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Abstract 

We argue that ongoing research in extensible kernels 
largely fails to address the real challenges facing the OS 
community. Instead, these efforts have become entangled in 
trying to solve the safety problems that extensibility itselfin- 
troduces into OS design. We propose a pragmatic approach 
to extensibility, where kernel extensions are used in exper- 
imental settings to evaluate and develop OS enhancements 
f o r  demanding applications. Once developed and well un- 
derstood, these enhancements are then migrated into the 
base operating system for  production use. This approach 
obviates the need fo r  guaranteeing safety of kernel exten- 
sions, allowing the OS research community to re-focus on 
the real challenges in OS design and implementation. To 
provide a concrete example of this approach, we analyze the 
techniques used in experimental HTTP servers to show how 
proper application design combined with generic enhance- 
ments to operating systems can provide the same benefits 
without requiring application-specific kernel extensions. 

1. Introduction 

Extensible operating systems are viewed by many as a 
technology that promises to solve some of the long-standing 
challenges in OS design. Among these challenges are (1) 
achieving performance close to the hardware’s capabilities 
across a wide range of applications without giving up safety, 
(2) facilitating the rapid deployment of new OS innovations, 
and (3) containing and managing the ever-increasing com- 
plexity of OS implementations. We feel that skepticism 
is in order with regard to these claims, for two main rea- 
sons. First, the numerous research projects in extensible 
kernels have to date only produced performance-related re- 
sults (challenge l), and even in this category they have not 
yet convincingly demonstrated the benefits of extensibility. 
Projects like SPIN, Aegis, and VINO show performance im- 
provements on a small set of benchmark applications that 
use kernel extensions [2, 6, 161. Unfortunately, it is unclear 
to what extent the performance gains are due to extensi- 
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bility, rather than merely resulting from optimizations that 
could equally be applied to an operating system that is not 
extensible. 

Second, extensible kernels (i.e., those that allow the ex- 
ecution of untrusted, application-specific code in Turing- 
complete languages) introduce a number of new, hard prob- 
lems into OS design. While prototype extensible kernels 
have not yet produced convincing evidence of the ben- 
efits of extensibility, they have clearly demonstrated the 
need for sophisticated techniques to deal with the unique 
safety problems introduced by extensibility. Such tech- 
nologies include type-safe languages, trusted compilers, 
garbage-collected kernels, trusted dynamic linkers, capa- 
bilities, sandboxing, sophisticated resource management, 
proof-carrying executables, and even kernel-level transac- 
tional facilities [2, 6, 12, 14, 16, 181. 

In addition to safety concerns, extensible kernels also 
raise difficult questions with respect to compatibility, in- 
teroperability, and evolution of OS implementations. In 
conventional systems, applications and operating system in- 
teract only through the API. This API is a contract that 
protects the application developer’s investments by ensur- 
ing interoperability and backward compatibility, while still 
giving the OS developer maximum freedom in designing 
and evolving an implementation of the API. In an extensi- 
ble system, applications can interact with the OS through 
additional extension interfaces. This introduces a difficult 
tradeoff. If the extension interfaces are not part of the con- 
tract, then applications that use these interfaces risk losing 
interoperability and compatibility with future OS releases. 
If they are part of the contract, then these interfaces constrain 
the implementation and evolution of the OS implementation. 
Moreover, the richer the extension interfaces-thus provid- 
ing powerful extension capabilitieethe more constrained 
the OS implementation becomes. 

While these unique needs of extensible kernels create a 
host of new research opportunities for the operating sys- 
tem and programming language communities, along with 
prospects for fame and glory (funding, publications, and dis- 
sertations), it is unclear how solving these problems moves 
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the community any closer to solving the original challenges 
outlined above. In fact, the additional complexity required 
for safe extensibility aggravates the problem of managing 
and controlling the complexity of OS implementations. 

Due to the difficulty of supporting extensibility that is 
powerful, safe, and practical from a software engineering 
standpoint, we do not expect that extensibility will find its 
way into commercial operating systems in the foreseeable 
future. On the other hand, extensible kernels can play a 
significant role in advancing the state of the art in operat- 
ing systems. They can do so by stimulating research into 
optimizations that benefit particular classes of demanding 
applications, and those optimizations can be migrated to 
production operating systems. To understand how this tech- 
nology transfer can take place, we must understand what 
sorts of issues can be explored in such an environment. 
We contend that additions and changes to the kernel can 
be broadly classified in two ways-enhancements and cus- 
tomizations. 

An enhancement is simply an optimization of an existing 
service or the addition of a new interface and service. En- 
hancements may benefit only a certain class of applications, 
and they make at worst no difference to other applications. 
Since enhancements are generic, they can be provided or cer- 
tified by a trusted entity, and no special kemel mechanisms 
are required to ensure their safety. In contrast to enhance- 
ments, customizations must be specified and/or selected on 
a per-application basis, because they may not be suitable for 
all applications. If they were enabled by default, they might 
actually harm the performance or jeopardize the correctness 
of certain applications. Customizations fall into two cate- 
gories: those that we consider inherently safe (specified in 
a parametric or otherwise restricted language), and general 
extensions (specified in a Turing-complete language). It is 
only the latter category that concerns us, since this type of 
extension requires the additional, safety-related complexity 
in extensible kemels. For example, application-controlled 
file caching [4] and programmable packet filters [ 1 I] are 
inherently safe customizations. They are safe either by only 
allowing the application to select from a set of pre-defined 
options, or by using a constrained extension language that 
rules out potentially unsafe issues like looping, dynamic 
memory allocation, and the ability to retain state between 
invocations. 

We argue that the real value of extensible kernels lies in 
their ability to stimulate research by allowing rapid experi- 
mentation using general extensions. We think that many (if 
not all) of these experimental extensions, once properly un- 
derstood, can be recast as either enhancements or inherently 
safe customizations, and then migrated into commercial op- 
erating systems. This approach avoids most of the difficult 
issues raised by extensible kernels, while preserving most 
of its benefits. Operating systems experts in the research 

community can develop, prototype, and demonstrate OS 
features using extensible kernels. Once a feature is well 
understood and its benefits have been demonstrated, there 
is sufficient market push to drive OS vendors to incorporate 
it into their commercial systems as enhancements or inher- 
ently safe customizations. Since extensible systems are used 
only in the experimental or prototype stage, many of the dif- 
ficult safety issues they raise in a production environment 
can be avoided. The difficult work of developing kernel 
extensions is done by experts in the research and advanced 
OS development communities. Finally, production operat- 
ing systems need not be burdened with complex machinery 
to ensure safe extensibility and one can avoid the software 
engineering issues raised by extension interfaces. 

To summarize our argument, we contend that extensible 
kemels will remain a tool for experimentation and proto- 
typing. This realization implies that extensible system re- 
searchers should redirect their efforts towards meeting the 
challenges they originally set out to meet. Thus, we should 
give up on trying to make extensibility safe in a production 
environment, and focus instead on using extensible kemels 
as vehicles for new development that can help meet the real 
challenges facing OS design and implementation. Efforts 
in building extensible kernels should focus on mechanisms 
that allow flexible and powerful addition and interposition of 
kernel extensions, such as SPIN’S dynamic binding frame- 
work [ 141. Once in place, such kernels should then be used 
to support research into generic OS enhancements and inher- 
ently safe customizations that advance the state-of-the-art in 
OS design and implementation. The next section provides 
a concrete example of how a set of apparently application- 
specific extensions can be recast in the form of enhance- 
ments that do not require general kemel extensibility. 

2. Analysis of WWW Servers 

HTTP [l] servers (also called webservers) have been 
one of the benchmark applications used by supporters of 
extensible kernels. However, a close examination of the 
extensions used to support webservers suggests that most 
of the benefits could equally be achieved by generic en- 
hancements to the base operating system. By surveying 
techniques used in publically-available web servers [ 15, 51 
and in experimental designs [8], we have identified eight 
areas of interest where OS performance can impact web- 
servers. They are: TCP implementation performance, TCP 
protocol optimizations, forkinglswitching overhead, filesys- 
tem performance, VMIcache control, data copying costs, 
double-buffering, and TCP checksum calculation. Com- 
mercial operating systems and webservers have already ad- 
dressed some of these, while others have been addressed 
solely in the research community, with the use of extensible 
kernels. We contend that an analysis of these items shows 
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that extensible kernels are not needed to efficiently support 
webservers. For each item, the two relevant questions are 
“Can it be solved through better application design?” and 
“If not, can it be solved through enhancements and inher- 
ently safe customizations rather than general kernel exten- 
sions?’’ The first five problem areas have been (or can be) 
addressed by known techniques for better application design 
or application-independent kernel optimizations. 

TCP implementations - Until recently, many commercial 
implementations of TCP were relatively inefficient in han- 
dling hundreds of TCP connections per second. When 
machines running these implementations were subjected 
to heavy HTTP traffic, implementation choices like using 
linked lists instead of hash tables became performance bot- 
tlenecks, and were generally corrected by vendor-supplied 
patches or operating system upgrades. Correcting perfor- 
mance bugs in TCP helps all applications that use TCP, not 
just webservers. 

TCP protocol optimizations - Many TCP implementations 
do not take advantage of all of the optimizations allowed 
by the TCP protocol because doing so without application 
support in a general way is difficult. For example, the TCP 
protocol allows combining the “FIN” message with the final 
data segment to reduce the number of packets exchanged. To 
take advantage of this feature, a TCP implementation must in 
general know which packet is the final packet before sending 
it. By allowing the application to provide this information 
(e.g., through socket options), the TCP implementation can 
exploit this and other piggy-backing opportunities, thereby 
reducing the number of messages required per HTTP trans- 
action. The proposed transactional TCP implementation 
provides a similar approach [3]. All of these optimizations 
can be enabled through a parametric customization inter- 
face, which is inherently safe. Another advantage of this 
approach is that it avoids network safety issues, because it 
leaves complex issues such as TCP congestion control in the 
hands of a trusted and proven TCP implementation. 

forkinglswitching - Early webservers created a new pro- 
cess for each connection, and the associated overhead of 
forking and context switching limited their performance. 
Webserver developers responded not by pushing to reduce 
the cost of forking, but instead by using better designs to 
avoid forking. Two common options are to have a set of 
pre-forked processes handle incoming requests, or to use 
multiple threads within a single process. Even these options 
have associated overheads, so some servers have moved to 
using a single, event-driven process. Good application de- 
sign has essentially solved this problem without the need for 
OS modification. 

filesystem - Filesystem performance is not a problemunique 
to webservers, nor is it a problem requiring webserver- 
specific optimizations. The basic problems have been under- 

stood for some time, and several groups have implemented 
successively better solutions in regular, commercia1 operat- 
ing systemwhe Fast Filesystem (FFS) from BSD [9], the 
extent-like approach in Sun’s UFS [lo], and more radical 
re-designs like SGI’s XFS [17]. Changes that broadly im- 
prove filesystem performance also improve webserver per- 
formance. Due to current HTTP document size distribu- 
tions, webservers are particularly sensitive to small file per- 
formance. Generic filesystem optimizations that improve 
performance for small files exist. Interestingly, one such 
filesystem was developed in the context of a project to sup- 
port webservers through extensible kernels [7]. This con- 
firms our point that experimentation with extensible kernels 
can lead to generic OS enhancements. 

W c a c h e  control - Applications may know what pages of 
memory and what files are likely to be used. System calls 
likemadvi se ( ) exist, and they are inherently safe. Allow- 
ing an application to perform file prefetching and cache con- 
trol has been shown to help performance, but such a system 
can be implemented using only parameterized interfaces [4] 
(i.e., by inherently safe customizations). Furthermore, the 
same mechanisms that allow a webserver to prefetch files 
after sending a hyperlinked document can be used by appli- 
cations like compilers that need to read included files. 

The three remaining areas where OS performance im- 
pacts webservers can also be handled without application- 
defined kernel extensions. Here, new techniques are re- 
quired. We briefly discuss the problems before describing 
our solution. 

copying - An efficient webserver using memory-mapped 
files will still encounter copying when serving regular files, 
since the networking subsystem must generally copy data 
from the filesystem into its own buffers. In the case of 
CGI programs, significantly more copying occurs, since the 
CGI program communicates data to the server through a 
socket before the data is sent by the server to the networking 
subsystem. 

double buffering - For each regular client request, the net- 
working subsystem maintains retransmit buffers, duplicat- 
ing data that already exists in the filesystem cache. This 
redundancy reduces the effective size of main memory and 
the filesystem cache. 
TCP checksum calculation - Since webservers often send 
a cached document repeatedly, a possible optimization is 
the elimination of repeated TCP checksum calculations. If 
all other copying has been eliminated, TCP checksumming 
is the last data-touching operation in the server, and may 
therefore have a significant performance impact. 

Our approach to addressing these issues relies on IO- 
Lite, a unijied I10 buffering and caching system. IO-Lite 
allows the safe, efficient, and copy-free sharing of buffers 
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between applications, the filesystem, the filesystem cache, 
and the network subsystem. IO-Lite avoids data copying 
and multiple buffering, and it allows transparent perfor- 
mance optimizations across subsystems, such as caching 
of precomputed TCP checksums. As a result, IO-Lite pro- 
vides efficient support for webservers and other U 0  intensive 
applications without any of the “special-casing” the extensi- 
ble kernel approach requires. From the application writer’s 
standpoint, the benefits come transparently, and within IO- 
Lite, the benefits come from a unified approach to data 
transfer, rather than webserver-centric code. A prototype 
system has been implemented on DEC Alpha workstations 
running Digital UNIX. More details can be found in Pai et 
a1 [13]. 

Using IO-Lite in a webserver transparently elimi- 
nates data copying and double-buffering since applications, 
filesystem, and networking code can all share the same 
buffers. More importantly, the same mechanisms apply 
when using CGI programs, where copying costs can be par- 
ticularly significant. In comparison, ad-hoc designs that 
try to integrate the filesystem with the networking system 
do not benefit CGI programs at all. Our approach pre- 
serves “layer transparency,” in the sense that no explicit 
cooperation between the filesystem and networking code is 
r equ i r ehach  layer operates independently. IO-Lite also 
enables TCP checksum caching by tagging each buffer with 
a version number. The combination of the version num- 
ber and the data address allows the TCP code to cache and 
re-use checksums. The webserver is not involved with this 
optimization at all, and once again, “layer transparency” is 
preserved-the same networking code responsible for the 
checksums maintains the checksum cache, rather than in- 
volving the file system or the application, like the approach 
used in Cheetah [8]. 

To demonstrate the benefits of performance-conscious 
webserver design and IO-Lite, we developed a webserver 
called Flash, loosely based on thttpd [ 151. Without using 
IO-Lite, Flash already outperforms Harvest [5] and thttpd. 
When serving small files, Flash beats thttpd by over 200% 
and Harvest by over 50% (670 connections1sec for Flash 
versus 391 for Harvest and 214 for thttpd when serving 500 
byte files). For large files, Flash beat both by over 100% 
(21 1 connectionshec for Flash versus 87 for Harvest and 107 
for thttpd when serving 50 kF3yte files). We conditionally 
made minor modifications to Flash for IO-Lite support, and 
the resulting server was dubbed Flash-Lite. For 50 B y t e  
files, Flash-Lite achieved 276 connectiondsec, tripling the 
performance of Harvest, and beating Flash by over 30%. 
Furthermore, both Flash and Flash-Lite support non-forking 
CGI programs. When generating 50 B y t e  responses, CGI 
applications using IO-Lite ran over twice as fast as their 
regular counterparts. The server in these tests was a DEC 
Alpha 200 41233 workstations connected to a 100 Mbit/s 

FDDI and a 100 Mbit/s Fast Ethernet network. We also ran 
the small file test on a 166 MHz Pentium machine running 
FreeBSD connected to a 100 Mbit/s Fast Ethernet, and we 
achieved over 1100 connections/sec. More details can be 
found in Pai et al. [ 131 

3. Summary 

In conclusion, the host of difficult questions raised by 
extensible kernels suggests that this may be an idea whose 
time will never come. In experimental systems, extensible 
kernels may hlfill a meaningful role in allowing relatively 
rapid prototyping of research ideas that can later be migrated 
to production kernels. However, most of the effort currently 
being spent on making extensible kernels “safe” will serve 
no purpose in this model. Instead, a more fi-uithl outcome 
is likely if that same effort were expended on making exten- 
sible kernels more usable for researchers. We have shown 
that the current “killer application” for extensible kernels 
can be well served (or potentially better served) by a com- 
bination of sound application design and general-purpose 
kernel optimizations, such as those in IO-Lite. In the long 
term, we feel that the significant issues of complexity, secu- 
rity, and robustness may prevent the commercial adoption 
of extensible kernel technology, both by operating systems 
vendors and by users in production environments. 
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