
Contention Elimination by Replication of Sequential
Sections in Distributed Shared Memory Programs

Honghui Lu, Alan L. Cox, and Willy Zwaenepoel
Department of Computer Science

Rice University
Houston, TX 77005

hhl,alc,willy@cs.rice.edu

ABSTRACT
In shared memory programs contention often occurs at the
transition between a sequential and a parallel section of the
code. As all threads start executing the parallel section, they
often access data just modi�ed by the thread that executed
the sequential section, causing a
urry of data requests to
converge on that processor.
We address this problem in a software distributed shared

memory system by replicating the execution of the sequen-
tial sections on all processors. Communication during this
replicated sequential execution is reduced by using multi-
cast.
We have implemented replicated sequential execution with

multicast support in OpenMP/NOW, a version of of OpenMP
that runs on networks of workstations. We do not rely on
compile-time data analysis, and therefore we can handle ir-
regular and pointer-based applications. We show signi�cant
improvement for two pointer-based applications that su�er
from severe contention without replicated sequential execu-
tion.

1. INTRODUCTION
Contention is a well-known problem for parallel programs.

Contention occurs when many processors send requests to
the same processor at approximately the same time. The
latency for the responses to these requests increases, and as
a result the progress of the requesting processors gets de-
layed. This problem can occur both in message passing and
in shared memory systems, where the messages are implic-
itly generated by the consistency mechanism.
Sequential sections in shared memory parallel programs

are a major source of contention [11]. Parallel programs
usually have sequential sections for initializing data and for
parts of the code that are either too complicated or too
expensive to be run in parallel. In the shared memory
paradigm, a sequential section is executed by a single thread,
the master thread. At the beginning of the parallel section

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPOPP’01, June 18-20, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-346-4/01/0006 ...$5.00.

following a sequential section, many or all threads often ac-
cess shared data modi�ed by the master thread during the
sequential section. Each thread may access a di�erent part
of the data, but they all direct their data requests to the
master thread, which has the single up-to-date copy of the
data.
We propose a method that eliminates contention caused

by the sequential sections of (software) distributed shared
memory parallel programs. Our solution replicates the se-
quential execution on all threads, allowing each thread to
carry out the writes on its local copy of the shared data.
This completely eliminates the communication to propagate
changes made during the sequential execution. During the
replicated sequential execution, we take advantage of the
fact that every thread executes the same code: When sev-
eral threads need the same data, only one request is sent,
and the result is multicast to all threads participating in
the parallel computation. Because a multicast message has
in principle the same cost as a point-to-point message, the
replicated sequential execution would ideally take the same
amount of time as the non-replicated version. In practice,
multicast requires more complicated
ow control, and the
attendant cost substantially increases the execution time of
the replicated sequential execution. In the applications that
we have looked at, however, the gain achieved by reducing
the contention in the subsequent parallel section is larger
than the slowdown as a result of using
ow-controlled mul-
ticast in the sequential section. This is the case even with
the highly conservative
ow control measures currently in
use in our prototype. We are exploring better
ow control
algorithms that allow more concurrency in message delivery
and should produce better execution times as a result.
Our work is done in the context of the OpenMP/NOW

system [19]. The OpenMP directives allows easy identi�-
cation of sequential sections. Our work does not rely on
compile-time data analysis. As a result, even irregular pointer-
based applications can bene�t from our optimizations. We
do assume, however, that execution of the sequential sec-
tions is deterministic.
OpenMP/NOW is an extension of the TreadMarks soft-

ware distributed shared memory (SDSM) system [6], and
uses the SUIF compiler toolkit [5] to generate TreadMarks
code from OpenMP programs [19]. We have measured the
performance of the techniques discussed in this paper on a
32-node Athlon-based cluster connected by 100Mbps switched
Ethernet. Barnes-Hut [25] and Ilink [9] are used as applica-
tions.

53

The rest of this paper is organized as follows. Section 2
provides some general background on OpenMP/NOW. Sec-
tion 3 explains the cause of contention and its e�ect on
SDSM systems. Section 4 discusses our design choices. Sec-
tion 5 details the implementation of our system. Section 6
presents the resulting improvements. Section 7 discusses re-
lated work. We conclude in Section 8.

2. BACKGROUND
The OpenMP Application Program Interface (API) [20,

21] supports shared memory parallel programming in C/C++
and Fortran programs. Current OpenMP implementations
are limited to shared memory architectures. We have im-
plemented the �rst prototype of OpenMP on distributed
memory machines, and in particular on a network of work-
stations (NOW) [19]. We use the TreadMarks SDSM system
to implement a shared memory abstraction on a NOW, and
we use the SUIF compiler tool kit [5] to translate OpenMP
source code into TreadMarks programs. We only discuss
those aspects of OpenMP and TreadMarks necessary for an
understanding of the rest of the paper. For a complete dis-
cussion, we refer the reader to the standard references [6,
20, 21]

2.1 The OpenMP API
The OpenMP Application Program Interface (API) [20,

21] speci�es a collection of compiler directives, library func-
tions, and environment variables that can be used to spec-
ify shared memory parallelism in C/C++ and Fortran pro-
grams. OpenMP is based on a fork-join model of parallel
execution. The sequential code sections are executed by a
single thread, called the master thread . The parallel code
sections are executed by all threads, including the master
thread.
The fundamental construct for expressing parallelism is

the parallel directive. It de�nes a parallel region of the
program that is executed by multiple threads. Work sharing
constructs divide the computation among the threads within
a parallel region. For example, the for directive divides the
iterations of the associated loop among the threads so that
each iteration is performed by a single thread. In addition,
data environment directives allow the programmer to specify
whether variables are shared or private.
Our prototype supports a subset of the OpenMP API. The

subset includes the parallel construct, the work sharing con-
structs, the combined parallel and work sharing constructs,
various data environment directives, synchronization meth-
ods (locks and barriers) and the library functions. We sup-
port static block or cyclic partition of loops. We do not
support nested parallel regions.

2.2 TreadMarks
TreadMarks [6] is a user-level SDSM system. It provides

a global shared address space on a distributed memory ma-
chine.

2.2.1 Thread and Synchronization Model
In addition to conventional locks and barriers, TreadMarks

includes the Tmk fork and Tmk join synchronization primi-
tives, speci�cally tailored to the fork-join style of parallelism
expected by OpenMP and most other shared memory com-
pilers [5].

For performance reasons, all threads are created at the
start of a program's execution. Initially, the master thread
executes the program while the slave threads are blocked
inside the runtime system waiting for the master to issue
a Tmk fork. When the master arrives at a Tmk fork, it
sends a fork message to all the waiting slave threads to wake
them up. The fork message also contains information for the
slaves to direct their execution during the parallel section,
essentially a subroutine to be executed, its arguments, and
some additional information. After the parallel execution,
all threads call Tmk join. A Tmk join on a slave sends a join
message to the master thread indicating completion of the
parallel section. On the master, Tmk join causes the master
thread to wait for receipt of a join message from each of
the slaves. Afterwards, the master continues with the pro-
gram and the slave threads are blocked waiting for the next
Tmk fork.

2.2.2 Memory Model
TreadMarks relies on the operating system's virtual mem-

ory page protection mechanism to detect accesses to the
shared pages, and the threads communicate via software
messaging such as UDP on a local area network. Because
sending messages over a network is very expensive, Tread-
Marks takes great e�ort to minimize messages.
TreadMarks features a release consistent (RC) [14] shared

memory model. In the RC model, shared memory accesses
are categorized either as ordinary or as synchronization ac-
cesses, with the latter category further divided into acquire
and release accesses. RC requires ordinary shared memory
updates by a thread p to become visible to another thread
q only when a subsequent release by p becomes visible to q

via some chain of mutual synchronizations. In practice, this
model allows a thread to bu�er multiple writes to shared
data in its private memory.
TreadMarks implements a lazy invalidate version of re-

lease consistency [15]. The propagation of modi�cations is
postponed until the time of the acquire. Furthermore, an
invalidate protocol is used. Instead of sending new data to
the acquirer, the releaser noti�es the acquirer of which pages
have been modi�ed, causing the acquirer to invalidate its lo-
cal copies of these pages. A thread incurs a page fault on
the �rst access to an invalidated page.
False sharing also causes frequent communication. False

sharing occurs when two or more threads access di�erent
variables within the same page, with at least one of the
accesses being a write. TreadMarks uses a multiple-writer
protocol to address this problem. With the multiple-writer
protocol, two or more threads can simultaneously modify
their own copy of the shared page. Their modi�cations are
merged at the next synchronization operation in accordance
with the de�nition of RC, thereby reducing the e�ect of false
sharing. In order to distinguish changes made by di�erent
threads, at the time the thread sends out updates to the
shared page, instead of sending the whole page, only the
modi�ed values are sent. Those modi�ed values are called
di�s.

2.3 The OpenMP to TreadMarks Translator
The OpenMP to TreadMarks translation is relatively sim-

ple, because TreadMarks already provides a shared memory
API. A large part of the translator deals with transforming

54

the parallel regions to the fork-join format and implement-
ing the data environment directives.
To translate a sequential program annotated with paral-

lel directives into a fork-join parallel program, the translator
encapsulates each parallel region into a separate subroutine.
This subroutine also includes code, generated by the com-
piler, that allows each thread to determine, based on its
thread identi�er, which portions of a parallel region it needs
to execute. At the time of a fork, the master passes a pointer
to this subroutine to the slave threads. To make the address
of shared variables available to the slaves, the master passes
their addresses to the slaves at the fork.
Variables de�ned outside the parallel region are rede�ned

in the new subroutine. The private variables keep their orig-
inal types. The types of shared variables are changed to the
reference types derived from their original types.
In TreadMarks, shared variables must reside on the shared

heap. The translator gathers all shared global variables in a
structure, and allocates that structure on the shared heap.
Private variables are implemented by rede�ning them in the
parallel subroutine generated by the compiler, so that each
thread accesses the private copy on its own stack.

3. CONTENTION
This section �rst illustrates the e�ect of contention on

SDSM systems, and then explains why sequential sections
are major sources of contention.
We de�ne contention as the arrival of one or more di� re-

quests on a node before the di� in response to a previous
request has left the node. Contention can result from limita-
tions in the node or in the network. In the former case, the
time that the node requires to process a request is longer
than it takes for the next request to arrive. In the latter
case, the node fails to push out responses fast enough due
to bandwidth limitations in the network link. Most systems,
under this condition, wait for the interface to free an entry
in its output queue.
Although contention happens at the node holding the up-

dates, its e�ects are felt by the requester. As most SDSM
systems handle requests in the same order in which they
arrive, the service time for a request that arrives at a node
with pending requests is increased by the time required to
process all pending requests.
Sequential sections are a major cause of contention. While

clever programming can reduce the amount of code in se-
quential sections, they are often hard to avoid completely.
For instance, initialization and irregular load balancing codes
often run sequentially. These sections usually take a very
small portion of the execution time, and parallelizing them
can be both complicated and unpro�table. A parallel region
whose amount of work varies from iteration to iteration may
also be executed sequentially when the amount of work as-
sociated with it is below a threshold.
In the shared memory paradigm, the sequential sections

are executed by a single thread (the master thread in OpenMP).
The result of the sequential computation automatically be-
comes visible to the other threads as a result of the fork
synchronization between the sequential and the following
parallel section. Data written during the sequential section
is often immediately accessed by many threads in the paral-
lel section that follows. Each thread may access a di�erent
part of the data, but they all send their requests to the last
writer of the data, which is the master thread.

Consider for example, Barnes-Hut, a N-body simulation
program from the SPLASH-2 benchmark suite [25]. A shared
oct-tree is used in Barnes-Hut for load balancing purposes.
The tree is rebuilt at the beginning of each iteration by
reading all the particles updated in the previous iteration.
Because the tree construction takes 0.3% of the complete
program's sequential execution time and because it is rather
complicated to parallelize, it is executed sequentially. At the
beginning of the parallel force evaluation phase that follows
tree building, each thread performs a top-down traversal of
the tree to �nd its own particles. Contention occurs here
because every thread requests parts of the newly computed
tree from the master thread.
Contention may also occur between two consecutive par-

allel sections, but it is not inherent in this situation. Be-
cause parallel regions distribute the computation and data
accesses among di�erent threads, there need not be a single
thread to which all requests for data are directed simulta-
neously. Careful programming practice (by staggering com-
munications) can often avoid contention in this case.

4. DESIGN

4.1 Principle
Our solution replicates the execution of sequential sections

on all threads, allowing each thread to carry out any writes
during the sequential section on its local copy of the shared
data. Quite obviously, writes performed during replicated
sequential execution need not be propagated to other nodes,
thus eliminating the contention after the sequential section.
Replicated sequential execution, by itself, would, however,

introduce severe contention at a di�erent place, namely dur-
ing the execution of the sequential section itself. Indeed,
while in normal sequential execution only the master thread
accesses remote data, during replicated sequential execution
all threads access remote data. Since they all execute the
same code, remote accesses for the same data tend to oc-
cur at approximately the same time on all threads, thereby
causing severe contention.
The fact that during replicated sequential execution every

thread executes the same code and accesses the same data
allows, however, the use of multicast to eliminate this newly
introduced contention. When several threads need the same
data, only one request for the data is sent, and the reply
is multicast to all threads. Contention is reduced because
there is only a single request for each data item, as during
normal sequential execution.
Returning to the example of Barnes-Hut, each thread ex-

ecutes the sequential tree building. Because in doing so a
thread reads all the particles, the particles are multicast
during the replicated execution. As a result, by the end
of the tree building phase, the tree is available locally on
each node, and no contention occurs at the beginning of the
parallel section.

4.2 Comparison to Alternatives
An obvious alternative solution is to try to predict which

threads are going to access what data at the beginning of the
parallel section, and unicast or multicast the pages to those
threads accordingly. This prediction can be done either by
the compiler or at runtime. Compile-time analysis can pre-
dict data access patterns [2, 4, 7, 18], but it is limited to
regular access patterns, which do not include pointer-based

55

applications such as Barnes-Hut. In contrast, our method
does not rely on compile-time data access analysis. Run-
time speculation has also been proposed to predict accesses
based on the history of previous accesses [23], but such an
approach works only for applications that have repetitive
access patterns from one iteration to another.
Another possible solution is to multicast all data modi�ed

during the sequential execution to all threads before parallel
execution starts. This method is expensive if threads access
only a small part of the modi�ed data. For instance, in
Barnes-Hut, except for the nodes near the root of the tree
that are accessed by all threads, most of the tree is accessed
by only a subset of the threads. With a larger problem
size and more processing nodes, we expect most data to be
accessed by an ever smaller number of threads.

5. IMPLEMENTATION
The TreadMarks runtime library is modi�ed to support

the replicated sequential execution and multicast as described
above. We start with some necessary background on the im-
plementation of the multiple-writer, lazy invalidate, release
consistency protocols in TreadMarks.

5.1 TreadMarks Implementation Background
At a synchronization, the acquiring thread needs to be in-

formed of the modi�cations to shared memory it needs to see
according to the de�nition of release consistency (see Sec-
tion 2.2). To do so, the execution of each thread is divided
into intervals. A new interval begins every time a thread ex-
ecutes a release or an acquire. Each thread has an interval
index, which is incremented every time a new interval starts
on this thread. Intervals on di�erent threads are partially
ordered [1]: (i) intervals on a single thread are totally or-
dered by program order, (ii) an interval on thread p precedes
an interval on thread q if the interval of q begins with the
acquire corresponding to the release that concluded the in-
terval of p, and (iii) an interval precedes another interval by
transitive closure. With locks, the interval corresponding to
the release of a lock directly precedes the interval beginning
with a subsequent acquire to the same lock. With barriers,
any interval corresponding to the barrier arrival precedes
all intervals corresponding to the subsequent barrier depar-
tures. However, no ordering exist among the barrier arrivals,
or among the barrier departures.
Each interval has a vector timestamp to record its knowl-

edge of intervals in other threads that precede it. A times-
tamp contains an entry for each thread. In the timestamp
of the ith interval of thread p, the entry for thread p is equal
to i. The entry for a thread q other than p denotes the most
recent interval of thread q that precedes interval i of thread
p according to the partial order.
RC requires that before a thread p may continue past an

acquire, the updates of all intervals preceding the current
interval must be visible at p. Therefore, at an acquire, p
sends its current interval timestamp to the previous releaser
q. The releaser then compares the corresponding entries of
both timestamps, and sends a message to p including write
notices for all intervals named in q's current interval times-
tamp but not in the timestamp it received from p. A write
notice is an indication that a page has been modi�ed in a
particular interval. Process p invalidates all pages for which
it receives a write notice, and computes a new vector times-

tamp according to the pair-wise maximum of its previous
timestamp and the releaser's timestamp.
TreadMarks uses lazy di� creation. A di� is not created

at a synchronization, but only when it is requested. A di�
is also created when a write notice from another thread in-
validates the page. In this case, it is essential to make a
di� in order to distinguish the modi�cations made by the
di�erent threads. Lazy di� creation results in a decrease in
the number of di� creations and an attendant improvement
in performance [16].

5.2 Replicated Sequential Sections
A join before a replicated sequential section behaves like

a barrier. The master thread waits until all threads have
arrived at the join, then issues a departure message so that
all threads continue to the replicated sequential section.
At the fork at the end of a sequential section, threads

wait until all other threads have �nished the sequential ex-
ecution before proceeding to the next parallel section. No
memory coherence information is exchanged at the fork, be-
cause every thread executes exactly the same code during
the replicated sequential execution.
Shared memory allocation, input and output instructions

are not duplicated. We use the runtime variables provided
by OpenMP to guard each memory allocation, input or out-
put instruction so that it is executed only by the master
thread during the sequential execution.

5.3 Integration with the TreadMarks Consis-
tency Protocol

The synchronization before the sequential execution causes
memory consistency information to be distributed to all
threads according to the de�nition of release consistency.
As a result, pages modi�ed by another thread in the prior
execution are invalid, but each thread can locate the di�s
that it needs to bring its pages up-to-date by virtue of the
write notices it received (see Section 5.1).
During replicated sequential execution shared memorymod-

i�cations must not be propagated, because their propagation
would quite obviously be redundant and may in fact lead to
incorrect results.
In general, the TreadMarks consistency protocol achieves

this result automatically, with one exception as explained
below. Since there is no synchronization inside the sequen-
tial section, and since the TreadMarks lazy release con-
sistency protocol propagates consistency information only
at synchronization, updates made during the replicated se-
quential section by one thread, in general, do not become
visible at other threads. However, lazy di� creation (see
Section 5.1) may still cause some updates made during the
sequential section to be propagated.
Lazy di� creation can cause an update made during repli-

cated sequential execution to be propagated in the following
scenario. Suppose thread p faults on a page modi�ed by q

before and during the replicated sequential execution, and
suppose furthermore that the corresponding di� has not yet
been requested by any other thread. In this case, the di�
is created only at this point (when it is requested), and in-
cludes the modi�cations made during the replicated sequen-
tial execution.
To avoid this problem, all dirty pages are write-protected

before entering the sequential section. During the sequen-
tial execution, the �rst write to the page causes a page fault,

56

after which a di� is created for the page. A twin is allocated
after the di� creation and the page is made writable. A di�
request during the replicated sequential section obtains this
di�, which contains only the modi�cations made before the
sequential section. At the end of the replicated execution,
the remaining write-protected dirty pages are unprotected
and returned to their normal state. An alternative solu-
tion to this problem would be to disable lazy di� creation,
and create di�s for all modi�cations before entering the se-
quential section, but we have found this solution to be more
expensive.

5.4 Multicast Implementation
Our implementation is based on IP multicast. There is a

single multicast group which every thread joins at the be-
ginning of the program. The main task of the multicast
implementation is to add reliability to IP multicast. How to
provide reliable and eÆcient multicast at either the trans-
port layer or the application layer is an ongoing research
topic. This paper does not focus on multicast protocols; we
build a simple multicast mechanism tailored to our needs,
that provides reliability and
ow control. In the future, this
multicast protocol could be improved, or suitable protocols
developed elsewhere could be used here.
In the simplest possible form of multicast implementation,

a node that faults could simply send out its requests for miss-
ing di�s, according to the write notices it has, and the ap-
propriate threads would respond by multicasting their di�s.
Upon receipt, each thread, including the faulting thread,
would incorporate the appropriate di�s into its copy of the
page. When all necessary di�s are received, the faulting
thread would continue. On other threads, if all the di�s
are received to make the page valid, the page protection
would be changed to valid so that no further page faults
are taken. If di�s are still missing, the page would remain
invalid, causing a fault when accessed and causing the di�s
that are missing to be fetched.
Unfortunately, this simple solution does not work well, be-

cause it requires a rather wholesale re-design of how Tread-
Marks works, and/or it may lead to over
ow in the nodes'
receive bu�ers. The TreadMarks code is written under the
assumption that di�s arrive at a node only when a thread on
that node has requested and is waiting for the di�s. There-
fore, di� arrival does not cause an interrupt. During repli-
cated sequential execution, the above simple strategy could
quickly �ll up the incoming network bu�ers if a number of
di�s were received for which the thread was not waiting (be-
cause those pages were valid on that node or the execution
had not yet proceeded to that point). The alternative of gen-
erating an interrupt on each di� arrival is also un-attractive,
because it is ineÆcient and it requires a major re-design of
the code. Even if we did generate an interrupt on each di�
arrival, there may be so many incoming di�s that the bu�ers
could still over
ow. For all these reasons, we have chosen
for an implementation where some amount of
ow control is
exerted on the multicast messages.

5.4.1 Determining the Requester
In the absence of lost messages, only one node sends out

a di� request for a particular page. In order to choose the
sender without additional communication, a thread must
know whether a page is valid or not on other threads, as
well as which di�s are missing on other threads. Since this

information is not available in the original TreadMarks sys-
tem, we augment each page with an array of valid notices,
with one entry corresponding to each thread. Valid notices
are exchanged only at the join before a sequential section.
A valid notice records, for each page and for each thread,
the timestamp of the latest interval during which the page is
brought up-to-date by a thread. By comparing the write no-
tices and the valid notices for a particular page, each thread
can infer which threads fault on this page during replicated
sequential execution, and which di�s are missing on all of
those threads. The thread with the lowest thread identi�er
sends the di� request, and requests the di�s necessary to
make the page consistent on all threads.

5.4.2 Reliability and Flow Control
Di� requests from di�erent threads are serialized at the

master thread. A request is �rst sent via a point-to-point
message to the master, and the master thread multicasts the
request to all threads. This request performs two tasks: (1)
it request the di�s, and (2) it alerts the other threads that
a set of multicast di� replies is about to arrive.
After receiving the multicast di� request, the threads that

have the di�s multicast them in turn, one thread sending
at a time, in order of increasing thread identi�er. Flow
control is achieved by requiring each thread to multicast
an acknowledgment after receiving all the di�s sent by the
preceding thread. When a thread has di�s to send, the di�
reply message serves as an acknowledgment, otherwise a null
acknowledgment message is sent.
With this
ow control in place, lost messages are ex-

tremely rare. We therefore use a rather expensive mech-
anism for recovering from lost messages, since it is almost
never invoked. When a thread times out on receive, it sends
out a request asking for its missing di�s regardless of other
threads that may also fault on the same page, and the replies
are multicast to all threads.

5.4.3 Discussion
This multicast implementation has considerable overhead,

including (1) the overhead for choosing the sender of the
multicast request, (2) the overhead for exchanging the valid
notices at the entry of sequential sections, (3) the forward-
ing of requests to the master thread, (4) the null acknowl-
edgment messages, and (5) some loss of concurrency. With
normal sequential execution, all missing di�s for a page are
requested in parallel. A di� is sent immediately after com-
puting it, and the replies are processed by the requester
in �rst-come-�rst-served order. The slave threads thus com-
pute di�s concurrently. Furthermore, the di� creation on the
slave threads and the di� application on the master thread
proceed at the same time. This concurrency is lost under
our
ow control scheme.
As will be seen in Section 6, on one hand, the multicast

overhead is small enough that replicated sequential execu-
tion wins over normal sequential execution, but, on the other
hand, it is large enough to noticeably a�ect our results. For
this reason, we are actively working on a
ow control mech-
anism with less overhead.

6. RESULTS
Our experiments are conducted on a network of 32 nodes

running FreeBSD 4.1.1. Each node contains an 800MHz
AMD Athlon processor and 256MB of memory. The nodes

57

are connected by a 100Mbps switched Ethernet and a 100Mbps
hub. We recognize that faster networks are available that
would alleviate congestion with the given processors. We
foresee, however, that future faster processors and multipro-
cessor nodes will re-introduce congestion, even with faster
networks. All unicast messages go through the switch, while
all multicast messages go through the hub. The switch was
found to be rather slow at delivering multicast messages,
and therefore we chose a hub to carry the multicast mes-
sages. The addition of the hub does not appreciably a�ect
the results for normal execution, since the additional band-
width o�ered to unicast messages is limited (100Mbps on a
total of 3.2Gbps).
Our system is based on TreadMarks 1.0.3. We compare

the system with replicated sequential execution with the
original OpenMP/TreadMarks system. We use two pointer-
based applications, Barnes-Hut and Ilink, in the evaluation.
Tables 1 and 3 show the execution times and the speedups

of each application. We measure the execution time of the
sequential program on a single node without any parallel
directives. In addition to the total execution time, we also
measure the time each program spent in the sequential and
the parallel sections of the code.
The amount of communication is shown in Tables 2 and 4.

In addition to the total message and byte count, we measure
the number of messages and the amount of data sent for di�
requests, and distinguish between di� requests made dur-
ing the sequential and the parallel sections. Each multicast
message is counted as a single message.
We also measure the number of page faults and the aver-

age response time for serving a page fault. These numbers
show the e�ect of contention reduction as well as the mul-
ticast overhead in the replicated sequential sections. For
the sequential sections, we only count the number of page
faults on one thread, the master thread in the original ver-
sion, and the thread incurring the most page faults in the
replicated version. For the parallel sections, we count the
average number of page faults per thread.

6.1 Barnes-Hut

6.1.1 Application
Barnes-Hut [25] is an N -body simulation program using

the hierarchical Barnes-Hut method. A tree structure is
used to represent the recursively decomposed sub-domains
(cells) of the three-dimensional physical domain containing
all of the particles. The leaves of the tree correspond to the
particles, and are contained in a separate array.
Each iteration is divided into two steps. In the �rst step,

a single thread reads the particles and rebuilds the tree.
The second step, in which all threads participate, performs
force evaluation. First, the threads divide the particles by
traversing the tree in the Morton ordering (a linear ordering
of the points in higher dimensions) of the cells. Speci�cally,
the ith thread locates the ith segment. The size of a segment
is weighted according to the workload recorded from the
previous iteration. Then, each of the threads performs the
force evaluation for its particles, which involves a partial
traversal of the tree. During the force evaluation, a thread
only modi�es its own particles.
During the tree building, the master thread reads all the

particles updated in the previous iteration and rewrites the
tree structure. In the force evaluation phase that follows,

every thread �rst traverses the tree to �nd its own parti-
cles. Contention occurs here because every thread requests
updates to the tree simultaneously. Each thread then pro-
ceeds to update its own particles. During this period, a
thread reads the tree, as well as a large part of the particles
updated by the other threads during the last iteration.
In the replicated execution, the sequential tree building

is replicated on all threads. Because a thread reads all the
particles to build the tree, the pages containing the particles
are broadcast during the replicated execution. As a result,
by the end of the tree building phase, all threads have a local
copy of the complete new tree and the up-to-date values of
the particles.

6.1.2 Results
We run Barnes-Hut with 131072 particles for 2 timesteps.

The sequential program runs for 359.4 seconds, of which 1.4
seconds are spent in the sequential tree building phase.
The speedup achieved by the base OpenMP system is 6.7

on 32 nodes. The sequential tree building takes 3.2 sec-
onds, longer than the sequential program, because the mas-
ter spends 2.1 seconds bringing in the particles from the
slave threads. The parallel part takes 50.4 seconds, amount-
ing to a speedup of 7.1 for that part alone.
The optimized OpenMP program achieves a speedup of

10.1 on 32 nodes, which is a 51% improvement over the orig-
inal version. Time spent in the parallel sections is reduced
to 21.1 seconds, compared to 50.4 seconds in the base ver-
sion. The number of di� messages in the parallel sections is
reduced from 5,006,252 to 3,045,226, and the amount of di�
data is reduced from 739,139 kilobytes to 221,292 kilobytes.
Because the parallel sections are free of contention in the op-
timized version, the average response time for a di� request
is reduced from 3.34 milliseconds in the original version to
0.98 milliseconds. Since parallel sections are separated from
the sequential sections by barriers, the execution time of the
parallel section is determined by the slowest thread. In the
original version, the slowest thread spends 34.6 seconds in
di� requests during the parallel sections. With contention
eliminated, this time is reduced to 5 seconds in the optimized
version.
The improvement is both due to the contention elimina-

tion for the tree and the broadcasting of the particles during
the replicated computation. To isolate the e�ect of con-
tention elimination, we hand insert broadcasting of the tree
between the non-replicated tree building and the parallel
force computation, and measure the force computation part.
Without contention, time for the parallel force computation
is 36.9 seconds, the number of di� messages is 4,892,246, and
the amount of di� data is 538,832 kilobytes. Thus, about
half of the improvement stems from contention elimination
and the other half from broadcasting the particles.
The replicated sequential sections take 14.4 seconds, 11.2

seconds longer than the base version. The time spent choos-
ing a sender of a multicast request is very small, about 13
microseconds. 0.2 seconds of the overhead stem from ex-
changing valid notices at the beginning of the replicated
execution. By far the largest part of the overhead comes
from the increased communication and the multicast over-
head during the sequential sections. In the original version,
the master thread has 3072 page faults, and the average re-
sponse time is 0.67 milliseconds. In the replicated execution,
because other threads fault on pages valid on the master

58

Sequential Original Optimized

Total time (sec.) 359.4 53.6 35.5
Total Speedup N/A 6.7 10.1

Sequential time (sec.) 1.4 3.2 14.4
Parallel time (sec.) 358.0 50.4 21.1
Parallel speedup N/A 7.1 17.0

Table 1: Barnes-Hut execution times on 32 nodes.

Original Optimized

Total messages 5,106,237 3,254,275
data (KB) 795,165 275,351

di� messages 96,848 205,892
Seq di� data (KB) 10,446 22,443

di� requests 3,072 6,146
avg response time (ms) 0.67 2.12

di� messages 5,006,252 3,045,226
Par di� data (KB) 739,139 221,292

avg di� requests 8,479 3,116
avg response time (ms) 3.34 0.98

Table 2: Barnes-Hut execution statistics on 32 nodes.

thread, the number of di� requests increases to 6146, and
the average response time is increased to 2.12 milliseconds.
The signi�cant increase in average response time is largely
due to the additional messages in the multicast implementa-
tion. The base system sends 96,848 messages during the se-
quential section, while the replicated version sends 205,892
messages, including 3,074 forwarded requests and 143,738
null acknowledgment messages.

6.2 Ilink

6.2.1 Application
Ilink [9, 17] is a widely used genetic linkage analysis pro-

gram that locates speci�c disease genes on chromosomes.
The input to Ilink consists of several family trees. The pro-
gram traverses the family trees and visits each nuclear fam-
ily. The main data structure in Ilink is a pool of genarrays.
A genarray contains the probability of each genotype for
an individual. Since the genarray is sparse, an index array
of pointers to non-zero values in the genarray is associated
with each one of them. A bank of genarrays large enough
to accommodate the biggest nuclear family is allocated at
the beginning of execution, and the same bank is reused for
each nuclear family. When the computation moves to a new
nuclear family, the pool of genarrays is reinitialized for each
person in the current family. The computation either up-
dates a parent's genarray conditioned on the spouse and all
children, or updates one child conditioned on both parents
and all the other siblings.
We use the parallel algorithm described by Dwarkadas et

al. [12]. Updates to each individual's genarray are paral-
lelized with the parallel directive. The bank of genarrays
is shared among the threads. The master thread �rst exam-
ines the amount of work involved in the update, and decides
to perform the update in parallel only if the amount of work
exceeds a threshold. An if clause is used to express the con-
ditional parallelization. The master thread then assigns the
non-zero elements in the parent's genarray to all threads in
a cyclic fashion. After each thread has worked on its share

of non-zero values and updated the genarray accordingly,
the master thread sums up the contributions of each of the
threads.
In the base OpenMP program, contention occurs because

all threads come to the master for the newly initialized or
updated genarrays. Contention is extremely severe when
the computation moves to a new nuclear family, because
the whole pool of genarrays are overwritten by the master
thread, and each thread has to read the genarrays of all fam-
ily members in order to update one family member. In the
optimized OpenMP program, the communication to fan-out
the genarrays from the master thread, as well as the accom-
panying contention are eliminated. During the replicated
execution, the contributions made by each thread during
the previous iteration are broadcast to all threads.

6.2.2 Results
We run Ilink with the CLP input set, which requires

180 iterations. The sequential code runs for 99.0 seconds,
with 2.2 seconds spent in the sequential sections. The base
OpenMP system achieves a speedup of 1.9 on 32 nodes. The
sequential part takes 5.5 seconds, of which 2.7 seconds are
spent to bring in updates to the genarray from the slave
threads. Because of the high degree of contention, the par-
allel sections take 48.1 seconds, amounting to a speedup of
2.0 for the parallel part.
The optimized OpenMP program achieves a speedup of

5.5 on 32 nodes, an 189% improvement over the original
version. The improvement comes from the signi�cant reduc-
tion in the parallel section execution time, from 48.1 seconds
in the base version to 8.8 seconds in the optimized version.
The number of di� messages in the parallel sections is re-
duced from 873,052 to 111,600, and the amount of di� data
is reduced from 518,266 kilobytes to 13,895 kilobytes, which
amounts to a 87% reduction of di� requests, and a 97% re-
duction of di� data from the original version. Because the
parallel sections are free of contention, the average response
time is reduced from 3.01 milliseconds in the original ver-
sion to 0.64 milliseconds. In the original version, the slowest

59

Sequential Original Optimized

Total time (sec.) 99.0 53.6 18.0
Total Speedup N/A 1.9 5.5

Sequential time (sec.) 2.2 5.5 9.2
Parallel time (sec.) 96.8 48.1 8.8
Parallel speedup N/A 2.0 11.0

Table 3: Ilink execution time on 32 nodes.

Original Optimized

Total messages 1,002,787 230,392
data (KB) 565,711 49,535

di� messages 104,530 94,589
Seq di� data (KB) 2,803 2,885

di� requests 2,836 2,837
avg response time (ms) 0.94 1.71

di� messages 873,052 111,600
di� data (KB) 518,266 13,895

Par avg di� requests 12,318 540
avg response time (ms) 3.01 0.64

Table 4: Ilink execution statistics on 32 nodes.

thread spends 39.8 seconds in di� requests during the par-
allel sections, while this time is reduced to 0.4 seconds in
the optimized version. In contrast to Barnes-Hut, all the
improvement in Ilink comes from eliminating contention for
the genarrays. Because the genarrays are completely over-
written during the sequential sections, no bene�t is gained
from broadcasting each thread's contribution to the genar-
ray in the previous iteration.
The sequential sections take 9.2 seconds, which is 3.7 sec-

onds longer than the base version. The program spends
1.5 seconds in exchanging valid notices. This number is
larger than the corresponding 0.2 seconds spent in exchang-
ing valid notices in Barnes-Hut, because Ilink runs for 180
iterations instead of two, as in Barnes-Hut. The replication
incurs about the same number of page faults as the origi-
nal sequential sections. However, the average response time
is increased from 0.94 milliseconds in the original version
to 1.71 milliseconds. The replicated execution sends 94,589
messages versus the 104,530 messages sent in the original
version. The slightly lower number of messages is the result
of combining di� requests to several threads into one multi-
cast message. Among the messages, 60,572 are di� requests
and replies, and 33,016 are null acknowledgment messages.
Because the number of messages does not increase, the mul-
ticast overhead in this case results mostly from the loss of
concurrency in di� creation and application.

7. RELATED WORK
We are not aware of any system that replicates compu-

tation in shared memory environments. Process-replication
has been used in distributed systems for fault-tolerance pur-
poses in systems such as CIRCUS [8] and Manetho [13].
Manetho [13] depends on the fact that replicated processes
execute the same deterministic program to optimize the
multicast protocol. Compared with process-replication, our
method only replicates parts of the program, and the repli-
cation is done for performance gains instead of for fault-
tolerance.

Previous parallel computing systems using group commu-
nication spend a lot of e�ort on making sure the data is sent
only to the threads that access it. Brazos [23] is an SDSM
system that exploits hardware multicast to improve perfor-
mance. Although their results are satisfactory on a cluster
of six dual-processor nodes, their method does not scale to a
large number of nodes. To avoid interrupting threads with
too many unneeded multicast messages, they create a di�er-
ent multicast group for each access pattern. Although this
method works �ne with the six nodes used in their experi-
ments, it does not scale. With the exponential increase of
the number of access patterns, this method quickly exceeds
the number of multicast groups allowed by the OS (typically
20 in Unix). Finally, they predict access patterns according
to history, and thus the bene�t is limited to repetitive ac-
cess patterns. We are not limited by the number of multicast
groups or by the need for repetitive access patterns.
There have been several compiler techniques proposed to

generate collective communications for distributed memory
systems [2, 4, 7, 18]. They are, however, limited to regular
array based programs. The inspector-executor method has
been proposed as a way to eÆciently execute irregular array
based computations on distributed memory machines [22].
Group communication can be applied when exchanging the
data at runtime. However, the compiler analysis involved
can be quite complicated [3, 10, 24].

8. CONCLUSION
Our system improves the performance of OpenMP on net-

work of workstations. We do so by eliminating the con-
tention caused by sequential sections of the program. Our
solution assumes that sequential computation is determinis-
tic, and replicates the sequential sections on all nodes. Dur-
ing replicated sequential execution, each thread modi�es its
local copy of the shared data. Therefore, threads do not
need to send requests to the master thread for updates after
the sequential section. We take advantage of the fact that
all threads execute the same code to make use of multicast.

60

Our methods distinguish themselves from other uses of mul-
ticast in shared memory systems in that they do not require
that future accesses can be predicted, either by the compiler
or by the runtime. As a result, we are not limited to pro-
grams with regular array accesses or strictly repeating access
patterns. We chose two pointer-based applications without
strictly repeating access patterns that su�er from severe con-
tention after sequential sections in the code, Barnes-Hut and
Ilink. We demonstrated signi�cant bene�ts for these appli-
cations. The main limitation of our implementation is the
restrictive multicast
ow control. We are exploring alterna-
tive
ow control strategies that allow more concurrency in
message delivery. We believe that such strategies are feasible
and will substantially improve our results.

9. REFERENCES
[1] S.V. Adve and M.D. Hill. A uni�ed formalization of

four shared-memory models. IEEE Transactions on
Parallel and Distributed Systems, 4(6):613{624, June
1993.

[2] A. Agarwal, D. Kranz, and V. Natarajan. Automatic
partitioning of parallel loops and data arrays for
distributed shared memory multiprocessors. In IEEE
Transactions on Parallel and Distributed Systems,
volume 6, pages 943{962, September 1995.

[3] G. Agrawal and J. Saltz. Interprocedural compilation
of irregular applications for distributed memory
machines. In Proceedings of Supercomputing '95,
December 1995.

[4] S. Amarasinghe and M. Lam. Communication
optimization and code generation for distributed
memory machines. In Proceedings of the ACM
SIGPLAN 93 Conference on Programming Language
Design and Implementation, June 1993.

[5] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and
C. W. Tseng. The SUIF compiler for scalable parallel
machines. In Proceedings of the 7th SIAM Conference
on Parallel Processing for Scienti�c Computing,
February 1995.

[6] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared memory computing on networks
of workstations. IEEE Computer, 29(2):18{28,
February 1996.

[7] J. Anderson and M. Lam. Global optimizations for
parallelism and locality on scalable parallel machines.
In Proceedings of the ACM SIGPLAN 93 Conference
on Programming Language Design and
Implementation, June 1993.

[8] E.C. Cooper. Replicated distributed programs. In
Proceedings of the 10th ACM Symposium on Operating
Systems Principles, pages 63{78, December 1985.

[9] R. W. Cottingham Jr., R. M. Idury, and A. A.
Sch�a�er. Faster sequential genetic linkage
computations. American Journal of Human Genetics,
53:252{263, 1993.

[10] R. Das, P. Havlak, J. Saltz, and K. Kennedy. Index
array
attening through program transformation. In
Proceedings of Supercomputing '95, December 1995.

[11] E. de Lara, Y. C. Hu, H. Lu, A. L. Cox, and
W. Zwaenepoel. The e�ect of contention on the
scalability of page{based software shared memory

systems. In Languages, Compilers, and Run-Time
Systems for Scalable Computers(Proc. 5th Intl.
Workshop LCR2000), Rochester, NY, May 2000.
Springer-Verlag.

[12] S. Dwarkadas, A.A. Sch�a�er, R.W. Cottingham Jr.,
A. L. Cox, P. Keleher, and W. Zwaenepoel.
Parallelization of general linkage analysis problems.
Human Heredity, 44:127{141, 1994.

[13] E.N. Elnozahy and W. Zwaenepoel. Replicated
distributed process in Manetho. In Proceedings of the
22nd International Symposium on Fault-Tolerant
Computing, pages 18{27, July 1992.

[14] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory
multiprocessors. In Proceedings of the 17th Annual
International Symposium on Computer Architecture,
pages 15{26, May 1990.

[15] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
release consistency for software distributed shared
memory. In Proceedings of the 19th Annual
International Symposium on Computer Architecture,
pages 13{21, May 1992.

[16] P. Keleher, S. Dwarkadas, A. L. Cox, and
W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating
systems. In Proceedings of the 1994 Winter Usenix
Conference, pages 115{131, January 1994.

[17] G. M. Lathrop, J. M. Lalouel, C. Julier, and J. Ott.
Strategies for multilocus linkage analysis in humans.
Proceedings of National Academy of Science, USA,
81:3443{3446, June 1984.

[18] J. Li and M. Chen. Compiling communication-eÆcient
programs for massively parallel machines. IEEE
Transactions on Parallel and Distributed Systems,
2(3):361{376, July 1991.

[19] H. Lu, Y. C. Hu, and W. Zwaenepoel. OpenMP on
networks of workstations. In Proceedings of
Supercomputing '98, November 1998.

[20] OpenMP Architecture Review Board. OpenMP
Fortran Application Program Interface, Version 1.0.
http://www.openmp.org, October 1997.

[21] OpenMP Architecture Review Board. OpenMP C and
C++ Application Program Interface, Version 1.0.
http://www.openmp.org, October 1998.

[22] J. Saltz, H. Berryman, and J. Wu. Multiprocessors
and run-time compilation. Concurrency:Practice and
Experience, 3(6):573{592, December 1991.

[23] W.E. Speight and J.K. Bennett. Using multicast and
multithreading to reduce communication in software
DSM systems. In Proceedings of the Fourth
International Symposium on High-Performance
Computer Architecture, pages 312{323, February 1998.

[24] R. von Hanxleden and K. Kennedy. Give-N-Take { a
balanced code placement framework. In Proceedings of
the ACM SIGPLAN 94 Conference on Programming
Language Design and Implementation, June 1994.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: characterization
and methodological considerations. In Proceedings of
the 22nd Annual International Symposium on
Computer Architecture, pages 24{36, June 1995.

61

