Infoscience

Journal article

Development of degenerate and specific PCR primers for the detection and isolation of known and putative chloroethene reductive dehalogenase genes

Degenerate and specific PCR primers were designed for the detection of chloroethene reductive dehalogenases (CE-RDase), the key enzymes of chloroethene dehalorespiration, based on sequence information of three CE-RDases and three chlorophenol (CP) RDases. For the design of the degenerate primers, seven conserved amino-acid blocks identified with different bioinformatic tools were used. For one block degenerate, primers containing a 5'-consensus clamp region specific for CE-RDases and a 3'-end degenerate core region specific for RDases in general were designed using the Consensus-Degenerate Hybrid Oligonucleotide Primer (CDHOP) design method. Applying the degenerate primers to genomic DNA of Sulfurospirillum multivorans strain K, Dehalobacter restrictus strain PER-K23, and Desulfitobacterium sp. strain PCE1 led to the isolation of the known CE-RDase genes and three new genes encoding putative reductive dehalogenases that cluster with CE-RDases and not with CP-RDases. In addition, primers designed to be specific for the three known CE-RDase genes, namely pceA of S. multivorans, pceA of D. restrictus, and tceA of Dehalococcoides ethenogenes were successfully tested on genomic DNA of different chloroethene-dehalorespiring bacteria. Nested PCR using degenerate primers followed by a PCR with specific primers allowed a sensitive detection of only 102 copies per reaction. (C) 2003 Elsevier B.V. All rights reserved.

Fulltext

Related material