. Athas and C.L. Seitz. Multicomputers: Message-
passing concurrent computers. IEEE Computer, 21(8), Au-
gust 1988.

[3] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Adaptive
software cache management for distributed shared memory
architectures. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pages 125-
134, May 1990.

[4] B. Bhargavaand S-R. Lian. Independentcheckpointingand
concurrent rollback recovery for distributed systems - an
optimistic approach. In Proceedings of the 7th Symposium
on Reliable Distributed Systems, pages 3-12, October 1988.

[5] K. Birman, A. Schiper, and P. Stephenson. Lightweight
causal and atomic group multicast. ACM Transactions on
Computer Systems, 9(3):272-314, August 1991.

[6] A.D. Birrell and B.J. Nelson. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems,
2(1):39-59, February 1984.

[7] S . Borkar, R. Cohn, G. Cox, S . Gleason, T. Gross, H.T.
Kung, M. Lam, B. Moore, C. Peterson, J. Pieper, L. Rankin,
P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb. iWarp:
An integrated solution to high-speed parallel computing. In
Proceedings Supercomputing '88, pages 330-339, Novem-
ber 1988.

[8] D. Briatico, A. Ciuffoletti, and L. Simoncini. A distributed
domino-effect free recovery algorithm. In Proceedings of
the 4th Symposium on Reliable Distributed Systems, pages
207-215, October 1984.

191 J.B. Carter. Munin: Efficient Distributed Shared Memory
Using Multi-Protocol Release Consistency. PhD thesis, Rice
University, December 1992.

[lo] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementa-
tion and performance of Munin. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles, pages
152-164, October 1991.

111 K.M. Chandy and L. Lamport. Distributed snapshots: De-
termining global states of distributed systems. ACM Trans-
actions on Computer Systems, 3(1):63-75, February 1985.

12) D.R. Cheriton. The V distributed system. Communications
of the ACM, 31(3):314-333, March 1988.

131 M. Dubois and C. Scheurich. Memory access dependencies
in shared-memory multiprocessors. IEEE Transactions on
Computers, 16(6):660-673, June 1990.

[14] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. In Proceedings of
the I Ith Symposium on Reliable Distributed Systems, pages
39-47, October 1992.

[151 B. Fleisch and G. Popek. Mirage: A coherent distributed
shared memory design. In Proceedings of the 12th ACM
Symposium on Operating Systems Principles, pages 21 1-
223, December 1989.

[16] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In
Proceedings of the 17th Annual International Symposium
on Computer Archifecture, pages 15-26, Seattle, Washing-
ton, May 1990.

[171 J.N. Gray. Notes on databaseoperatingsystems. In R. Bayer,
R.M. Graham, and G. Seegmuller, editors, Operating Sys-
rems: An Advanced Course, volume 60 of Lecture Notes in
Computer Science. Springer-Verlag, 1978.

[l8] J.J. Homing, H.C. Lauer, P.M. Melliar-Smith, and B. Ran-
dell. A program structure for error detection and recovery.
In E. Gelenbe and C. Kaiser, editors, Operating Systems,
volume 16 of Lecture Notes in Computer Science, pages
17 1-1 87. Springer-Verlag, 1974.

[191 D.B. Johnson. Distributed System Fault Tolerance Using
Message Logging and Checkpointing. PhD thesis, Rice Uni-
versity, December 1989.

(201 P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy consistency
for software distributed shared memory. In Proceedings
of the 19th Annual International Symposium on Computer
Architecture, pages 13-21, May 1992.

[21] R. Koo and S . Toueg. Checkpointing and rollback-recovery
for distributed systems. IEEE Transactionson Sofiware En-
gineering, SE-13(1):23-31, January 1987.

[22] H.T. Kung, R. Sansom, S . Schlick, P. Steenkiste,
M.Amould, F.J. Bitz, F.Christianson,E.C.Cooper,O. Men-
zilcioglu, D. Ombres, and B. ZiU. Network-based multicom-
puters: An emerging parallel architecture. In Proceedings
Supercomputing '91, November 1991.

526

[23] T.H. Lai and T.H. Yang. On distributed snapshots. Informa-
tion Processing Letters, 25:153-158, May 1987.

[24] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J. Hennessy, M. Horowitz, and M. S . Lam. The
Stanford DASH multiprocessor. IEEE Computer, 25(3):63-
79, March 1992.

[25] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321-359, November 1989.

[26] K. Li, J.F. Naughton, and J.S. Plank. Real-time, concurrent
checkpoint for parallel programs. In Proceedings of the
1990 Conference on the Principles and Practice of Parallel
Programming, pages 79-88, March 1990.

[27] R.J. Lipton and J.S. Sandberg. PRAM: A scalable shared
memory. Technical Report CS-TR-180-88, Princeton Uni-
versity, September 1988.

[28] M. Litzkow, M. Livny, and M. Mutka. Condor-a hunter
of idle workstations. In Proceedingsof the 8th International
Conference on Distributed Computing Systems, pages 104-
111, June 1988.

[29] B. Randell. System structure for software fault tolerance.
IEEE Transactions on Sofiware Engineering, SE-1 (2):220-
232, June 1975.

[30] D.L. Russell. State restoration in systems of communicat-
ing processes. IEEE Transactions on Sofiware Engineering,
SE-6(2):183-194, March 1980.

[31] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
parallel applications for shared-memory. Technical Report
CSL-TR-91-469, Stanford University, April 1991.

132) AS. Tanenbaum, R. van Renesse, H. van Staveren, G.J.
Sharp, S.J. Mullender, J. Jansen, and G. van Rossum.
Experiences with the Amoeba distributed operating sys-
tem. Communications ofthe ACM, 33(12):46-63, December
1990.

[33] W.-D. Weber and A. Gupta. Analysis of cache invalida-
tion pattems in multiprocessors. In Proceedings of the
3rd Symposium on Architectural Support for Programing
Languages and Operating Systems, pages 243-256, April
1989.

521

