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Abstract 

In this papel; we evaluate the use of software distributed 
shared memory (DSM) on a message passing machine as 
the target for  a parallelizing compiler We compare this ap- 
proach to compiler-generated message passing, hand-coded 
software DSM, and hand-coded message passing. For this 
comparison, we use six applications: four that are regular 
and two that are irregulal: 

Our results are gathered on an 8-node IBM SP/2 us- 
ing the TreadMarks software DSM system. We use the APR 
shared-memory (SPF) compiler to generate the shared mem- 
ory programs, and the APR XHPF compiler to generate mes- 
sage passing programs. The hand-coded message passing 
programs run with the IBM PVMe optimized message pass- 
ing library. On the regular programs, both the compiler- 
generated and the hand-coded message passing outpelform 
the SPFflreadMarks combination: the compiler-generated 
message passing by 5.5% to 40%, and the hand-coded 
message passing by 7.5% to 49%. On the irregular pro- 
grams, the SPFflreadMarks combination outpe~orms the 
compiler-generated message passing by 38% and 89%, and 
only slightly underper$orms the hand-coded message pass- 
ing, differing by 4.4% and 16%. We also identify the factors 
that account for  the perjormance differences, estimate their 
relative importance, and describe methods to improve the 
performance. 

1. Introduction 

This paper evaluates the potential for using software dis- 
tributed shared memory (DSM) [2,6,11] as a target for a par- 
allelizing compiler on a message passing machine. We com- 
pare this approach with the more common method whereby 
the compiler directly targets the underlying message passing 
system (e.g., [9]). 

Shared memory is an attractive target, especially for ir- 
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regular applications, because the DSM system greatly eases 
the burden on the parallelizing compiler. Compilers gen- 
erating message passing code for irregular accesses are ei- 
ther inefficient or quite complex (e.g., the inspector-executor 
model [ 151). Without the inspector-executor model, impre- 
cise compiler analysis leads to large amounts of communi- 
cation in the compiler-generated message passing programs. 
Because tbe compiler does not know what data will be ac- 
cessed, it broadcasts all data in each processor’s partition to 
all other processors. Compiling to a DSM system avoids 
this penalty because the DSM system provides on-demand 
data communication and automatic data caching. The ad- 
dition of an inspector-executor adds a lot of complexity to 
the message-passing compiler. The combination of a shared 
memory compiler and a DSM system avoids this complex- 
ity. The goal of this paper is to evaluate the efficiency of 
this combination of a shared memory parallelizing compiler 
and a software DSM system, both for regular and irregular 
applications. We include regular applications in our ap- 
plication suite, because we want to investigate the general 
applicability of our approach. 

Our experimental environment is an 8-node IBM SP/2, 
on which we use the TreadMarks DSM system [2] to pro- 
vide shared memory. We use 6 applications: Jacobi, Shal- 
low, Modified Gramm-Schmidt (MGS), 3-D FFT, IGrid, and 
Non-Bonded Force (NBF). The first four have regular ac- 
cess patterns, while the latter two are irregular. We use the 
APR Forge XHPF compiler [3] to generate message pass- 
ing code, and the APR Forge SPF compiler [4] to generate 
shared memory code. We present the performance of the 
compiler-generated message passing and shared memory 
programs. In addition, we present the performance of hand- 
coded message passing and shared memory programs for 
the same applications. 

For the regular applications, the compiler-generated mes- 
sage passing programs outperform the compiler-generated 
shared memory programs by 5.5% to 40%. We identify two 
groups of causes contributing to these differences. First, 
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there are the known factors contributing to the performance 
differences between message passing and software DSM, re- 
gardless of whether the programs are compiler-generated or 
hand-coded [ 131. For the applications in this study, the rel- 
evant factors are the overhead of the shared memory imple- 
mentation (detecting modifications), the separation of data 
and synchronization, the absence of data communication 
aggregation in shared memory, and false sharing. Second, 
there are, for some programs, substantial differences be- 
tween the compiler-generated and hand-coded shared mem- 
ory programs. Reasons include redundant synchronization 
and lack of locality between successive parallel loops or be- 
tween parallel loops and sequential code. To determine the 
relative importance of each factor that separates compiler- 
generated shared memory from hand-coded message pass- 
ing, we hand-modify the compiler-generated shared memory 
code to eliminate one factor at a time. 

For the irregular programs, the situation is reversed. 
The compiler-generated shared memory programs outper- 
form the compiler-generated message passing programs by 
38% and 89%. More importantly, the compiler-generated 
shared memory programs achieve performance close to that 
of the hand-coded message passing programs, differing by 
4.4% to 16%. Since the hand-coded message passing pro- 
grams provide a reasonable upper bound on the performance 
achievable, we believe that at least for this environment 
and these applications, more sophisticated compilers target- 
ing message passing could not substantially outperform the 
compiler-generated shared memory programs. 

The outline of the rest of this paper is as follows. In 
Section 2 we discuss the compilers and the DSM run-time 
system that we used, and the interface between them. In 
Section 3 we describe the experimental environment and the 
methodology used. Section 4 provides a brief overview of 
the applications. Performance results are presented next, in 
Section 5 for the regular applications and in Section 6 for 
the irregular applications. Section 7 summarizes the results. 
Section 8 proposes further optimizations. We conclude in 
Section 9. 

2. Compilers, Run-Time, and Interface 

A modified version of the Forge SPF source-to-source 
compiler is used to generate shared memory programs for 
TreadMarks. This section gives a brief overview of the 
Forge SPF translator, the TreadMarks DSM system, and the 
interface between the two. We also present the relevant 
features of the Forge XHPF compiler. 

2.1. Forge SPF 

Forge SPF is a parallelizing Fortran compiler for shared 
memory multiprocessor architectures, SPF analyzes a For- 

tran 77 program annotated with loop parallelization direc- 
tives, and produces a version in which the DO loops are par- 
allelized with explicit calls to APR’s POSIX threads-based 
parallel run-time routines. The loop parallelization direc- 
tives specify which loops to parallelize and how to partition 
the loop iterations. The run-time routines follow a fork- 
join model of parallel execution, in which a single master 
processor executes the sequential portion of the program, 
assigning computation to worker processors when a parallel 
loop is encountered. 

The SPF compiler uses a simple block or cyclic loop 
distribution mechanism. Reduction on scalar variables is 
implemented by allocating the reduction variable in shared 
memory, and declaring a private copy of the reduction vari- 
able. Each processor first reduces its own data to the local 
copy of the reduction variable. At the end of the parallel 
loop, each processor acquires a lock, and modifies the shared 
reduction variable. 

The compiler allocates in shared memory all the scalars 
or arrays that are accessed in parallel loops, regardless of 
whether two processors will access the same storage location 
or not. Shared arrays are padded to page boundaries in order 
to reduce false sharing. 

2.2. TreadMarks 

TreadMarks [2] is a user-level software DSM system 
that runs on most Unix platforms. It provides a global 
shared address space on top of physically distributed mem- 
ory. The parallel processors synchronize via primitives sim- 
ilar to those used in hardware shared memory machines: 
barriers and mutex locks. In Fortran, the shared data are 
placed in a common block loaded in a standard location. 
TreadMarks aIso provides functions to start up and termi- 
nate processors, query the number of processors, and query 
the processor id. 

TreadMarks relies on user-level memory management 
techniques provided by the operating system to detect ac- 
cesses to shared memory at the granularity of a page. A 
lazy invalidate version of release consistency (RC) and a 
multiple-writer protocol are employed to reduce the amount 
of communication involved in implementing the shared 
memory abstraction. 

RC is a relaxed memory consistency model. In RC, 
ordinary shared memory accesses are distinguished from 
synchronization accesses, with the latter category divided 
into acquire and release accesses. RC requires ordinary 
shared memory updates b!y a processor p to become visible 
to another processor q only when a subsequent release by 
p becomes visible to q via some chain of synchronization 
events. In practice, this model allows a processor to buffer 
multiple writes to shared data in its local memory until a 
synchronization point is reached. 
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With the multiple-writer protocol, two or more proces- 
sors can simultaneously modify their own copy of a shared 
page. Their modifications are merged at the next synchro- 
nization operation in accordance with the definition of RC, 
thereby reducing the effect of false sharing. The merge is 
accomplished through the use of diffs. A diff is a runlength 
encoding of the modifications made to a page, generated by 
comparing the page to a copy saved prior to the modifica- 
tions. 

The lazy implementation delays the propagation of con- 
sistency information until the time of an acquire. Further- 
more, the releaser notifies the acquiring processor of which 
pages have been modified, causing the acquiring processor 
to invalidate its local copies of these pages. A processor 
incurs a page fault on the first access to an invalidated page, 
and obtains diffs for that page from previous releasers. 

Barriers have a centralized manager. At barrier arrival, 
each processor sends a release message to the manager, 
waits until a barrier departure message is received from 
the manager, and then leaves the barrier. The manager 
collects release messages from the processors when it arrives 
at barrier arrival. After all processors have arrived at the 
same barrier, the manager broadcasts the barrier departure 
message to all processors. The number of messages sent in 
a barrier is 2 x ( n  - l ) ,  where n is the number of processors. 

Each lock has a statically assigned manager. The man- 
ager records which processor has most recently requested 
the lock. All lock acquire requests are directed to the man- 
ager, and, if necessary, forwarded to the processor that last 
requested the lock. A lock release does not cause any com- 
munication. 

2.3. An Improved Compiler-Run-Time Interface 

In our initial implementation, the fork-join semantics ex- 
pected by the SPF compiler (see Section 2.1) were imple- 
mented in terms of the existing TreadMarks interface, using 
barriers for synchronization and page faults for communicat- 
ing control information between the master and the worker 
processors. After startup, worker processors wait at a bar- 
rier for parallel work, while the master processor executes 
any sequential parts in the program. The master processor 
calls the barrier to wake up the worker processors before a 
parallel loop. After the parallel loop, the worker processors 
wait for the next parallel loop at the same barrier. When all 
have arrived, the master executes any sequential code that 
may follow the parallel loop, and wakes up the workers at 
the next parallel loop. 

Each parallel loop is encapsulated by SPF into a new sub- 
routine. Before executing the barrier starting the execution 
of a parallel loop, the master writes the subroutine to be ex- 
ecuted, and the parameters to the subroutine, into locations 
in shared memory. When the worker processors depart from 

the barrier, they access these locations in shared memory, 
and jump to the appropriate subroutine with the arguments 
provided. 

Part of the overhead of this implementation of the fork- 
join operation comes from the barriers encapsulating a par- 
allel loop. Another part of the overhead is due to the prop- 
agation of the loop control variables. The barrier provides 
stronger synchionization than is necessary in the fork-join 
model. A barrier is an all-to-all synchronization, of which 
the arrival is an all-to-one synchronization, and the depar- 
ture is a one-to-all synchronization. On the other hand, the 
fork-join model incurs a one-to-all synchronization at the 
fork, and an all-to-one synchronization at the join. The 
loop control variables include the loop index for dispatch- 
ing the subroutineencapsulating the loop, and the subroutine 
parameters. The two sets of control variables reside in dif- 
ferent shared pages, incurring two requests to obtain them 
for each parallel loop. In summary, for each parallel loop 
execution, the two barriers require 4 x ( n  - 1) messages, 
and access to the control variables causes two page faults on 
each worker, and 4 x ( n  - 1) messages. 

To reduce the fork-join overhead, we added all-to-one 
and one-to-all synchronization to the TreadMarks interface, 
namely the b e e r  arrival and the barrier departure. A bar- 
rier departure is called before a parallel loop, and a barrier 
arrival is called after a parallel loop. In addition, the bar- 
rier departure carries the loop control variables, avoiding the 
cost of page faulting them in. This optimization reduces the 
number of messages from 8 x ( n  - 1) to 2 x ( n  - 1), and 
has a significant effect on execution time. All results in this 
paper are obtained with this improved interface. 

2.4. Forge XHPF 

Forge XHPF is a parallelizing compiler for High Per- 
formance Fortran [3] on distributed memory multiprocessor 
systems. It transforms a sequential Fortran program anno- 
tated with subset HPF data decomposition directives and 
Fortran 90 array syntax into a SPMD (Single Program Mul- 
tiple Data) parallelized Fortran 77 program. In the SPMD 
model, the sequential part is executed by all the processors, 
while the DO loops are distributed across processors. Part of 
the sequential code is guarded by if statements because only 
some processors must execute them. The user is required 
to insert data partitioning directives to specify the distribu- 
tion of data across the processors. The compiler uses these 
directives as a seed for parallelizing loops and distributing 
arrays. 

The translated code relies on a small run-time system to 
handle process creation, to assign loops to processors, and 
to perform the underlying communication. To implement 
loop distribution, the run-time system maintains descriptors 
for all distributed arrays, and tries to generate loop distri- 
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butions that satisfy the owner-computes rule [16]. In case 
the communication pattern is unknown at compile time, the 
compiler inserts instructions to broadcast all the data in a 
processor's partition (specified by the user) at the end of the 
parallel loop, regardless of whether the data will actually be 
used. 

3-D FlT 128 x 128) x 64, 5 iterations I& 500,20 iterations 

3. Environment and Methodology 

37.7 
42.6 

Our experimental environment is an 8-processor IBM 
SP/2 running AIX version 3.2.5. Each processor is a thin 
node with 64 B y t e s  of data cache and 128 Mbytes of main 
memory. Interprocessor communication is accomplished 
over the IBM SP/2 high-performance two-level cross-bar 
switch. Unless indicated otherwise, all results are for 8- 
processor runs. We use version 0.10.1 of TreadMarks, with 
the optimized interface discussed in Section 2.3. We use 
version 2.0 of the SPF compiler and the the XHPF com- 
piler. Both TreadMarks and the XHPF compiler use the 
user-level MPL communication library as the underlying 
message passing system. The hand-coded versions of the 
message passing programs use PVMe, an implementation 
of PVM [8] optimized for the IBM SP/2. 

Our primary goal is to assess the performance of the 
compiler-generated shared memory programs. Performance 
is quantified primarily by speedup, but we also provide 
statistics on the number of messages and the amount of 
data exchanged during execution. In addition, we provide 
the same performance figures for XHPF-generated message 
passing, hand-coded PVMe message passing, and hand- 
coded TreadMarks shared memory implementations of the 
same applications. The XHPF performance numbers pro- 
vide an indication of the capabilities of current commer- 
cial compilers targeting message passing. Comparing SPF- 
generated shared memory to hand-coded shared memory 
quantifies the performance loss as a result of compiler gen- 
eration. Comparing hand-coded shared memory to hand- 
coded message passing quantifies the performance loss as a 
result of using the shared memory system. The hand-coded 
message passing provides an reasonable upper bound on the 
performance achievable for the prograr) on this platform. 

In addition, to quantify the contribution of some of 
the sources of overhead, we have hand-modified the SPF- 
generated code to eliminate those sources. We use the en- 
hanced TreadMarks interface proposed by Dwarkadas et 
al. [7] to achieve communication aggregation, consistency 
elimination, and pushing (instead of pulling) data to the pro- 
cessors that will use it. We also eliminate redundant barriers 
in the program. 

4. Applications 

We use 6 applicationis (Jacobi, Shallow, MGS, 3-D FFI', 
IGrid, and NBF). Jacobi, Shallow, MGS, and 3-D FFT all 
have regular access patterns, while IGrid and NBF are irreg- 
ular. Jacobi is an iterative method for solving partial differ- 
ential equations. Shallow is the shallow water benchmark 
from the National Center for Atmospheric Research. MGS 
implements a Modified Ciramm-Schmidt algorithm for com- 
puting an orthonormal basis. 3-D FlT, from the NAS [5] 
benchmark suite, numeirically solves a partial differential 
equation using three dimensional forward and inverse FFT's. 
IGrid is a 9-point stencil computation in which the neighbor 
elements are accessed indirectly through a mapping estab- 
lished at run-time. The NBF (Non-Bonded Force) program 
is the kernel of a molecular dynamics simulation. 

Table 1 presents the data set size as well as the sequential 
execution time for each application. Sequential execution 
times are obtained by removing all synchronization from 
the TreadMarks programs and executing them on a single 
processor. 

Problem Size Time (sec.) 
2048 x 2048, 100 iterations 

MGS 1024 x 1024 56.4 

U NBF I 32K molecules, 20 iterations I 63.9 1 
Table 1. Data Set Sizes and Sequential Execution Time 
of Applications 

5. Results for Regular Applications 

Figure 1 presents the 8-processor speedups for each of the 
regular applications for SPF-generated TreadMarks, hand- 
coded TreadMarks, XHE'F-generated message passing, and 
hand-coded message passing. The 8-processor speedups are 
calculated based on the sequential times listed in Table 1. 
Table 2 provides the corresponding number of messages and 
amount of data exchanged during the execution. In the fol- 
lowing we analyze the differences between SPF-generated 
shared memory and hand-coded shared memory, the differ- 
ences between hand-coded shared memory and hand-coded 
message passing, and present the results of hand-applied 
optimizations. 

5.1. Jacobi 

Jacobi is an iterative method for solving partial differ- 
ential equations. The a1,gorithm employs two arrays - one 
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8 4  I I I I 

Tmk 
8407 

11767 
30457 
36477 

862 
10400 
55681 
74107 

Jacobi ' Shallow ' MGS ' 3-DFFT ' 

XHPF PVMe 
4207 1400 
7792 1985 

38905 7168 
33913 1155 
11458 11469 
18407 7328 
29430 29360 

102763 73401 

SPF TreadMarks XHPF I PVMe 

Figure 1. 8-Processor Speedups for Regular Appli- 
cations for SPF-generated TreadMarks, hand-coded 
TreadMarks, XHPF-generated message passing and 
hand-coded PVMe 

essag 
Total 

Prograrr 
Jacobi 
Shallow 
MGS 

Jacobi 
Shallow 
MGS 

3-D FF7 

3-D F F l  

SPF 
8538 

13034 
57283 
528 18 

989 
10814 
59724 

103228 

Table 2. 8-Processor Message Totals and Data 
Totals (Kilobytes) for Regular Applications for 
SPF-generated TreadMarks, hand-coded TreadMarks, 
XHPF-generated message passing and hand-coded 
PVMe 

is the data array and one is the scratch array. There are 
two phases in each iteration. First, each element is updated 
according to a four point stencil and the new values are 
stored in the scratch array, then the scratch array is copied 
to the data array. Both loops are parallelized. The first loop 
requires nearest neighbor communication, in which neigh- 
boring processors exchange their boundary columns in the 
data array. The shared memory versions place the data ar- 
ray in shared memory. However, the SPF-compiler also 
allocates the scratch array in shared memory, because it is 
accessed in a parallel loop. 

The data array is initialized with ones on the edges and 
zeroes in the interior. The program iterates 101 times on 
a 2048 x 2048 real array, in which the last 100 iterations 
are timed. The speedups of the compiler-generated version 
for shared memory and message passing are 6.99 and 7.39, 

respectively, closely approximate those of the hand-coded 
versions, which are 7.13 and 7.55, respectively. 

SPF/Tmk vs. Tmk The 2% difference between the SPF- 
generated and the hand-coded shared memory programs is 
due to the use of private memory for the scratch array in the 
TreadMarks version, and the use of shared memory in the 
SPF-generated TreadMarks program. 

Tmk vs. PVMe Four factors give the message passing 
programs a slight edge. First, it takes two access faults and 
four messages in TreadMarks to obtain the new values in 
a neighboring column. In the message passing program, 
in contrast, the boundary column is sent directly to its des- 
tination in a single message. Second, the shared memory 
version has separate data (access misses) and synchroniza- 
tion messages, whereas the message passing version sends 
a single message for both purposes. Third, in the message 
passing program, no communication is incurred between the 
first and the second phase of each iteration. In the shared 
memory model, a barrier has to be inserted between the 
two phases to make sure the data are not written before they 
are read (to respect the anti-dependence). Finally, the shared 
memory programs incur the overhead of detecting modifica- 
tions to shared memory (twinning, diffing, and page faults). 
The shared memory program sends much less data than the 
message passing program, because the modifications are 
propagated from the edges to the center of the array, and 
only modified data are sent in TreadMarks. 

Results of Hand Optimizations The main overhead in 
the shared memory programs stems from the first factor, the 
absence of data aggregation. A hand-modified version of 
the shared memory program that includes data aggregation 
achieves a speedup of 7.23 for the SPF-generated version, 
compared to 7.55 for hand-coded message passing. 

5.2. Shallow 

Shallow is the shallow water benchmark from the Na- 
tional Center for Atmospheric Research. It solves differen- 
tial equations using 13 equal-sized two-dimensional arrays 
in wrap-around format. There are three steps in each it- 
eration, each of which consists of a main loop that updates 
three to four arrays according to values in some other arrays. 
Wrap-around copying is applied to the modified arrays af- 
ter the main loop in each step. The wrap-around copying 
includes two separate loops to copy the boundary rows and 
the boundary columns. The parallel versions partition the 
arrays by column, and require nearest neighbor communica- 
tion similar to that in Jacobi. In the shared memory version, 
all of the arrays are shared, and the main loop and the edge 
row copying are parallelized. The edge column copying is 
executed sequentially, because the arrays are laid out in col- 
umn major order. In the message passing version, the edge 
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column copying is executed on the processor at which the 
data resides (the owner-computes rule). 

We use a 1024 x 1024 grid in our test, where each grid 
element is represented by a real number. The program runs 
for 51 iterations, of which the last 50 iterations are timed. 
At 8 processors, the compiler-generated shared memory and 
message passing achieve speedups of 5.71 and 6.60, respec- 
tively. The hand-coded shared memory and message passing 
programs achieve speedups of 6.21 and 6.77, respectively. 
SPF/Tmk vs. Tmk The slowdown in the SPF-generated 
shared memory version is caused by redundant synchroniza- 
tion and extra communication. Redundant synchronization 
occurs because the SPF compiler inserts a pair of synchro- 
nizations around every parallel loop, some of which are 
unnecessary in a hand-coded shared memory program. The 
extra communication is due to the fact that the sequential part 
is always executed by the master processor in the fork-join 
model, regardless of the owner-computes rule. 
Tmk vs. PVMe The reasons for the difference between 
the shared memory programs and the two message pass- 
ing programs are essentially the same as for Jacobi, namely 
separation of data and synchronization, absence of data ag- 
gregation, and the overhead of the shared memory imple- 
mentation. 
Results of Hand Optimizations By hand, we merged the 
loops in the SPF-generated program and put in data aggre- 
gation. This resulted in an increase in speedup to 5.96, 
compared to 6.21 for hand-coded shared memory. The re- 
maining difference in speedup is due to the extra commu- 
nication resulting from the execution of the sequential parts 
of the code by the master processor. 

5.3. MGS 

Modified Gramm-Schmidt (MGS) computes an orthonor- 
mal basis for a set of N-dimensional vectors. At each iter- 
ation i, the algorithm first sequentially normalizes the ith 
vector, then makes all vectors j > i orthogonal to vector i 
in parallel. The vectors are divided over the processors in 
a cyclic manner to balance the load in each iteration. All 
processors synchronize at the end of an iteration. 

On 8 processors, the speedup achieved by the SPF- 
generated TreadMarks version is 3.35, XHPF 5.06, the hand- 
coded TreadMarks version achieves 4.19, and PVMe 6.55. 
The difference between the XHPF version and the hand- 
coded message passing version is due to the SPMD model 
used by XHPF, in which all processors participate in nor- 
malization of the ith vector. 
SPF/Tmk vs. Tmk The difference between the hand- 
coded TreadMarks version and the SPF-generated one is 
also a result of extra communication in the SPF-generated 
version. Since normalization of the ith vector during iter- 
ation i is part of the sequential code, it is always done on 

the master processor, requiring the vector to move from its 
assigned processor to the master. The hand-coded version is 
written such that the normalization happens on the processor 
the vector is assigned to. 

Tmk vs. PVMe The difference between the message 
passing and the shared memory programs results primarily 
from the two message passing programs’ ability to broadcast 
the ith vector on the itlh iteration. In contrast, in the shared 
memory programs, this vector needs to be paged in by all 
other processors. Furthermore, the separation of synchro- 
nization (barrier) and data (ith vector) leads to additional 
communication. 

Results of Hand Optimizations We hand-modified the 
program to merge the data and the synchronization, and 
modified TreadMarks to use a broadcast. The speedup im- 
proved to 5.09 from 4.19. 

5.4.3-D FFT 

3-D FFT, from the NAS [5 ]  benchmark suite, numerically 
solves a partial differential equation using three dimensional 
forward and inverse FFT’s. Assume the input array A is of 
size nl x np x n3, organized in column-major order. The 
3-D FFT first performs; a nl-point 1-D FFT on each of the 
122 x 123 complex vectors. Then it performs a n2-point 1-D 
FFT on each of the n1 x 723 vectors. Finally, it performs a n3- 
point 1-D FFT on each of the n1 x n2 vectors. The complex 
array is reinitialized at the beginning of each iteration. After 
that, an inverse 3-D FFlr is applied to the complex array. The 
resulting array is normadized by multiplyingeach element in 
the array by a constant. Finally, the checksum is computed 
by summing 1024 elements in the array. 

There are six paralld loops in each iteration, one for ini- 
tializing the array, three for the FFT in each of the three di- 
mensions, one for the normalization, and one for the check- 
sum. Each iteration starts with a block partition on n3, and 
keeps using this partition until the beginning of the n3-point 
FFT. The n3-point FFT works on a different data partition 
(block partition on 7 4 ,  thus requiring a transpose. The new 
data partition is used through the end of the iteration. The 
TreadMarks program has two barriers, one after the trans- 
pose, and another one alfter the checksum is computed. 

We ran the program on a 128 x 128 x 64 double preci- 
sion, complex array for 6 iterations, excluding the first iter- 
ation from the measurement. At 8 processors, the compiler- 
generated programs achieve a speedup of 2.65 for the shared 
memory version and 4.44 for the message passing version. 
The hand-coded shared memory program and message pass- 
ing programs achieve :speedups of 3.06 and 5.12, respec- 
tively. 
SPF/Tmk vs. Tmk The SPF-generated shared memory 
program incurs additional overhead by inserting synchro- 
nization around each parallel loop. 
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I P r o g r d  SPF I Tmk I XHPF I PVMe 
essagd IGrid I 3806 I 1246 I 34769 I 320 

1 1  Total I NBF I14836 I13194 I 45895 I 960 1 1  
I I I I I 

Data I IGrid I 7374 I 131 I140001 1 640 
1 1  Total I NBF I 1543 I 228 I163775 I 31457 11 
I 1  I I I I I U 

Table 3. 8-Processor Message Totals and Data 
Totals (Kilobytes) for Irregular Applications for 
SPF-generated TreadMarks, hand-coded TreadMarks, 
XHPF-generated message passing and hand-coded 
PVMe 

lGid NBF 
to all ones, then two spikes are added to the middle and the 
lower right corner of the array. During each step, the new 

SPF TreadMarks XHPF I PVMe value of each grid point is computed according to the old 
values of its eight neighbors and itself. The new array and 
the old array are switched at the end of each step. At the end 
of the program, the code finds the maximum and minimum 
values in a 40 x 40 square in the middle of the array, and 
computes the sum of the values in the square. 

Figure 2. 8-Processor Speedups for Irregular Appli- 
cations for SPF-generated TreadMarks, hand-coded 
TreadMarks, XHPF-generated message passing and 
hand-coded PVMe 

Tmk vs. PVMe The sizable difference in performance 
between message passing and shared memory occurs during 
the transpose. Because of the huge data size, and because 
of the fact that the shared memory versions fault in the data 
one page at a time, the number of messages in the shared 
memory version is about 30 times higher than in the hand- 
coded message passing version. 
Results of Hand Optimizations In a hand-modified ver- 
sion of the SPF-generated program that includes data aggre- 
gation, speedup rose to 5.05, very close to the 5.12 observed 
for the hand-coded message passing. Without changing the 
program drastically, we are able to merge only the first two 
1-D FIT loops. This optimization has little effect. 

6. Results for Irregular Applications 

Figure 2 presents the 8-processor speedups for each of the 
irregular applications for SPF-generated TreadMarks, hand- 
coded TreadMarks, XHPF-generated message passing, and 
hand-coded message passing. The 8-processor speedups 
are calculated using the sequential times listed in Table 1. 
Table 3 provides the corresponding number of messages and 
amount of data exchanged during the execution. 

6.1. IGrid 

IGrid is a relaxation code that utilizes a nine point stencil. 
The neighbor elements are accessed indirectly through a 
mapping established at run-time. The program works on 
two arrays, one for keeping the newly computed data in each 
step, and one for storing the old data from the previous step. 
At the beginning of the program, the old array is initialized 

Due to the indirection array, the compilers cannot rec- 
ognize the data access pattern in the program. Both of the 
compilers are instructed to parallelize the main computa- 
tion loop assuming the iterations of the loop are indepen- 
dent. The shared memory compiler partitions the iterations 
among processors and encapsulates the parallel loop in a 
pair of synchronization operations. Although the message 
passing compiler is told to partition the grid into blocks, 
since the compiler does not know what data will be needed 
during the next step, it makes each processor broadcast its 
whole block at the end of each step. The max-min finding 
and checksum computation are recognized as reductions. 

We use two 500 x 500 single precision matrices in our 
experiments. Of the 20 iterations executed, the last 19 it- 
erations are measured in order to avoid startup effects. At 
8 processors, the speedup for SPF-generated TreadMarks 
is 7.54, compared to 7.88 for hand-coded message passing. 
The speedup of the XHPF-generated version is only 3.85. 
The large number of messages and the large amount of data 
exchanged (see Table 3) explain the drop in performance for 
the XHPF program. The shared memory versions fetch data 
on-demand, and the run-time system automatically caches 
previously accessed shared data. Hence, only the data that is 
actually modified remotely and accessed is communicated. 

6.2.NBF 

NBF is the kernel of a molecular dynamics simula- 
tion. The program simulates the behavior of a number of 
molecules. Each molecule has a list of “partners”, molecules 
that are close enough to it to exert a non-negligible effect 
on the molecule. For each molecule, the program goes 
through the list of partners, and updates the forces on both 
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of them based on the distance between them. At the end 
of each iteration, the coordinates of the molecules are up- 
dated according to the force acting on them. The program 
is parallelized by block-partitioning the molecules among 
processors. Each processor accumulates the force updates 
in a local buffer, and adds the buffers together after the force 
computation loop, 

The XHPF compiler cannot recognize the data access 
pattern due to the indirection array. It therefore makes each 
processor broadcast its local force buffer, and the coordinates 
of all its molecules. The SPF compiler inserts a synchroniza- 
tion statement at the end of an iteration. At run-time, this 
synchronization causes TreadMarks to invalidate the mod- 
ified pages. Individual processors then take page faults on 
those pages they access. Since this is typically only a small 
subsection of the array, the number of messages and the 
amount of data is far smaller than for the XHPF-generated 
message passing program. 

The differing amounts of communication are clearly re- 
flected in Table 3, and in the speedups for the different 
versions. In decreasing order, PVMe achieves a speedup of 
6.18, hand-coded TreadMarks 5.86, SPF-generated Tread- 
Marks 5.3 1,  and finally XHPF-generated message passing 
3.85. 

7. Summary of Results 

On the regular programs, both the compiler-generated 
and the hand-coded message passing outperform the 
SPFmreadMarks combination: the compiler-generated 
message passing by 5.5% to 40%, depending on the pro- 
gram, and the hand-coded message passing by 7.5% to 49%. 
In general, three factors favor the message passing programs: 
better data aggregation, combined synchronization and data 
transfer, and no overhead for shared memory coherence. 

On the irregular programs, the SPFmreadMarks combi- 
nation outperforms the compiler-generated message pass- 
ing by 38% and 89%. Performance approaches that of 
the hand-coded message passing, differing by 4.4% and 
16%. The small difference between SPFRreadMarks and 
hand-coded message passing suggests that, at least for 
this environment and these applications, more sophisticated 
compilers targeting message passing could not substan- 
tially outperform the compiler-generated shared memory 
programs. Compared to the compiler-generated message 
passing, the SPFiTreadMarks combination benefits from on- 
demand fetching of data, as well as caching of previously 
accessed data by the run-time system. 

On both the regular and the irregular programs, the hand- 
coded TreadMarks outperforms the SPFnreadMarks com- 
bination. The difference varies from 2% to 20%. In gen- 
eral, two factors account for the difference. The compiler- 
generated shared-memory programs have excess synchro- 

nization and additional data communication. The latter is 
because there is less processor locality in the programs’ data 
access patterns, 

Keleher and Tseng [ 101 perform a similar study which 
also compares the performance of compiler-generated DSM 
programs with compiler-generated message passing pro- 
grams. Instead of using: commercial Fortran compilers to 
compile all the programs, they use the Stanford SUIF [l] 
parallelizing compiler version 1.0 to generate parallel C 
programs for the DSM system, and the commercial IBM 
HPF or DEC HPF compilers to generate the parallel For- 
tran programs in message passing. Using a different set of 
applications, they arrive iat results similar to ours. 

8. Further Optimizations 

In Section 5, we have shown the considerable benefits 
of hand-applied optimizaitions for the SPF-generated DSM 
programs. The optimizations include aggregating data com- 
munication, merging synchronization and data, and pushing 
data instead of the default request-response data communi- 
cation in the DSM system. Dwarkadas et al. [7] have shown 
that these optimizations c m  be implemented automatically 
by a compiler and DSM runtime system. Those techniques 
could be integrated with the APR compiler. 

Elimination of redundant barriers was proposed by 
Tseng [17] in the context of automatic parallelization for 
hardware distributed shared memory machine. His results 
show a significant reduction in the number of barriers, al- 
though only a limited reduction in the execution time. We 
manually applied this optimization to the applications in this 
study, and showed that with the high cost of synchronization 
in this environment, improvements can be substantial. 

Additionally, our results indicate the need to optimize the 
SPF-generated applications for locality of access, similar to 
the optimizations applied in the XHPF compiler. These opti- 
mizations will improve the performance not only of software 
DSM systems but also of hiardware shared memory systems. 

We plan to further explore the benefits of customizing 
DSM systems for compiler-generated shared memory pro- 
grams, and expect more gains in performance when scaling 
to a large number of processors. These enhancements will 
include efficient support for reductions, more aggressive 
methods of eliminating coinsistency overhead based on syn- 
chronization and access pattern information, and dynamic 
load balancing support. 

Our results indicate that with minimal compiler support, 
our software DSM system has performance comparable to 
hand-coded message passing for the irregular applications 
we have considered. The inspector-executor model [ 151 
has been proposed to efficiently execute irregular compu- 
tations in the message passing paradigm. Mukherjee et 
al. [ 141 compared the CHA.OS inspector-executor system to 
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the TSM (transparent shared memory) and the XSM (ex- 
tendible shared memory) systems. They concluded that 
TSM is not competitive with CHAOS, while XSM achieves 
performance comparable to CHAOS after introducing sev- 
eral hand-coded special-purpose protocols. In a more re- 
cent paper [ 121, we compared CHAOS to TreadMarks with 
simple compiler support for describing accesses to the indi- 
rection array. With the compiler support, the TreadMarks 
DSM system achieves similar performance to the inspector- 
executor method supported by the Chaos run-time library. 
The same compiler support can also be used for automati- 
cally generated DSM programs. 

9. Conclusions 

In this paper, we evaluate the efficiency of combining 
a parallelizing compiler and a software DSM system, both 
for regular and irregular applications. The results show that 
for regular applications, the compiler-generated message 
passing programs outperform the compiler-generated DSM 
programs by 5.5% to 40%, while for the irregular appli- 
cations, the compiler-generated DSM programs outperform 
the compiler-generated message passing programs by 38% 
and 89%, and underperform the hand-coded message pass- 
ing programs only by 4.4% and 16%. 

This study shows that software DSM is a promising tar- 
get for parallelizing irregular applications. With appropriate 
enhancements to the compiler and DSM system, we have 
also shown that the performance of regular applications can 
match that of their message passing counterparts, thus mak- 
ing software DSM a general parallelizing platform for all 
applications. 
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