
Extensible Kernels are Leading OS Research Astray

Peter Druschel, Vivek S. Pai, Willy Zwaenepoel
Rice University

Computer Science Department
{ druschel I vivek I willy} @cs.rice.edu

Abstract

We argue that ongoing research in extensible kernels
largely fails to address the real challenges facing the OS
community. Instead, these efforts have become entangled in
trying to solve the safety problems that extensibility itselfin-
troduces into OS design. We propose a pragmatic approach
to extensibility, where kernel extensions are used in exper-
imental settings to evaluate and develop OS enhancements
f o r demanding applications. Once developed and well un-
derstood, these enhancements are then migrated into the
base operating system for production use. This approach
obviates the need fo r guaranteeing safety of kernel exten-
sions, allowing the OS research community to re-focus on
the real challenges in OS design and implementation. To
provide a concrete example of this approach, we analyze the
techniques used in experimental HTTP servers to show how
proper application design combined with generic enhance-
ments to operating systems can provide the same benefits
without requiring application-specific kernel extensions.

1. Introduction

Extensible operating systems are viewed by many as a
technology that promises to solve some of the long-standing
challenges in OS design. Among these challenges are (1)
achieving performance close to the hardware’s capabilities
across a wide range of applications without giving up safety,
(2) facilitating the rapid deployment of new OS innovations,
and (3) containing and managing the ever-increasing com-
plexity of OS implementations. We feel that skepticism
is in order with regard to these claims, for two main rea-
sons. First, the numerous research projects in extensible
kernels have to date only produced performance-related re-
sults (challenge l), and even in this category they have not
yet convincingly demonstrated the benefits of extensibility.
Projects like SPIN, Aegis, and VINO show performance im-
provements on a small set of benchmark applications that
use kernel extensions [2, 6, 161. Unfortunately, it is unclear
to what extent the performance gains are due to extensi-

0-8186-7834497 $10.00 0 1997 IEEE

bility, rather than merely resulting from optimizations that
could equally be applied to an operating system that is not
extensible.

Second, extensible kernels (i.e., those that allow the ex-
ecution of untrusted, application-specific code in Turing-
complete languages) introduce a number of new, hard prob-
lems into OS design. While prototype extensible kernels
have not yet produced convincing evidence of the ben-
efits of extensibility, they have clearly demonstrated the
need for sophisticated techniques to deal with the unique
safety problems introduced by extensibility. Such tech-
nologies include type-safe languages, trusted compilers,
garbage-collected kernels, trusted dynamic linkers, capa-
bilities, sandboxing, sophisticated resource management,
proof-carrying executables, and even kernel-level transac-
tional facilities [2, 6, 12, 14, 16, 181.

In addition to safety concerns, extensible kernels also
raise difficult questions with respect to compatibility, in-
teroperability, and evolution of OS implementations. In
conventional systems, applications and operating system in-
teract only through the API. This API is a contract that
protects the application developer’s investments by ensur-
ing interoperability and backward compatibility, while still
giving the OS developer maximum freedom in designing
and evolving an implementation of the API. In an extensi-
ble system, applications can interact with the OS through
additional extension interfaces. This introduces a difficult
tradeoff. If the extension interfaces are not part of the con-
tract, then applications that use these interfaces risk losing
interoperability and compatibility with future OS releases.
If they are part of the contract, then these interfaces constrain
the implementation and evolution of the OS implementation.
Moreover, the richer the extension interfaces-thus provid-
ing powerful extension capabilitieethe more constrained
the OS implementation becomes.

While these unique needs of extensible kernels create a
host of new research opportunities for the operating sys-
tem and programming language communities, along with
prospects for fame and glory (funding, publications, and dis-
sertations), it is unclear how solving these problems moves

38

mailto:cs.rice.edu

the community any closer to solving the original challenges
outlined above. In fact, the additional complexity required
for safe extensibility aggravates the problem of managing
and controlling the complexity of OS implementations.

Due to the difficulty of supporting extensibility that is
powerful, safe, and practical from a software engineering
standpoint, we do not expect that extensibility will find its
way into commercial operating systems in the foreseeable
future. On the other hand, extensible kernels can play a
significant role in advancing the state of the art in operat-
ing systems. They can do so by stimulating research into
optimizations that benefit particular classes of demanding
applications, and those optimizations can be migrated to
production operating systems. To understand how this tech-
nology transfer can take place, we must understand what
sorts of issues can be explored in such an environment.
We contend that additions and changes to the kernel can
be broadly classified in two ways-enhancements and cus-
tomizations.

An enhancement is simply an optimization of an existing
service or the addition of a new interface and service. En-
hancements may benefit only a certain class of applications,
and they make at worst no difference to other applications.
Since enhancements are generic, they can be provided or cer-
tified by a trusted entity, and no special kemel mechanisms
are required to ensure their safety. In contrast to enhance-
ments, customizations must be specified and/or selected on
a per-application basis, because they may not be suitable for
all applications. If they were enabled by default, they might
actually harm the performance or jeopardize the correctness
of certain applications. Customizations fall into two cate-
gories: those that we consider inherently safe (specified in
a parametric or otherwise restricted language), and general
extensions (specified in a Turing-complete language). It is
only the latter category that concerns us, since this type of
extension requires the additional, safety-related complexity
in extensible kemels. For example, application-controlled
file caching [4] and programmable packet filters [1 I] are
inherently safe customizations. They are safe either by only
allowing the application to select from a set of pre-defined
options, or by using a constrained extension language that
rules out potentially unsafe issues like looping, dynamic
memory allocation, and the ability to retain state between
invocations.

We argue that the real value of extensible kernels lies in
their ability to stimulate research by allowing rapid experi-
mentation using general extensions. We think that many (if
not all) of these experimental extensions, once properly un-
derstood, can be recast as either enhancements or inherently
safe customizations, and then migrated into commercial op-
erating systems. This approach avoids most of the difficult
issues raised by extensible kernels, while preserving most
of its benefits. Operating systems experts in the research

community can develop, prototype, and demonstrate OS
features using extensible kernels. Once a feature is well
understood and its benefits have been demonstrated, there
is sufficient market push to drive OS vendors to incorporate
it into their commercial systems as enhancements or inher-
ently safe customizations. Since extensible systems are used
only in the experimental or prototype stage, many of the dif-
ficult safety issues they raise in a production environment
can be avoided. The difficult work of developing kernel
extensions is done by experts in the research and advanced
OS development communities. Finally, production operat-
ing systems need not be burdened with complex machinery
to ensure safe extensibility and one can avoid the software
engineering issues raised by extension interfaces.

To summarize our argument, we contend that extensible
kemels will remain a tool for experimentation and proto-
typing. This realization implies that extensible system re-
searchers should redirect their efforts towards meeting the
challenges they originally set out to meet. Thus, we should
give up on trying to make extensibility safe in a production
environment, and focus instead on using extensible kemels
as vehicles for new development that can help meet the real
challenges facing OS design and implementation. Efforts
in building extensible kernels should focus on mechanisms
that allow flexible and powerful addition and interposition of
kernel extensions, such as SPIN’S dynamic binding frame-
work [141. Once in place, such kernels should then be used
to support research into generic OS enhancements and inher-
ently safe customizations that advance the state-of-the-art in
OS design and implementation. The next section provides
a concrete example of how a set of apparently application-
specific extensions can be recast in the form of enhance-
ments that do not require general kemel extensibility.

2. Analysis of WWW Servers

HTTP [l] servers (also called webservers) have been
one of the benchmark applications used by supporters of
extensible kernels. However, a close examination of the
extensions used to support webservers suggests that most
of the benefits could equally be achieved by generic en-
hancements to the base operating system. By surveying
techniques used in publically-available web servers [15, 51
and in experimental designs [8], we have identified eight
areas of interest where OS performance can impact web-
servers. They are: TCP implementation performance, TCP
protocol optimizations, forkinglswitching overhead, filesys-
tem performance, VMIcache control, data copying costs,
double-buffering, and TCP checksum calculation. Com-
mercial operating systems and webservers have already ad-
dressed some of these, while others have been addressed
solely in the research community, with the use of extensible
kernels. We contend that an analysis of these items shows

39

that extensible kernels are not needed to efficiently support
webservers. For each item, the two relevant questions are
“Can it be solved through better application design?” and
“If not, can it be solved through enhancements and inher-
ently safe customizations rather than general kernel exten-
sions?’’ The first five problem areas have been (or can be)
addressed by known techniques for better application design
or application-independent kernel optimizations.

TCP implementations - Until recently, many commercial
implementations of TCP were relatively inefficient in han-
dling hundreds of TCP connections per second. When
machines running these implementations were subjected
to heavy HTTP traffic, implementation choices like using
linked lists instead of hash tables became performance bot-
tlenecks, and were generally corrected by vendor-supplied
patches or operating system upgrades. Correcting perfor-
mance bugs in TCP helps all applications that use TCP, not
just webservers.

TCP protocol optimizations - Many TCP implementations
do not take advantage of all of the optimizations allowed
by the TCP protocol because doing so without application
support in a general way is difficult. For example, the TCP
protocol allows combining the “FIN” message with the final
data segment to reduce the number of packets exchanged. To
take advantage of this feature, a TCP implementation must in
general know which packet is the final packet before sending
it. By allowing the application to provide this information
(e.g., through socket options), the TCP implementation can
exploit this and other piggy-backing opportunities, thereby
reducing the number of messages required per HTTP trans-
action. The proposed transactional TCP implementation
provides a similar approach [3]. All of these optimizations
can be enabled through a parametric customization inter-
face, which is inherently safe. Another advantage of this
approach is that it avoids network safety issues, because it
leaves complex issues such as TCP congestion control in the
hands of a trusted and proven TCP implementation.

forkinglswitching - Early webservers created a new pro-
cess for each connection, and the associated overhead of
forking and context switching limited their performance.
Webserver developers responded not by pushing to reduce
the cost of forking, but instead by using better designs to
avoid forking. Two common options are to have a set of
pre-forked processes handle incoming requests, or to use
multiple threads within a single process. Even these options
have associated overheads, so some servers have moved to
using a single, event-driven process. Good application de-
sign has essentially solved this problem without the need for
OS modification.

filesystem - Filesystem performance is not a problemunique
to webservers, nor is it a problem requiring webserver-
specific optimizations. The basic problems have been under-

stood for some time, and several groups have implemented
successively better solutions in regular, commercia1 operat-
ing systemwhe Fast Filesystem (FFS) from BSD [9], the
extent-like approach in Sun’s UFS [lo], and more radical
re-designs like SGI’s XFS [17]. Changes that broadly im-
prove filesystem performance also improve webserver per-
formance. Due to current HTTP document size distribu-
tions, webservers are particularly sensitive to small file per-
formance. Generic filesystem optimizations that improve
performance for small files exist. Interestingly, one such
filesystem was developed in the context of a project to sup-
port webservers through extensible kernels [7]. This con-
firms our point that experimentation with extensible kernels
can lead to generic OS enhancements.

W c a c h e control - Applications may know what pages of
memory and what files are likely to be used. System calls
likemadvi se () exist, and they are inherently safe. Allow-
ing an application to perform file prefetching and cache con-
trol has been shown to help performance, but such a system
can be implemented using only parameterized interfaces [4]
(i.e., by inherently safe customizations). Furthermore, the
same mechanisms that allow a webserver to prefetch files
after sending a hyperlinked document can be used by appli-
cations like compilers that need to read included files.

The three remaining areas where OS performance im-
pacts webservers can also be handled without application-
defined kernel extensions. Here, new techniques are re-
quired. We briefly discuss the problems before describing
our solution.

copying - An efficient webserver using memory-mapped
files will still encounter copying when serving regular files,
since the networking subsystem must generally copy data
from the filesystem into its own buffers. In the case of
CGI programs, significantly more copying occurs, since the
CGI program communicates data to the server through a
socket before the data is sent by the server to the networking
subsystem.

double buffering - For each regular client request, the net-
working subsystem maintains retransmit buffers, duplicat-
ing data that already exists in the filesystem cache. This
redundancy reduces the effective size of main memory and
the filesystem cache.
TCP checksum calculation - Since webservers often send
a cached document repeatedly, a possible optimization is
the elimination of repeated TCP checksum calculations. If
all other copying has been eliminated, TCP checksumming
is the last data-touching operation in the server, and may
therefore have a significant performance impact.

Our approach to addressing these issues relies on IO-
Lite, a unijied I10 buffering and caching system. IO-Lite
allows the safe, efficient, and copy-free sharing of buffers

40

between applications, the filesystem, the filesystem cache,
and the network subsystem. IO-Lite avoids data copying
and multiple buffering, and it allows transparent perfor-
mance optimizations across subsystems, such as caching
of precomputed TCP checksums. As a result, IO-Lite pro-
vides efficient support for webservers and other U 0 intensive
applications without any of the “special-casing” the extensi-
ble kernel approach requires. From the application writer’s
standpoint, the benefits come transparently, and within IO-
Lite, the benefits come from a unified approach to data
transfer, rather than webserver-centric code. A prototype
system has been implemented on DEC Alpha workstations
running Digital UNIX. More details can be found in Pai et
a1 [13].

Using IO-Lite in a webserver transparently elimi-
nates data copying and double-buffering since applications,
filesystem, and networking code can all share the same
buffers. More importantly, the same mechanisms apply
when using CGI programs, where copying costs can be par-
ticularly significant. In comparison, ad-hoc designs that
try to integrate the filesystem with the networking system
do not benefit CGI programs at all. Our approach pre-
serves “layer transparency,” in the sense that no explicit
cooperation between the filesystem and networking code is
r equ i r ehach layer operates independently. IO-Lite also
enables TCP checksum caching by tagging each buffer with
a version number. The combination of the version num-
ber and the data address allows the TCP code to cache and
re-use checksums. The webserver is not involved with this
optimization at all, and once again, “layer transparency” is
preserved-the same networking code responsible for the
checksums maintains the checksum cache, rather than in-
volving the file system or the application, like the approach
used in Cheetah [8].

To demonstrate the benefits of performance-conscious
webserver design and IO-Lite, we developed a webserver
called Flash, loosely based on thttpd [151. Without using
IO-Lite, Flash already outperforms Harvest [5] and thttpd.
When serving small files, Flash beats thttpd by over 200%
and Harvest by over 50% (670 connections1sec for Flash
versus 391 for Harvest and 214 for thttpd when serving 500
byte files). For large files, Flash beat both by over 100%
(21 1 connectionshec for Flash versus 87 for Harvest and 107
for thttpd when serving 50 kF3yte files). We conditionally
made minor modifications to Flash for IO-Lite support, and
the resulting server was dubbed Flash-Lite. For 50 B y t e
files, Flash-Lite achieved 276 connectiondsec, tripling the
performance of Harvest, and beating Flash by over 30%.
Furthermore, both Flash and Flash-Lite support non-forking
CGI programs. When generating 50 B y t e responses, CGI
applications using IO-Lite ran over twice as fast as their
regular counterparts. The server in these tests was a DEC
Alpha 200 41233 workstations connected to a 100 Mbit/s

FDDI and a 100 Mbit/s Fast Ethernet network. We also ran
the small file test on a 166 MHz Pentium machine running
FreeBSD connected to a 100 Mbit/s Fast Ethernet, and we
achieved over 1100 connections/sec. More details can be
found in Pai et al. [131

3. Summary

In conclusion, the host of difficult questions raised by
extensible kernels suggests that this may be an idea whose
time will never come. In experimental systems, extensible
kernels may hlfill a meaningful role in allowing relatively
rapid prototyping of research ideas that can later be migrated
to production kernels. However, most of the effort currently
being spent on making extensible kernels “safe” will serve
no purpose in this model. Instead, a more fi-uithl outcome
is likely if that same effort were expended on making exten-
sible kernels more usable for researchers. We have shown
that the current “killer application” for extensible kernels
can be well served (or potentially better served) by a com-
bination of sound application design and general-purpose
kernel optimizations, such as those in IO-Lite. In the long
term, we feel that the significant issues of complexity, secu-
rity, and robustness may prevent the commercial adoption
of extensible kernel technology, both by operating systems
vendors and by users in production environments.

References

T. Berners-Lee, R. Fielding, and H. Hrystyk. Hypertext trans-
fer protocol - HTTP/l .O. Request for Comments 1945, MIT
Laboratory for Computer Science (Bemers-Lee, Frystyk),
UC Imine (Fielding), May 1996.
B. N. Bershad, S. Savage, P. Pardyak, E. 6. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility, safety and performance in the SPIN operating
system. In Proceedings of the Fijleenth ACMSymposium on
Operating System Principles, Copper Mountain, CO, Dec.
1995.
R. T. Braden. T/TCP - TCP extensions for transactions.
Request for Comments 1644, USC-ISJ, 1994.
P. Cao, E. Felten, and K. Li. Implementation and perfor-
mance of application-controlled file caching. In First Sympo-
sium on Operating System Design Implementation (OSDI),
Nov. 1994.
A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical intemet ob-
ject cache. In USENlx 1996 Annual Technical Conference,
Jan. 1996.

[6] D. R. Engler, M. E Kaashoek,and J. O’Toole. Exokemel: An
operating system architecture for application-level resource
management. In Proceedings of the Fijieenth ACM Sym-
posium on Operating System Principles, Copper Mountain,
CO, Dcc. 1995.

41

[7] G. R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small files.
In USENLY 1997 Annual Technical Conference, Jan. 1997.

[SI M. F. Kaashoek, D. R. Engler, G. R. Ganger, and D. A. Wal-
lach. Server operating systems. In 1996 SIGOPS European
Workshop, Sept. 1996.

[9] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarter-
man. The Design and Implementation of the 4.3BSD U N l x
Operating System. Addison-Wesley Publishing Company,
1989.

[IO] L. McVoy and S. Kleiman. Extent-like performance from a
unix file system. In Proc. Winter 1991 USENIXConJ, pages
33-43, Dallas, TX (USA), 1991. USENIX.

[I I] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packet
filter: An efficient mechanism for user-level network code. In
Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles, pages 39-5 I , Nov. 1987.

[121 G. C. Necula and P. Lee. Safe kemel extensions without run-
time checking. In Proc. 2nd Symp. on Operating Systems
Design and Implementation, Seattle, WA, Oct. 1996.

[131 V. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A unified
IlO buffering and caching system. http:flwww.cs.rice.edd-
viveM0-Lite.htm1.

[14] P. Pardyak and B. N. Bershad. Dynamic binding for an
extensible system. In Proc. 2ndSymp. on Operating Systems
Design and Implementation, Seattle, WA, Oct. 1996.

[I 51 J. Poskanzer. thttpd - tinylturbolthrottling http server.
http:llwww.acme.comisoftwarelthttpd/.

[16] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In
Proc. 2nd Symp. on Operating Systems Design and Imple-
mentation, Seattle, WA, Oct. 1996.

[I71 A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the XFS file system. In
USENLX 1996 Annual Technical Conference, pages 1-14,
San Diego, CA, Jan. 1996.

[181 R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Princi-
ples, pages 203-2 16,1993.

42

http:flwww.cs.rice.edd
http:llwww.acme.comisoftwarelthttpd

