Run-Time Support for Distributed
Sharing in Typed Languages

Y. Charlie Hu, Weimin Yu, Alan L. Cox, Dan S. Wallach and
Willy Zwaenepoel

Department of Computer Science
Rice University
Houston, Texas 77005

{ychu, weimin, alc, dwallach, willy}@cs.rice.edu

Abstract. We present a new run-time system, DOSA, that efficiently
implements a shared object space abstraction underneath a typed pro-
gramming language. The key insight behind DOSA is that the ability
to unambiguously distinguish pointers from data at run-time enables ef-
ficient fine-grained sharing using VM support. Like earlier systems de-
signed for fine-grained sharing, DOSA improves the performance of fine-
grained applications by eliminating false sharing. In contrast to these
earlier systems, DOSA’s VM-based approach and read aggregation en-
able it to match a page-based system on coarse-grained applications.
Furthermore, its architecture permits optimizations that are not possi-
ble in conventional fine-grained or coarse-grained DSM systems.

1 Introduction

This paper addresses run-time support for sharing objects in a typed language
between the different computers within a cluster. Typing must be strong enough
that it is possible to determine unambiguously whether a memory location con-
tains an object reference or not. Many modern languages fall under this category,
including Java and Modula-3. Direct access through a reference to object data is
supported, unlike Java/RMI or Orca [2], where remote object access is restricted
to method invocation. Furthermore, in languages with suitable multithreading
support, such as Java, distributed execution is transparent: no new API is in-
troduced for distributed sharing. This transparency distinguishes this work from
many earlier distributed object sharing systems [2,7,14,12].

The key insight in this paper is that the ability to distinguish pointers from
data at run-time enables more efficient fine-grained sharing than is possible
with conventional distributed shared memory (DSM) implementations that do
not use type information (e.g., [1,13]). Conventional VM-based DSM systems
have only achieved good performance on relatively coarse-grained applications,
because of their reliance on VM pages. Although relaxed memory models [9] and
multiple-writer protocols [6] reduce the impact of the large page size, fine-grained
sharing and false sharing remain problematic [1]. Fine-grained DSM systems

have been built using code instrumentation, but they have been limited by the
cost of instrumentation and lack of communication aggregation [8]. The system
presented here, DOSA, uses the ability to distinguish pointers from data at
run-time to achieve efficient fine-grained sharing using VM support and without
using instrumentation. It does so by introducing a level of indirection that allows
objects to reside at different virtual memory locations with different protection
attributes. Compiler optimization reduces the overhead of this level of indirection
where necessary.

We have implemented this system, and compared its performance to that
of TreadMarks, a state-of-the-art page-based system [1]. We have derived our
implementation from the TreadMarks code base, thereby avoiding performance
differences due to irrelevant code differences. Our performance evaluation sub-
stantiates the following claims:

1. The performance of fine-grained applications is considerably better (up to
98% for Barnes-Hut and 62% for Water-Spatial) than in TreadMarks.

2. The performance of garbage-collected applications is considerably (up to
65%) better than in TreadMarks.

3. The performance of coarse-grained applications is nearly as good as in Tread-
Marks (within 6%). Since the performance of such applications is already
good in TreadMarks, we consider this an acceptable performance penalty.

No direct comparison with an instrumentation-based DSM system was possible,
because no such system is broadly available, but we speculate on the likely
outcome of such a comparison in Section 8.

2 Programming Model

No special API is required in languages with suitable typing and multithreading
support, such as Java or Modula-3.

The programming model supports a shared space of objects, in which refer-
ences are distinguishable from data. An object is the unit of sharing. In other
words, a single object cannot be written concurrently by different threads, even
if those threads modify distinct parts of the object. If two threads write to the
same object, they should synchronize between their writes. Arrays are treated as
collections of objects, and therefore their elements can be written concurrently.
Of course, for correctness, the different processes must write to disjoint elements
in the arrays.

The object space is release consistent [9]. In essence, under release consis-
tency, the propagation of updates from one processor to another may be delayed
until the processors synchronize. Parallel programs that are properly synchro-
nized (i.e., synchronize between conflicting accesses to shared data) behave as
expected on the conventional sequentially consistent shared memory model.

The programmer is responsible for creating and destroying threads of control,
and for the necessary synchronization to insure orderly access by these threads
to the object space. Various synchronization mechanisms may be used, such as

Logical

Implementation

Handle
Table

Heap

Fig. 1. Objects with handles.

semaphores, locks, barriers, monitors, etc. There is no system-level association
between a synchronization variable and a particular object. For instance, a lock
may protect a single object, multiple objects, or an array of objects.

3 Implementation

3.1 Single-machine Implementation

Consider a single-processor implementation of a typed language using a handle
table. Each object is identified by an unique object identifier (OID) that is also
the index of the object’s handle table entry. Thus, all references to the object,
in fact, refer to its handle table entry, which in turn points to the actual object
(see Figure 1). In such an implementation, relocating objects in memory is easy.
It suffices to change its handle table entry. No other changes need to be made,
since all references are indirected through the handle table.

3.2 Distributed Implementation

Extending this simple observation allows an efficient distributed implementation
of these languages. Specifically (see Figure 2), a handle table representing all
shared objects is present on each processor. A globally unique OID identifies
each object, and serves as an index into the handle tables. As before, each handle
table entry contains a pointer to the memory location where the object resides
on that processor. The consistency protocol can then be implemented solely in
terms of OIDs, because these are the actual references that appear in any of
the objects. Furthermore, the same object may be allocated at different virtual
memory addresses on different processors. It suffices for the handle table entry
on each processor to point to the proper location. In other words, although the
programmer retains the abstraction of a single object space, it is no longer the
case that all of memory is virtually shared, and that all objects reside at the
same virtual address on all processors, as is the case in a DSM system.

Logical

Implementation

e (1_Jo_|
Table A

/
Heap

Processor 1 Processor 2

Fig. 2. Shared objects identified by unique OIDs.

3.3 Fine-grained VM access detection

The ability to locate the same object at different virtual memory addresses on
different machines allows us to provide fine-grained access detection using VM
techniques as follows. Although only a single physical copy of each object exists
on a single processor, each object can be accessed through three VM mappings.
All three map to the same physical location in memory, but with three different
protection attributes: invalid, read-only, or read-write. A change in access mode
is accomplished by switching between the different mappings for that object only.
The mappings for the other objects in the same page remain unaffected. Consider
the example in Figure 3. A page contains four objects, one of which is written
on a different processor. This modification is communicated between processors
through the consistency protocol, and results in the invalid mapping being set
for this object. Access to other objects can continue, unperturbed by this change,
thus eliminating false sharing between objects on the same page.

Handle
Table ” Invalidate ‘
——
Object D
s][] [i
Read-write Read-only Invalid Read-write Read-only Invalid
Mapping Mapping Mapping Mapping Mapping Mapping

Fig. 3. Access detection using the handle pointers.

3.4 Object Storage Allocation

The ability to allocate objects at different addresses on different processors also
suggests that we can delay the storage allocation for an object on a processor
until that object is first accessed by that processor. We call this optimization lazy
object storage allocation. For some programs, it reduces the memory footprint

and produces better cache locality. N-body simulations illustrate this benefit.
Each processor typically accesses its own bodies, and a small number of nearby
bodies on other processors. With global allocation of memory, the remote bodies
are scattered in memory, causing lots of misses, messages, and — in the case of
TreadMarks — false sharing. In contrast, in DOSA, only the local bodies and the
locally accessed remote bodies are allocated in local memory. As a result of the
smaller memory footprint, there are far fewer access misses and messages, and
false sharing is eliminated through the per-object mappings. Moreover, objects
can be locally re-arranged in memory, for instance to improve cache locality or
during garbage collection, without affecting the other processors.

3.5 Counsistency Protocol

DOSA, like TreadMarks, uses a lazy invalidate protocol to implement release con-
sistency [1]. Consistency is, however, maintained in terms of objects rather than
pages. In other words, consistency messages specify object identifiers instead of
page numbers. For individual objects, a single writer protocol is used [11]. For
arrays of objects, whether of a scalar type or a reference type, a multiple writer
protocol is used [1]. This permits the use of a single OID for the entire array,
while still allowing concurrent modifications to distinct objects within the array.

The lazy implementation delays the propagation of consistency information
until a processor acquires a lock or departs from a barrier. At that time, the
last releaser of the lock or the barrier manager processor informs the proces-
sor which objects have been modified. In particular, invalidations never arrive
asynchronously; they only arrive at the time of a synchronization.

An inverse object table, implemented as a hash table, is used by the page
fault handler to translate a faulting address to an OID.

3.6 Read Aggregation

When a processor faults on a particular object, if the object is smaller than a
page, it uses a list of objects in the same page to find all of the invalid objects
residing in that page. It sends out concurrent object fetch messages for all these
objects to the processors recorded as the last writers of these objects.

By doing so, we aggregate the requests for all invalid objects in the same
page. This approach performs better than simply fetching one faulted object at
a time. If there is some locality in the objects accessed by a processor, then it
is likely that the objects allocated in the same page are going to be accessed
closely together in time, in particular given lazy object storage allocation. Some
unnecessary objects may be fetched, but the messages to fetch those objects go
out in parallel, and therefore their latencies and the latencies of the replies are
largely overlapped.

4 Compiler Optimizations

The extra indirection creates a potential problem for applications that access
large arrays, because it may cause significant overhead, without any gain from
better support for fine-grained sharing. This problem can be addressed using
type-based alias analysis and loop invariant analysis to eliminate many repeated
indirections.

Consider, a C program with a two-dimensional array of scalars, such as float,
that is implemented in the same fashion as a two-dimensional Java array of
scalars, i.e., an array of pointers to an array of a scalar type (“scalar_type
**a;”). Assume this program performs a regular traversal of the array with a
nested for loop.

for i
for j
. = alil[j]1;

In general, a C compiler cannot further optimize this loop nest, because
it cannot prove that a and a[i] do not change during the loop execution. a,
ali] and a[i] [j] are, however, of different types, and therefore the compiler
for a typed language can easily determine that a and a[i] do not change, and
transform the loop accordingly to

for i
p = alil;
for j

. = pljl;

resulting in a significant speedup. In the DOSA program the original program
takes the form of

for i
for j
. = a->handle[i]->handle[j];

which, in a typed language can be similarly transformed to

for i
p = a->handle[i];
for j

. = p—~>handle[j];

While offering much improvement, this transformation still leaves the DOSA
program at a disadvantage compared to the optimized TreadMarks program, be-
cause of the remaining pointer dereferencing in the inner loop. Observe also that
the following transformation of the DOSA program is legal but not profitable:

for i
p = a->handle[i]->handle;
for j

. = pljl;

The problem with this transformation occurs when a->handle[i]->handle
has been invalidated as a result of a previous synchronization. Before the j-loop,
p contains an address in the invalid region, which causes a page fault on the
first iteration of the j-loop. The DSM runtime changes a->handle[i]->handle
to its location in the read-write region, but this change is not reflected in p. As
a result, the j-loop page faults on every iteration.

We solve this problem by touching a->handle[i]->handle[0] before assign-
ing it to p. In other words,

for i
touch(a->handle[i]->handle[0]);
p = a->handle[i]->handle;
for j
. = pljl;

Touching a->handle[i]->handle[0] outside the j-loop causes the fault to
occur there, and a->handle[i]->handle to be changed to the read-write loca-
tion. The same optimization can be applied to the outer loop as well.

These optimizations are dependent on the lazy implementation of release
consistency. Invalidations can only arrive at synchronization points, never asyn-
chronously, thus the cached references cannot be invalidated in a synchronization-
free loop.

5 Evaluation Methodology

A difficulty arises in making the comparison with TreadMarks. Ideally, we would
like to make these comparisons by simply taking a number of applications in a
typed language, and running them, on one hand, on TreadMarks, simply using
shared memory as an untyped region of memory, and, on the other hand, running
them on top of DOSA, using a shared object space.

For a variety of reasons, the most appealing programming language for this
purpose is Java. Unfortunately, commonly available implementations of Java
are interpreted and run on slow Java virtual machines. This would render our
experiments largely meaningless, because inefficiencies in the Java implemen-
tation would dwarf differences between TreadMarks and DOSA. Perhaps more
importantly, we expect efficient compiled versions of Java to become available
soon, and we would expect that those be used in preference over the current im-
plementations, quickly obsoleting our results. Finally, the performance of these
Java applications would be much inferior to published results for conventional
programming languages.

We have therefore chosen to carry out the following experiments. We have
taken existing C applications, and re-written them to follow the model of a
handle-based implementation. In other words, a handle table is introduced, and
all pointers are indirected through the handle table. This approach represents
the results that could be achieved by a language or compilation environment
that is compatible with our approach for maintaining consistency, but otherwise

exhibits no compilation or execution differences with the conventional Tread-
Marks execution environment. In other words, these experiments isolate the
benefits and the drawbacks of our consistency maintenance methods from other
aspects of the compilation and execution process. It also allows us to assess the
overhead of the extra indirection on single-processor execution times. The com-
piler optimizations discussed in Section 4 have been implemented by hand in
both the TreadMarks and the DOSA programs.

We have implemented a distributed garbage collector on both TreadMarks
and DOSA that is representative of the state-of-the-art. Distributed garbage
collectors are naturally divided into two parts: the inter-processor algorithm,
which tracks cross-processor references; and the intra-processor algorithm, which
performs the traversal on each processor and reclaims the unused memory. Our
distributed garbage collector uses a weighted reference counting algorithm for
the inter-processor part [3,16,17] and a generational, copying algorithm for the
intra-processor part. To implement weighted reference counting transparently,
we check incoming and outgoing messages for references. These references are
recorded in an import table and an export table, respectively.

6 Environment and Applications

Our experimental platform is a switched, full-duplex 100Mbps Ethernet net-
work of thirty-two 300 MHz Pentium II-based computers. Each computer has
256M bytes of memory, and runs FreeBSD 2.2.6.

We demonstrate the performance improvements of DOSA over TreadMarks
for fine-grained applications, by using Barnes-Hut and Water-Spatial, both from
the SPLASH-2 benchmarks [18]. SOR and Water-Nsquared from the SPLASH
benchmarks [15] demonstrate only minimal performance loss for coarse-grained
applications.

For each of these applications, Table 1 lists each of the problem sizes and
its corresponding sequential execution time. The sequential execution times were
obtained by removing all TreadMarks or DOSA calls from the applications. They
also include the compile-time optimizations described in Section 4.

The sequential timings show that the overhead of the extra level of deref-
erencing in the handle-based versions of the applications is never more than
5.2% on one processor for any of these four applications. The sequential execu-
tion times without handles were used as the basis for computing the speedups
reported later in the paper.

To exercise the distributed garbage collector, we use a modified version of
the OOT7 object-oriented database benchmark [5]. This benchmark is designed
to match the characteristics of many CAD/CAM/CASE applications. The OO7
database contains a tree of assembly objects, with leaves pointing to three com-
posite parts chosen randomly from among 500 objects. Each composite part
contains a graph of atomic parts linked by connection objects. Each atomic part
has 3 outgoing connections.

Table 1. Applications, problem sizes, and sequential execution time.

Application Problem Size Time (sec.)
Original Handle

Small Problem Size

Red-Black SOR | 3070x2047, 20 steps 21.13 21.12
Water-N-Squared| 1728 mols, 2 steps 71.59 73.83
Barnes-Hut 32K bodies, 3 steps 58.68 60.84
Water-Spatial 4K mols, 9 steps 89.63 89.80
Large Problem Size

Red-Black SOR | 4094x2047, 20 steps 27.57 28.05
Water-N-Squared| 2744 mols, 2 steps 190.63 193.50
Barnes-Hut 131K bodies, 3 steps 270.34 284.43
Water-Spatial 32K mols, 2 steps 158.57 160.39

Ordinarily, OO7 does not release memory. Thus, there would be nothing
for a garbage collector to do. Our modified version of OO7 creates garbage by
replacing rather updating objects when the database changes. After the new
object, containing the updated data, is in place in the database, the old object
becomes eligible for collection.

The OO7 benchmark defines several database traversals [5]. For our experi-
ments, we use a mixed sequence of T1, T2a, and T2b traversals. T1 performs a
depth-first traversal of the entire composite part graph. T2a and T2b are iden-
tical to T1 except that T2a modifies the root atomic part of the graph, while
T2b modifies all the atomic parts.

Table 2 lists the sequential execution times for OO7 running with the garbage
collector on TreadMarks and DOSA. It also lists the time spent in the memory
allocator/garbage collector. DOSA incurs 2% overhead to the copying collector
because of extra overhead in handle management; it has to update the handle
table entry whenever an object is created, deleted, or moved. Overall, DOSA
underperforms TreadMarks by 3% due to handle dereference cost.

Table 2. Statistics for TreadMarks and DOSA on 1 processor for OO7 with garbage
collection.

007 Tmk DOSA
Overall time (in sec.) 184.8 190.8
Alloc and GC time (in sec.)|10.86 11.04

7 Results

7.1 Fine-grained Applications

Figure 4 shows the speedup comparison between TreadMarks and DOSA for
Barnes-Hut and Water-Spatial on 16 and 32 processors for small and large prob-

10

20

0.8 1 I —

0.6 | | —

0.4] | | —

02 | — —

JEm n

BH/ BH/ BH/ BH/ WSpa/ Wspa/ WSpa/ WSpa/ BH/ BH/ BH/ ~ BH/ WSpa/ WSpa/ WSpa/ WSpa/
sm:16 sm:32 Ig:16 1g:32 sm:16 sm:32 Ig:16 1g:32 Data Msg overlap Mem Data Msg overlap Mem
req alloc req alloc

[0 TreadMarks ll DOSA

Fig.4. Speedup comparison between Fig. 5. Statistics for TreadMarks and

TreadMarks and DOSA for fine-grained DOSA on 32 processors for fine-grained

applications. applications with large data sizes, nor-
malized to TreadMarks measurements.

lem sizes. Figure 5 shows various statistics from the execution of these applica-
tions on 32 processors for both problem sizes.

We derive the following conclusions from this data. First, from Table 1, the
overhead of the extra indirection in the sequential code for these applications
is less than 5.2% for Barnes-Hut and 1.1% for Water-Spatial. Second, even for
a small number of processors, the benefits of the handle-based implementation
are larger than the cost of the extra indirection. For Barnes-Hut with 32K and
128K bodies, DOSA outperforms TreadMarks by 29% and 52%, respectively, on
16 processors. For Water-Spatial with 4K and 32K molecules, DOSA outper-
forms TreadMarks by 62% and 47%, respectively, on 16 processors. Third, as
the number of processors increases, the benefits of the handle-based implemen-
tation grow. For Barnes-Hut with 128K bodies, DOSA outperforms TreadMarks
by 52% on 16 processors and 98% on 32 processors. For Water-Spatial with
32K molecules, DOSA outperforms TreadMarks by 47% on 16 processors and
51% on 32 processors. Fourth, if the amount of false sharing under TreadMarks
decreases as the problem size increases, as in Water-Spatial, then DOSA’s ad-
vantage over TreadMarks decreases. If, on the other hand, the amount of false
sharing under TreadMarks doesn’t change, as in Barnes-Hut, then DOSA’s ad-
vantage over TreadMarks is maintained. In fact, for Barnes-Hut, the advantage
grows due to slower growth in the amount of communication by DOSA, resulting
from improved locality due to lazy object allocation.

The reasons for DOSA’s clear dominance over TreadMarks can be seen in
Figure 5. This figure shows the number of messages exchanged, the number of
overlapped data requests !, the amount of data communicated, and the average

! The concurrent messages for updating a page in TreadMarks or updating all in-
valid objects in a page in DOSA are counted as one overlapped data request. Since
these messages go out and replies come back in parallel, their latencies are largely
overlapped.

11

amount of shared data allocated on each processor. Specifically, we see a substan-
tial reduction in the amount of data sent for DOSA, as a result of the reduction
in false sharing. Furthermore, the number of messages is reduced by a factor of
11 for Barnes-Hut/lg and 3 for Water-Spatial/lg. More importantly, the num-
ber of overlapped data requests is reduced by a factor of 1.3 for Barnes-Hut/lg
and 4.9 for Water-Spatial/lg. Finally, the benefits of lazy object allocation for
these applications are quite clear: the memory footprint of DOSA is considerably
smaller than that of TreadMarks.

7.2 Garbage Collected Applications

Figure 6 shows the execution statistics on 16 processors for the OO7 benchmark
running on TreadMarks and DOSA using the generational, copying collector.
We do not present results on 32 processors because the total data size, which
increases linearly with the number of processors, is so large that it causes paging
on 32 processors.

On 16 processors, OO7 on DOSA outperforms OO7 on TreadMarks by almost
65%. Figure 6 shows that the time spent in the memory management code
performing allocation and garbage collection is almost the same for TreadMarks
and DOSA. The effects of the interaction between the garbage collector and
DOSA or TreadMarks actually appear during the execution of the application
code. The main cause for the large performance improvement in DOSA is reduced
communication, as shown in Figure 7.

24+

1
204
0.75

161
12+ 0.5+

8 0.25H

4] I

0 . . T
0 Data Msg Overlap Mem alloc
TreadMarks DOSA req

[Alloc and GC time I Rest time

‘ [J TreadMmarks Il DOSA ‘

Fig. 6. Time breakdown (in seconds) for Fig. 7. Statistics for OO7 on Tread-
the OO7 benchmark on TreadMarks and Marks and DOSA on 16 processors, nor-
DOSA on 16 processors. malized to TreadMarks measurements.

The extra communication on TreadMarks is primarily a side-effect of garbage
collection. On TreadMarks, when a processor copies an object during garbage
collection, this is indistinguishable from ordinary writes. Consequently, when

12

20

0.8 1

0.6 1

0.4

4 0.2

o
SOR/ SOR/ SOR/ SOR/ WNsg/ WNsg/ WNsg/ WNsg/ SOR/ SOR/ SOR/ SOR/ WNs:
. . N . h . . . a/ WNsg/ WNsq/ WNsq/
sm:16 sm:32 Ig:16 1g:32 sm:16 sm:32 Ig:16 1g:32 Data Msg overlap Mem Data Msg = overlap Mem
req alloc req alloc

[J TreadMarks ll DOSA
[TreadMarks Il DOSA

Fig.8. Speedup comparison between Fig. 9. Statistics for TreadMarks and

TreadMarks and DOSA for coarse- DOSA on 32 processors for coarse-

grained applications. grained applications with large data
sizes, normalized to TreadMarks mea-
surements.

another processor accesses the object after garbage collection, the object is com-
municated to it, even though the object’s contents have not been changed by
the copy. In fact, the processor may have an up-to-date copy of the object in its
memory, just at the wrong virtual address. In contrast, on DOSA, when a pro-
cessor copies an object during garbage collection, it simply updates its handle
table entry, which is local information that never propagates to other processors.

The lazy storage allocation in DOSA also contributes to the reduction in
communication. In O0O7, live objects and garbage may coexist in the same page.
In TreadMarks, if a processor requests a page, it may get both live objects and
garbage. In DOSA, however, only live objects will be communicated, reducing
the amount of data communicated. This also explains why the memory footprint
in DOSA is smaller than in TreadMarks.

7.3 Coarse-grained Applications

Figure 8 shows the speedup comparison between TreadMarks and DOSA for
SOR and Water-Nsquared on 16 and 32 processors for small and large problem
sizes. Figure 9 shows various statistics from the execution of these applications
on 32 processors for both problem sizes.

8 Related Work

Two other systems have used VM mechanisms for fine-grain DSM: Millipede [10]
and the Region Trapping Library [4]. The fundamental difference between DOSA
and these systems is that DOSA takes advantage of a typed language to distin-
guish a pointer from data at run-time and these other systems do mot. This

13

allows DOSA to implement a number of optimizations that are not possible in
these other systems.

Specifically, in Millipede a physical page may be mapped at multiple ad-
dresses in the virtual address space, as in DOSA, but the similarity ends there.
In Millipede, each object resides in its own wpage, which is the size of a VM
page. Different vpages are mapped to the same physical memory page, but the
objects are offset within the vpage such that they do not overlap in the underly-
ing physical page. Different protection attributes may be set on different vpages,
thereby achieving the same effect as DOSA, namely per-object access and write
detection. The Millipede method requires one virtual memory mapping per ob-
ject, while the DOSA method requires only three mappings per page, resulting
in considerably less address space consumption and pressure on the TLB. Also,
DOSA does not require any costly OS system calls (e.g., mprotect) to change
page protections after initialization, while Millipede does.

The Region Trapping Library is similar to DOSA in that it allocates three
different regions of memory with different protection attributes. Unlike DOSA,
it doesn’t use the regions in way that is transparent to the programmer. Instead,
it provides a special API. Furthermore, in the implementation, the read mem-
ory region and the read-write memory region are backed by different physical
memory regions. This decision has the unfortunate side effect of forcing mod-
ifications made in the read-write region to be copied to the read region, every
time protection changes from read-write to read.

Orca [2], Jade [12], COOL [7], and SAM [14] are parallel or distributed object-
oriented languages. All of these systems differ from ours in that they present a
new language or API to the programmer to express distributed sharing, while
DOSA does not. DOSA aims to provide transparent object sharing for existing
typed languages, such as Java. Furthermore, none of Orca, Jade, COOL, or SAM
use VM-based mechanisms for object sharing.

Dwarkadas et al. [8] compared Cashmere, a coarse-grained system, some-
what like TreadMarks, and Shasta, an instrumentation-based system, running
on an identical platform — a cluster of four 4-way AlphaServers connected by a
Memory Channel network. In general, Cashmere outperformed Shasta on coarse-
grained applications (e.g., Water-N-Squared), and Shasta outperformed Cash-
mere on fine-grained applications (e.g., Barnes-Hut). The only surprise was that
Shasta equaled Cashmere on the fine-grained application Water-Spatial. They
attributed this result to the run-time overhead of the inline access checks in
Shasta. In contrast, DOSA outperforms TreadMarks by 62% on the same ap-
plication. We attribute this to lazy object allocation, which is not possible in
Shasta, and read aggregation.

9 Conclusions

In this paper, we have presented a new run-time system, DOSA, that efficiently
implements a shared object space abstraction underneath a typed programming
language. The key insight behind DOSA is that the ability to unambiguously

14

distinguish pointers from data at run-time enables efficient fine-grained sharing
using VM support. Like earlier systems designed for fine-grained sharing, DOSA
improves the performance of fine-grained applications by eliminating false shar-
ing. In contrast to these earlier systems, DOSA’s VM-based approach and read
aggregation enable it to match a page-based system on coarse-grained applica-
tions. Furthermore, its architecture permits optimizations, such as lazy object
allocation, which are not possible in conventional fine-grained or coarse-grained
DSM systems. Lazy object allocation transparently improves the locality of ref-
erence in many applications, improving their performance.

Our performance evaluation on a cluster of 32 Pentium II processors con-
nected with a 100Mbps Ethernet demonstrates that the new system performs
comparably to TreadMarks for coarse-grained applications (SOR and Water-
Nsquared), and significantly outperforms TreadMarks for fine-grained applica-
tions (up to 98% for Barnes-Hut and 62% for Water-Spatial) and a garbage-
collected application (65% for OOT).

References

1. C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. TreadMarks: Shared memory computing on networks of worksta-
tions. IEEE Computer, 29(2):18-28, Feb. 1996.

2. H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Ruhl, and
M. Kaashoek. Performance evaluation of the Orca shared object system. ACM
Transactions on Computer Systems, 16(1), Feb. 1998.

3. D. I. Bevan. Distributed garbage collection using reference counting. In Parallel
Arch. and Lang. Europe, pages 117-187, Eindhoven, The Netherlands, June 1987.
Spring-Verlag Lecture Notes in Computer Science 259.

4. T. Brecht and H. Sandhu. The region trap library: Handling traps on application-
defined regions of memory. In Proceedings of the 1999 USENIX Annual Tech.
Conf., June 1999.

5. M. Carey, D. DeWitt, and J. Naughton. The OO7 benchmark. Technical report,
University of Wisconsin-Madison, July 1994.

6. J. Carter, J. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-
related information in distributed shared memory systems. ACM Transactions on
Computer Systems, 13(3):205-243, Aug. 1995.

7. R. Chandra, A. Gupta, and J. Hennessy. Cool: An object-based language for
parallel programming. IEEE Computer, 27(8):14-26, Aug. 1994.

8. S. Dwarkadas, K. Gharachorloo, L. Kontothanassis, D. J. Scales, M. L. Scott, and
R. Stets. Comparative evaluation of fine- and coarse-grain approaches for software
distributed shared memory. In Proceedings of the Fifth International Symposium
on High-Performance Computer Architecture, pages 260-269, Jan. 1999.

9. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15-26, May 1990.

10. A. Itzkovitz and A. Schuster. Multiview and millipage — fine-grain sharing in
page-based DSMs. In Proceedings of the Third USENIX Symposium on Operating
System Design and Implementation, Feb. 1999.

11.

12.

13.

14.

15.

16.

17.

18.

15

P. Keleher. The relative importance of concurrent writers and weak consistency
models. In Proceedings of the 16th International Conference on Distributed Com-
puting Systems, pages 91-98, May 1996.

M. C. Rinard and M. S. Lam. The design, implementation, and evaluation of Jade.
ACM Transactions on Programming Languages and Systems, 20(3):483-545, May
1998.

D. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A low overhead software-
only approach for supporting fine-grain shared memory. In Proceedings of the 7th
Symposium on Architectural Support for Programming Languages and Operating
Systems, Oct. 1996.

D. J. Scales and M. S. Lam. The design and evaluation of a shared object system
for distributed memory machines. In Proceedings of the First USENIX Symposium
on Operating System Design and Implementation, pages 101-114, Nov. 1994.

J. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications
for shared-memory. Computer Architecture News, 20(1):2-12, Mar. 1992.

R. Thomas. A dataflow computer with improved asymptotic performance. Tech-
nical Report TR-265, MIT Laboratory for Computer Science, 1981.

P. Watson and I. Watson. An efficient garbage collection scheme for parallel com-
puter architectures. In PARLE’87—Parallel Architectures and Languages Europe,
number 259 in Lecture Notes in Computer Science, Eindhoven (the Netherlands),
June 1987. Springer-Verlag.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2
programs: characterization and methodological considerations. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture, pages 24-36,
June 1995.

