
E�cient Support for P�HTTP in Cluster�Based Web Servers �

Mohit Aron Peter Druschel Willy Zwaenepoel

Department of Computer Science

Rice University

Abstract

This paper studies mechanisms and policies
for supporting HTTP���� persistent connections
in cluster�based Web servers that employ content�
based request distribution� We present two mech�
anisms for the e�cient� content�based distribution
of HTTP���� requests among the back�end nodes of
a cluster server� A trace�driven simulation shows
that these mechanisms� combined with an extension
of the locality�aware request distribution �LARD�
policy� are e�ective in yielding scalable performance
for HTTP���� requests� We implemented the sim�
pler of these two mechanisms� back�end forwarding�
Measurements of this mechanism in connection with
extended LARD on a prototype cluster� driven with
traces from actual Web servers� con	rm the simula�
tion results� The throughput of the prototype is up
to four times better than that achieved by conven�
tional weighted round�robin request distribution� In
addition� throughput with persistent connections is
up to
�� better than without�

� Introduction

Clusters of commodity workstations are be�
coming an increasingly popular hardware platform
for cost�e�ective high performance network servers�
Achieving scalable server performance on these plat�
forms is critical to delivering high performance to
users in a cost�e�ective manner�

State�of�the�art cluster�based Web servers em�
ploy a front�end node that is responsible for dis�
tributing incoming requests to the back�end nodes
in a manner that is transparent to clients� Typically�
the front�end distributes the requests such that the
load among the back�end nodes is balanced� With
content�based request distribution� the front�end ad�
ditionally takes into account the content or type of
service requested when deciding to which back�end
node a client request should be assigned�

Content�based request distribution allows the in�
tegration of server nodes that are specialized for cer�

�To appear in Proc� of the ���� Annual Usenix Technical
Conference� Monterey� CA� June �����

tain types of content or services �e�g�� audio�video��
it permits the partitioning of the server
s database
for scalability� and it enables clever request distribu�
tion policies that improve performance� In previous
work� we proposed locality�aware request distribution
�LARD�� a content�based policy that achieves good
cache hit rates in addition to load balance by dynam�
ically partitioning the server
s working set among
the back�end nodes �
���

In this paper� we investigate mechanisms and
policies for content�based request distribution in
the presence of HTTP���� ���� persistent �keep�
alive� client connections �P�HTTP�� Persistent con�
nections allow HTTP clients to submit multiple re�
quests to a given server using a single TCP con�
nection� thereby reducing client latency and server
overhead ����� Unfortunately� persistent connections
pose problems for clusters that use content�based re�
quest distribution� since requests in a single connec�
tion may have to be assigned to di�erent back�end
nodes to satisfy the distribution policy�

This paper describes e�cient mechanisms for
content�based request distribution and an extension
of the LARD policy in the presence of HTTP����
connections� It presents a simulation study of these
mechanisms� and it reports experimental results
from a prototype cluster implementation� The re�
sults show that persistent connections can be sup�
ported e�ciently on cluster�based Web servers with
content�based request distribution� In particular� we
demonstrate that using back�end forwarding� an ex�
tended LARD policy achieves up to
�� better per�
formance with persistent connections than without�

The rest of the paper is organized as follows�
Section
 provides some background information
on HTTP���� and LARD� and states the problems
posed by HTTP���� for clusters with content�based
request distribution� Section � considers mecha�
nisms for achieving content�based request distribu�
tion in the presence of HTTP���� persistent connec�
tions� The extended LARD policy is presented in
Section �� Section � presents a performance analysis
of our request distribution mechanisms� A simula�
tion study of the various mechanisms and the ex�

tended LARD policy is described in Section �� Sec�
tion � discusses a prototype implementation� and
Section � reports measurement results obtained us�
ing that prototype� We discuss related work in Sec�
tion �� and conclude in Section ���

� Background

This section provides background information on
persistent connections in HTTP����� content�based
request distribution� and the LARD strategy� Fi�
nally� we state the problem that persistent connec�
tions pose to content�based request distribution�

��� HTTP���� persistent connections

Obtaining an HTML document typically in�
volves several HTTP requests to the Web server�
to fetch embedded images� etc� Browsers using
HTTP���� ��� send each request on a separate TCP
connection� This increases the latency perceived by
the client� the number of network packets� and the
resource requirements on the server ����

��

HTTP���� enables browsers to send several
HTTP requests to the server on a single TCP con�
nection� In anticipation of receiving further re�
quests� the server keeps the connection open for a
con	gurable interval �typically �� seconds� after re�
ceiving a request � This method amortizes the over�
head of establishing a TCP connection �CPU� net�
work packets� over multiple HTTP requests� and
it allows for pipelining of requests ����� Moreover�
sending multiple server responses on a single TCP
connection in short succession avoids multiple TCP
slow�starts �
��� thus increasing network utilization
and e�ective bandwidth perceived by the client�

RFC
��� ���� speci	es that for the purpose of
backward compatibility� clients and servers using
HTTP���� can use persistent connections through
an explicit HTTP header� However� for the rest of
this paper� HTTP���� connections are assumed not
to support persistence� Moreover� this paper does
not consider any new features in HTTP���� over
HTTP���� other than support for persistent connec�
tions and request pipelining�

��� Content�based Request Distribution

Content�based request distribution is a tech�
nique employed in cluster�based network servers�
where the front�end takes into account the ser�
vice�content requested when deciding which back�
end node should serve a given request� In contrast�
the purely load�based schemes like weighted round�
robin �WRR� used in commercial high performance
cluster servers ���� �� distribute incoming requests in
a round�robin fashion� weighted by some measure of
load on the di�erent back�end nodes�

The potential advantages of content�based re�
quest distribution are� ��� increased performance
due to improved hit rates in the back�end
s main
memory caches� �
� increased secondary storage
scalability due to the ability to partition the server
s
database over the di�erent back�end nodes� and ���
the ability to employ back�end nodes that are spe�
cialized for certain types of requests �e�g�� audio and
video��

With content�based request distribution� the
front�end must establish the TCP connection with
the client prior to assigning the connection to a back�
end node� since the nature and the target� of the
client
s request in�uences the assignment� Thus� a
mechanism is required that allows a chosen back�
end node to serve a request on the TCP connection
established by the front�end� For reasons of perfor�
mance� security� and interoperability� it is desirable
that this mechanism be transparent to the client�
We will discuss mechanisms for this purpose in Sec�
tion ��

��� Locality�aware request distribution

Locality�aware request distribution �LARD� is a
speci	c strategy for content�based request distribu�
tion that focuses on the 	rst of the advantages cited
above� namely improved cache hit rates in the back�
ends �
��� LARD strives to improve cluster perfor�
mance by simultaneously achieving load balancing
and high cache hit rates at the back�ends�

Figure � illustrates the principle of LARD in
a cluster with two back�ends and a working set of
three targets �A� B� and C� in the incoming request
stream� The front�end directs all requests for A to
back�end �� and all requests for B and C to back�end

� By doing so� there is an increased likelihood that
the request 	nds the requested target in the cache
at the back�end�

In contrast� with a round�robin distribution of
incoming requests� requests for all three targets will
arrive at both back�ends� This increases the like�
lihood of a cache miss� if the sum of the sizes of
the three targets� or� more generally� if the size of
the working set exceeds the size of the main mem�
ory cache at an individual back�end node� Thus�
with a round�robin distribution� the cluster does not
scale well to larger working sets� as each node
s main
memory cache has to 	t the entire working set� With
LARD� the e�ective cache size approaches the sum of
the individual node cache sizes� Thus� adding nodes
to a cluster can accommodate both increased tra�c

�In the following discussion� the term target is used to refer
to a Web document� speci�ed by a URL and any applicable
arguments to the HTTP GET command�

Figure �� Locality�Aware Request Distribution

�due to additional CPU power� and larger working
sets �due to the increased e�ective cache size��

��� The problem with HTTP����

HTTP���� persistent connections pose a prob�
lem for clusters that employ content�based request
distribution� including LARD� The problem is that
existing� scalable mechanisms for content�based dis�
tribution operate at the granularity of TCP connec�
tions� With HTTP����� multiple HTTP requests
may arrive on a single TCP connection� Therefore�
a mechanism that distributes load at the granularity
of a TCP connection constrains the feasible distri�
bution policies� because all requests arriving on a
given connection must be served by a single back�
end node�

This constraint is most serious in clusters where
certain requests can only be served by a subset of
the back�end nodes� Here� the problem is one of cor�
rectness� since a back�end node may receive requests
that it cannot serve�

In clusters where each node is capable of serving
any valid request� but the LARD policy is used to
partition the working set� performance loss may re�
sult since a back�end node may receive requests not
in its current share of the working set� As we will
show in Section �� this performance loss can more
than o�set the performance advantages of using per�
sistent connections in cluster servers�

� Mechanisms for content�based re�

quest distribution

A front�end that performs content�based request
distribution must establish a client HTTP connec�
tion before it can decide which back�end node should
serve the request� Therefore� it needs a mechanism
that allows it to have the chosen back�end node serve
request�s� on the established client connection� In
this section� we discuss such mechanisms�

The simplest mechanisms work by having the
front�end �redirect� the client browser to the cho�
sen back�end node� by sending an HTTP redirect

response� or by returning a Java applet that con�
tacts the appropriate back�end when executed in the
browser ����

These mechanisms work also for persistent con�
nections� but they have serious drawbacks� The
redirection introduces additional delay� the address
of individual back�end nodes is exposed to clients�
which increases security risks� and� simple or out�
dated browsers may not support redirection� For
these reasons� we only consider client�transparent
mechanisms in the remainder of this paper�

��� Relaying front�end

A simple client�transparent mechanism is a re�
laying front�end� Figure
 depicts this mechanism
and the other mechanisms discussed in the rest of
this section� Here� the front�end maintains persis�
tent connections �back�end connections� with all of
the back�end nodes� When a request arrives on a
client connection� the front�end assigns the request�
and forwards the client
s HTTP request message on
the appropriate back�end connection� When the re�
sponse arrives from the back�end node� the front�end
forwards the data on the client connection� bu�ering
the data if necessary�

The principal advantage of this approach is its
simplicity� its transparency to both clients and back�
end nodes� and the fact that it allows content�based
distribution at the granularity of individual requests�
even in the presence of HTTP���� persistent connec�
tions�

A serious disadvantage� however� is the fact that
all response data must be forwarded by the front�
end� This may render the front�end a bottleneck�
unless the front�end uses substantially more power�
ful hardware than the back�ends� It is conceivable
that small clusters could be built using as a front�end
a specialized layer � switch with the ability to relay
transport connections� We are� however� not aware
of any actual implementations of this approach� Fur�
thermore� results presented in Section ��� indicate
that� even when the front�end is not a bottleneck� a
relaying front�end does not o�er signi	cant perfor�

���
���
���
���

������

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

Back-End
Client
Front-End

response
request

Relaying front-end Multiple handoff Back-end forwarding

Figure
� Mechanisms for request distribution

mance advantages over more scalable mechanisms�

��� Multiple TCP connection hando�

A more complex mechanism involves the use of a
TCP hando� protocol among front�end and back�end
nodes� The hando� protocol allows the front�end to
transfer its end of an established client connection
to a back�end node� Once the state is transferred�
the back�end transmits response data directly to the
client� bypassing the front�end� Data from the client
�primarily TCP ACK packets� are forwarded by the
front�end to the appropriate back�end node in an
e�cient manner�

In previous work� we have designed� imple�
mented� and evaluated a hando� protocol for
HTTP���� �
��� This single hando� protocol can
support persistent connections� but all requests must
be served by the back�end node to which the connec�
tion was originally handed o��

The design of this hando� protocol can be ex�
tended to support HTTP���� by allowing the front�
end to migrate a connection between back�end
nodes� The advantage of this multiple hando� pro�
tocol is that it allows content�based request distri�
bution at the granularity of individual requests in
the presence of persistent connections� Unlike front�
end relaying� the hando� approach is e�cient and
scalable since response network tra�c bypasses the
front�end�

The hando� approach requires the operating sys�
tems on front�end and back�end nodes to be cus�
tomized with a vendor�speci	c loadable kernel mod�
ule� The design of such a module is relatively com�
plex� especially if multiple hando� is to be sup�
ported� To preserve the advantages of persistent
connections � reduced server overhead and reduced

client latency � the overhead of migrating connec�
tions between back�end nodes must be kept low� and
the TCP pipeline must be kept from draining during
migration�

��� Back�end request forwarding

A third mechanism� back�end request forwarding�
combines the TCP single hando� protocol with for�
warding of requests and responses among back�end
nodes� In this approach� the front�end hands o�
client connections to an appropriate back�end node
using the TCP single hando� protocol� When a re�
quest arrives on a persistent connection that cannot
�or should not� be served by the back�end node that
is currently handling the connection� the connection
is not handed o� to another back�end node�

Instead� the front�end informs the connection
handling back�end node A which other back�end
node B should serve the o�ending request� Back�
end node A then requests the content or service in
question directly from node B� and forwards the re�
sponse to the client on its client connection� Depend�
ing on the implementation� these �lateral� requests
are forwarded through persistent HTTP connections
among the back�end nodes� or through a network 	le
system�

The advantages of back�end request forwarding
lie in the fact that the complexity and overhead of
multiple TCP hando� can be avoided� The disad�
vantage is the overhead of forwarding responses on
the connection handling back�end node� This obser�
vation suggests that the back�end request forwarding
mechanism is appropriate for requests that result in
relatively small amounts of response data� Results
presented in Section � show that due to the rela�
tively small average content size in today
s Web traf�
	c ���� ��� the back�end request forwarding approach

max acceptable
delay difference

overload

D
el

ay

L

T
h

ro
u

g
h

p
u

t

L
idle

Load

Load

Figure �� Server Throughput and Delay

is very competitive�

� Policies

This section presents an extension of the LARD
policy that works e�ciently in the presence of
HTTP���� persistent connections� when used with
the back�end request forwarding mechanisms pre�
sented in the previous section�

Both the front�end relaying mechanism and the
TCP multiple hando� mechanism allow requests to
be distributed at the granularity of individual re�
quests� As such� they do not place any restriction
on the request distribution policies that can be used�
In particular� the LARD policy can be used in com�
bination with these mechanisms without loss of lo�
cality�

The back�end forwarding mechanism� on the
other hand� does place restrictions on the distribu�
tion policy� as it mandates that a connection can
be handed o� to a back�end node only once� If re�
quests arrive on a persistent connection that cannot
or should not be served by that back�end node� the
policy must instruct that back�end node to forward
the request to another back�end node�

We have developed an extension of the LARD
policy that can e�ciently distribute HTTP���� re�
quests in a cluster that uses the back�end forward�
ing mechanism� The following subsection brie�y
presents the standard LARD strategy� Then� we
proceed to present our extension�

��� The LARD strategy

The LARD strategy yields scalable performance
by achieving both load balancing and cache local�
ity at the back�end servers� For the purpose of
achieving cache locality� LARD maintains mappings
between targets and back�end nodes� such that a
target is considered to be cached on its associ�
ated back�end nodes� To achieve a balance be�
tween load distribution and locality� LARD uses
three cost metrics� cost balancing� cost locality and
cost replacement� The intuition for the de	nition of
these metrics can be explained using Figure �� which
shows the throughput and delay characteristics of a
typical back�end server as a function of load �mea�
sured in number of active connections��

The load point Lidle de	nes a value below
which a back�end node is potentially underutilized�
Loverload is de	ned such that the di�erence in delay
between a back�end node operating at or above this
load� compared to a back�end node operating at the
point Lidle� becomes unacceptable�

The metric cost balancing captures the delay in
the servicing of a request because of other queued
requests� Cost locality� on the other hand� re�ects
the delay arising due to the presence or absence of
the target in the cache� Cost replacement is a cost
that re�ects the potential future overhead caused by
the replacement of a target in the cache� The three
cost metrics are then de	ned as shown in Figure ��

The unit of cost �and also of load� is de	ned to
be the delay experienced by a request for a cached
target at an otherwise unloaded server� The ag�
gregate cost for sending the request to a particular
server is de	ned as the sum of the values returned
by the above three cost metrics� When a request ar�
rives at the front�end� the LARD policy assigns the
request to the back�end node that yields the mini�
mum aggregate cost among all nodes� and updates
the mappings to re�ect that the requested target will
be cached at that back�end node��

Our experimental results with the Apache �����
webserver running on FreeBSD�
�
�� indicate set�
tings of Loverload to ���� Lidle to �� and Miss Cost

to ��� We have used these settings both for our sim�
ulator as well as for our prototype results in this
paper�

��� The extended HTTP���� LARD
strategy

The basic LARD strategy bases its choice of a
back�end node to serve a given request only on the

�Although we present LARD di�erently than in Pai et
al� ���	� it can be proven that the strategies are equivalent
when Lidle � Tlow and Miss Cost � Thigh � Tlow �

cost balancing�target� server� �

��
�

� Load�server� � Lidle

Infinity Load�server� � Loverload

Load�server� � Lidle otherwise

cost locality�target� server� �

�
� target is mapped to server

Miss Cost otherwise

cost replacement�target� server� �

��
�

� Load�server� � Lidle

� target is mapped to server

Miss Cost otherwise

Figure �� LARD Cost Metrics

current load and the current assignment of content
to back�end nodes �i�e�� the current partitioning of
the working set�� An extended policy that works for
HTTP���� connections with the back�end forward�
ing mechanisms has to consider additional factors�
because the choice of a back�end node to serve a
request arriving on a persistent connection may al�
ready be constrained by the choice of the back�end
node to which the connection was handed o�� In
particular� the policy must make the following con�
siderations�

�� The best choice of a back�end node to han�
dle a persistent connection depends on all the
requests expected on the connection�

� Assigning a request to a back�end node other
than the connection handling node causes ad�
ditional forwarding overhead� This overhead
must be weighed against the cost of reading the
requested content from the connection han�
dling node
s local disk�

�� Given that a requested content has to be
fetched from the local disk or requested from
another back�end node� should that content
be cached on the connection handling node�
Caching the content reduces the cost of future
requests for the content on the node handling
the connection� but it also causes potential
replication of the content on multiple back�end
nodes� thus reducing the aggregate size of the
server cache�

The intuition behind the extended LARD policy
is as follows� Regarding ���� due to the structure
of typical Web documents� additional requests on a
persistent connection normally do not arrive until
after the response to the 	rst request is delivered to
the client� For this reason� the front�end has to base
its choice of a back�end node to handle the connec�
tion on knowledge of only the 	rst request�

With respect to �
�� our extended LARD policy
adds two additional considerations when choosing
a node to handle a request arriving on an already
handed o� persistent connection� First� as long as
the utilization on the connection handling node
s lo�
cal disk is low� the content is read from that disk�
avoiding the forwarding overhead� Second� in choos�
ing a back�end to forward the request to� the policy
only considers those nodes as candidates that cur�
rently cache the requested target�

Regarding ���� the extended LARD policy uses
a simple heuristic to decide whether content should
be cached on the connection handling node� When
the disk utilization on the connection handling node
is high� it is assumed that the node
s main memory
cache is already thrashing� Therefore� the requested
content is not cached locally� If the disk utilization
is low� then the requested content is added to the
node
s cache�

We now present the extended LARD policy�
When the 	rst request arrives on a persistent con�
nection� the connection handling node is chosen us�
ing the basic LARD policy described in Section ����
For each subsequent request on the persistent con�
nection�

� If the target is cached at the connection han�
dling node or if the disk utilization on the
connection handling node is low �less than �
queued disk events�� then the request is as�
signed to the same�

� Else� the three cost metrics presented in Sec�
tion ��� are computed over the connection han�
dling node and any other back�end nodes that
have the target cached� The request is then
assigned to the node that yields the minimum
aggregate cost�

For the purpose of computing the LARD cost
metrics� a single load unit is assigned to the connec�

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

apache−multiHandoff

apache−BEforward

B
an

dw
id

th
 (

M
b/

s)

Average file size (KB)

Figure �� Apache

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

flash−multiHandoff

flash−BEforward

B
an

dw
id

th
 (

M
b/

s)

Average file size (KB)

Figure �� Flash

tion handling node for each active connection that
it handles� When the back�end forwarding mecha�
nism is used to fetch documents from other nodes�
every such node is additionally assigned a load of
��N units�where N is the number of outstanding re�
quests in a batch of pipelined HTTP���� requests�
for the duration of the request handling of all N re�
quests�

Ideally� the front�end should assign a load of � to
a remote node during the service time of a request�
However� the front�end cannot determine when ex�
actly a HTTP���� request is being served� it can�
however� estimate the service time for a batch of N
pipelined HTTP���� requests� Therefore� it assigns
a load of ��N to each remote node for the entire
batch service time�

The front�end estimates N as the number of re�
quests in the last batch of closely spaced requests
that arrived on the connection and it estimates the
batch service time as the time it takes until the next
batch arrives or the connection goes idle�� That is�
the front�end assumes that all previous requests have
	nished once a new batch of requests arrives on the
same connection�

As in LARD� mappings between targets and
back�end nodes are updated each time a target is
fetched from a back�end node� It is to be noted that
the extended LARD policy is equivalent to LARD
for HTTP���� requests�

� Performance Analysis of Distribu�
tion Mechanisms

This section presents a simple analysis of the fun�
damental performance tradeo� in the use of the mul�
tiple hando� mechanism versus the back�end for�

�An idle connection can be detected at the front
end by
the absence of ACKs from the client�

warding mechanism for request distribution in the
presence of persistent connections�

When compared to the multiple hando� mech�
anism� the back�end forwarding mechanism trades
o� a per�byte response forwarding cost for a per�
request hando� overhead� This would suggest that
back�end request forwarding might be most appro�
priate for requests that result in small amounts of
response data� while the multiple hando� approach
should win in case of large responses� assuming that
all other factors that a�ect performance are equal�

Figures � and � show the results of a simple anal�
ysis that con	rms and quanti	es this intuition� The
analysis predicts the server bandwidth� as a function
of average response size� that can be obtained from
a cluster with four nodes� using either the multiple
hando� or the back�end forwarding mechanism� The
analysis is based on the values for hando� overhead�
per�request overhead� and per�byte forwarding over�
head reported above for the Apache and Flash Web
servers� respectively�

To expose the full impact of the mechanisms� pes�
simal assumptions are made with respect to the re�
quest distribution policy� It is assumed that all re�
quests after the 	rst one arriving on a persistent con�
nection have to be served by a back�end node other
than the connection handling node� Since most prac�
tical policies can do better than this� the results in�
dicate an upper bound on the impact of the choice
of the request distribution mechanism on the actual
cluster performance�

The results con	rm that for small response sizes�
the back�end forwarding mechanism yields higher
performance� while the multiple hando� mechanism
is superior for large responses� The crossover point
depends on the relative cost of hando� versus data
forwarding� and lies at �
 KB for Apache and � KB
for Flash� These results are nearly independent of

the average number of requests received on a per�
sistent connection� Since the average response size
in today
s HTTP���� Web tra�c is less than ��
KB ���� ��� these results indicate that the back�end
forwarding mechanism is indeed competitive with
the TCP multiple hando� mechanism on Web work�
loads�

� Simulation

To study various request distribution policies for
a range of cluster sizes using di�erent request dis�
tribution mechanisms and policies� we extended the
con	gurable Web server cluster simulator used in Pai
et al� �
�� to deal with HTTP���� requests� This
section gives an overview of the simulator� A more
detailed description of the simulator can be found in
Pai et al� �
���

The costs for the basic request processing steps
used in our simulations were derived by perform�
ing measurements on a ��� MHz Pentium II ma�
chine running FreeBSD
�
�� and either the widely
used Apache ����� Web server� or an aggressively
optimized research Web server called Flash �
��
���
Connection establishment and teardown costs are
set at
����
� �s of CPU time each� per�request
overheads at �
����� �s� and transmit process�
ing incurs
��
� �s per ��
 bytes to simulate
Apache�Flash� respectively�

Using these numbers� an � KByte document
can be served from the main memory cache at a
rate of approximately ��
��
�� requests�sec with
Apache�Flash� respectively� using HTTP���� con�
nections� The rate is higher for HTTP���� connec�
tions and depends upon the average number of re�
quests per connection� The back�end machines used
in our prototype implementation have a main mem�
ory size of �
� MB� However� the main memory is
shared between the OS kernel� server applications
and 	le cache� To account for this� we set the back�
end cache size in our simulations to �� MB�

The simulator does not model TCP behavior for
the data transmission� For example� the data trans�
mission is assumed to be continuous rather than lim�
ited by the TCP slow�start �
��� This does not a�ect
the throughput results as networks are assumed to
be in	nitely fast and thus throughput is limited only
by the disk and CPU overheads�

The workload used by the simulator was derived
from logs of actual Web servers� The logs contain the
name and the size of requested targets as well as the
client host and the timestamp of the access� Unfor�
tunately� most Web servers do not record whether
two requests arrived on the same connection� To
construct a simulator working with HTTP���� re�

quests� we used the following heuristic� Any set of
requests sent by the same client with a period of less
than ��s �the default time used by Web servers to
close idle HTTP���� connections� between any two
successive requests were considered to have arrived
on a single HTTP���� connection� To model HTTP
pipelining� all requests other than the 	rst that are
in the same HTTP���� connection and are within
�s of each other are considered a batch of pipelined
requests� Clients can pipeline all requests in a batch
but have to wait for data from the server before re�
quests in the next batch can be sent� To the best of
our knowledge� synthetic workload generators like
SURGE ��� and SPECweb�� �
�� do not generate
workloads representative of HTTP���� connections�

The workload was generated by combining logs
from multiple departmental Web servers at Rice
University� This trace spans a two�month period�
The same logs were used for generating the work�
load used in Pai et al� �
��� The data set for our
trace consists of ������ targets covering ����� GB
of space� Our results show that this trace needs
�
��������� MB of memory to cover ��������� of
all requests� respectively�

The simulator calculates overall throughput�
cache hit rate� average CPU and disk idle times at
the back�end nodes� and other statistics� Through�
put is the number of requests in the trace that were
served per second by the entire cluster� calculated
as the number of requests in the trace divided by
the simulated time it took to 	nish serving all the
requests in the trace� The request arrival rate was
matched to the aggregate throughput of the server�

��� Simulation Results

In this section we present simulation results com�
paring the following mechanisms�policy combina�
tions�

�� TCP single hando� with LARD on HTTP����
workload �simple�LARD�

� TCP single hando� with LARD on HTTP����
workload �simple�LARD�PHTTP�

�� TCP multiple hando� with extended LARD on
HTTP���� workload �multiHando��extLARD�
PHTTP�

�� Back�end forwarding with extended LARD on
HTTP���� workload �BEforward�extLARD�
PHTTP�

�� Ideal hando� with extended LARD on
HTTP���� workload �zeroCost�extLARD�
PHTTP�

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000 zeroCost−extLARD−PHTTP

multiHandoff−extLARD−PHTTP

BEforward−extLARD−PHTTP

simple−LARD

simple−LARD−PHTTP

WRR−PHTTP

WRR

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure �� Apache Throughput

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

zeroCost−extLARD−PHTTP

multiHandoff−extLARD−PHTTP

BEforward−extLARD−PHTTP

simple−LARD

simple−LARD−PHTTP

WRR−PHTTP

WRR

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure �� Flash Throughput

Most of these mechanisms have already been de�
scribed in Section �� The �ideal hando�� is an ide�
alized mechanism that incurs no overhead for reas�
signing a persistent connection to another back�end
node� It is useful as a benchmark� as performance
results with this mechanism provide a ceiling for re�
sults that can be obtained with any practical request
distribution mechanism�

Figures � and � show the throughput results with
the Apache and FlashWeb servers� respectively� run�
ning on the back�end nodes� For comparison� re�
sults for the widely used Weighted Round�Robin
�WRR� policy are also included� on HTTP���� and
HTTP���� workloads�

When driving simple LARD with a HTTP����
workload �simple�LARD�PHTTP�� results show
that the throughput su�ers considerably �up to ���
with Apache and up to ��� with Flash�� particularly
at small to medium cluster sizes� The loss of local�
ity more than o�sets the reduced server overhead of
persistent connections�

The key result� however� is that the extended
LARD policy both with the multiple hando� mech�
anism and the back�end forwarding mechanism
�multiHando��extLARD�PHTTP and BEforward�
extLARD�PHTTP� are within �� of the ideal mech�
anism and a�ord throughput gains of up to
��
when compared to simple�LARD� Moreover� the
throughput achieved with each mechanism is within
��� con	rming that both mechanisms are competi�
tive on today
s Web workloads�

The performance of LARD with HTTP����
�simple�LARD�PHTTP� catches up with that of the
extended LARD schemes for larger clusters� The
reason is as follows� With a su�cient number of
back�end nodes� the aggregate cache size of the clus�
ter becomes much larger than the working set� al�
lowing each back�end to cache not only the targets

assigned to it by the LARD policy� but also addi�
tional targets requested in HTTP���� connections�
Eventually� enough targets are cached in each back�
end node to yield high cache hit rates not only for the
	rst request in a HTTP���� connection� but also for
subsequent requests� As a result� the performance
approaches �but cannot exceed� that of the extended
LARD strategies for large cluster sizes�

WRR cannot obtain throughput advantages
from the use of persistent connections on our work�
load� as it remains disk bound for all cluster sizes and
is therefore unable to capitalize on the reduced CPU
overhead of persistent connections� As previously
reported �
��� simple�LARD outperforms WRR by
a large margin as the cluster size increases� because
it can aggregate the node caches� With one server
node� the performance with HTTP���� is identical
to HTTP����� because the back�end servers are disk
bound with all policies�

The results obtained with the Flash Web server�
which are likely to predict future trends in Web
server software performance� di�er mainly in that
the performance loss of simple�LARD�PHTTP is
more signi	cant than with Apache� This underscores
the importance of an e�cient mechanism for han�
dling persistent connections in cluster servers with
content�based request distribution�

The throughput gains a�orded by the hypotheti�
cal ideal hando� mechanismmight also be achievable
by a powerful relaying front�end �see Section ���� as
long as it is not a bottleneck� However� as shown
in Figures � and �� such a front�end achieves only
�� better throughput than the back�end forwarding
mechanism used with the extended LARD policy�

� Prototype Cluster Design

This section describes the design of our proto�
type cluster� Given the complexity of the TCP mul�

TCP/IP

Handoff

TCP/IP

Dispatcher

Server

Handoff

TCP/IP

Forward

conn
req

Client

conn
req
ack

handoff
req

ackreply

Client host Front-End Back-End

User Level

Kernel(1)
(2)

(3)

(4) (5)

Figure �� TCP connection hando�

tiple hando� mechanism� and the fact that simula�
tion results indicate no substantial performance ad�
vantages of multiple hando� over back�end request
forwarding� we decided to implement the back�end
forwarding mechanism in the prototype�

Section ��� gives an overview of the various com�
ponents of the cluster� Section ��
 describes the
TCP single hando� protocol� Section ��� describes
tagging� a technique by which the front�end instructs
the connection handling node to forward a given re�
quest to another back�end node� In Section ���� we
describe how the back�end nodes fetch requests re�
motely from other nodes in a manner that keeps the
server applications unchanged�

	�� Overview

The cluster consists of a front�end node con�
nected to the back�end nodes with a high�speed
LAN� HTTP clients are not aware of the existence of
the back�end nodes� and the cluster e�ectively pro�
vides the illusion of a single Web server machine to
the clients�

Figure � shows the user�level processes and pro�
tocol stacks at the client� the front�end and the back�
ends� The client application �e�g�� Web browser� is
unchanged and runs on an unmodi	ed standard op�
erating system� The server process at the back�end
machines is also unchanged� and can be any o��
the�shelf Web server application �e�g�� Apache �
��
Zeus ������ The front�end and back�end protocol
stacks� however� employ some additional compo�
nents� which are added via a loadable kernel module�

The front�end and back�end nodes use the TCP
single hando� protocol� which runs over the stan�
dard TCP�IP to provide a control session between
the front�end and the back�end machine� The LARD
and extended LARD policies are implemented in a
dispatcher module at the front�end� In addition� the
front�end also contains a forwarding module� which
will be described in Section ��
� The front�end and
back�end nodes also have a user�level startup pro�
cess �not shown in Figure �� that is used to initial�

ize the dispatcher and setup the control sessions be�
tween the front�end and the back�end hando� pro�
tocols� After initializing the cluster� these processes
remain kernel resident and provide a process context
for the dispatcher and the hando� protocols� Disk
queue lengths at the back�end nodes are conveyed to
the front�end using the control sessions mentioned
above�

	�� TCP Connection Hando�

Figure � illustrates a typical hando�� ��� the
client process �e�g�� Netscape� uses the TCP�IP pro�
tocol to connect to the front�end� �
� the dispatcher
module at the front�end accepts the connection� and
hands it o� to a back�end using the TCP hando�
protocol� ��� the back�end takes over the connec�
tion using its hando� protocol� ��� the server at the
back�end accepts the created connection� and ��� the
server at the back�end sends replies directly to the
client�

The hando� remains transparent to the client in
that all packets from the connection handling node
appear to be coming from the front�end� All TCP
packets from the client are forwarded by the front�
end
s forwarding module to the connection han�
dling back�end� A copy of any packets contain�
ing requests from the client is sent up to the dis�
patcher to enable it to assign the requests to back�
end nodes� HTTP���� request pipelining ����
�� is
fully supported by the hando� protocol� and allows
the clients to send multiple requests without waiting
for responses from previous requests�

The TCP multiple hando� mechanism discussed
in Section ��
 can be implemented by extending
the above design in the following manner� As soon
as the back�end server at the connection�handling
node indicates that it has sent all requisite data to
the client� the hando� protocol at the back�end can
hand�back the connection to the front�end that can
further hand it to another back�end� Alternatively�
the connection can be handed directly to another
back�end after informing the front�end to forward
future packets from the client appropriately� One of
the main challenges in this design is to prevent the
TCP pipeline from draining during the process of a
hando��

	�� Tagging requests

As mentioned in the previous subsection� the for�
warding module sends a copy of all request pack�
ets to the dispatcher once the connection has been
handed o�� Assignment of subsequent requests on
the connection to back�end nodes other than the
connection handling node is accomplished by tagging

Front-End

req

Usel-Level

Kernel

Drop

Socket
Dispatcher

req

Handoff
tagged req

tagged req
Handoff

tagged req

Server

Back-End

req

Forward

Processing
TCP

req

Buffer

Figure ��� Tagging P�HTTP requests

the request content� The dispatcher sends these re�
quests reliably to the connection handling back�end
using the control session between the hando� pro�
tocol modules� The hando� protocol at the back�
end receives the requests� and places them directly
into the Web server
s socket bu�er� The tags enable
the Web server to fetch the target using back�end
forwarding �see Section ����� It remains� however�
unaware of the presence of the hando� protocol�

After the hando�� all packets from the client are
sent by the forwarding module to the connection
handling node where they undergo TCP processing�
Thus� after the hando�� data packets from the client
are acknowledged by the connection handling node�
The contents of these request packets� once received�
are however discarded by the connection handling
node �see Figure ���� Instead� the tagged requests
received from the front�end via the control connec�
tion are delivered to the server process�

	�� Fetching remote requests

foo

Front-End Back-End1 Back-End2

Dispatcher

foo

document_root

back_end2

Webserver

NFS mount

Webserver

document_root

G
E

T
 /f

o
o

 H
T

T
P

/1
.1

GET /back_end2/foo HTTP/1.1

Figure ��� Transparent remote request fetching

Web server applications typically serve docu�
ments from a user�con	gurable directory which we
will refer to as document root� To implement re�
mote fetching transparently to the Web server ap�
plication� each back�end node NFS mounts the doc�
ument root from other back�end nodes on a subdi�
rectory in its own document root directory� Tagging
is accomplished by the front�end dispatcher chang�

ing the URL in the client requests by prepending
the name of the directory corresponding to the re�
mote back�end node� Figure �� depicts the situation
where the dispatcher tags an HTTP GET request by
prepending back�end� to the URL in order to make
back�end� fetch 	le foo using NFS�

An issue concerning the fetching of remote 	les
is NFS client caching� which would result in caching
of targets at multiple back�end nodes and interfere
with LARD
s ability to control cache replication� To
avoid this problem� we made a small modi	cation in
FreeBSD to disable client side caching of NFS 	les�

� Prototype Cluster Performance

In this section� we present performance results
obtained with a prototype cluster�

�� Experimental Environment

Figure �
� Experimental Testbed

Our testbed consists of a number of client ma�
chines connected to a cluster server� The con	gura�
tion is shown in Figure �
� Tra�c from the clients
�ows to the front�end ��� and is forwarded to the
back�ends �
�� Data packets transmitted from the
back�ends to the clients bypass the front�end ����

The front�end of the server cluster is a ���MHz
Intel Pentium II based PC with �
�MB of memory�
The cluster back�end consists of six PCs of the same
type and con	guration as the front�end� All ma�
chines run FreeBSD
�
��� A loadable kernel mod�
ule was added to the OS of the front�end and back�
end nodes that implements the TCP single hando�
protocol� and� in the case of the front�end� the for�
warding module� The clients are seven ���MHz Intel
Pentium Pro PCs� each with ��MB of memory�

The clients and back�end nodes in the cluster are
connected using switched Fast Ethernet ����Mbps��
The front�end and the back�end nodes are equipped

with two network interfaces� one for communica�
tion with the clients� one for internal communica�
tion� Clients� front�end� and back�ends are con�
nected through a single
��port switch� All network
interfaces are Intel EtherExpress Pro����B running
in full�duplex mode�

The Apache������ �
� server was used on the back�
end nodes� Our client software is an event�driven
program that simulates multiple HTTP clients�
Each simulated HTTP client makes HTTP requests
as fast as the server cluster can handle them�

�� Cluster Performance Results

1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000
BEforward−extLARD−PHTTP

simple−extLARD

simple−extLARD−PHTTP

WRR−PHTTP

WRR

T
hr

ou
gh

pu
t (

re
qs

/s
ec

)

nodes in cluster

Figure ��� HTTP Throughput �Apache�

We used a segment of the Rice University trace
alluded to in Section � to drive our prototype cluster�
A single back�end node running Apache ����� can
deliver about ��� req�s on this trace�

The Apache Web server relies on the 	le
caching services of the underlying operating system�
FreeBSD uses a uni	ed bu�er cache� where cached
	les are competing with user processes for physical
memory pages� All page replacement is controlled
by FreeBSD
s pageout daemon� which implements a
variant of the clock algorithm ����� The cache size
is variable� and depends on main memory pressure
from user applications� In our �
�MB back�ends�
memory demands from kernel and Apache server
processes leave about ���MB of free memory� In
practice� we observed 	le cache sizes between �� and
�� MB�

The mechanism used for the WRR policy is sim�
ilar to the simple TCP hando� in that the data from
the back�end servers is sent directly to the clients�
However� the assignment of connections to back�end
nodes is purely load�based�

Several observations can be made from the re�
sults presented in Figure ��� The measurements

largely con	rm the simulation results presented in
Section ���� Contrary to the simulation results�
WRR realizes modest performance improvements on
HTTP���� on this disk�bound workload� We believe
that HTTP���� reduces the memory demands of the
Apache server application� and therefore leaves more
room for the 	le system cache� causing better hit
rates� This e�ect is not modeled by our simulator�

The extended LARD policy with the back�end
forwarding mechanism a�ords four times as much
throughput as WRR both with or without persis�
tent connections and up to
�� better throughput
with persistent connections than without� Without
a mechanism for distributing HTTP���� requests
among back�end nodes� the LARD policies perform
up to ��� worse in the presence of persistent con�
nections�

Running extended LARD with the back�end for�
warding mechanism and with six back�end nodes re�
sults in a CPU utilization of about ��� at the front�
end� This indicates that the front�end can support
�� back�ends of equal CPU speed� Scalability to
larger cluster sizes can be achieved by employing an
SMP based front�end machine�

	 Related Work

Padmanabhan and Mogul �

� have shown that
HTTP���� connections can increase server resource
requirements� the number of network packets per re�
quest� and e�ective latency perceived by the client�
They proposed persistent connections and pipelin�
ing of HTTP requests� which have been adopted by
the HTTP���� standard ����� The work in ����
��
shows that these techniques dramatically improve
HTTP���� ine�ciencies� Our work provides e�cient
support for HTTP���� on cluster based Web servers
with content�based request distribution�

Heidemann ���� describes performance problems
arising from the interactions between P�HTTP and
TCP in certain situations� The work also proposes
some 	xes that improve performance� The proposed
solutions are complimentary to our work and can be
applied in our cluster environment� In fact� most
of the proposed 	xes are already incorporated in
Apache ����� �
��

Much current research addresses the scalability
problems posed by the Web� The work includes co�
operative caching proxies inside the network� push�
based document distribution� and other innovative
techniques �
�� �� ��� ��� ���
��� Our proposal ad�
dresses the complementary issue of providing sup�
port for HTTP���� in cost�e�ective� scalable net�
work servers�

Network servers based on clusters of workstations

are starting to be widely used ��
�� Several prod�
ucts are available or have been announced for use as
front�end nodes in such cluster servers ��� ���� To
the best of our knowledge� the request distribution
strategies used in the cluster front�ends are all vari�
ations of weighted round�robin� and do not take into
account a request
s target content� An exception is
the Dispatch product by Resonate� Inc�� which sup�
ports content�based request distribution �
��� The
product does not appear to use any dynamic distri�
bution policies based on content and no attempt is
made to achieve cache aggregation via content�based
request distribution�

Hunt et al� proposed a TCP option designed to
enable content�based load distribution in a cluster
server ����� The design is roughly comparable in
functionality to our TCP single hando� protocol�
but has not been implemented�

Fox et al� ��
� report on the cluster server tech�
nology used in the Inktomi search engine� The work
focuses on the reliability and scalability aspects of
the system and is complementary to our work� The
request distribution policy used in their systems is
based on weighted round�robin�

Loosely�coupled distributed servers are widely
deployed on the Internet� Such servers use var�
ious techniques for load balancing including DNS
round�robin ���� HTTP client re�direction ���� Smart
clients ����� source�based forwarding ��� and hard�
ware translation of network addresses ���� Some of
these schemes have problems related to the quality
of the load balance achieved and the increased re�
quest latency� A detailed discussion of these issues
is made in the work by Goldszmidt and Hunt ����
and Damani et al� ���� None of these schemes sup�
port content�based request distribution�

�
 Conclusions

Persistent connections pose problems for cluster
based Web servers that use content�based request
distribution� because requests that appear in a single
connection may have to be served by di�erent back�
end nodes� We describe two e�cient mechanisms for
distributing requests arriving on persistent connec�
tions� TCP multiple hando� and back�end request
forwarding�

A simulation study shows that both mechanisms
can e�ciently handle Web workloads on persistent
connections� Moreover� we extend the locality aware
request distribution �LARD� strategy to work with
back�end request forwarding and show that it yields
performance that is within �� of results obtained
with a simulated idealized mechanism� The pro�
posed policies and mechanisms are fully transparent

to the HTTP clients�
Finally� we have implemented the extended

LARD policy and the back�end request forwarding
mechanism in a prototype cluster� Performance re�
sults indicate that the extended LARD strategy af�
fords up to
�� improvement in throughput with
persistent connections over HTTP����� Our results
also indicate that a single front�end CPU can sup�
port up to �� back�end nodes of equal speed�

In this paper� we have focused on studying
HTTP servers that serve static content� Further re�
search is needed for supporting request distribution
mechanisms and policies for dynamic content�

�� Acknowledgments

We would like to thank Erich Nahum and the
anonymous reviewers for their valuable comments
and suggestions� This work was supported in part
by NSF Grants CCR��������� CCR��������� MIP�
��
����� by Texas TATP Grant ������� and by an
IBM Partnership Award�

References

��� D� Andresen et al� SWEB� Towards a Scalable
WWW Server on MultiComputers� In Procced�
ings of the ��th International Parallel Process�
ing Symposium� Apr� �����

�
� Apache� http���www�apache�org��

��� M� F� Arlitt and C� L� Williamson� Web Server
Workload Characterization� The Search for In�
variants� In Proceedings of the ACM SIGMET�
RICS ��� Conference� Philadelphia� PA� Apr�
�����

��� P� Barford and M� Crovella� Generating repre�
sentative web workloads for network and server
performance evaluation� In Proceedings of the
ACM SIGMETRICS Conference� Madison� WI�
July �����

��� T� Berners�Lee� R� Fielding� and H� Frystyk�
RFC ����� Hypertext transfer protocol �
HTTP����� May �����

��� T� Brisco� DNS Support for Load Balancing�
RFC ����� Apr� �����

��� A� Chankhunthod� P� B� Danzig� C� Neerdaels�
M� F� Schwartz� and K� J� Worrell� A Hierar�
chical Internet Object Cache� In Proceedings of
the ���� USENIX Technical Conference� Jan�
�����

��� Cisco Systems Inc� LocalDirector�
http���www�cisco�com�

��� O� P� Damani� P��Y� E� Chung� Y� Huang�
C� Kintala� and Y��M� Wang� ONE�IP� Tech�
niques for hosting a service on a cluster of ma�
chines� Computer Networks and ISDN Systems�

���������
�� �����

���� P� Danzig� R� Hall� and M� Schwartz� A case
for caching 	le objects inside internetworks� In
Proceedings of the ACM SIGCOMM ��� Con�
ference� Sept� �����

���� R� Fielding� J� Gettys� J� Mogul� H� Nielsen�
and T� Berners�Lee� RFC
���� Hypertext
transfer protocol � HTTP����� Jan� �����

��
� A� Fox� S� D� Gribble� Y� Chawathe� E� A�
Brewer� and P� Gauthier� Cluster�based scal�
able network services� In Proceedings of the
Sixteenth ACM Symposium on Operating Sys�
tem Principles� San Malo� France� Oct� �����

���� J� Heidemann� Performance interactions
between P�HTTP and TCP implementa�
tions� ACM Computer Communication Review�

��
�������� April �����

���� G� Hunt� E� Nahum� and J� Tracey� Enabling
content�based load distribution for scalable ser�
vices� Technical report� IBM T�J� Watson Re�
search Center� May �����

���� IBM Corporation� IBM interactive network dis�
patcher� http���www�ics�raleigh�ibm�com�ics�
isslearn�htm�

���� T� M� Kroeger� D� D� Long� and J� C� Mogul�
Exploring the bounds of Web latency reduction
from caching and prefetching� In Proceedings of
the USENIX Symposium on Internet Technolo�
gies and Systems 	USITS
� Monterey� CA� Dec�
�����

���� G� R� Malan� F� Jahanian� and S� Subrama�
nian� Salamander� A push�based distribution
substrate for Internet applications� In Proceed�
ings of the USENIX Symposium on Internet
Technologies and Systems 	USITS
� Monterey�
CA� Dec� �����

���� M� K� McKusick� K� Bostic� M� J� Karels� and
J� S� Quarterman� The Design and Implementa�
tion of the ���BSD Operating System� Addison�
Wesley Publishing Company� �����

���� J� C� Mogul� The Case for Persistent�
Connection HTTP� In Proceedings of the ACM
SIGCOMM ��
 Symposium� �����

�
�� J� C� Mogul� F� Douglis� A� Feldmann� and
B� Krishnamurthy� Potential bene	ts of delta
encoding and data compression for HTTP� In
Proceedings of the ACM SIGCOMM ��� Sym�
posium� Cannes� France� Sept� �����

�
�� H� F� Nielsen� J� Gettys� A� Baird�Smith�
E� Prud
hommeaux� H� Lie� and C� Lilley� Net�
work performance e�ects of HTTP����� CSS��
and PNG� In Proceedings of the ACM SIG�
COMM ��� Symposium� Cannes� France� Sept�
�����

�

� V� N� Padmanabhan and J� C� Mogul� Improv�
ing HTTP Latency� In Proceedings of the Sec�
ond International WWW Conference� Chicago�
IL� Oct� �����

�
�� V� S� Pai� M� Aron� G� Banga� M� Svend�
sen� P� Druschel� W� Zwaenepoel� and
E� Nahum� Locality�Aware Request Distribu�
tion in Cluster�based Network Servers� In Pro�
ceedings of the �th ACM Conference on Ar�
chitectural Support for Programming Languages
and Operating Systems� San Jose� CA� Oct�
�����

�
�� V� S� Pai� P� Druschel� and W� Zwaenepoel�
Flash� An e�cient and portable Web server�
In Proceedings of the ���� USENIX Technical
Conference� Monterey� CA� June �����

�
�� V� S� Pai� P� Druschel� and W� Zwaenepoel�
I�O�Lite� A uni	ed I�O bu�ering and caching
system� In Proceedings of the �rd Symposium on
Operating Systems Design and Implementation�
New Orleans� LA� Feb� �����

�
�� Resonate Inc� Resonate dispatch�
http���www�resonateinc�com�

�
�� M� Seltzer and J� Gwertzman� The Case for
Geographical Pushcaching� In Proceedings of
the ���
 Workshop on Hot Operating Systems�
�����

�
�� SPECWeb��� http���www�specbench�org�osg�
web����

�
�� W� Stevens� TCP�IP Illustrated Volume � �
The Protocols� Addison�Wesley� Reading� MA�
�����

���� B� Yoshikawa et al� Using Smart Clients to
Build Scalable Services� In Proceedings of the
���� USENIX Technical Conference� Jan� �����

���� Zeus� http���www�zeus�co�uk��

