
IO�Lite� A uni�ed I�O bu�ering and caching system

Vivek S� Pai Peter Druschel Willy Zwaenepoel

Rice University

Houston� TX �����

Abstract

This paper presents the design� implementation�
and evaluation of IO�Lite� a uni�ed I�O bu�ering
and caching system for general�purpose operating
systems� IO�Lite uni�es all bu�ering and caching
in the system� to the extent permitted by the hard�
ware� In particular� it allows applications� interpro�
cess communication� the �lesystem� the �le cache�
and the network subsystem to share a single physical
copy of the data safely and concurrently� Protection
and security are maintained through a combination
of access control and read�only sharing� The various
subsystems use �mutable� bu�er aggregates to access
the data according to their needs� IO�Lite eliminates
all copying and multiple bu�ering of I�O data� and
enables various cross�subsystem optimizations� Ex�
periments with a Web server on IO�Lite show per�
formance improvements between �	 and
	� on real
workloads�

� Introduction

For many users� the perceived speed of comput�
ing is increasingly dependent on the performance
of networked server systems� underscoring the need
for high performance servers� Unfortunately� general
purpose operating systems provide inadequate sup�
port for server applications� leading to poor server
performance and increased hardware cost of server
systems�
One source of the problem is lack of integration

among the various input�output �I�O� subsystems
and the application in general�purpose operating
systems� Each I�O subsystem uses its own bu�er�
ing or caching mechanism� and applications gener�
ally maintain their own private I�O bu�ers� This
leads to repeated data copying� multiple bu�ering of
I�O data� and other performance�degrading anoma�
lies�
Repeated data copying causes high CPU over�

head and limits the throughput of a server� Mul�
tiple bu�ering of data wastes memory� reducing the

size of the document cache for a given main memory
size� A reduced cache size� however� likely causes an
increased rate of disk accesses and reduced through�
put� Finally� lack of support for application�speci�c
cache replacement policies and optimizations like
TCP checksum caching further reduce server per�
formance�
We present the design� the implementation� and
the performance of IO�Lite� a uni�ed I�O bu�ering
and caching system for general�purpose operating
systems� IO�Lite uni�es all bu�ering and caching
in the system to the extent permitted by the hard�
ware� In particular� it allows applications� interpro�
cess communication� the �le cache� the network sub�
system� and other I�O subsystems to share a single
physical copy of the data safely and concurrently�
IO�Lite achieves this goal by storing bu�ered I�O
data in immutable bu�ers� whose locations in mem�
ory never change� The various subsystems use �mu�
table� bu�er aggregates to access the data according
to their needs�
The primary goal of IO�Lite is to improve the per�
formance of server applications such as those run�
ning on networked �e�g� Web� servers� and other
I�O�intensive applications� IO�Lite avoids redun�
dant data copying �decreasing I�O overhead�� avoids
multiple bu�ering �increasing e�ective �le cache
size�� and permits performance optimizations across
subsystems �e�g�� application�speci�c �le cache re�
placement and cached Internet checksums��
A prototype of IO�Lite was implemented in
FreeBSD� In keeping with the goal of improving per�
formance of networked servers� our central perfor�
mance results involve a Web server� in addition to
other benchmark applications� Results show that
IO�Lite yields a performance advantage of �	 to
	�
on real workloads� IO�Lite also allows e�cient sup�
port for dynamic content using third�party CGI pro�
grams without loss of fault isolation and protection�

��� Background

In state�of�the�art� general�purpose operating sys�
tems� each major I�O subsystem employs its own

bu�ering and caching mechanism� In UNIX� for
instance� the network subsystem operates on data
stored in BSD mbufs or the equivalent System V
streambufs� allocated from a private kernel mem�
ory pool� The mbuf �or streambuf� abstraction
is designed to e�ciently support common net�
work protocol operations such as packet fragmen�
tation�reassembly and header manipulation�
The UNIX �lesystem employs a separate mecha�

nism designed to allow the bu�ering and caching of
logical disk blocks �and more generally� data from
block oriented devices�� Bu�ers in this bu�er cache
are allocated from a separate pool of kernel memory�
In older UNIX systems� the bu�er cache is used to

store all disk data� In modern UNIX systems� only
�lesystem metadata is stored in the bu�er cache
 �le
data is cached in VM pages� allowing the �le cache
to compete with other virtual memory segments for
the entire pool of physical main memory�
No support is provided in UNIX systems for

bu�ering and caching at the user level� Applica�
tions are expected to provide their own bu�ering
and�or caching mechanisms� and I�O data is gener�
ally copied between OS and application bu�ers dur�
ing I�O read and write operations�� The presence
of separate bu�ering�caching mechanisms in the ap�
plication and in the major I�O subsystems poses a
number of problems for I�O performance�

Redundant data copying� Data copying may oc�
cur multiple times along the I�O data path� We call
such copying redundant� because it is not necessary
to satisfy some hardware constraint� Instead� it is
imposed by the system�s software structure and its
interfaces� Data copying is an expensive operation�
because it generally proceeds at memory rather than
CPU speed�

Multiple bu�ering� The lack of integration in
the bu�ering�caching mechanisms may require that
multiple copies of a data object be stored in main
memory� In a Web server� for example� a data �le
may be stored in the �lesystem cache� in the Web
server�s bu�ers� and in the network subsystem�s send
bu�ers of one or more connections� This duplication
reduces the e�ective size of main memory� and thus
the size and hit rate of the server�s �le cache�

Lack of cross�subsystem optimization� Sepa�
rate bu�ering mechanisms make it di�cult for in�
dividual subsystems to recognize opportunities for
optimizations� For example� the network subsystem
of a server is forced to recompute the Internet check�
sum each time a �le is being served from the server�s

�Some systems avoid this data copying in a transparent
manner under certain conditions�

cache� because it cannot determine that the same
data is being transmitted repeatedly� Also� server
applications cannot exercise customized �le cache re�
placement policies�

The outline of the rest of the paper is as fol�
lows� Section � presents the design of IO�Lite and
discusses its operation in a Web server application�
Section � describes a prototype implementation in
a BSD UNIX system� A quantitative evaluation of
IO�Lite is presented in Section �� including perfor�
mance results with a Web server on real workloads�
In Section �� we present a qualitative discussion of
IO�Lite in the context of related work� Section �
o�ers conclusions�

� IO�Lite Design

��� Principles� Immutable Bu�ers and
Bu�er Aggregates

IO�Lite de�nes an explicit abstraction for I�O
data� called bu�er aggregate� Bu�er aggregates
have access semantics appropriate for a uni�ed
bu�er�caching system� All OS subsystems access
I�O data through this uni�ed abstraction� Appli�
cations that wish to obtain the best possible per�
formance can also choose to access I�O data in this
way�
In IO�Lite� all I�O data bu�ers are immutable�
Immutable bu�ers are allocated with an initial data
content that may not be subsequently modi�ed�
This access model implies that all sharing of bu�ers
is read�only� which eliminates problems of synchro�
nization� protection� consistency� and fault isolation
among OS subsystems and applications� Data pri�
vacy is ensured through conventional page�based ac�
cess control�
Moreover� read�only sharing enables very e�cient
mechanisms for the transfer of I�O data across pro�
tection domain boundaries� as discussed in Sec�
tion ���� For example� the �lesystem cache� applica�
tions that access a given �le� and the network sub�
system that transmits part of that �le can all safely
refer to a single physical copy of the data�
The price for using immutable bu�ers is that I�O
data can not generally be modi�ed in place�� To al�
leviate the impact of this restriction� IO�Lite encap�
sulates I�O data bu�ers inside the bu�er aggregate
abstraction� Bu�er aggregates are instances of an
abstract data type �ADT� that represent I�O data�

�As an optimization� I�O data can be modi�ed in place if
it is not currently shared�

The data contained in a bu�er aggregate does
not generally reside in contiguous storage� Instead�
a bu�er aggregate is represented internally as an
ordered list of �pointer�length� pairs� where each
pair refers to a contiguous section of an immutable
I�O bu�er� Bu�er aggregates support operations
for truncating� prepending� appending� concatenat�
ing� splitting� and mutating data contained in I�O
bu�ers�
It is important to note that while the underly�
ing I�O bu�ers are immutable� bu�er aggregates are
mutable� To mutate a bu�er aggregate� modi�ed val�
ues are stored in a newly allocated bu�er� and the
modi�ed sections are then logically joined with the
unmodi�ed portions through pointer manipulations
in the obvious way� The impact of the absence of in�
place modi�cations will be discussed in Section ����
In IO�Lite� all I�O data is encapsulated in bu�er

aggregates� Aggregates are passed among OS sub�
systems and applications by value� but the associ�
ated IO�Lite bu�ers are passed by reference� This al�
lows a single physical copy of I�O data to be shared
throughout the system� When a bu�er aggregate
is passed across a protection domain boundary� the
VM pages occupied by all of the aggregate�s bu�ers
are made readable in the receiving domain�
Conventional access control ensures that a process

can only access I�O bu�ers associated with bu�er ag�
gregates that were explicitly passed to that process�
The read�only sharing of immutable bu�ers ensures
fault isolation� protection� and consistency despite
the concurrent sharing of I�O data among multi�
ple OS subsystems and applications� A system�wide
reference counting mechanism for I�O bu�ers allows
safe reclamation of unused bu�ers�

��� Interprocess Communication

In order to support caching as part of a uni�ed
bu�er system� an interprocess communicationmech�
anism must allow safe concurrent sharing of bu�ers�
In other words� di�erent protection domains must
be allowed protected� concurrent access to the same
bu�er� For instance� a caching Web server must re�
tain access to a cached document after it passes the
document to the network subsystem or to a local
client�
IO�Lite uses an IPC mechanism similar to fbufs ���
to support safe concurrent sharing� Copy�free I�O
facilities that only allow sequential sharing ���� ���
where only one protection domain has access to a
given bu�er at any time� are not suitable for use in
caching I�O systems�
I�O�Lite extends fbufs in two signi�cant direc�

tions� First� it extends the fbuf approach from
the network subsystem to the �lesystem� including
the �le data cache� thus unifying the bu�ering of
I�O data throughout the system� Second� it adapts
the fbuf approach� originally designed for the x�
kernel ����� to a general�purpose operating system�
IO�Lite�s IPC� like fbufs� combines page remap�
ping and shared memory� Initially� when an �im�
mutable� bu�er is transferred� VM mappings are up�
dated to grant the receiving process read access to
the bu�er�s pages� Once the bu�er is deallocated�
these mappings persist� and the bu�er is added to a
cached pool of free bu�ers associated with the I�O
stream on which it was �rst used� forming a lazily
established pool of read�only shared memory pages�

When the bu�er is reused� no further VM map
changes are required� except that temporary write
permissions must be granted to the producer of the
data� to allow it to �ll the bu�er� This toggling
of write permissions can be avoided whenever the
producer is a trusted entity� such as the OS kernel�
Here� write permissions can be granted permanently�
since a trusted entity can be implicitly expected to
honor the bu�er�s immutability�

IO�Lite�s worst case cross�domain transfer over�
head is that of page remapping
 it occurs when the
producer allocates the last bu�er before the �rst
bu�er is deallocated by the receiver�s�� Otherwise�
bu�ers can be recycled� and the transfer perfor�
mance approaches that of shared memory�

IO�Lite ensures access control and protection at
the granularity of processes� That is� no loss of se�
curity or safety is associated with the use of IO�
Lite� IO�Lite maintains cached pools of bu�ers with
a common access control list �ACL�� i�e�� a set of pro�
cesses with access to all IO�Lite bu�ers in the pool�
The choice of a pool from which a new IO�Lite bu�er
is allocated determines the ACL of the data stored
in the bu�er�

IO�Lite�s access control model requires programs
to determine the ACL of an I�O data object prior to
storing it in mainmemory� in order to avoid copying�
This is trivial in most cases� except when an incom�
ing packet arrives at a network interface� Here� the
network driver must perform an early demultiplexing
operation to determine the packet�s destination� In�
cidentally� early demultiplexing has been identi�ed
by many researchers as a necessary feature for ef�
�ciency and quality of service in high�performance
networks ����� With IO�Lite� early demultiplexing is
necessary for best performance�

Figure � depicts the relationship between VM
pages� bu�ers� and bu�er aggregates� IO�Lite bu�ers
are allocated in a region of the virtual address space

Figure �� Aggregate bu�ers and slices

called the IO�Lite window� The IO�Lite window ap�
pears in the virtual address spaces of all protection
domains� including the kernel� The �gure shows a
section of the IO�Lite window populated by three
bu�ers� An IO�Lite bu�er always consists of an in�
tegral number of �virtually� contiguous VM pages�
The pages of an IO�Lite bu�er share identical ac�
cess control attributes
 that is� in a given protection
domain� either all or none of a bu�er�s pages are
accessible�

Also shown are two bu�er aggregates� An aggre�
gate contains an ordered list of tuples of the form
�address� length�� Each tuple refers to a subrange
of memory called a slice� A slice is always contained
in one IO�Lite bu�er� but slices in the same IO�Lite
bu�er may overlap� The contents of a bu�er aggre�
gate can be enumerated by reading the contents of
each of its constituent slices in order�

Data objects with the same ACL can be allocated
in the same IO�Lite bu�er and on the same page�
As a result� IO�Lite does not waste memory when
allocating objects that are smaller than the VM page
size�

��� IO�Lite and Applications

To take full advantage of IO�Lite� application pro�
grams can use an extended I�O application program�
ming interface �API� that is based on bu�er aggre�
gates� This section brie�y describes this API� A
complete discussion of the API can be found in the
technical report �����

IOL read and IOL write form the core of the inter�
face �see Figure ��� These operations supersede the
standard UNIX read and write operations� �The
latter operations are maintained for backward com�
patibility�� Like their predecessors� the new opera�
tions can act on any UNIX �le descriptor� All other

�le descriptor related UNIX systems calls remain un�
changed�

The new IOL read operation returns a bu�er ag�
gregate �IOL Agg� containing at most the amount
of data speci�ed as an argument� Unlike the POSIX
read� IOL read may always return less data than
requested� The IOL read pool operation allows the
application to additionally specify an IO�Lite alloca�
tion pool� such that the system places the requested
data into IO�Lite bu�ers from that pool� Applica�
tions that manage multiple I�O streams with di�er�
ent access control attributes can use this operation�
The IOL write operation replaces the data in an ex�
ternal data object with the contents of the bu�er
aggregate passed as an argument�

The e�ects of IOL read and IOL write operations
are atomic with respect to other IOL write opera�
tions concurrently invoked on the same descriptor�
That is� an IOL read operations yields data that ei�
ther re�ects all or none of the changes a�ected by
a concurrent IOL write operation on the same �le
descriptor� The data returned by a IOL read is ef�
fectively a �snapshot� of the data contained in the
object associated with the �le descriptor�

Additional IO�Lite system calls allow the creation
and deletion of IO�Lite bu�er pools� The �IOL Agg�
bu�er aggregate abstract data type supports a num�
ber of operations for creation� destruction� duplica�
tion� concatenation and truncation as well as data
access�

Implementations of language�speci�c runtime I�O
libraries� like the ANSI C stdio library� can be con�
verted to use the new API internally� This reduces
data copying without changing the library�s API� As
a result� applications that perform I�O using these
standard libraries can enjoy performance bene�ts
merely by re�linking them with the new library�

size�t IOL�read�int fd� IOL�Agg ��aggregate� size�t size��

size�t IOL�read�pool�int fd� IOL�Pool �pool� IOL�Agg ��aggregate� size�t size��

size�t IOL�write�int fd� IOL�Agg �aggregate��

Figure �� IO�Lite I�O API

��� IO�Lite and the Filesystem

With IO�Lite� bu�er aggregates form the basis of
the �lesystem cache� The �lesystem itself remains
unchanged�
File data that originates from a local disk is gener�

ally page�aligned and page sized� However� �le data
received from the network may not be page�aligned
or page�sized� but can nevertheless be kept in the
�le cache without copying� Conventional UNIX �le
cache implementations are not suitable for IO�Lite�
since they place restrictions on the layout of cached
�le data� As a result� current Unix implementations
perform a copy when �le data arrives from the net�
work�
The IO�Lite �le cache has no statically allocated

storage� The data resides in IO�Lite bu�ers� which
occupy ordinary pageable virtual memory� Concep�
tually� the IO�Lite �le cache is very simple� It con�
sists of a data structure that maps tuples of the form
��le�id� o�set� to bu�er aggregates� which contain
an extent of the corresponding �le data�
Since IO�Lite bu�ers are immutable� a write op�

eration to a cached �le results in the replacement
of the corresponding bu�ers in the cache with the
bu�ers supplied in the write operation� The replaced
bu�ers no longer appear in the �le cache
 however�
they persist as long as other references to them exist�
For example� assume that a IOL read operation of
a cached �le is followed by a IOL write operation to
the same portion of the �le� The bu�ers that were
returned in the IOL read are replaced in the cache
as a result of the IOL write� However� the bu�ers
persist until the process that called IOL read deal�
locates them and no other references to the bu�ers
remain� In this way� the snapshot semantics of the
IOL read operation are preserved�

��� IO�Lite and the Network

With IO�Lite� the network subsystem uses IO�Lite
bu�er aggregates to store and manipulate network
packets�
Limited modi�cations are required to network de�

vice drivers� As explained in Section ���� network
interface drivers that allocate IO�Lite bu�ers for in�
put data must specify the I�O stream for which the

bu�er is to be used� since this stream implies the
ACL fo the data stored in the bu�er� Network in�
terface drivers must determine this information from
the headers of incoming packets using a packet �lter
�early demultiplexing��

��	 Cache Replacement and Paging

We now discuss the mechanisms and policies for
managing the IO�Lite �le cache and the physical
memory used to support IO�Lite bu�ers� This con�
cerns two related issues� namely ��� replacement of
�le cache entries� and ��� paging of virtual memory
pages that contain IO�Lite bu�ers� Since cached �le
data resides in IO�Lite bu�ers� the two issues are
closely related�
Cache replacement in a uni�ed caching�bu�ering
system is di�erent from that of a conventional �le
cache� Cached data is potentially concurrently ac�
cessed by applications� Therefore� replacement de�
cisions should take into account both references to
a cache entry �i�e�� IOL read and IOL write oper�
ations�� as well as virtual memory accesses to the
bu�ers associated with the entry��
Moreover� the data in an IO�Lite bu�er can be
shared in complex ways� For instance� assume that
an application reads a data record from �le A� ap�
pends that record to the same �le A� then writes the
record to a second �le B� and �nally transmits the
record via a network connection� After this sequence
of operations� the bu�er containing the record will
appear in two di�erent cache entries associated with
�le A �corresponding to the o�set from where the
record was read� and the o�set at which it was ap�
pended�� in a cache entry associated with �le B� in
the network subsystem transmission bu�ers� and in
the user address space of the application� In gen�
eral� the data in an IO�Lite bu�er may at the same
time be part of an application data structure� rep�
resent bu�ered data in various OS subsystems� and
represent cached portions of several �les or di�erent
portions of the same �le�
Due to the complex sharing relationships� a large
design space exists for cache replacement and pag�
ing of uni�ed I�O bu�ers� While we expect that fur�

�Similar issues arise in �le caches that are based on mem�
ory mapped �les�

ther research is necessary to determine the best poli�
cies� our current system employs the following simple
strategy� Cache entries are maintained in a list or�
dered �rst by current use �i�e� is the data currently
referenced by anything other than the cache��� then
by time of last access� taking into account read and
write operations �but not VM accesses� for e�ciency�
When a cache entry needs to be evicted� the least
recently used among currently not referenced cache
entries is chosen� else the least recently used among
the currently referenced entries�
Cache entry eviction is triggered by a simple rule

that is evaluated each time a VM page containing
cached I�O data is selected for replacement by the
VM pageout daemon� If� during the period since
the last cache entry eviction� more then half of VM
pages selected for replacement were pages containing
cached I�O data� then it is assumed that the current
�le cache is too large� and we evict one cache entry�
Because the cache is enlarged �i�e�� a new entry is
added� on every miss in the �le cache� this policy
tends to keep the �le cache at a size such that about
half of all VM page replacements a�ect �le cache
pages�
Since all IO�Lite bu�ers reside in pageable virtual

memory� the cache replacement policy only controls
how much data the �le cache attempts to hold� Ac�
tual assignment of physical memory is ultimately
controlled by the VM system� When the VM pa�
geout daemon selects a IO�Lite bu�er page for re�
placement� IO�Lite writes the page�s contents to the
appropriate backing store and frees the page�
Due to the complex sharing relationships possible

in a uni�ed bu�ering�caching system� the contents
of a page associated with a IO�Lite bu�er may have
to be written to multiple backing stores� Such back�
ing stores include ordinary paging space� plus one
or more �les for which the evicted page is holding
cached data�
Finally� IO�Lite includes support for application�

speci�c �le cache replacement policies� Interested
applications can customize the policy using an ap�
proach similar to that proposed by Cao et al� ����

��
 Impact of immutable I�O bu�ers

Consider the impact of IO�Lite�s immutable I�O
bu�ers on program operation� If a program wishes
to modify a data object stored in a bu�er aggregate�
it must store the new values in a newly allocated
bu�er� There are three cases to consider�
First� if every word in the data object is modi�ed�
then the only additional cost �over in�place modi�
�cation� is a bu�er allocation� This case arises fre�

quently in programs that perform operations such as
compression and encryption� The absence of support
for in�place modi�cations should not signi�cantly af�
fect the performance of such programs�

Second� if only a subset of the words in the ob�
ject change values� then the naive approach of copy�
ing the entire object would result in partial redun�
dant copying� This copying can be avoided by stor�
ing modi�ed values into a new bu�er� and logically
combining �chaining� the unmodi�ed and modi�ed
portions of the data object through the operations
provided by the bu�er aggregate�

The additional costs in this case �over in�place
modi�cation� are due to bu�er allocations and
chaining �during the modi�cation of the aggre�
gate�� and subsequent increased indexing costs �dur�
ing access of the aggregate� incurred by the non�
contiguous storage layout� This case arises in net�
work protocols �fragmentation�reassembly� header
addition�removal�� and many other programs that
reformat�reblock I�O data units� The performance
impact on these programs due to the lack of in�place
modi�cation is small as long as changes to data ob�
jects are reasonably localized�

The third case arises when the modi�cations of
the data object are so widely scattered �leading to
a highly fragmented bu�er aggregate� that the costs
of chaining and indexing exceed the cost of a redun�
dant copy of the entire object into a new� contigu�
ous bu�er� This case arises in many scienti�c appli�
cations that read large matrices from input devices
and access�modify the data in complex ways� For
such applications� contiguous storage and in�place
modi�cation is a must� For this purpose� IO�Lite in�
corporates the mmap interface found in all modern
UNIX systems� The mmap interface creates a con�
tiguous memory mapping of an I�O object that can
be modi�ed in�place�

The use of mmap may require copying in the ker�
nel� First� if the data object is not contiguous and
not properly aligned �e�g� incoming network data� a
copy operation is necessary due to hardware con�
straints� In practice� the copy operation is done
lazily on a per�page basis� When the �rst access
occurs to a page of a memory mapped �le� and its
data is not properly aligned� that page is copied�

Second� a copy is needed in the event of a store
operation to a memory�mapped �le� when the af�
fected page is also referenced through an immutable
IO�Lite bu�er� �This case arises� for instance� when
the �le was previously read by some user process us�
ing an IOL read operation�� The system is forced
to copy the modi�ed page in order to maintain the
snapshot semantics of the IOL read operation� The

copy is performed lazily� upon the �rst write access
to a page�

��� Cross�Subsystem Optimizations

A uni�ed bu�ering�caching system enables cer�
tain optimizations across applications and OS sub�
systems not possible in conventional I�O systems�
These optimizations leverage the ability to uniquely
identify a particular I�O data object throughout the
system�
For example� with IO�Lite� the Internet check�
sum module used by the TCP and UDP protocols
was equipped with an optimization that allows it
to cache the Internet checksum computed for each
slice of a bu�er aggregate� Should the same slice
be transmitted again� the cached checksum can be
reused� avoiding the expense of a repeated checksum
calculation� This works extremely well for network
servers that serve documents stored on disk with a
high degree of locality� Whenever a �le is requested
that is still in the IO�Lite �le cache� TCP can reuse
a precomputed checksum� thereby eliminating the
only remaining data�touching operation on the crit�
ical I�O path�
To support optimizations such as this� IO�Lite

provides with each bu�er a generation number� The
generation number is incremented every time a
bu�er is re�allocated� Since IO�Lite bu�ers are im�
mutable� this generation number� combined with
the bu�er�s address� provides a system�wide unique
identi�er for the contents of the bu�er� That is�
when a subsystem is presented repeatedly with an
IO�Lite bu�er with identical address and generation
number� it can be sure that the bu�er contains the
same data values� This allows optimizations such as
the Internet checksum caching�

��
 Operation in a Web Server

In this section� we describe the operation of IO�
Lite in a Web server as an example� We start with
an overview of the basic operation of a Web server
on a conventional UNIX system�
AWeb server repeatedly accepts TCP connections

from clients� reads the client�s HTTP request� and
transmits the requested content data with an HTTP
response header� If the requested content is static�
the corresponding document is read from the �le sys�
tem� If the document is not found in the �lesystem�s
cache� a disk read is necessary�
Copying occurs as part of the reading of data
from the �lesystem� and when the data is written
to the socket attached to the client�s TCP connec�
tion� High�performance Web servers avoid the �rst

copy by using the UNIX mmap interface to read �les�
but the second copy remains� Multiple bu�ering oc�
curs because a given document may simultaneously
be stored in the �le cache and in the TCP retrans�
mission bu�ers of potentially multiple client connec�
tions�

With IO�Lite� all data copying and multiple
bu�ering is eliminated� Once a document is in
mainmemory� it can be served repeatedly by passing
bu�er aggregates between the �le cache� the server
application� and the network subsystem� The server
obtains a bu�er aggregate using the IOL read opera�
tion on the appropriate �le descriptor� concatenates
a response header� and transmits the resulting ag�
gregate using IOL write on the TCP socket� If a
document is served repeatedly from the �le cache�
the TCP checksum need not be recalculated except
for the bu�er containing the response header�

Dynamic content is typically generated by an aux�
iliary third�party CGI program that runs as a sepa�
rate process� The data is sent from the CGI process
to the server process via a UNIX pipe� In conven�
tional systems� sending data across the pipe involves
at least one data copy� In addition� many CGI pro�
grams read primary �les that they use to synthesize
dynamic content from the �lesystem� causing more
data copying when that data is read� Caching of
dynamic content in a CGI program can aggravate
the multiple bu�ering problem� Primary �les used
to synthesize dynamic content may now be stored in
the �le cache� in the CGI program�s cache as part
of a dynamic page� and in the TCP retransmission
bu�ers�

With IO�Lite� sending data over a pipe involves no
copying� CGI programs can synthesize dynamic con�
tent by manipulating bu�er aggregates containing
data from primary �les and newly generated data�
Again� IO�Lite eliminates all copying and multiple
bu�ering� even in the presence of caching CGI pro�
grams� TCP checksums need not be recomputed for
portions of dynamically generated content that are
repeatedly transmitted�

IO�Lite�s ability to eliminate data copying and
multiple copying can dramatically reduce the cost of
serving static and dynamic content� The impact is
particularly strong in the case when a cached copy
�static or dynamic� of the requested content exist�
since copying costs can dominate the service time
in this case� Moreover� the elimination of multiple
copying frees up valuable memory resources� This
bene�ts the �le cache size and hit rate� thus further
increasing server performance�

Finally� a Web server can use the IO�Lite facilities
to customize the replacement policy used in the �le

cache to derive further performance bene�ts� To use
IO�Lite� an existing Web server need only be mod�
i�ed to use the IO�Lite API� CGI programs must
likewise use the IO�Lite API and use bu�er aggre�
gates to synthesize dynamic content�
A quantitative evaluation of IO�Lite in the context
of a Web server follows in Section ��

� Implementation

This section gives an overview of the implemen�
tation of the IO�Lite prototype system in a ���BSD
derived UNIX kernel�

Network Subsystem� The BSD network sub�
system was adapted by encapsulating IO�Lite bu�ers
inside the BSD native bu�er abstraction� mbufs�
This approach avoids intrusive and widespread
source code modi�cations�
The encapsulation was accomplished by using

the mbuf out�of�line pointer to refer to an IO�Lite
bu�er� This approach maintains compatibility with
the BSD network subsystem in a very simple� ef�
�cient manner� Small data items such as network
packet headers are still stored inline in mbufs� but
the performance critical bulk data resides in IO�Lite
bu�ers� Since the mbuf data structure remains es�
sentially unmodi�ed� the bulk of the network sub�
system �including all network protocols� works un�
modi�ed with mbuf encapsulated IO�Lite bu�ers�

Filesystem� The IO�Lite �le cache module re�
places the uni�ed bu�er cache module found in
���BSD derived systems ����� The bulk of the �lesys�
tem code �below the block�oriented �le read�write
interface� remains unmodi�ed� As in the original
BSD kernel� the �lesystem continues to use the �old�
bu�er cache to hold �lesystem metadata�
The original UNIX read and write system calls

for �les are implemented by IO�Lite for backward
compatibility� These operations are implemented on
top of IOL read and IOL write� where a data copy
operation is used to move data between application
bu�er and IO�Lite bu�ers�

VM System� Adding IO�Lite does not require
any signi�cant changes to the BSD VM system �����
IO�Lite uses standard interfaces exported by the VM
system to create a VM object that represents the IO�
Lite window� map that object into kernel and user
process address spaces� and to provide page�in and
page�out handlers for the IO�Lite bu�ers�
The page�in and page�out handlers use informa�

tion maintained by the IO�Lite �le cache module to
determine the disk locations that provide backing

store for a given IO�Lite bu�er page� The replace�
ment policy for IO�Lite bu�ers and the IO�Lite �le
cache is implemented by the page�out handler� in
cooperation with the IO�Lite �le cache module�

IPC System� The IO�Lite system adds a modi�
�ed implementation of the BSD IPC facilities� This
implementation is used whenever a process uses the
IO�Lite read�write operations on a BSD pipe or
Unix domain socket� If the processes on both ends of
a pipe or Unix domain socket�pair use the IO�Lite
API� then the data transfer proceeds copy�free by
passing the associated IO�Lite bu�ers by reference�
The IO�Lite system ensures that all pages occupied
by these IO�Lite bu�ers are readable in the receiving
domain� using standard VM operations�

� Performance

In this section� we evaluate the performance of a
prototype IO�Lite implementation� IO�Lite is im�
plemented as a loadable kernel module that can be
dynamically linked to a slightly modi�ed FreeBSD
����� kernel� A runtime library must be linked with
applications wishing to use the IO�Lite API� This
library provides the bu�er aggregate manipulation
routines and stubs for the IO�Lite system calls�
All experiments use a server system based on
a ���Mhz Pentium II PC equipped with ��
MB
of main memory and �ve network adaptors to a
switched �		Mbps Fast Ethernet�
To fully expose the performance bottlenecks in
the operating system� we use a high�performance in�
house Web server called Flash� Flash is an event�
driven HTTP server with support for CGI� To the
best of our knowledge� Flash is among the fastest
HTTP server currently available� Flash�Lite is a
slightly modi�ed version of Flash that uses the IO�
Lite API�
While Flash uses memory�mapped �les to read
disk data� Flash�Lite uses the IO�Lite read�write in�
terface to access disk �les� In addition� Flash�Lite
uses the IO�Lite support for customization of the
�le caching policy to implement Greedy Dual Size
�GDS�� a policy that performs well on Web work�
loads �
��
For comparison� we also present performance re�
sults with Apache version ������ a widely used Web
server ���� This version uses mmap to read �les and
performs substantially better than earlier versions�
Apache�s performance re�ects what can be expected
of a widely used Web server today�
Flash is an aggressively optimized� experimental
Web server
 it re�ects the best in Web server per�

0 50 100 150 200
0

100

200

300

400

Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure �� HTTP

0 50 100 150 200
0

100

200

300

400

Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure �� Persistent HTTP

formance that can be achieved using the standard
facilities available in a modern operating system�
Flash�Lite�s performance re�ects the additional ben�
e�ts that result from IO�Lite� All Web servers were
con�gured use a TCP socket send bu�er size of
��KBytes
 access logging was disabled�

In the �rst experiment� �	 HTTP clients running
on �ve machines repeatedly request the same docu�
ment of a given size from the server� A client issues a
new request as soon as a response is received for the
previous request ���� The �le size requested varies
from �		 bytes to �		KBytes �the data points below
�	KB are �		 bytes� �KB� �KB� �KB� �KB� �KB�
�	KB and �� KB�� In all cases� the �les are cached
in the server�s �le cache after the �rst request� so no
physical disk I�O occurs in the common case�

Figure � shows the output bandwidth of the vari�
ous Web server as a function of request �le size� Re�
sults are shown for Flash�Lite� Flash and Apache�
Flash performs consistently better than Apache�
with bandwidth improvements up to ��� at a �le
size of �	KBytes� This con�rms that our aggressive
Flash server outperforms the already fast Apache
server�

Flash using IO�Lite �Flash�Lite� delivers a band�
width increase of up to ��� over Flash and up to
���� over Apache� For �le sizes of �KBytes or less�
Flash and Flash�Lite perform equally well� The rea�
son is that at these small sizes� control overheads�
rather than data dependent costs� dominate the cost
of serving a request�

The throughput advantage obtained with IO�Lite
in this experiment re�ects only the savings due to
copy�avoidance and checksum caching� Potential
bene�ts resulting from the elimination of multiple
bu�ering and the customized �le cache replacement
are not realized� because this experiment does not
stress the �le cache �i�e�� a single document is re�
peatedly requested��

��� Persistent connections

The previous experiments are based on HTTP ��	�
where a TCP connection is established by clients for
each individual request� The HTTP ��� speci�cation
adds support for persistent �keep�alive� connections
that can be used by clients to issue multiple requests
in sequence� We modi�ed both versions of Flash to
support persistent connections and repeated the pre�
vious experiment� The results are shown in Figure ��
With persistent connections� the request rate for
small �les �less then �	KBytes� increases signi��
cantly with Flash and Flash�Lite� due to the re�
duced overhead associated with TCP connection es�
tablishment and termination� The overheads of the
process�per�connection model in Apache appear to
prevent that server from fully taking advantage of
this e�ect�
Persistent connections allow Flash�Lite to realize
its full performance advantage over Flash at smaller
�le sizes� For �les of �	KBytes and above� Flash�Lite
outperforms Flash by up to ���� Moreover� Flash�
Lite comes within �	� of saturating the network
at a �le size of only ��KBytes and it saturates the
network for �le sizes of �	KBytes and above�

��� CGI Programs

An area where IO�Lite promises particularly sub�
stantial bene�ts is CGI programs� When compared
to the original CGI ��� standard ���� the newer
FastCGI interface ��� amortizes the cost of forking
and starting a CGI processes by allowing such pro�
cesses to persist across requests� However� there
are still substantial overheads associated with IPC
across pipes and multiple bu�ering� as explained in
Section ����
We performed an experiment to evaluate how IO�
Lite a�ects the performance of dynamic content gen�

0 50 100 150 200
0

100

200

300

400
Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure �� HTTP�Fast CGI

0 50 100 150 200
0

100

200

300

400
Flash−Lite
Flash
Apache

B
an

dw
id

th
 (

M
b/

s)

Document Size (kBytes)

Figure �� P�HTTP�Fast CGI

eration using Fast CGI programs� A test CGI pro�
gram� when receiving a request� sends a �dynamic�
document of a given size from its memory to the
server process via the UNIX pipe
 the server trans�
mits the data on the client�s connection� The results
of these experiments are shown in Figure ��

The bandwidth of the Flash and Apache servers
is roughly half their corresponding bandwidth on
static documents� This shows the strong impact of
the copy�based pipe IPC in regular UNIX on CGI
performance� With Flash�Lite� the performance is
signi�cantly better� approaching
�� of the speed
on static content� Also interesting is that CGI pro�
grams with Flash�Lite achieve performance better
than static �les with Flash�

Figure � shows results of the same experiment us�
ing persistent HTTP���� connections� Unlike Flash�
Lite� Flash and Apache cannot take advantage of the
e�ciency of persistent connections here� since their
performance is limited by the pipe IPC�

The results of these experiments show that IO�
Lite allows a server to e�ciently support dynamic
content using CGI programs� without giving up fault
isolation and protection from such third�party pro�
grams� This suggests that with IO�Lite� there may
be less reason to resort to library�based interfaces for
dynamic content generation� Such interfaces were
de�ned by Netscape and Microsoft ���� ��� to avoid
the overhead of CGI� Since they require third�party
programs to be linked with the server� they give up
fault isolation and protection�

��� Performance On Real Workload

The previous experiments use an arti�cial work�
load� In particular� they use a set of requested docu�
ments that �ts into the server�s main memory cache�
As a result� these experiments only quantify the in�
crease in performance due to the elimination of CPU

Apache Flash Flash�Lite
Requests�sec ��� ���
��
Ratio ��	 ���
 ����

Table �� Rice Trace

overhead with IO�Lite� They do not demonstrate
possible secondary performance bene�ts due to the
increased availability of main memory that results
from IO�Lite�s elimination of double bu�ering� In�
creasing the amount of available memory allows a
larger set of documents to be cached� thus increasing
the server cache hit rate and performance� Finally�
since the cache is not stressed in these experiments�
possible performance bene�ts due to the customized
�le cache replacement policy used in Flash�Lite are
not exposed�
To measure the combined impact of IO�Lite on the
performance of a Web server under realistic work�
load conditions� we performed experiments where
our experimental server is driven by a workload de�
rived from server logs of an actual Web server� We
use logs from Rice University�s Computer Science
departmental Web server� Only requests for static
documents were extracted from the logs�
Table � show the relative performance in re�
quests�sec of Flash�Lite� Flash� and Apache on
the Rice CS department trace� Flash exceeds the
throughput of Apache by �
� on this trace� Flash�
Lite gains ��� throughput over Apache and �	�
over Flash� This demonstrates the e�ectiveness of
IO�Lite under realistic workload conditions� where
the set of requested documents exceeds the cache
size and disk accesses occur� The average request
size in this trace is about ��KBytes�

��� WAN E�ects

Our experimental testbed uses a low�delay LAN
to connect a relatively small number of the clients

to the experimental server� This leaves a signi�cant
aspect of real Web server performance unevaluated�
namely the impact of wide�area network delays and
large numbers of clients ���� In particular� we are
interested here in the TCP retransmission bu�ers
needed to support e�cient communication on con�
nections with substantial bandwidth�delay products�
Since both Apache and Flash use mmap to read
�les� the remaining primary source of double bu�er�
ing is TCP�s transmission bu�ers� The amount of
memory consumed by these bu�ers is related to the
number of concurrent connections handled by the
server� times the socket send bu�er size Tss used
by the server� For good network performance� Tss
must be large enough to accommodate a connec�
tion�s bandwidth�delay product� A typical setting
for Tss in a server today is ��KBytes�
Busy servers may handle several hundred concur�

rent connections� resulting in signi�cant memory re�
quirements even in the current Internet� With fu�
ture increases in Internet bandwidth� the necessary
Tss settings needed for good network performance
are likely to increase signi�cantly� This makes it in�
creasingly important to eliminate double bu�ering�
The BSD UNIX network subsystem dynamically

allocates mbufs to hold data in socket bu�ers� When
the server is contacted by a large number of clients
concurrently and the server transmits on each con�
nection an amount of data equal or larger than Tss�
then the system may be forced to allocate su�cient
mbufs to hold Tss bytes for each connection� More�
over� in FreeBSD and other BSD�derived system� the
size of the mbuf pools is never decreased� That is�
once the mbuf pool has grown to a certain size� its
memory is permanently unavailable for other uses�
such as the �le cache�
To quantify this e�ect� we performed an experi�
ment where an increasing number of �slow� back�
ground clients contact the server� These clients re�
quest a document� but are slow to read the data
from their end of the TCP connection� which has a
small receive bu�er ��KB�� This forces the server to
bu�er data in its socket send bu�ers and simulates
the e�ect of WAN connections on the server�
As the number of clients increases� more memory

is used to hold data in the server�s socket bu�ers�
increasing memory pressure and reducing the size
of the �le cache� With IO�Lite� however� socket
send bu�ers do not require separate memory since
they refer to data stored in IO�Lite bu�ers�� Dou�
ble bu�ering is eliminated� and the amount of mem�
ory available for the �le cache remains independent

�A small amount of memory is required to holdmbuf struc�
tures�

of the number of concurrent clients contacting the
server and the setting of Tss�

 0 16 32 64 128 256
0

200

400

600

800

1000

Flash−Lite
Flash
Apache

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

slow clients

Figure �� Throughput vs� �clients

Figure � shows the performance of Apache� Flash
and Flash�Lite as a function of the number of slow
clients contacting the server� As expected� Flash�
Lite remains una�ected by the number of slow clients
contacting the server� up to experimental noise�
Apache su�ers up to ��� and Flash up to �	�
throughput loss as the number of clients increases�
reducing the available cache size� For �� slow clients
and more� Flash�Lite is close to
	� faster than
Flash
 for �� slow clients and more� Flash�Lite is
��	� faster than Apache�
The results con�rm IO�Lite�s ability to eliminate
double bu�ering in the network subsystem� This
e�ect gains in importance both as the number of
concurrent clients and the setting of Tss increases�
Future increases in Internet bandwidth will require
larger Tss settings to achieve good network utiliza�
tion�

��� Applications

To demonstrate the impact of IO�Lite on the per�
formance of a wider range of applications� and also
to gain experience with the use of the IO�Lite API� a
number of existing UNIX programs were converted
and some new programs were written to use IO�Lite�
We modi�ed GNU grep� wc� cat� and the GNU gcc
compiler chain �compiler driver� C preprocessor� C
compiler� and assembler�� Figure
 depicts the re�
sults obtained with grep� wc� and permute� The
�wc� refers to a run of the word�count program on a
���� MB �le� The �le is in the �le cache� so no phys�
ical I�O occurs� �Permute� generates all possible
permutations of
 character words in a
	 character
string� Its output ��	� �
	 � ��	�	�			 bytes� is
piped into the �wc� program� The �grep� bar refers
to a run of the GNU grep program on the same �le

 grep wc permute gcc sm gcc lg
 0

.2

.4

.6

.8

 1

No

rm
ali

ze
d r

un
 ti

m
e

81.1 ms

100 ms

16.3 s 0.42 s

8.54 s

152 ms 117 ms 22.4 s 0.59 s 8.82 s

Figure
� Various application runtimes

used for the �wc� program� but the �le is piped into
wc from cat instead of being read directly from disk�

Improvements in runtime of approximately ���
result from the use of IO�Lite for wc� since it reads
cached �les� When a �le is read from the IO�Lite �le
cache� each page of the cached �le must be mapped
into the application�s address space� For the �per�
mute� program the improvement is more signi�cant
������ The reason is that a pipeline is involved
in the latter program� Whenever local interprocess
communication occurs� the IO�Lite implementation
can recycle bu�ers� avoiding all VM map operations�
Finally� in the �grep� case� the overhead of multiple
copies is eliminated� so the IO�Lite version is able to
eliminate � copies �one due to �grep�� and two due
to �cat���

The gcc compiler chain was converted mainly to
determine if there were bene�ts from IO�Lite for
more compute�bound applications and to stress the
IO�Lite implementation� We expected that a com�
piler is too compute�intensive to bene�t substan�
tially from I�O performance improvements� Rather
than modify the entire program� we simply replaced
the stdio library with a version that uses IO�Lite
for communication over pipes� Interestingly� con�
verting the compiler to use IO�Lite actually led to
a measurable performance improvement� The im�
provement is mainly due to the fact that IO�Lite
allows e�cient communication through pipes� Al�
though the standard gcc has an option that causes
the use of pipes instead of temporary �les for com�
munication between the compiler�s various stages�
various ine�ciencies in the handling of pipes actu�
ally caused a signi�cant slowdown� so the baseline
gcc numbers used for comparison are for gcc run�
ning without pipes� Since IO�Lite can handle pipes
very e�ciently� unexpected performance improve�
ments resulted from its use� The �gcc sm� and �gcc
lg� bars refer to compiles of a ��		 Byte and a �	�
KByte �le� respectively�

The �grep� and �wc� programs read their input

sequentially� and were converted to use the IO�Lite
API� The C preprocessor�s output� the compiler�s
input and output� and the assembler�s input all use
the C stdio library� and were converted merely by
relinking them with an IO�Lite version of stdio li�
brary� The preprocessor �cpp� uses mmap to read
its input�

� Related Work

This section discusses related work� In particular�
we examine how existing and proposed I�O systems
a�ect the design and performance of a Web server�
We begin with the standard UNIX �POSIX� I�O in�
terface� and go on to more aggressively optimized
I�O systems proposed in the literature�
POSIX I�O� The UNIX�POSIX read�readv op�
erations allow an application to request the place�
ment of input data at an arbitrary �set of� loca�
tion�s� in its private address space� Furthermore�
both the read�readv and write�writev operations
have copy semantics� implying that applications can
modify data that was read�written from�to an ex�
ternal data object without a�ecting that data ob�
ject� In typical use� this interface and its semantics
can not generally be implemented without physical
copying of data�
To avoid the copying associated with reading a �le
repeatedly from the �lesystem� a Web server using
this interface would have to maintain a user�level
cache of Web documents� leading to double�bu�ering
in the disk cache and the server� When serving a
request� data is copied into socket bu�ers� creating
a third copy� CGI programs ��� cause data to be
additionally copied from the CGI program into the
server�s bu�ers via a pipe� possibly involving kernel
bu�ers�
Memory�mapped �les� The semantics of
mmap facilitate a copy�free implementation� but the
contiguous mapping requirement may still demand
copying in the OS for data that arrives from the net�
work� Like IO�Lite� mmap avoids multiple bu�ering
of �le data in �le cache and application�s�� Unlike
IO�Lite� mmap does not generalize to network I�O�
so double bu�ering �and copying� still occurs in the
network subsystem�
Moreover� memory�mapped �les do not provide a
convenient method for implementing CGI support�
since they lack support for producer�consumer syn�
chronization between CGI program and the server�
Having the server and the CGI program share
memory�mapped �les for IPC requires ad�hoc syn�
chronization and sacri�ces the simplicity of socket�

based communication�
Transparent Copy Avoidance� In principle�

copy avoidance and single bu�ering can be ac�
complished transparently� through the use of page
remapping and copy�on�write� Well�known di�cul�
ties with this approach are alignment restrictions
and the overhead of VM data structure manipula�
tions�

Dealing with VM alignment restrictions leads to
the idea of input alignment as used in the emulated
copy technique in Genie ���� Here� the idea is to try
and align system bu�ers with the application�s data
bu�ers� allowing page swapping even if application
bu�ers are not page�aligned� To allow proper align�
ment of the system bu�ers� the application�s read
operation must be posted before the data arrives in
main memory� If this is not possible� the applica�
tion can query the kernel for the page o�set of the
system�s bu�ers� and align its bu�ers accordingly�
Input alignment is not transparent to applications�
Emulated copy achieves transparency only for one
side of an IPC channel� While this is well�suited for
communication between an application and an OS
kernel�server� it cannot transparently support gen�
eral copy�free IPC among application processes�

IO�Lite does not attempt to provide transparent
copy avoidance� I�O�intensive applications can be
written�modi�ed to use the IO�Lite API� Legacy ap�
plications with less stringent performance require�
ments can be supported in a backward�compatible
fashion at the cost of a copy operation� as in con�
ventional systems� By giving up transparency and
in�place modi�cations� IO�Lite can support general
copy�free I�O� including IPC and data paths that
involve the �le cache�

Since transparent copy�avoidance approaches can�
not allow concurrent sharing� they are not suitable
for a uni�ed bu�ering�caching mechanism� as cached
�le data cannot be concurrently shared� This would
lead to multiple bu�ering in a Web server� More�
over� the lack of general copy�free IPC hampers the
performance of CGI programs�

Copy Avoidance with Hando� Semantics�
The Container Shipping �CS� I�O system ���� and
Thadani and Khalidi ��	� use I�O read and write
operations with hando� �move� semantics� Like IO�
Lite� these systems require applications to process
I�O data at a given location� Unlike IO�Lite� they al�
low applications to modify I�O bu�ers in�place� This
is safe because the hando� semantics permits only
sequential sharing of I�O data bu�ers i�e�� only one
protection domain has access to a given bu�er at any
time�

Sacri�cing concurrent sharing comes at a cost�

Since an application loses access to a bu�er that
it passed as an argument to a write operation� an
explicit physical copy is necessary if the application
needs access to the data after the write� Moreover�
when an application reads from a �le while a second
application is holding cached bu�ers for the same
�le� a second copy of the data must be read from
the input device� This demonstrates that the lack of
support for concurrent sharing prevents an e�ective
integration of a copy�free I�O bu�ering scheme with
the �le cache� In a Web server� lack of concurrent
sharing requires copying of �hot� pages� making the
common case more expensive� CGI programs that
produce entirely new data for every request �as op�
posed to returning part of a �le or a set of �les� are
not a�ected� but CGI programs that try to intelli�
gently cache data su�er copying costs�

Fbufs� Fbufs is a copy�free cross�domain trans�
fer and bu�ering mechanism for I�O data� based on
immutable bu�ers that can be concurrently shared�
The fbufs system was designed primarily for han�
dling network streams� was implemented in a non�
UNIX environment� and does not support �lesystem
access or a �le cache� IO�Lite�s cross�domain trans�
fer mechanismwas inspired by fbufs� When trying to
use fbufs in aWeb server� the lack of integration with
the �lesystem would result in the double�bu�ering
problem� Their use as an interprocess communica�
tion facility would bene�t CGI programs� but with
the same restrictions on �lesystem access�

Extensible Kernels� Recent work has proposed
the use of of extensible kernels ��� �	� ��� �
� to ad�
dress a variety of problems associated with existing
operating systems� Extensible kernels can poten�
tially address many di�erent OS performance prob�
lems� not just the I�O bottleneck that is the focus
of our work�

In contrast to extensible kernels� IO�Lite is di�
rectly applicable to existing general�purpose op�
erating systems and provides an application�
independent scheme for addressing the I�O bottle�
neck� Our approach avoids the complexity and the
overhead of new safety provisions required by exten�
sible kernels� It also relieves the implementors of
servers and applications from having to write OS�
speci�c kernel extensions�

CGI programs may pose problems for extensi�
ble kernel�based Web servers� since some protec�
tion mechanism must be used to insulate the server
from poorly�behaved programs� Conventional Web
servers and Flash�Lite rely on the operating system
to provide protection between the CGI process and
the server� and the server does not extend any trust
to the CGI process� As a result� the malicious or

inadvertent failure of a CGI program will not a�ect
the server�

To summarize� IO�Lite di�ers from existing work
in its generality� its integration of the �le cache� its
support for cross�subsystem optimizations� and its
direct applicability to general�purpose operating sys�
tems� IO�Lite is a general I�O bu�ering and caching
system that avoids all redundant copying and mul�
tiple bu�ering of I�O data� even on complex data
paths that involve the �le cache� interprocess com�
munication facilities� network subsystem and multi�
ple application processes�

� Conclusion

This paper presents the design� implementation�
and evaluation of IO�Lite� a uni�ed bu�ering and
caching system for general�purpose operating sys�
tems� IO�Lite improves the performance of servers
and other I�O�intensive applications by eliminating
all redundant copying and multiple bu�ering of I�O
data� and by enabling optimizations across subsys�
tems�

Experimental results from a prototype implemen�
tation in FreeBSD show performance improvements
between �	 and
	� over an already aggressively
optimized Web server without IO�Lite� both on syn�
thetic and on real workloads derived from Web
server logs� IO�Lite also allows the e�cient sup�
port of CGI programs without loss of fault isolation
and protection� Further results show that IO�Lite
reduces memory requirements associated with the
support of large numbers of client connections and
large bandwidth�delay products in Web servers by
eliminating multiple bu�ering� leading to increased
throughput�

References

��� The common gateway interface�
http���hoohoo�ncsa�uiuc�edu�cgi��

��� Fastcgi speci�cation� http���www�fastcgi�com��

��� Apache� http���www�apache�org��

��� G� Banga and P� Druschel� Measuring the ca�
pacity of a Web server under realistic loads�
World Wide Web Journal �Special Issue on
World Wide Web Characterization and Perfor�
mance Evaluation�� ����� To appear�

��� B� N� Bershad� S� Savage� P� Pardyak� E� G�
Sirer� M� E� Fiuczynski� D� Becker� C� Cham�
bers� and S� Eggers� Extensibility� safety and
performance in the SPIN operating system� In
Proceedings of the Fifteenth ACM Symposium
on Operating System Principles� Copper Moun�
tain� CO� Dec� �����

��� J� C� Brustoloni and P� Steenkiste� E�ects of
bu�ering semantics on I�O performance� In
Proc� �nd Symp� on Operating Systems Design
and Implementation� Seattle WA �USA�� Oct�
�����

��� P� Cao and E� Felten� Implementation and per�
formance of application�controlled �le caching�
In Proceedings of the First USENIX Symposium
on Operating System Design and Implementa�
tion� pages ���!���� �����

�
� P� Cao and S� Irani� Cost�aware WWW
proxy caching algorithms� In Proceedings of
the USENIX Symposium on Internet Technolo�
gies and Systems �USITS�� Monterey� CA� Dec�
�����

��� P� Druschel and L� L� Peterson� Fbufs� A high�
bandwidth cross�domain transfer facility� In
Proceedings of the Fourteenth ACM Symposium
on Operating System Principles� pages �
�!�	��
Dec� �����

��	� D� R� Engler� M� F� Kaashoek� and J� O�Toole�
Exokernel� An operating system architecture
for application�level resource management� In
Proceedings of the Fifteenth ACM Symposium
on Operating System Principles� Copper Moun�
tain� CO� Dec� �����

���� N� C� Hutchinson and L� L� Peterson� The x�
kernel� An architecture for implementing net�
work protocols� IEEE Transactions on Software
Engineering� ��������!��� Jan� �����

���� Microsoft Corporation ISAPI Overview�
http���www�microsoft�com�msdn�sdk�plat�
forms�doc�sdk�internet�src�isapimrg�htm�

���� M� F� Kaashoek� D� R� Engler� G� R� Ganger�
H� M� B� no� R� Hunt� D� Mazi"eres� T� Pinck�
ney� R� Grimm� J� Jannotti� and K� MacKenzie�
Application performance and �exibility on ex�
okernel systems� In Proceedings of the Sixteenth
ACM Symposium on Operating System Princi�
ples� San Malo� France� Oct� �����

���� M� K� McKusick� K� Bostic� M� J� Karels� and
J� S� Quarterman� The Design and Implementa�
tion of the ���BSD Operating System� Addison�
Wesley Publishing Company� �����

���� Netscape Server API� http���www�net�
scape�com�newsref�std�server api�html�

���� V� S� Pai� P� Druschel� and W� Zwaenepoel�
I�O�Lite� A uni�ed I�O bu�ering and caching
system� Technical Report �
����� Department
of Computer Science� Rice University� ���
�

���� J� Pasquale� E� Anderson� and P� K� Muller�
Container Shipping� Operating system support
for I�O�intensive applications� IEEE Computer�
������
�!��� Mar� �����

��
� M� I� Seltzer� Y� Endo� C� Small� and K� A�
Smith� Dealing with disaster� Surviving misbe�
haved kernel extensions� In Proc� �nd Symp� on
Operating Systems Design and Implementation�
Seattle� WA� Oct� �����

���� D� L� Tennenhouse� Layered multiplex�
ing considered harmful� In H� Rudin and
R� Williamson� editors� Protocols for High�
Speed Networks� pages ���!��
� Amsterdam�
��
�� North�Holland�

��	� M� N� Thadani and Y� A� Khalidi� An e�cient
zero�copy I�O framework for UNIX� Techni�
cal Report SMLI TR������� Sun Microsystems
Laboratories� Inc�� May �����

