OCL and Graph-Transformations — A Symbiotic
Alliance to Alleviate the Frame Problem*

Thomas Baar

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
thomas.baar@epfl.ch

Abstract. Many popular methodologies are influenced by Design by
Contract. They recommend to specify the intended behavior of opera-
tions in an early phase of the software development life cycle. In prac-
tice, software developers use most often natural language to describe
how the state of the system is supposed to change when the operation
is executed. Formal contract specification languages are still rarely used
because their semantics often mismatch the needs of software develop-
ers. Restrictive specification languages usually suffer from the ”frame
problem”: It is hard to express which parts of the system state should
remain unaffected when the specified operation is executed. Construc-
tive specification languages, instead, suffer from the tendency to make
specifications deterministic.

This paper investigates how a combination of OCL and graph trans-
formations can overcome the frame problem and can make constructive
specifications less deterministic. Our new contract specification language
is considerably more expressive than both pure OCL and pure graph
transformations.

Keywords: Design by Contract, Behavior Specification, Graph Gram-
mars, OCL, QVT

1 Motivation

Design by Contract (DbC) [1,2] encourages software developers to specify the
behavior of class operations in an early phase of the software development life
cycle. Precise descriptions of the intended behavior of operations can be of great
help to grasp design decisions and to understand the responsibilities of classes
identified in the design.

The specification of behavior is given in form of a contract consisting of a
pre- and a post-condition, which clarify two things: The pre-condition explicates
all conditions that are expected to hold whenever the operation is invoked. The
post-condition describes how the system state looks like upon termination of the
operation’s execution. Basically, contracts can be formulated in an informal way

* This work was supported by HASLER-Foundation, project DICS-1850.

84 T. Baar

or using a formal language such as OCL. Formally specified contracts have the
advantage to be a non-ambiguous criterium for the correctness of a given im-
plementation. Furthermore, contracts written in a formal language are machine
readable and can be automatically processed in later stages of the software de-
velopment life cycle, e.g. for the purpose of test case generation [3].

There are many specification languages available to define contracts formally.
Despite their differences at the surface level, all languages can be divided into
only two classes. The classification is based on the technique to specify the
post-condition of a contract. Restrictive specification languages formulate the
post-condition in form of a predicate, i.e. a Boolean expression, which restricts
the allowed values for properties in the post-state. Well-known examples for
restrictive languages are OCL, JML, Z, and Eiffel. Constructive specification
languages interpret post-conditions not as restrictions on the post-state but —
conceptually completely different — as updates, which transform the pre-state
into the post-state. Well-known examples for constructive languages are B, ASM,
graph transformations, and UML’s Action Language.

The main disadvantage of using restrictive languages is the well-known frame
problem [4]: The predicate for the post-condition can hardly express which parts
of the system should not change.

sell1(self:FundMngr, amount:lnteger)l

context FundMngr:: selll (amount)
post: vall = vall@pre—amount

self:FundMngr

l l self:FundMngr
[vai=x |

vall= x-amount l

||

sellAny(self:FundMngr, amount:Integer) l

context FundMngr:: sellAny (amount)
post: vall+val2 = vall@pre+ 2D
val2@pre—amount ’

(a) Restrictive specifications using OCL (b) Constructive specifications
using graph transformations

Fig. 1. Specification of ’simple’ operations

Suppose, a (simplified) class FundMngr has two attributes vall, val2 rep-
resenting the value of two stock depots. The intended behavior of operation
selll(amount) is to sell shares of value amount from the first depot. Typically,
the operation sell11() would be specified in OCL as shown in the upper part of
Fig. 1 (a). This specification, however, does not capture the intended semantics
because also implementations of sel11() conform to the OCL specification that
not only decrease vall by amount but in addition change the value of val2.

Constructive specification languages do not suffer from the frame problem
but from a severe, complementary problem. Since a constructive specification
describes how to ’construct’ the post-state out of the pre-state, it prescribes

OCL and Graph-Transformations 85

the implementation of the operation completely. Consequently, all decisions on
the operation’s behavior have to be taken in time of writing the specification
and cannot be deferred to the implementation phase. Hence, the constructive
specification and the implementation of an operation coincide.

The pros and cons of constructive specification languages are illustrated in
Fig. 1 (b). Here, the behavior specification is given in form of a graph transfor-
mation rule, which consists of two graph patterns called left-hand side (LHS)
and right-hand side (RHS). They define how to ’construct’ a post-state out of
a given pre-state: The pre-state is assumed to be represented as an object di-
agram. In a first step, all subgraphs of the object diagram are searched that
matches with LHS. In a second step, each matching subgraph is rewritten with
a new subgraph that can be uniquely computed based on RHS (see Sect. 3.2 for
details).

The specification of operation se111() in Fig. 1 (b) is read as follows. When-
ever in the pre-state a subgraph can be found consisting of object self whose
value for attribute vall matches with a (fresh) variable x then this subgraph
is rewritten by the same object self whose attribute vall has now the value
x-amount. Note that object self is passed as a parameter to the rule which lets
LHS match with only one subgraph of the pre-state. All objects and links of the
pre-state that are not part of the matching subgraph remain unchanged. The
same holds for the values of all attributes of object self that are not mentioned
in RHS. Consequently, if an implementation of se111() would change for object
self the value of attribute val2 then this implementation would not conform
to the constructive specification.

In order to illustrate the disadvantages of constructive specification languages
we consider a second operation sellAny (amount) whose intended behavior is to
sell shares of value amount but it is not important whether shares from the first
or from the second depot are sold. The final implementation of sellAny(), of
course, had to realize an algorithm that determines for each depot the num-
ber of shares to be sold, but the decision, which algorithm should be taken, is
intentionally deferred to the implementation phase.

A contract for sellAny() can easily be given using a restrictive language.
Figure 1 (a) shows an OCL contract where the post-state is underspecified: if a
concrete pre-state is given, the post-state properties vall, val2 can have more
than one solution. In other words, the post-state is not (always) determined by
the pre-state and the contract. We call such contracts non-deterministic. Non-
deterministic contracts cannot be expressed by purely constructive languages
(see Fig. 1 (b)) because there is no unique update that could by applied to the
pre-state in order to construct the post-state (if there were such an update, the
contract would be deterministic).

This paper investigates how the expressive power of constructive languages —
as an example we consider graph transformations — can be improved to master
non-deterministic contracts. In Sect. 3, graph transformations are extended with
restrictive specification elements (OCL clauses). In its extended version, graph
transformations are more powerful but still not powerful enough to formalize all

86 T. Baar

contracts that are relevant in practice. Thus, a second extension is discussed in
Sect. 4, which allows to simulate the loose semantics of restrictive languages.
To summarize, the proposed extensions of graph transformations enable soft-
ware developers to write formal contracts that (1) do not suffer from the frame
problem, (2) are non-deterministic, and (3) allow to change a state freely.

Related work. The idea to use graph transformations to formalize contracts
is not novel. There are even already tools for this purpose available [5,6]. The
examples we found in the literature, however, are always deterministic contracts,
which do not require to extend graph transformations with restrictive specifica-
tion elements.

The idea to extend graph transformations with OCL clauses has been adopted
from the Query/Views/Transformations proposal (QVT) [7], which is a response
on a corresponding request for proposals by the OMG. In Sect. 3, the QVT ap-
proach is, however, put into a broader context by providing the link from model
transformation (the original application domain of QVT) to formal contract
specification.

Another attempt in the literature to make graph transformations less deter-
ministic is by Heckel et al. in [8]. Having the same goal as our approach of Sect. 4,
they first introduce graph transformations based on a loose semantics and make
this notation, in a second step, more constructive by specifying explicit frame
conditions on selected types.

Combining OCL with object diagrams has been explored in the literature also
for a different target than contract formalization. The language VOCL (Visual
OCL) uses collaborations to represent OCL constraints in a visual format for
better readability [9]. Similarly, the proposal made by Schiirr in [10] is inspired
by Spider diagrams and aims at a more readable, graphical depiction of OCL
constraints. The approaches described in [9,10] cannot be compared with the
approach presented in this paper because they have a fundamentally different
goal. Firstly, [9,10] do not use OCL in order to improve the expressive power
of a graphical formalism. Instead, the graphical formalism is merely used as an
alternative to OCL’s textual standard syntax. Secondly, our approach targets
only operation contracts whereas [9,10] aim at a visualization of any kind of
OCL constraints including invariants.

2 Restrictive Languages and the Frame Problem

In this section, we analyze why restrictive languages can hardly avoid the frame
problem. The frame problem is much more complex than the trivial example in
Sect. 1 was able to illustrate. This complexity makes naive approaches to tackle
the frame problem, as for instance by adding frame axioms to the post-condition,
very questionable. Some restrictive languages try to alleviate the frame problem
by inventing a new clause for contracts. The new clause describes which parts
of the system state must remain unchanged when executing the operation.

OCL and Graph-Transformations 87

2.1 Example: CD-player

A formal specification of that are provided by CD-players will illustrate well the
complexity of the frame problem. In Section 3, this example will be used again
to point out limitations of constructive languages.

CDPlayer
timeDisplayMode: TimeDM

currentTrack:Integer 0.1 0.1 1.
- CD Track
inserted «ordered»

setNextTrack()
setRandomTrack()
play()

<<enumerate>>
TimeDM

elapsed
remaining

Fig. 2. Static model of CD-player scenario

The main purpose of CD-players is to entertain people and to play the content
of compact discs (CDs). The content of a CD is organized by tracks that are
burned in a certain order on the CD. We want to assume that a CD can be played
in two modes. In the normal mode, all tracks on the CD are played in the same
order as they appear on the CD. In addition, the CD-player can work in a shuffle
mode in which the tracks are played in a randomized order. Finally, we want
to assume that a CD-player has a display on which, depending on the chosen
display mode, the elapsed or remaining time for the current track is shown.

This CD-player scenario is modeled straightforwardly by the class diagram
shown in Fig. 2. The subclass CDPlayerWithFader can be ignored for the mo-
ment; later we will come back to it when discussing how object-oriented designs
can evolve (e.g. by adding new subclasses) and which consequences this has on
the semantics of operation contracts.

In the next subsection, we will focus on the formal behavior specification for
the operations setNextTrack() whose intended semantics is to determine the
next track to be played if the CD-player is working in the normal mode. The
operation setRandomTrack () will be specified in Sect. 3 and determines the next
track if the CD-player works in the shuffle mode.

2.2 Complexity of the Frame Problem

The intended semantics of operation setNextTrack() is to move one track for-
ward on the CD and to increase the value of attribute currentTrack by one.
The formalization of this behavior in a restrictive language such as OCL seems
to be straightforward but there are some traps one can fall into.

88 T. Baar

context CDPlayer::setNextTrack ()
pre: self.inserted —>notEmpty ()
post: self.currentTrack = (self.currentTrack@pre mod
self.inserted.track—>size()) + 1

This contract has some merits since it resolves ambiguities that were hidden
in the informal description of the behavior. The first important information is
expressed by the pre-condition saying that the CD-player assumes to have a CD
inserted whenever the operation setNextTrack() is invoked. Note that this
assumption is indeed necessary because the post-condition navigates over the
currently inserted CD. The second merit of the contract is to make explicit the
behavior of setNextTrack() when the current track is the last one on the CD.
Reasonable variants might be to set currentTrack to zero (and thus to stop
playing) or to continue with the first track on the CD as it is stipulated by our
OCL constraint.

Although the OCL contract clarifies the informally given specification in some
respects, it does not capture completely the intended behavior. According to the
formal semantics of OCL in [11], an implementation still fulfills the contract
even if it would not only change the value of currentTrack but also the display
mode (attribute timeDisplayMode). Or the implementation could create/delete
other objects, or could change the state of other objects, or could change the
connections (links) between objects.

2.3 Strategies to Overcome the Frame Problem

A very naive strategy to exclude unintended implementations is by adding equa-
tions (so-call frame azioms) to the post-condition in order to make explicit which
parts of the state should remain unchanged. In case of setNextTrack(), one had
to add equations such as self.timeDisplayMode=self.timeDisplayMode@pre
and CD.allInstances=CD.allInstances@pre and The huge number of nec-
essary equations, however, let the size of the post-condition explode. Another
drawback of this ’solution’ is the need to rewrite all contracts of the design when-
ever the state space of the designed system is changed, e.g. by introducing a new
class CDPlayerWithFader.

Unfortunately, this poor strategy of adding frame axioms is currently the
only possibility, how OCL users can try to tackle the frame problem. To our
knowledge, there has not been any attempt yet to make the language OCL more
expressive so that users can easily add to a contract some information on which
parts of the system remain unchanged.

Other restrictive languages have tried to tackle the frame problem by adding
syntactical constructs which makes the semantics of a contract stronger. Users of
the specification language Z [12] can separate the state space of the system into
one part that is not affected by the operation and one part that can change freely
as long as the restrictions formulated in the post-conditions are satisfied. The
language JML [13], a contract specification language for methods implemented

OCL and Graph-Transformations 89

in Java, offers besides pre-/post-conditions an additional clause assignable (also
known as modifies) where all locations that might change their value must occur.

There has been also attempts in the literature to ’compute’ then changing
part of the system merely based on the post-condition [14]. This, however, makes
formal reasoning on formal specifications much more complicated.

3 Constructive Languages and Non-Deterministic
Contracts

After the last section has pointed out the most important drawback of restric-
tive languages, this section discusses a corresponding problem of constructive
languages, namely, the principal obstacles for keeping the operation behavior
to a certain degree unspecified. This can be only achieved by non-deterministic
contracts.

Graph transformations are introduced as a constructive specification lan-
guage. It is discussed, why pure graph transformations can specify the operation
setNextTrack() but fail to specify setRandomTrack() correctly. To overcome
this problem, we finally discuss a combination of constructive and restrictive
specification style.

3.1 Non-deterministic Contracts

Non-deterministic contracts are necessary when not all details of the operation
behavior should be fixed in time of writing the contract.

The intended behavior of setRandomTrack() is a typical example for a non-
deterministic contract. The operation name set RandomTrack might be mislead-
ing as it might set up the expectation that our contract will enforce a true
randomized behavior of the implementation in the sense that invoking the op-
eration twice in the same state can result in different post-states. Note that this
kind of randomness cannot be expressed by a contract (neither in OCL nor in
any other contract language) because it would require to describe formally the
behavior of multiple invocations whereas a contract can specify only the behavior
of a single invocation.

The specification of setRandomTrack() in OCL looks as follows:

context CDPlayer::setRandomTrack ()
pre: self.inserted —>notEmpty ()
post: Set{1l..self.inserted.track—>size ()}
—>includes (self.currentTrack)

This contract suffers again from the frame problem but, if this is ignored
for a while, the post-condition keeps intentionally the exact post-state open
and thus allows many different implementations. Even, an implementation that
constantly sets attribute currentTrack to 1 was possible and would conform to
this contract.

90 T.Baar

3.2 Graph Transformations as a Constructive Language

Graph transformations have their roots in graph grammars and were originally
applied to describe the syntax of graphical languages. A graph grammar is a set
of rules that specifies all syntactically correct sentences of a visual language. A
visual sentence is syntactically correct if it can be derived by the recursive ap-
plication of grammar rules starting on an initial graph. Graph grammars mimic
in many respects the traditional syntax definition of textual languages by EBNF
rules. Instead of sequences of strings, a graph grammar generates sets of visual
objects placed in an n-dimensional space, or — to describe the outcome more
abstract — a graph grammar generates (typed) graphs. From a more abstract
point of view, rule applications are nothing but graph transformations and graph
grammar rules are an elegant way to specify these graph transformations.

It has also been recognized in the literature (see [6] for a survey and [5] for a
concrete example) that graph transformations can be used to specify the behav-
ior of operations. System states can easily be represented as graphs, e.g. in form
of object diagrams, and system state changes can be encoded as a transformation
of graphs.

A graph transformation rule consists of two graph patterns called left-hand
side (LHS) and right-hand side (RHS). Graph patterns are normal graphs whose
elements, i.e. nodes and links connecting some nodes, are identified by labels.
It is possible to use both in LHS and RHS the same label for the same kind
of elements (nodes or links). The application of a graph transformation rule on
a given graph is roughly described in two steps. In the first step, it is checked
whether the given graph has a subgraph that matches with LHS. If not, the rule
is not applicable on this graph. If yes, the matching subgraph is substituted by
a new graph derived from RHS under the matching obtained in step 1. If a label
for an element occurs only in LHS but not in RHS then the matching element
is removed, if it occurs in RHS but not in LHS then a new element is created,
if a label occurs in both LHS and RHS then the element is remained unchanged
during the application of the rule.

Besides this basic version of graph transformation rules, where LHS and RHS
consist of simple nodes and links, modern graph transformation systems offer
much more sophisticated elements to describe patterns such as typed nodes,
multiobjects, negative application conditions (NACs), parameters, etc. In the
rest of the paper, we will use the graph transformation system QVT submitted
as a proposal to the OMG for the standardization of model transformations.
For details on the syntax/semantics of this formalism, the interested reader is
referred to [7]. A bigger example on how QVT can be used as a contract speci-
fication language is given in [15].

As a simple example for a behavioral specification using graph transforma-
tions, Fig. 3 shows a rule specifying the intended behavior of setNextTrack().
The graph patterns LHS, RHS use typed nodes (e.g. self:CDPlayer) that
must comply to the system description given in Fig. 2. The LHS of the rules
serves two things. First, it imposes restrictions that must hold in order to make

OCL and Graph-Transformations 91

setNextTrack(self:CDPlayer) |

self:CDPlayer inserted self:CDPlayer inserted
currentTrack=x acbcd currentTrack= acb:CD
(x mod tr->size()) + 1
<>
track track

Fig. 3. Specification of setNextTrack with QVT

the rule applicable for the given state. For setNextTrack(), the effective re-
striction is that the CD-player self has a CD inserted (expressed by the link
between self and aCD). The second purpose of LHS is to query the pre-state
and to extract information that is important for the post-condition encoded
by RHS. In our example, the variable x extracts the current value of attribute
currentTrack and multiobject tr denotes the set of all tracks of the inserted
CD. Note that the attribute currentTrack and the multiobject tr could have
been omitted in LHS and the rule would still be applicable on exactly the same
set of graphs as before.

The RHS of setNextTrack() is almost identical to LHS except for the value
of attribute currentTrack. Consequently, applying the rule on a state will
change only the value of currentTrack on the object self and nothing else.
The new value of this attribute is computed based on the information queried
during the first step of the rule application.

3.3 Mixing Constructive and Restrictive Languages

Graph transformation rules, as they were explained so far, can capture deter-
ministic contracts in an elegant way whereas it seems hopeless to use them for
non-deterministic contracts.

Fortunately, there is a solution and the same problem has been already tack-
led by other constructive languages. The language B, for example, offers, besides
a pseudo-programming language for computing the post-state, the construct
ANY-WHERE. This construct causes a non-deterministic split in the control
flow and connects the same pre-state with possibly many post-states. The non-
deterministic choices are, however, restricted by a predicate, which has to be
evaluated in all control flows to true. In other words, constructive and restrictive
specification style is mixed. The formal semantics of ANY-WHERE is defined in
[16]. For an example-driven explanation of ANY-WHERE, the reader is referred
to [17].

By integrating ANY-WHERE, the language B has lost its purely constructive
semantics. The gain of expressive power is paid by loosing the executability of B
specifications. This makes tool support for B more challenging but not impossible
[18,19].

92 T. Baar

setRandomTrack(self:CDPlayer) |

self:CDPlayer inserted self:CDPlayer inserted
CD:CD CD:CD
currentTrack=x — currentTrack=y —

<>
track track
{when}

O<yandy<trsize() + 1

Fig. 4. Specification of setRandomTrack with QVT

Basically, for increasing the expressive power of graph transformations the
same idea as in B can be applied. In QVT, variables can occur in RHS even if
they do not occur in LHS. Consequently, the value of these fresh variables is not
fixed anymore by the first step of the rule application and can be chosen non-
deterministically. In order to get at least partial control over the values of these
variables, QVT has added when-clauses to transformation rules. A when-clause
contains constraints written in OCL. The constraint restricts the possible values
not only for fresh variables used in RHS but for all elements in LHS and RHS.

The specification of setRandomTrack() shown in Fig. 4 takes advantage of
the fresh variable y in RHS. The value of y is restricted in the when-clause what
exactly captures the intended semantics.

4 Giving Graph Transformations a Loose Semantics

Although the integration of the when-clause is a necessary step to make graph
transformations widely applicable and to overcome the determinism problem,
this step is not sufficient. Another immanent problem of constructive languages
remained unsolved. It is sometimes necessary to express in the contract that the
implementations of the operation are allowed to change parts of the system state
in an arbitrary way. If one puts this request to its very end, it means that in
some cases the loose semantics of restrictive languages is needed.

In this section, we propose an extension of QVT that makes it possible to
simulate the loose semantics of purely restrictive contracts written in OCL. These
enrichments require a slight extension of QVT’s notation to describe LHS and
RHS.

4.1 Possible Side Effects of Restrictive Specifications

As argued in Sect. 2, the contract for setNextTrack() written in OCL does not
exclude unintended side effects. These side effects can be classified as follows:

1. On object self, the values of the attributes not mentioned in the post-
condition might have been changed.

OCL and Graph-Transformations 93

anchestorclasses |

Attribute . 1 *| Association
Class -
name:String 2 participants name:String
1 1 1
* 1 2 *
Slot Object Link

Class.allAttributes: Set(Attribute) = self.anchestorclasses->including(self)->collect(attribute)

Fig. 5. Simplifed metamodel for states

2. The values of attributes of CDPlayer-objects different from self might have
been changed.

3. The values of attributes of objects of other classes might have been changed.

4. An unrestricted number of objects of some classes might have been newly
created.

5. An arbitrary number of existing objects except self might have been deleted.

6. An arbitrary number of links might have been created/deleted.

We will demonstrate in Sect. 4.3 how the contract for setNextTrack() shown
in Fig. 3 had to be changed in order to capture each of these possible side effects.
Beforehand, in the next subsection, the new constructs proposed for QVT, which
are needed to simulate loose semantics, are summarized.

4.2 A Proposal for Extending QVT

Optional Creation/Deletion of Objects and Links. Graph transformation
rules must be able to express that an object is optionally created or deleted. The
same holds for links. So far, one can only specify that an object/link must have
been created (deleted) by displaying the object/link in RHS but not LHS (in LHS
but not in RHS). We propose to adorn an object/link in RHS with a question
mark (’?’) to mark its optional creation/deletion.

Note that it is a proven technique to adorn elements in LHS and RHS in order
to modify the standard semantics of the rule. QVT and other graph transforma-
tion formalisms allow already to adorn elements with "X’ in order to express a
negative application condition (NAC).

Placeholders to Denote Arbitrary Attributes/Classes. A more signif-
icant extension of graph transformations is the introduction of placeholders.
Currently, QVT allows to describe the change of an attribute value only if the
name of the attribute is known. One can, for example, not specify the reset of
all attributes of type Integer to 0 unless all these attributes explicitly occur in
the graph transformation rule.

94 T. Baar

We propose to use placeholders for attributes as a representation of arbitrary
attributes. These placeholders appear in the same compartment of the object
as normal attributes. In order to distinguish between normal attributes and
placeholders, we start the name of the latter always with a backslash (\). This
convention relies on the assumption that the name of normal attributes never
starts with backslash. For example, if \att appears in the attribute compartment
of an object, then it represents all attributes of this object (including attributes
inherited from super-classes).

Sometimes, a placeholder should not represent all possible attributes but only
some of them. To achieve this, we propose to use QVT’s when-clause to define
using OCL constraints which attributes are represented by which placeholders.
Such OCL constraints, however, refer to the metamodel of UML object diagrams.
To ease the understanding, we rely here on a simplified version of the official
metamodel as shown in Fig. 5.

Furthermore, in order to distinguish easily OCL constraints referring to the
metamodel from ordinary ones, we decided — slightly abusing OCL’s official
concrete syntax — to precede within OCL expressions each navigation on the
metalevel with a backslash.

Besides placeholders for attributes there are also analogously defined place-
holders for classes.

4.3 Realization of Possible Side Effects

We give examples on how possible side effects of OCL constraints presented in
Sect. 4.1 can be simulated using our extension of QVT. In all cases, we start
from the constructive specification of setNextTrack() shown in Fig. 3.

Other Attributes for self can change. A naive solution could be to explicitly
list all attributes of object self in both LHS and RHS and to assign in RHS a
fresh variable to the attribute.

This solution is first of all tedious to write down and in addition has the limits
that were already discussed: In time of writing the contract, not all subclasses
of CDPlayer might be known. Be aware that the QVT rule formulated in Fig. 3
is applicable even when self matches with an object whose actual type is not
CDPlayer but a subclass of it. The core of the problem is, that, when writing
the contract, we cannot predict which attributes the object self actually has.

The rule shown in Fig. 6 overcomes this principal problem. Each attribute of
self is represented by placeholder \attDiffCurrentTrack as long as its name
is different from ’currentTrack’. This is precisely described in the when-clause by
an OCL constraint: For the actual class of self (which might be a subclass of
CDPlayer) all valid declarations of attributes are collected. Note that attributes
can have also been declared in one of the super-classes. The OCL constraint in
the when-clause stipulates that the placeholder \attDiffCurrentTrack stands
for any attribute as long as it is not named ’currentTrack’ since this attribute
cannot be changed in an arbitrary way. The value of \attDiffCurrentTrack
in LHS is represented by variable v, which does not occur in the RHS. The

OCL and Graph-Transformations 95

new value v’ in RHS shows that the value of the attribute matching with
\attDiffCurrentTrack might have been changed during the execution of the
operation.

setNextTrack(self:CDPlayer) |
self:CDPlayer inserted self:CDPlayer inserted
currentTrack=x aCD:CD currentTrack= (x mod n) + 1 aCD:LD
\attDiffCurrentTrack=v \attDiffCurrentTrack=v'
<>
track track
- when
n = tr.size() and ¢ }
self.\class.\attribute->reject(aja.name="currentTrack")->includes(\attDiffCurrentTrack)

Fig. 6. Different attribute values for self

State of other CDPlayer-objects might change. This side effect is similar
to the effect of changing the state of self and can be captured by applying the
same technique to enrich the QVT transformation. A new object other is added
to both LHS and RHS. In RHS, the value of the placeholder \att is changed to
a possibly new value v’.

setNextTrack(self:CDPlayer) |

self:CDPlayer inserted self:CDPlayer inserted
aCD:CD aCD:CD
currentTrack= (x mod n) + 1

currentTrack=x
<
track track
other:CDPlayer other:CDPlayer
\att=v'
{when}

n =tr.size() and
self <> other and
other.\class.\allAttribute->includes(\att)

Fig. 7. Different attribute values for other objects of class CDPlayer

State of objects of other classes might change. In order to simulate state
changes on objects of arbitrary classes different from CDPlayer (and its sub-
classes) placeholders for classes are needed. We have introduced the placeholder
\OtherClass whose value is restricted by an appropriate constraint in the when-
clause. The technique to change the state of objects of class \OtherClass is the
same as the one exploited above to simulate the state change of CDPlayer-
objects.

96 T.Baar

setNextTrack(self:CDPlayer)

self:CDPlayer inserted | acD:cD self:CDPlayer inserted -
aCD:CD
currentTrack=x \attl = v1 currentTrack= (x mod n) + 1 \ati=vT
<>
track track
other\OtherClass other:\OtherClass
— \att=v' —
- {when}
n =tr.size() and
\Class.allinstances->reject(c| c.\name="CDPlayer" or c.\anchestorclasses.\name->includes("CDPlayer")->
includes(\OtherClass) and
other.\class.\allAttribute->includes(\att)

Fig. 8. Different attributes for object of other classes

Objects different from self might have been deleted. It is not enough to
add the question mark to the new object other (that represents an arbitrary
object different from self). Unfortunately, the question mark must also be at-
tached on all objects different from self that are explicitly mentioned in RHS
(without such a question mark, the QVT semantics stipulates that all objects
occurring in RHS are not deleted). In addition, also the multiobject tr might
change since some of its elements are possibly deleted. Consequently, a new mul-
tiobject tr1 is introduced in RHS, which — according to the when-clause — must
be a subset of the original multiobject tr.

setNextTrack(self:CDPlayer) |

self:CDPlayer inserted self:CDPlayer inserted 5
aCD:CD acD:CD
currentTrack=x currentTrack= (x mod n) + 1

track track

other:\Class other:\Class i1 Track

{when}
n = tr.size() and

self<>other and

tr->includesAll(trl)

Fig. 9. Deletion of objects

Objects might have been created. Optional creation of arbitrarily many
objects is expressed by adding a multiobject other to RHS. For each class,
other represents the set of newly created objects. Furthermore, the multiobject
tr might have been enlarged and became tr1.

OCL and Graph-Transformations 97

setNextTrack(self:CDPlayer)

self:CDPlayer inserted . self:CDPlayer inserted =
acD:CD acD:
CurentTrack e mod 1) + 1
<>
track track
tr-Track other:\Class I trL:Track
{when}
N 1

n = tr.size() and

trl.includesAll(tr)

Fig. 10. Creation of objects

Links might have been created. For the optional creation of links, two arbi-
trary objects o1, 02 are searched in LHS. The classes of 01, 02 must be connected
by an association with name assoname. RHS stipulates the optional creation of

a corresponding link between both objects.

setNextTrack(self:CDPlayer,assoname:String) l

self:CDPlayer inserted oo self:CDPlayer inserted g
- currentTrack= (x mod) + 1
|
ol:\Classl track oL:\Classl track
Passoname
\Class2 02:\Class2 trL:Track
{when}

N U
n = tr->size() and

trl->includesAll(tr) and

\Classl.anchestorclasses->including(Class1)->exists(c1|
\Class2.anchestorclasses->including(Class2)->exists(c2|
\Association.alllnstances->select(name=assoname)->exists(a|
a.participants = Set(c1,c2))))

Fig. 11. Creation of links

Links might have been deleted. Analogously to the optional deletion of
objects we mark also links that are deleted optionally with a question mark.
Note, that the deletion of links might have be an effect on the multiobject tr

the same way the deletion

of objects has.

setNextTrack(self:CDPlayer)

tr->includesAll(trl)

self:CDPlayer inserted . self:CDPlayer iperted P
== e
<
01l:\Classl track 0l:\Class1 track
02:\Class2 02:\Class2 . Track
{when}
n = tr->size() and

Fig. 12. Deletion of links

98 T. Baar

5 Conclusion and Future Work

In this paper, pros and cons of the two main behavior specification paradigms —
constructive and restrictive style — are discussed. If restrictive languages do not
provide provision for tackling the frame problem (such as OCL), then the speci-
fied contracts are comparably weak and do most often not capture the behavior
intended by the user. Constructive languages suffer from the opposite problem as
they sometimes prescribe too detailed the behavior and do not allow the freedom
for variations among possible implementations. These two fundamental problems
make it also very difficult to define a semantically preserving transformation from
specifications of restrictive specification languages into specifications written in
a constructive language, or vice versa.

Graph transformations can be used as a basically constructive specification
language but it is sometimes also possible to pursue a restrictive specification
style. Contracts given in form of a graph transformation rule have the advantage
of being easily accessible by humans due to the visual format. In many cases,
constructive contracts are intended and constructive contracts work well. For
the case that a purely constructive semantics is not appropriate, we have given
in Sect. 4 a catalog of proposals to enrich a graph transition rule so that the
intended behavior is met. This approach to adapt the semantics of the rule more
to the loose semantics of restrictive languages is very flexible since the user has
the possibility to traverse the metamodel with OCL constraints.

A lot of work remains to be done. First of all, the proposed formalism of
extended graph transformations should be implemented by a tool to resolve all
the small problems that can only be recognized if a tool has to be built. In order
to become confident in the formal semantics of the formalism, an evaluator needs
to be implemented that can decide for any contract and any given state transition
whether or not the transition conforms to the contract.

Once such a tool is available, it should be applied on bigger case studies
showing or disproving the appropriateness of the proposed formalism for practi-
cal software development.

References

1. Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40-51,
October 1992.

2. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, second edition, 1997.

3. Levi Lucio, Luis Pedro, and Didier Buchs. A methodology and a framework
for model-based testing. In Nicolas Guelfi, editor, Rapid Integration of Software
Engineering Techniques, First International Workshop, RISE 2004, Lurembourg-
Kirchberg, Luzembourg, November 26, 2004, Revised Selected Papers, volume 3475
of LNCS, pages 57—70. Springer, 2004.

4. J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, pages 463-502, 1969.

10.

11.

12.
13.

14.

15.

16.

17.

18.
19.

OCL and Graph-Transformations 99

Claudia Ermel and Roswitha Bardohl. Scenario animation for visual behavior
models: A generic approach. Software and Systems Modeling (SoSym,), 3(2):164—
177, 2004.

Lars Grunske, Leif Geiger, Albert Ziindorf, Niels van Eetvelde, Pieter van Gorp,
and Déniel Varré. Model-driven Software Development - Volume II of Research
and Practice in Software Engineering, chapter Using Graph Transformation for
Practical Model Driven Software Engineering. Springer, 2005.

OMG. Revised submission for MOF 2.0, Query/Views/Transformations, version
1.8. OMG Document ad/04-10-11, Dec 2004.

Reiko Heckel, Merce LLabrés, Hartmut Ehrig, and Fernando Orejas. Concurrency
and loose semantics of open graph transformation systems. Mathematical Struc-
tures in Computer Science, 12:349-376, 2002.

Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer.
Consistency checking and visualization of OCL constraints. In Andy Evans, Stu-
art Kent, and Bran Selic, editors, UML 2000 - The Unified Modeling Language,
Advancing the Standard, Third International Conference, York, UK, October 2-6,
2000, Proceedings, volume 1939 of LNCS, pages 294-308. Springer, 2000.

Andy Schiirr. Adding graph transformation concepts to UML’s constraint language
OCL. Electronic Notes in Theoretical Computer Science, Proceedings of UNIGRA
2001: Uniform Approaches to Graphical Process Specification Techniques, 44(4),
2001.

OMG. UML 2.0 OCL Specification — OMG Final Adopted Specification. OMG
Document ptc/03-10-14, Oct 2003.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
A behavioral interface specification language for java. Technical Report TR, 98-06-
rev28, Department of Computer Science, lowa State University, 2005. Last revision
July 2005, available from www.jmlspecs.org.

A. Borgida, J. Mylopolous, and R. Reiter. ...And Nothing Else Changes: The
Frame Problem in Procedure Specifications. In Proceedings of ICSE-15, pages
303-314. IEEE Computer Society Press, 1993.

Slavisa Markovi¢ and Thomas Baar. Refactoring OCL annotated UML class dia-
grams. In Lionel Briand and Clay Williams, editors, Proc. ACM/IEEE 8th Inter-
national Conference on Model Driven Engineering Languages and Systems (MoD-
ELS), volume 3713 of LNCS, pages 280-294. Springer, 2005.

Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, August 1996.

Thomas Baar. Non-deterministic constructs in OCL — what does any() mean.
In Andreas Prinz, Rick Reed, and Jeanne Reed, editors, Proc. 12th SDL Forum,
Grimstad, Norway, June 2005, volume 3530 of LNCS, pages 32-46. Springer, 2005.
ClearSy. Atelierb homepage. http://www.atelierb.societe.com, 2005.

Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855—-874. Springer-Verlag, 2003.

	AllPapersEnlargedAlignedConcatedAuthorFinal.pdf
	pap2AuthorFinal.pdf
	Introduction
	An Eclipse Language Framework
	A Family of OCL based Grammars
	Object Expression Language (OEL)
	An Object Constraint Language (OCL)
	An Object Query Language (OQL)
	An Object Action Language (OAL)

	Conclusion
	References

	pap6AuthorFinal.pdf
	Proposals for a Widespread Use of OCL
	Dan Chiorean, Maria Bortes, Dyan Corutiu

