
Evaluating the Performance of Software Distributed Shared Memory
as a Target for Parallelizing Compilers

Alan L. Coxt, Sandhya Dwarkadast, Honghui Lut and Willy Zwaenepoelt
t Rice University

Houston, TX 77005- 1892
{ alc, hhl, willy) @cs.rice.edu

Abstract

In this papel; we evaluate the use of software distributed
shared memory (DSM) on a message passing machine as
the target for a parallelizing compiler We compare this ap-
proach to compiler-generated message passing, hand-coded
software DSM, and hand-coded message passing. For this
comparison, we use six applications: four that are regular
and two that are irregulal:

Our results are gathered on an 8-node IBM SP/2 us-
ing the TreadMarks software DSM system. We use the APR
shared-memory (SPF) compiler to generate the shared mem-
ory programs, and the APR XHPF compiler to generate mes-
sage passing programs. The hand-coded message passing
programs run with the IBM PVMe optimized message pass-
ing library. On the regular programs, both the compiler-
generated and the hand-coded message passing outpelform
the SPFflreadMarks combination: the compiler-generated
message passing by 5.5% to 40%, and the hand-coded
message passing by 7.5% to 49%. On the irregular pro-
grams, the SPFflreadMarks combination outpe~orms the
compiler-generated message passing by 38% and 89%, and
only slightly underper$orms the hand-coded message pass-
ing, differing by 4.4% and 16%. We also identify the factors
that account for the perjormance differences, estimate their
relative importance, and describe methods to improve the
performance.

1. Introduction

This paper evaluates the potential for using software dis-
tributed shared memory (DSM) [2,6,11] as a target for a par-
allelizing compiler on a message passing machine. We com-
pare this approach with the more common method whereby
the compiler directly targets the underlying message passing
system (e.g., [9]).

Shared memory is an attractive target, especially for ir-

University of Rochester
Rochester, NY 14627-0226
sandhya@cs.rochester.edu

regular applications, because the DSM system greatly eases
the burden on the parallelizing compiler. Compilers gen-
erating message passing code for irregular accesses are ei-
ther inefficient or quite complex (e.g., the inspector-executor
model [151). Without the inspector-executor model, impre-
cise compiler analysis leads to large amounts of communi-
cation in the compiler-generated message passing programs.
Because tbe compiler does not know what data will be ac-
cessed, it broadcasts all data in each processor’s partition to
all other processors. Compiling to a DSM system avoids
this penalty because the DSM system provides on-demand
data communication and automatic data caching. The ad-
dition of an inspector-executor adds a lot of complexity to
the message-passing compiler. The combination of a shared
memory compiler and a DSM system avoids this complex-
ity. The goal of this paper is to evaluate the efficiency of
this combination of a shared memory parallelizing compiler
and a software DSM system, both for regular and irregular
applications. We include regular applications in our ap-
plication suite, because we want to investigate the general
applicability of our approach.

Our experimental environment is an 8-node IBM SP/2,
on which we use the TreadMarks DSM system [2] to pro-
vide shared memory. We use 6 applications: Jacobi, Shal-
low, Modified Gramm-Schmidt (MGS), 3-D FFT, IGrid, and
Non-Bonded Force (NBF). The first four have regular ac-
cess patterns, while the latter two are irregular. We use the
APR Forge XHPF compiler [3] to generate message pass-
ing code, and the APR Forge SPF compiler [4] to generate
shared memory code. We present the performance of the
compiler-generated message passing and shared memory
programs. In addition, we present the performance of hand-
coded message passing and shared memory programs for
the same applications.

For the regular applications, the compiler-generated mes-
sage passing programs outperform the compiler-generated
shared memory programs by 5.5% to 40%. We identify two
groups of causes contributing to these differences. First,

474
1063-7133197 $10.00 0 1997 IEEE

mailto:cs.rice.edu
mailto:sandhya@cs.rochester.edu

there are the known factors contributing to the performance
differences between message passing and software DSM, re-
gardless of whether the programs are compiler-generated or
hand-coded [131. For the applications in this study, the rel-
evant factors are the overhead of the shared memory imple-
mentation (detecting modifications), the separation of data
and synchronization, the absence of data communication
aggregation in shared memory, and false sharing. Second,
there are, for some programs, substantial differences be-
tween the compiler-generated and hand-coded shared mem-
ory programs. Reasons include redundant synchronization
and lack of locality between successive parallel loops or be-
tween parallel loops and sequential code. To determine the
relative importance of each factor that separates compiler-
generated shared memory from hand-coded message pass-
ing, we hand-modify the compiler-generated shared memory
code to eliminate one factor at a time.

For the irregular programs, the situation is reversed.
The compiler-generated shared memory programs outper-
form the compiler-generated message passing programs by
38% and 89%. More importantly, the compiler-generated
shared memory programs achieve performance close to that
of the hand-coded message passing programs, differing by
4.4% to 16%. Since the hand-coded message passing pro-
grams provide a reasonable upper bound on the performance
achievable, we believe that at least for this environment
and these applications, more sophisticated compilers target-
ing message passing could not substantially outperform the
compiler-generated shared memory programs.

The outline of the rest of this paper is as follows. In
Section 2 we discuss the compilers and the DSM run-time
system that we used, and the interface between them. In
Section 3 we describe the experimental environment and the
methodology used. Section 4 provides a brief overview of
the applications. Performance results are presented next, in
Section 5 for the regular applications and in Section 6 for
the irregular applications. Section 7 summarizes the results.
Section 8 proposes further optimizations. We conclude in
Section 9.

2. Compilers, Run-Time, and Interface

A modified version of the Forge SPF source-to-source
compiler is used to generate shared memory programs for
TreadMarks. This section gives a brief overview of the
Forge SPF translator, the TreadMarks DSM system, and the
interface between the two. We also present the relevant
features of the Forge XHPF compiler.

2.1. Forge SPF

Forge SPF is a parallelizing Fortran compiler for shared
memory multiprocessor architectures, SPF analyzes a For-

tran 77 program annotated with loop parallelization direc-
tives, and produces a version in which the DO loops are par-
allelized with explicit calls to APR’s POSIX threads-based
parallel run-time routines. The loop parallelization direc-
tives specify which loops to parallelize and how to partition
the loop iterations. The run-time routines follow a fork-
join model of parallel execution, in which a single master
processor executes the sequential portion of the program,
assigning computation to worker processors when a parallel
loop is encountered.

The SPF compiler uses a simple block or cyclic loop
distribution mechanism. Reduction on scalar variables is
implemented by allocating the reduction variable in shared
memory, and declaring a private copy of the reduction vari-
able. Each processor first reduces its own data to the local
copy of the reduction variable. At the end of the parallel
loop, each processor acquires a lock, and modifies the shared
reduction variable.

The compiler allocates in shared memory all the scalars
or arrays that are accessed in parallel loops, regardless of
whether two processors will access the same storage location
or not. Shared arrays are padded to page boundaries in order
to reduce false sharing.

2.2. TreadMarks

TreadMarks [2] is a user-level software DSM system
that runs on most Unix platforms. It provides a global
shared address space on top of physically distributed mem-
ory. The parallel processors synchronize via primitives sim-
ilar to those used in hardware shared memory machines:
barriers and mutex locks. In Fortran, the shared data are
placed in a common block loaded in a standard location.
TreadMarks aIso provides functions to start up and termi-
nate processors, query the number of processors, and query
the processor id.

TreadMarks relies on user-level memory management
techniques provided by the operating system to detect ac-
cesses to shared memory at the granularity of a page. A
lazy invalidate version of release consistency (RC) and a
multiple-writer protocol are employed to reduce the amount
of communication involved in implementing the shared
memory abstraction.

RC is a relaxed memory consistency model. In RC,
ordinary shared memory accesses are distinguished from
synchronization accesses, with the latter category divided
into acquire and release accesses. RC requires ordinary
shared memory updates b!y a processor p to become visible
to another processor q only when a subsequent release by
p becomes visible to q via some chain of synchronization
events. In practice, this model allows a processor to buffer
multiple writes to shared data in its local memory until a
synchronization point is reached.

475

With the multiple-writer protocol, two or more proces-
sors can simultaneously modify their own copy of a shared
page. Their modifications are merged at the next synchro-
nization operation in accordance with the definition of RC,
thereby reducing the effect of false sharing. The merge is
accomplished through the use of diffs. A diff is a runlength
encoding of the modifications made to a page, generated by
comparing the page to a copy saved prior to the modifica-
tions.

The lazy implementation delays the propagation of con-
sistency information until the time of an acquire. Further-
more, the releaser notifies the acquiring processor of which
pages have been modified, causing the acquiring processor
to invalidate its local copies of these pages. A processor
incurs a page fault on the first access to an invalidated page,
and obtains diffs for that page from previous releasers.

Barriers have a centralized manager. At barrier arrival,
each processor sends a release message to the manager,
waits until a barrier departure message is received from
the manager, and then leaves the barrier. The manager
collects release messages from the processors when it arrives
at barrier arrival. After all processors have arrived at the
same barrier, the manager broadcasts the barrier departure
message to all processors. The number of messages sent in
a barrier is 2 x (n - l) , where n is the number of processors.

Each lock has a statically assigned manager. The man-
ager records which processor has most recently requested
the lock. All lock acquire requests are directed to the man-
ager, and, if necessary, forwarded to the processor that last
requested the lock. A lock release does not cause any com-
munication.

2.3. An Improved Compiler-Run-Time Interface

In our initial implementation, the fork-join semantics ex-
pected by the SPF compiler (see Section 2.1) were imple-
mented in terms of the existing TreadMarks interface, using
barriers for synchronization and page faults for communicat-
ing control information between the master and the worker
processors. After startup, worker processors wait at a bar-
rier for parallel work, while the master processor executes
any sequential parts in the program. The master processor
calls the barrier to wake up the worker processors before a
parallel loop. After the parallel loop, the worker processors
wait for the next parallel loop at the same barrier. When all
have arrived, the master executes any sequential code that
may follow the parallel loop, and wakes up the workers at
the next parallel loop.

Each parallel loop is encapsulated by SPF into a new sub-
routine. Before executing the barrier starting the execution
of a parallel loop, the master writes the subroutine to be ex-
ecuted, and the parameters to the subroutine, into locations
in shared memory. When the worker processors depart from

the barrier, they access these locations in shared memory,
and jump to the appropriate subroutine with the arguments
provided.

Part of the overhead of this implementation of the fork-
join operation comes from the barriers encapsulating a par-
allel loop. Another part of the overhead is due to the prop-
agation of the loop control variables. The barrier provides
stronger synchionization than is necessary in the fork-join
model. A barrier is an all-to-all synchronization, of which
the arrival is an all-to-one synchronization, and the depar-
ture is a one-to-all synchronization. On the other hand, the
fork-join model incurs a one-to-all synchronization at the
fork, and an all-to-one synchronization at the join. The
loop control variables include the loop index for dispatch-
ing the subroutineencapsulating the loop, and the subroutine
parameters. The two sets of control variables reside in dif-
ferent shared pages, incurring two requests to obtain them
for each parallel loop. In summary, for each parallel loop
execution, the two barriers require 4 x (n - 1) messages,
and access to the control variables causes two page faults on
each worker, and 4 x (n - 1) messages.

To reduce the fork-join overhead, we added all-to-one
and one-to-all synchronization to the TreadMarks interface,
namely the b e e r arrival and the barrier departure. A bar-
rier departure is called before a parallel loop, and a barrier
arrival is called after a parallel loop. In addition, the bar-
rier departure carries the loop control variables, avoiding the
cost of page faulting them in. This optimization reduces the
number of messages from 8 x (n - 1) to 2 x (n - 1), and
has a significant effect on execution time. All results in this
paper are obtained with this improved interface.

2.4. Forge XHPF

Forge XHPF is a parallelizing compiler for High Per-
formance Fortran [3] on distributed memory multiprocessor
systems. It transforms a sequential Fortran program anno-
tated with subset HPF data decomposition directives and
Fortran 90 array syntax into a SPMD (Single Program Mul-
tiple Data) parallelized Fortran 77 program. In the SPMD
model, the sequential part is executed by all the processors,
while the DO loops are distributed across processors. Part of
the sequential code is guarded by if statements because only
some processors must execute them. The user is required
to insert data partitioning directives to specify the distribu-
tion of data across the processors. The compiler uses these
directives as a seed for parallelizing loops and distributing
arrays.

The translated code relies on a small run-time system to
handle process creation, to assign loops to processors, and
to perform the underlying communication. To implement
loop distribution, the run-time system maintains descriptors
for all distributed arrays, and tries to generate loop distri-

476

butions that satisfy the owner-computes rule [16]. In case
the communication pattern is unknown at compile time, the
compiler inserts instructions to broadcast all the data in a
processor's partition (specified by the user) at the end of the
parallel loop, regardless of whether the data will actually be
used.

3-D FlT 128 x 128) x 64, 5 iterations I& 500,20 iterations

3. Environment and Methodology

37.7
42.6

Our experimental environment is an 8-processor IBM
SP/2 running AIX version 3.2.5. Each processor is a thin
node with 64 B y t e s of data cache and 128 Mbytes of main
memory. Interprocessor communication is accomplished
over the IBM SP/2 high-performance two-level cross-bar
switch. Unless indicated otherwise, all results are for 8-
processor runs. We use version 0.10.1 of TreadMarks, with
the optimized interface discussed in Section 2.3. We use
version 2.0 of the SPF compiler and the the XHPF com-
piler. Both TreadMarks and the XHPF compiler use the
user-level MPL communication library as the underlying
message passing system. The hand-coded versions of the
message passing programs use PVMe, an implementation
of PVM [8] optimized for the IBM SP/2.

Our primary goal is to assess the performance of the
compiler-generated shared memory programs. Performance
is quantified primarily by speedup, but we also provide
statistics on the number of messages and the amount of
data exchanged during execution. In addition, we provide
the same performance figures for XHPF-generated message
passing, hand-coded PVMe message passing, and hand-
coded TreadMarks shared memory implementations of the
same applications. The XHPF performance numbers pro-
vide an indication of the capabilities of current commer-
cial compilers targeting message passing. Comparing SPF-
generated shared memory to hand-coded shared memory
quantifies the performance loss as a result of compiler gen-
eration. Comparing hand-coded shared memory to hand-
coded message passing quantifies the performance loss as a
result of using the shared memory system. The hand-coded
message passing provides an reasonable upper bound on the
performance achievable for the prograr) on this platform.

In addition, to quantify the contribution of some of
the sources of overhead, we have hand-modified the SPF-
generated code to eliminate those sources. We use the en-
hanced TreadMarks interface proposed by Dwarkadas et
al. [7] to achieve communication aggregation, consistency
elimination, and pushing (instead of pulling) data to the pro-
cessors that will use it. We also eliminate redundant barriers
in the program.

4. Applications

We use 6 applicationis (Jacobi, Shallow, MGS, 3-D FFI',
IGrid, and NBF). Jacobi, Shallow, MGS, and 3-D FFT all
have regular access patterns, while IGrid and NBF are irreg-
ular. Jacobi is an iterative method for solving partial differ-
ential equations. Shallow is the shallow water benchmark
from the National Center for Atmospheric Research. MGS
implements a Modified Ciramm-Schmidt algorithm for com-
puting an orthonormal basis. 3-D FlT, from the NAS [5]
benchmark suite, numeirically solves a partial differential
equation using three dimensional forward and inverse FFT's.
IGrid is a 9-point stencil computation in which the neighbor
elements are accessed indirectly through a mapping estab-
lished at run-time. The NBF (Non-Bonded Force) program
is the kernel of a molecular dynamics simulation.

Table 1 presents the data set size as well as the sequential
execution time for each application. Sequential execution
times are obtained by removing all synchronization from
the TreadMarks programs and executing them on a single
processor.

Problem Size Time (sec.)
2048 x 2048, 100 iterations

MGS 1024 x 1024 56.4

U NBF I 32K molecules, 20 iterations I 63.9 1
Table 1. Data Set Sizes and Sequential Execution Time
of Applications

5. Results for Regular Applications

Figure 1 presents the 8-processor speedups for each of the
regular applications for SPF-generated TreadMarks, hand-
coded TreadMarks, XHE'F-generated message passing, and
hand-coded message passing. The 8-processor speedups are
calculated based on the sequential times listed in Table 1.
Table 2 provides the corresponding number of messages and
amount of data exchanged during the execution. In the fol-
lowing we analyze the differences between SPF-generated
shared memory and hand-coded shared memory, the differ-
ences between hand-coded shared memory and hand-coded
message passing, and present the results of hand-applied
optimizations.

5.1. Jacobi

Jacobi is an iterative method for solving partial differ-
ential equations. The a1,gorithm employs two arrays - one

477

8 4 I I I I

Tmk
8407

11767
30457
36477

862
10400
55681
74107

Jacobi ' Shallow ' MGS ' 3-DFFT '

XHPF PVMe
4207 1400
7792 1985

38905 7168
33913 1155
11458 11469
18407 7328
29430 29360

102763 73401

SPF TreadMarks XHPF I PVMe

Figure 1. 8-Processor Speedups for Regular Appli-
cations for SPF-generated TreadMarks, hand-coded
TreadMarks, XHPF-generated message passing and
hand-coded PVMe

essag
Total

Prograrr
Jacobi
Shallow
MGS

Jacobi
Shallow
MGS

3-D FF7

3-D F F l

SPF
8538

13034
57283
528 18

989
10814
59724

103228

Table 2. 8-Processor Message Totals and Data
Totals (Kilobytes) for Regular Applications for
SPF-generated TreadMarks, hand-coded TreadMarks,
XHPF-generated message passing and hand-coded
PVMe

is the data array and one is the scratch array. There are
two phases in each iteration. First, each element is updated
according to a four point stencil and the new values are
stored in the scratch array, then the scratch array is copied
to the data array. Both loops are parallelized. The first loop
requires nearest neighbor communication, in which neigh-
boring processors exchange their boundary columns in the
data array. The shared memory versions place the data ar-
ray in shared memory. However, the SPF-compiler also
allocates the scratch array in shared memory, because it is
accessed in a parallel loop.

The data array is initialized with ones on the edges and
zeroes in the interior. The program iterates 101 times on
a 2048 x 2048 real array, in which the last 100 iterations
are timed. The speedups of the compiler-generated version
for shared memory and message passing are 6.99 and 7.39,

respectively, closely approximate those of the hand-coded
versions, which are 7.13 and 7.55, respectively.

SPF/Tmk vs. Tmk The 2% difference between the SPF-
generated and the hand-coded shared memory programs is
due to the use of private memory for the scratch array in the
TreadMarks version, and the use of shared memory in the
SPF-generated TreadMarks program.

Tmk vs. PVMe Four factors give the message passing
programs a slight edge. First, it takes two access faults and
four messages in TreadMarks to obtain the new values in
a neighboring column. In the message passing program,
in contrast, the boundary column is sent directly to its des-
tination in a single message. Second, the shared memory
version has separate data (access misses) and synchroniza-
tion messages, whereas the message passing version sends
a single message for both purposes. Third, in the message
passing program, no communication is incurred between the
first and the second phase of each iteration. In the shared
memory model, a barrier has to be inserted between the
two phases to make sure the data are not written before they
are read (to respect the anti-dependence). Finally, the shared
memory programs incur the overhead of detecting modifica-
tions to shared memory (twinning, diffing, and page faults).
The shared memory program sends much less data than the
message passing program, because the modifications are
propagated from the edges to the center of the array, and
only modified data are sent in TreadMarks.

Results of Hand Optimizations The main overhead in
the shared memory programs stems from the first factor, the
absence of data aggregation. A hand-modified version of
the shared memory program that includes data aggregation
achieves a speedup of 7.23 for the SPF-generated version,
compared to 7.55 for hand-coded message passing.

5.2. Shallow

Shallow is the shallow water benchmark from the Na-
tional Center for Atmospheric Research. It solves differen-
tial equations using 13 equal-sized two-dimensional arrays
in wrap-around format. There are three steps in each it-
eration, each of which consists of a main loop that updates
three to four arrays according to values in some other arrays.
Wrap-around copying is applied to the modified arrays af-
ter the main loop in each step. The wrap-around copying
includes two separate loops to copy the boundary rows and
the boundary columns. The parallel versions partition the
arrays by column, and require nearest neighbor communica-
tion similar to that in Jacobi. In the shared memory version,
all of the arrays are shared, and the main loop and the edge
row copying are parallelized. The edge column copying is
executed sequentially, because the arrays are laid out in col-
umn major order. In the message passing version, the edge

478

column copying is executed on the processor at which the
data resides (the owner-computes rule).

We use a 1024 x 1024 grid in our test, where each grid
element is represented by a real number. The program runs
for 51 iterations, of which the last 50 iterations are timed.
At 8 processors, the compiler-generated shared memory and
message passing achieve speedups of 5.71 and 6.60, respec-
tively. The hand-coded shared memory and message passing
programs achieve speedups of 6.21 and 6.77, respectively.
SPF/Tmk vs. Tmk The slowdown in the SPF-generated
shared memory version is caused by redundant synchroniza-
tion and extra communication. Redundant synchronization
occurs because the SPF compiler inserts a pair of synchro-
nizations around every parallel loop, some of which are
unnecessary in a hand-coded shared memory program. The
extra communication is due to the fact that the sequential part
is always executed by the master processor in the fork-join
model, regardless of the owner-computes rule.
Tmk vs. PVMe The reasons for the difference between
the shared memory programs and the two message pass-
ing programs are essentially the same as for Jacobi, namely
separation of data and synchronization, absence of data ag-
gregation, and the overhead of the shared memory imple-
mentation.
Results of Hand Optimizations By hand, we merged the
loops in the SPF-generated program and put in data aggre-
gation. This resulted in an increase in speedup to 5.96,
compared to 6.21 for hand-coded shared memory. The re-
maining difference in speedup is due to the extra commu-
nication resulting from the execution of the sequential parts
of the code by the master processor.

5.3. MGS

Modified Gramm-Schmidt (MGS) computes an orthonor-
mal basis for a set of N-dimensional vectors. At each iter-
ation i, the algorithm first sequentially normalizes the ith
vector, then makes all vectors j > i orthogonal to vector i
in parallel. The vectors are divided over the processors in
a cyclic manner to balance the load in each iteration. All
processors synchronize at the end of an iteration.

On 8 processors, the speedup achieved by the SPF-
generated TreadMarks version is 3.35, XHPF 5.06, the hand-
coded TreadMarks version achieves 4.19, and PVMe 6.55.
The difference between the XHPF version and the hand-
coded message passing version is due to the SPMD model
used by XHPF, in which all processors participate in nor-
malization of the ith vector.
SPF/Tmk vs. Tmk The difference between the hand-
coded TreadMarks version and the SPF-generated one is
also a result of extra communication in the SPF-generated
version. Since normalization of the ith vector during iter-
ation i is part of the sequential code, it is always done on

the master processor, requiring the vector to move from its
assigned processor to the master. The hand-coded version is
written such that the normalization happens on the processor
the vector is assigned to.

Tmk vs. PVMe The difference between the message
passing and the shared memory programs results primarily
from the two message passing programs’ ability to broadcast
the ith vector on the itlh iteration. In contrast, in the shared
memory programs, this vector needs to be paged in by all
other processors. Furthermore, the separation of synchro-
nization (barrier) and data (ith vector) leads to additional
communication.

Results of Hand Optimizations We hand-modified the
program to merge the data and the synchronization, and
modified TreadMarks to use a broadcast. The speedup im-
proved to 5.09 from 4.19.

5.4.3-D FFT

3-D FFT, from the NAS [5] benchmark suite, numerically
solves a partial differential equation using three dimensional
forward and inverse FFT’s. Assume the input array A is of
size nl x np x n3, organized in column-major order. The
3-D FFT first performs; a nl-point 1-D FFT on each of the
122 x 123 complex vectors. Then it performs a n2-point 1-D
FFT on each of the n1 x 723 vectors. Finally, it performs a n3-
point 1-D FFT on each of the n1 x n2 vectors. The complex
array is reinitialized at the beginning of each iteration. After
that, an inverse 3-D FFlr is applied to the complex array. The
resulting array is normadized by multiplyingeach element in
the array by a constant. Finally, the checksum is computed
by summing 1024 elements in the array.

There are six paralld loops in each iteration, one for ini-
tializing the array, three for the FFT in each of the three di-
mensions, one for the normalization, and one for the check-
sum. Each iteration starts with a block partition on n3, and
keeps using this partition until the beginning of the n3-point
FFT. The n3-point FFT works on a different data partition
(block partition on 7 4 , thus requiring a transpose. The new
data partition is used through the end of the iteration. The
TreadMarks program has two barriers, one after the trans-
pose, and another one alfter the checksum is computed.

We ran the program on a 128 x 128 x 64 double preci-
sion, complex array for 6 iterations, excluding the first iter-
ation from the measurement. At 8 processors, the compiler-
generated programs achieve a speedup of 2.65 for the shared
memory version and 4.44 for the message passing version.
The hand-coded shared memory program and message pass-
ing programs achieve :speedups of 3.06 and 5.12, respec-
tively.
SPF/Tmk vs. Tmk The SPF-generated shared memory
program incurs additional overhead by inserting synchro-
nization around each parallel loop.

479

I P r o g r d SPF I Tmk I XHPF I PVMe
essagd IGrid I 3806 I 1246 I 34769 I 320

1 1 Total I NBF I14836 I13194 I 45895 I 960 1 1
I I I I I

Data I IGrid I 7374 I 131 I140001 1 640
1 1 Total I NBF I 1543 I 228 I163775 I 31457 11
I 1 I I I I I U

Table 3. 8-Processor Message Totals and Data
Totals (Kilobytes) for Irregular Applications for
SPF-generated TreadMarks, hand-coded TreadMarks,
XHPF-generated message passing and hand-coded
PVMe

lGid NBF
to all ones, then two spikes are added to the middle and the
lower right corner of the array. During each step, the new

SPF TreadMarks XHPF I PVMe value of each grid point is computed according to the old
values of its eight neighbors and itself. The new array and
the old array are switched at the end of each step. At the end
of the program, the code finds the maximum and minimum
values in a 40 x 40 square in the middle of the array, and
computes the sum of the values in the square.

Figure 2. 8-Processor Speedups for Irregular Appli-
cations for SPF-generated TreadMarks, hand-coded
TreadMarks, XHPF-generated message passing and
hand-coded PVMe

Tmk vs. PVMe The sizable difference in performance
between message passing and shared memory occurs during
the transpose. Because of the huge data size, and because
of the fact that the shared memory versions fault in the data
one page at a time, the number of messages in the shared
memory version is about 30 times higher than in the hand-
coded message passing version.
Results of Hand Optimizations In a hand-modified ver-
sion of the SPF-generated program that includes data aggre-
gation, speedup rose to 5.05, very close to the 5.12 observed
for the hand-coded message passing. Without changing the
program drastically, we are able to merge only the first two
1-D FIT loops. This optimization has little effect.

6. Results for Irregular Applications

Figure 2 presents the 8-processor speedups for each of the
irregular applications for SPF-generated TreadMarks, hand-
coded TreadMarks, XHPF-generated message passing, and
hand-coded message passing. The 8-processor speedups
are calculated using the sequential times listed in Table 1.
Table 3 provides the corresponding number of messages and
amount of data exchanged during the execution.

6.1. IGrid

IGrid is a relaxation code that utilizes a nine point stencil.
The neighbor elements are accessed indirectly through a
mapping established at run-time. The program works on
two arrays, one for keeping the newly computed data in each
step, and one for storing the old data from the previous step.
At the beginning of the program, the old array is initialized

Due to the indirection array, the compilers cannot rec-
ognize the data access pattern in the program. Both of the
compilers are instructed to parallelize the main computa-
tion loop assuming the iterations of the loop are indepen-
dent. The shared memory compiler partitions the iterations
among processors and encapsulates the parallel loop in a
pair of synchronization operations. Although the message
passing compiler is told to partition the grid into blocks,
since the compiler does not know what data will be needed
during the next step, it makes each processor broadcast its
whole block at the end of each step. The max-min finding
and checksum computation are recognized as reductions.

We use two 500 x 500 single precision matrices in our
experiments. Of the 20 iterations executed, the last 19 it-
erations are measured in order to avoid startup effects. At
8 processors, the speedup for SPF-generated TreadMarks
is 7.54, compared to 7.88 for hand-coded message passing.
The speedup of the XHPF-generated version is only 3.85.
The large number of messages and the large amount of data
exchanged (see Table 3) explain the drop in performance for
the XHPF program. The shared memory versions fetch data
on-demand, and the run-time system automatically caches
previously accessed shared data. Hence, only the data that is
actually modified remotely and accessed is communicated.

6.2.NBF

NBF is the kernel of a molecular dynamics simula-
tion. The program simulates the behavior of a number of
molecules. Each molecule has a list of “partners”, molecules
that are close enough to it to exert a non-negligible effect
on the molecule. For each molecule, the program goes
through the list of partners, and updates the forces on both

480

of them based on the distance between them. At the end
of each iteration, the coordinates of the molecules are up-
dated according to the force acting on them. The program
is parallelized by block-partitioning the molecules among
processors. Each processor accumulates the force updates
in a local buffer, and adds the buffers together after the force
computation loop,

The XHPF compiler cannot recognize the data access
pattern due to the indirection array. It therefore makes each
processor broadcast its local force buffer, and the coordinates
of all its molecules. The SPF compiler inserts a synchroniza-
tion statement at the end of an iteration. At run-time, this
synchronization causes TreadMarks to invalidate the mod-
ified pages. Individual processors then take page faults on
those pages they access. Since this is typically only a small
subsection of the array, the number of messages and the
amount of data is far smaller than for the XHPF-generated
message passing program.

The differing amounts of communication are clearly re-
flected in Table 3, and in the speedups for the different
versions. In decreasing order, PVMe achieves a speedup of
6.18, hand-coded TreadMarks 5.86, SPF-generated Tread-
Marks 5.3 1, and finally XHPF-generated message passing
3.85.

7. Summary of Results

On the regular programs, both the compiler-generated
and the hand-coded message passing outperform the
SPFmreadMarks combination: the compiler-generated
message passing by 5.5% to 40%, depending on the pro-
gram, and the hand-coded message passing by 7.5% to 49%.
In general, three factors favor the message passing programs:
better data aggregation, combined synchronization and data
transfer, and no overhead for shared memory coherence.

On the irregular programs, the SPFmreadMarks combi-
nation outperforms the compiler-generated message pass-
ing by 38% and 89%. Performance approaches that of
the hand-coded message passing, differing by 4.4% and
16%. The small difference between SPFRreadMarks and
hand-coded message passing suggests that, at least for
this environment and these applications, more sophisticated
compilers targeting message passing could not substan-
tially outperform the compiler-generated shared memory
programs. Compared to the compiler-generated message
passing, the SPFiTreadMarks combination benefits from on-
demand fetching of data, as well as caching of previously
accessed data by the run-time system.

On both the regular and the irregular programs, the hand-
coded TreadMarks outperforms the SPFnreadMarks com-
bination. The difference varies from 2% to 20%. In gen-
eral, two factors account for the difference. The compiler-
generated shared-memory programs have excess synchro-

nization and additional data communication. The latter is
because there is less processor locality in the programs’ data
access patterns,

Keleher and Tseng [101 perform a similar study which
also compares the performance of compiler-generated DSM
programs with compiler-generated message passing pro-
grams. Instead of using: commercial Fortran compilers to
compile all the programs, they use the Stanford SUIF [l]
parallelizing compiler version 1.0 to generate parallel C
programs for the DSM system, and the commercial IBM
HPF or DEC HPF compilers to generate the parallel For-
tran programs in message passing. Using a different set of
applications, they arrive iat results similar to ours.

8. Further Optimizations

In Section 5, we have shown the considerable benefits
of hand-applied optimizaitions for the SPF-generated DSM
programs. The optimizations include aggregating data com-
munication, merging synchronization and data, and pushing
data instead of the default request-response data communi-
cation in the DSM system. Dwarkadas et al. [7] have shown
that these optimizations c m be implemented automatically
by a compiler and DSM runtime system. Those techniques
could be integrated with the APR compiler.

Elimination of redundant barriers was proposed by
Tseng [17] in the context of automatic parallelization for
hardware distributed shared memory machine. His results
show a significant reduction in the number of barriers, al-
though only a limited reduction in the execution time. We
manually applied this optimization to the applications in this
study, and showed that with the high cost of synchronization
in this environment, improvements can be substantial.

Additionally, our results indicate the need to optimize the
SPF-generated applications for locality of access, similar to
the optimizations applied in the XHPF compiler. These opti-
mizations will improve the performance not only of software
DSM systems but also of hiardware shared memory systems.

We plan to further explore the benefits of customizing
DSM systems for compiler-generated shared memory pro-
grams, and expect more gains in performance when scaling
to a large number of processors. These enhancements will
include efficient support for reductions, more aggressive
methods of eliminating coinsistency overhead based on syn-
chronization and access pattern information, and dynamic
load balancing support.

Our results indicate that with minimal compiler support,
our software DSM system has performance comparable to
hand-coded message passing for the irregular applications
we have considered. The inspector-executor model [151
has been proposed to efficiently execute irregular compu-
tations in the message passing paradigm. Mukherjee et
al. [141 compared the CHA.OS inspector-executor system to

481

the TSM (transparent shared memory) and the XSM (ex-
tendible shared memory) systems. They concluded that
TSM is not competitive with CHAOS, while XSM achieves
performance comparable to CHAOS after introducing sev-
eral hand-coded special-purpose protocols. In a more re-
cent paper [121, we compared CHAOS to TreadMarks with
simple compiler support for describing accesses to the indi-
rection array. With the compiler support, the TreadMarks
DSM system achieves similar performance to the inspector-
executor method supported by the Chaos run-time library.
The same compiler support can also be used for automati-
cally generated DSM programs.

9. Conclusions

In this paper, we evaluate the efficiency of combining
a parallelizing compiler and a software DSM system, both
for regular and irregular applications. The results show that
for regular applications, the compiler-generated message
passing programs outperform the compiler-generated DSM
programs by 5.5% to 40%, while for the irregular appli-
cations, the compiler-generated DSM programs outperform
the compiler-generated message passing programs by 38%
and 89%, and underperform the hand-coded message pass-
ing programs only by 4.4% and 16%.

This study shows that software DSM is a promising tar-
get for parallelizing irregular applications. With appropriate
enhancements to the compiler and DSM system, we have
also shown that the performance of regular applications can
match that of their message passing counterparts, thus mak-
ing software DSM a general parallelizing platform for all
applications.

10. Acknowledgments

We thank John Levesque, Gene Wagenbreth and Allan Ja-
cobs of Applied Parallel Research, Inc. (APR) for providing
us with, and modifying their compilers to generate code for
TreadMarks. This work is supported in part by the National
Science Foundation under Grants CCR-9410457, BIR-

CDA-9502791, and MIP-9521386, by the Texas TAW pro-
gram under Grant 003604-017, and by grants from IBM
Corporation and from Tech-Sym, Inc.

9408503, CCR-9457770, CCR-9502500, CCR-9521735,

References

memory computing on networks of workstations. IEEE Com-
puter, 29(2):18-28, Feb. 1996.

[3] Applied Parallel Research, Inc. FORGE High Performance
Fortran User’s Guide, version 2.0 edition.

[4] Applied Parallel Research, Inc. FORGE Shared Memory
Parallelizer User’s Guide, version 2.0 edition.

[SI D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
parallel benchmarks. Technical Report 103863, NASA, July
1993.

[6] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation
and performance of Munin. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles, pages 152-
164, Oct. 1991.

[7] S. Dwarkadas, A. Cox, and W. Zwaenepoel. An integrated
compile-timehn-time software distributed shared memory
system. In Proceedings of the 7th Symposium on Architec-
tural Support for Programming Languages and Operating
Systems, Oct. 1996.

[SI G. Geist and V. Sunderam. Network-based concurrent com-
puting on the PVM system. Concurrency: Practice and
Experience, pages 293-3 11, June 1992.

[9] S. Hiranandani, K. Kennedy, and C . Tseng. Compiling For-
tran D for MIMD distributed-memory machines. Communi-
cations of the ACM, 35(8):66-80, Aug. 1992.

[lo] P. Keleher and C. Tseng. Enhancing software DSM for
compiler-parallelized applications. In Proceedings of the
I I th International Parallel Processing Symposium, 1997.

[l l] K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,

[12] H. Lu, A. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. Software distributed shared memory sup-
port for irregular applications. 1996. Submitted for publica-
tion.

[13] H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Message
passing versus distributed shared memory on networks of
workstations. In Proceedings Supercomputing ’95, Dec.
1995.

[14] S. Mukherjee, S. Sharma, M. Hill, J. Lams, A. Rogers, and
J. Saltz. Efficient support for irregular applications on dis-
tributed memory machines. In Proceedings of the 5th Sym-
posium on the Principles and Practice of Parallel Program-
ming, July 1995.

[15] J. Saltz, H. Berryman, and J. Wu. Multiprocessors and run-
time compilation. Concurrency:Practice and Experience,
3(6):573-592, Dec. 1991.

[16] C.-W. Tseng. An Optimizing Fortran D Compilerfor MIMD
Distributed-Memory Machines. PhD thesis, Rice University,
Houston, Jan. 1993.

[171 C.-W. Tseng. Compiler optimizations for eliminating barrier
synchronization. In Proceedings of the 5th Symposium on
the Principles and Practice of Parallel Programming, July
1995.

7(4):321-359, NOV. 1989.

[l] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W.
Tseng. The SUIF compiler for scalable parallel machines.
In Proceedings of the 7th SIAM Conference on Parallel Pro-
cessing for Scient@ Computing, Feb. 1995.

[2] C . Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared

482

