Combining Compile-Time and Run-Time Support for
Efficient Software Distributed Shared Memory

Sandhya Dwarkadas’, Honghui Lu*, Alan L. CoxY,
Ramakrishnan Rajamony?, and Willy Zwaenepoel

T Department of Computer Science, University of Rochester
! Department of Electrical and Computer Engineering, Rice University
¥ Department of Computer Science, Rice University

ABSTRACT

We describe an integrated compile-time and run-time
system for efficient shared memory parallel computing
on distributed memory machines. The combined system
presents the user with a shared memory programming
model, with its well-known benefits in terms of ease of use.
The run-time system implements a consistent shared mem-
ory abstraction using memory access detection and auto-
matic data caching. The compiler improves the efficiency
of the shared memory implementation by directing the run-
time system to exploit the message passing capabilities of
the underlying hardware. To do so, the compiler analyzes
shared memory accesses, and transforms the code to insert
calls to the run-time system that provide it with the access
information computed by the compiler. The run-time sys-
tem is augmented with the appropriate entry points to use
this information to implement bulk data transfer and to
reduce the overhead of run-time consistency maintenance.

In those cases where the compiler analysis succeeds for
the entire program, we demonstrate that the combined sys-
tem achieves performance comparable to that produced by
compilers that directly target message passing. If the com-
piler analysis is successful only for parts of the program,
for instance, because of irregular accesses to some of the
arrays, the resulting optimizations can be applied to those
parts for which the analysis succeeds. If the compiler anal-
ysis fails entirely, we rely on the run-time’s maintenance
of shared memory, and thereby avoid the complexity and
the limitations of compilers that directly target message
passing. The result is a single system that combines effi-
cient support for both regular and irregular memory access
patterns.

I. INTRODUCTION

Parallel programming using a shared memory platform
has the advantage of ease-of-use. In contrast to message
passing, the user does not have to worry about data loca-
tion or have to explicitly manage communication. Unfortu-
nately, as parallel computers move away from the uniform
memory access model in order to improve scalability, this

This work was supported in part by NSF grants CCR-9702466,
CCR-9705594, CCR-9410457, CCR-9457770, CCR-9502500, CCR-
9521735, CDA-9502791, and MIP-9521386, by the Texas TATP pro-
gram under Grant 003604-017, and by grants from IBM Corporation
and from Tech-Sym, Inc. Ram Rajamony is also supported by an
IBM Cooperative Fellowship.

transparency of shared memory comes into question. Mes-
sage passing programs, tuned to non-uniform memory ac-
cess latencies, often produce better performance. Our goal
is to develop a system that continues to provide the user
with a transparent shared memory programming model,
but underneath is capable of exploiting the hardware’s mes-
sage passing capabilities. We focus our work on distributed
memory machines, in which the shared memory abstraction
is provided entirely in software.

A software distributed shared memory (SDSM) system
(e.g., [22]) provides a shared memory abstraction on a dis-
tributed memory machine using purely run-time mecha-
nisms. During execution, a SDSM system detects shared
memory accesses, handles faults by fetching the missing
data, and caches data for future reference. Such a system
can handle any kind of data access pattern. However, when
the access patterns are predictable, the on-demand data
fetching causes extra messages and consistency actions, in-
creasing overheads and resulting in reduced performance
compared to message passing.

Research and commercial compilers for parallel comput-
ing on distributed memory machines have to date targeted
the underlying message passing layer directly (e.g., [3],
[14]). The compiler analyzes memory access patterns to
generate message passing code, which is then optimized to
aggregate communication and minimize data movement.
For programs with regular access patterns that can be pre-
cisely analyzed, these compile-time systems provide supe-
rior performance since they avoid the run-time overhead
present with SDSM systems. However, when the access
patterns cannot be analyzed precisely, the message passing
code generated by the compiler becomes inefficient. In the
case of irregular accesses, for example, a simplistic compiler
approach would result in a broadcast of all data produced
by a processor, causing large amounts of communication.

Inspector-executor methods have been proposed to deal
with this problem of irregular computations on distributed
memory machines [29]. A separate loop, the inspector, pre-
cedes the actual computational loop, called the ezecutor.
The inspector precomputes the data that will be accessed
by the individual processors when executing the compu-
tational loop. This information is used to create a com-
munication schedule, which is then used to aggregate the
movement of data from the producers to the consumers at
the beginning and/or end of each loop. The high cost of the

inspector is amortized, when possible, by executing it only
once for a set of executor iterations. A compiler algorithm
to automate this procedure is described in von Hanxleden
et al. [32]. However, the required compiler analysis can be
quite complex ([1], [8], [31]).

Our goal is to combine the benefits of SDSM systems
with those of compiler-based approaches for generating
code for distributed memory systems. In the combined
system, the run-time library remains the basic vehicle for
implementing shared memory, while the compiler performs
optimization rather than implementation. Instead of gener-
ating a message passing program directly, the compiler gen-
erates a shared memory program augmented with run-time
calls that describe the data access patterns. By informing
the run-time system of future shared access patterns, these
calls allow the run-time system to avoid memory access de-
tection and on-demand fetching of missing data. Further-
more, they permit the aggregation of several data fetches
into a single message.

An interesting aspect of this combined system is that
it efficiently supports programs with regular accesses, pro-
grams with both regular and irregular accesses, and pro-
grams with completely irregular accesses. If the accesses
are completely regular, then the compiler can analyze all of
them, and the resulting code is as efficient as that of hand-
coded or compiler-generated message passing. If the pro-
gram contains code in which an array is accessed indirectly
through an indirection array, we can still analyze the (usu-
ally regular) accesses to the indirection array, and derive
considerable performance improvement from that analysis.
If the compiler analysis fails, the program is unmodified,
and handled solely by the run-time system. The combina-
tion of a shared memory compiler and an SDSM system
thus avoids the complexity of the inspector-executor ap-
proach for irregular access patterns, without compromising
efficiency for regular access patterns.

We extended the Parascope parallel programming en-
vironment [19] to analyze and transform explicitly parallel
programs. We use regular section analysis [13] to determine
the shared data access patterns. The resulting regular sec-
tion descriptors (RSDs) describe the accesses to the data
array (in the case of regular accesses) or to the indirection
array (in the case of irregular accesses). We also extended
the interface ([10], [23]) to the TreadMarks [2] run-time
SDSM system to take advantage of the compiler analysis.

We have measured the performance of these techniques
on an 8-node IBM SP/2 for applications with both regu-
lar and irregular access patterns. Compiler optimization in
conjunction with the augmented run-time system achieves
substantial execution time improvements in comparison to
the base run-time system, ranging from 0% to 59% on 8
processors. Performance is also comparable to that us-
ing compile-time alternatives such as Applied Parallel Re-
search’s XHPF compiler (for regular access patterns) and
the CHAOS [29] inspector-executor based system (for ir-
regular access patterns).

The outline of the rest of this paper is as follows.
Section IT describes the combined compile-time run-time

shared memory system. Section III presents the perfor-
mance results. In Section IV, we outline the applicability
of our techniques to other platforms and architectures. Fi-
nally, we survey related work in Section V and conclude in
Section VI.

II. THE CoMBINED COMPILE-TIME RUN-TIME SHARED
MEMORY SYSTEM

We first provide some background on TreadMarks [2],
the run-time system we used in our implementation. We
then discuss how the compiler analyzes the shared data
accesses in TreadMarks programs. The run-time primitives
by which the compiler informs TreadMarks of the results
of its analysis are discussed next. We are then ready to
describe the transformation from TreadMarks source code
into code augmented by calls to these primitives. Finally,
we illustrate the entire process with two sample programs.

A. The Base Run-Time Shared Memory System

TreadMarks [2] is an SDSM system built at Rice Uni-
versity. It is an efficient user-level SDSM system that runs
on commonly available Unix systems. We use TreadMarks
version 1.0.1 as the base shared memory run-time system
in our experiments.

TreadMarks provides explicitly parallel programming
primitives similar to those used in hardware shared mem-
ory machines, namely, process creation, shared memory al-
location, and lock and barrier synchronization. The system
supports a release consistent (RC) memory model [11], re-
quiring the programmer to use explicit synchronization to
ensure that changes to shared data become visible.

TreadMarks uses a lazy invalidate [17] version of RC and
a multiple-writer protocol [6] to reduce the overhead in-
volved in implementing the shared memory abstraction.

The virtual memory hardware is used to detect accesses
to shared memory. Consequently, the consistency unit is a
virtual memory page. The multiple-writer protocol reduces
the effects of false sharing with such a large consistency
unit. With this protocol, two or more processors can simul-
taneously modify their own copy of a shared page. Their
modifications are merged at the next synchronization op-
eration in accordance with the definition of RC, thereby
reducing the effects of false sharing. The merge is accom-
plished through the use of diffs. A diff is a run-length
encoding of the modifications made to a page, generated
by comparing the page to a copy saved prior to the modi-
fications (called a twin).

With the lazy invalidate protocol, a process invalidates,
at the time of an acquire synchronization operation [11],
those pages for which it has received notice of modifica-
tions by other processors. On a subsequent page fault, the
process fetches the diffs necessary to update its copy.

B. Compiler Analysis

The purpose of our compiler analysis is to provide ac-
cess pattern information to the run-time system. This in-
volves not only analyzing the program statements to deter-
mine what data is accessed, but also determining at which

statement in the program to supply this information to the
run-time system.

To answer the latter question, we take advantage of the
special role that synchronization points play in release-
consistent parallel programs. First, they are the points in
the execution of a program where shared data needs to be
made consistent. Second, they are also the points at which
it is determined what data modified on other processors
needs to be reflected locally for memory to be consistent.
We therefore analyze code segments between consecutive
synchronization statements, and provide the run-time sys-
tem with a description of the accesses in a segment at that
segment’s initial synchronization statement.

In practice, limitations of the analysis tool may restrict
the extent to which we can implement this general princi-
ple. For instance, the presence of conditional statements or
— in the absence of interprocedural analysis — procedure
calls may limit the region of code for which we can summa-
rize the shared memory access patterns. In those cases, we
may need to limit analysis accordingly, and place the calls
that provide the access information to the run-time system
at procedure entry points or at control flow statements.

Our main tool for access analysis is regular section anal-
ysis [13]. Regular section descriptors (RSDs) concisely rep-
resent the array accesses in a loop nest. The RSDs repre-
sent the accessed data as linear expressions of the upper
and lower loop bounds along each dimension, and include
stride information. When indirection arrays are involved,
the RSDs can be used recursively, with each indirection
representing the regular section for the indirection array
used. The access patterns that can be analyzed are, how-
ever, limited to linear expressions of the loop indices. In
addition to the memory locations accessed, our RSDs also
contain a tag indicating, among other things, whether the
accesses are read or write or both. Figure 1 outlines the
steps in our algorithm.

C. The Augmented Run-Time System

In addition to the original TreadMarks primitives, the
augmented run-time system provides two primary inter-
faces for use by the compiler: Validate and Push.

Validate and its variant, Validate_w_sync, sup-
port aggregated communication. They can fetch diffs
for multiple pages with a single message exchange.
Validate w_sync, in addition, piggy-backs the request for
diffs on the next synchronization operation. The calls pro-
vide a set of access descriptors corresponding to the RSDs
obtained in the analysis (see Section II-B). The run-time
system uses these descriptors to determine the set of in-
valid pages that will be accessed. The data for the invalid
pages can then be requested in a single message exchange
per processor. An additional access type parameter in the
Validate interface allows further optimizations to avoid
communication and to reduce the overhead of consistency
maintenance.

Details of the interface are provided in Figure 2. An ac-
cess descriptor consists of the section, access_type, and
schedule number. The section, or RSD, contains the fol-

1. Create V, the set of shared variables in the program. Create S,
the set of all synchronization operations in the program. Initialize
F, the set of all transformation points, to S.

2. For each statement p in the program

(a) By traversing the abstract syntax tree (AST) in all possible
control flow directions along which p can be reached, create the
set Fprec(p) of all the directly preceding synchronization points. If
no synchronization statements are found along any one direction,
include the control flow statement along that direction in F' and
Fprec(p)-

(b) By traversing the AST in all possible control flow directions
starting from p, create the set Ssucc(p) of all possible synchronization
points that directly succeed the statement.

(c) For each statement f in the set Fprec(p),

i. Determine the location of the outermost loop that encloses p but
not f or any member of the set Ssycc(p). Intuitively, this corresponds
to determining the code segment between consecutive synchronization
statements for which accesses must be summarized.

ii. Construct a regular section for each definition or reference, both
regular and irregular, in p to a variable in V. Add a {read} or
{write} tag to the section. Determine the reaching definitions for
each reference to a variable in V' (this can be done during the AST
traversal to create Fprec(p)). If these definitions occur after f, add
the write-first attribute to the tag.

iii. Perform a union of the resulting section, with the other sec-
tions that have already been generated for f. A union of the tags
{read} and {write} is {read, write}. A union of the tags {read,
write-first} and {write}, is {read, write-first}.

Fig. 1. Access Pattern Determination

lowing information about the accesses - the base address,
the dimension or number of indices, followed by the type
of access (DIRECT or INDIRECT), and either the DIRECT in-
formation (lower bound, upper bound, and stride), or the
RSD for the indirection array, along each dimension. This
basic structure allows us to handle any recursive indirec-
tions that might be used in a program. The access_type
is one of READ, WRITE, or READ&WRITE. Shared arrays ac-
cessed directly along every dimension have two additional
access types, WRITE_ALL and READ&WRITE_ALL, which are
used when the compiler analysis can determine that every
element in the section will be written. WRITE_ALL indicates
that all data in the section will be written but not read.
READ&WRITE_ALL indicates that all data will be both read
and written. The run-time system uses this information to
reduce consistency maintenance overheads by eliminating
the creation of twins for such pages. In addition, since ac-
cesses marked WRITE_ALL are not read, the run-time system
can also avoid the communication that would make such
data consistent before the write.

The schedule number is an identifier for the schedule,
or the set of shared pages accessed in the section. For
INDIRECT accesses, this set is recomputed by re-traversing
the indirection array only if it has changed since the last
time it was examined. The run-time system uses the vir-
tual memory protection mechanism to detect any modifi-
cations to the indirection array. This eliminates the need
for compile-time knowledge of when the indirection array
will be modified.

Push is used to replace a barrier synchronization and to

send data to a processor in advance of when it is needed.
The arguments to Push are the sections of data that are
written by individual processors before the barrier and read
after the barrier. Details of the Push interface are also
provided in Figure 2. A Push on processor P computes the
intersection of the sections written by P with those that
will be read by another processor, and sends the data in
the intersection to the corresponding processor. P then
computes the intersection of the sections written by other
processors with the sections that will be read by P, and
posts a receive for that data.

Unlike Validate, which does not change the un-
derlying consistency guarantees (unless a WRITE_ALL or
READ&WRITE ALL access is specified), Push guarantees con-
sistency only for the sections of data received through the
Push. The rest of the shared address space may be incon-
sistent until the next barrier. Hence, Push can be used
only if the compiler has determined with certainty that
the processors do not read the regions of shared data left
inconsistent. Given the large consistency unit, the Push
directive can be useful in eliminating data communication
due to false sharing. Push provides the capabilities of a
message passing interface within a shared memory envi-
ronment. However, unlike pure compile-time approaches,
Push can be used selectively by restricting its use to a pro-
gram phase where complete analysis is possible. The run-
time system ensures that the entire address space is made
consistent at the barrier that must terminate such a phase.

Validate(int num_descs, /* number of descriptors */
RSD section, /* section of shared data
(through indirection array
if necessary) */
int access_type, /* READ, WRITE, READ&WRITE,
WRITE_ALL, or READ&WRITE_ALL */
int sched_num, /* schedule number */

)

/* Similar to Validate except that the request for data is
piggybacked on a synchronization */
Validate_w_sync(...)

/* does not preserve consistency
- N is the number of processors */
Push(r_section[0..N-1], /* Sections of data read */
w_section[0..N-1]) /* Sections of data written */

Fig. 2. Augmented Run-Time Interface

D. Compiler Transformations

Following the analysis described in Section II-B, the com-
piler transforms the program using the augmented run-time
interface discussed in Section II-C. The compiler first at-
tempts to find opportunities for using the Push interface,
because this interface results in the largest performance
gains. Subsequently, it tries to find opportunities to use
Validate. Figure 3 describes the decision process used to
determine whether Push or Validate can be applied.

For each statement f in F'

1. If f is a barrier, create the set Fprec(f) of elements of F that
immediately precede f (by traversing the AST as before), and the
set Fsyce(f) of elements of F' that immediately succeed f.

2. If /* can a Push be applied? x/

e Fprec(f) contains one and only one barrier,

o Fgyce(f) is non-empty and contains only barriers,

o the sections associated with Fprec(f) and f are all precise (the
compiler is able to analyze all data accesses made between the two
consecutive synchronization points), and

¢ the sections associated with Fprec(f) contain write accesses,
then /* apply the Push transformation */

o replace f with a Push, passing as arguments, the read sections of
f, and the write sections of Fprec(f) in terms of processor identifiers
(in practice, this transformation will involve the creation of functions
that take the processor number as a parameter, and return the
section of data accessed by that processor).

3. else if /* can a Validate be applied? */
o there are precise sections associated with f
then
o if
— f is a synchronization statement
o then
— insert a Validate_w_sync
o else
— insert a Validate
o for each precise section associated with f
— if

x the analysis for this variable is precise (no unanalyzable accesses),
+ tagged as {read, write} but not {read, write, write-first},
+ and refers to a contiguous range of addresses,

— then

* supply the section with access type READ_WRITE_ALL.

— else if

*

the analysis for this variable is precise,
the tag contains the attribute write-first, and
the section refers to a contiguous range of addresses,
— then
* supply the section with access type WRITE_ALL.
— else
* supply the section with access type (READ, WRITE, or READ&ZWRITE)
depending on the tag.

* %

Fig. 3. Program Transformation

E. Examples

We illustrate our analysis and transformation with two
examples: one with regular accesses, and one with irregular
accesses through an indirection array.

E.1 Jacobi

Jacobi is an iterative method for solving partial differen-
tial equations, with nearest-neighbor averaging as the main
computation (See Figure 4). The array b is shared, while a
is a local scratch array. To simplify the discussion, we as-
sume that there is no false sharing, i.e., boundary columns
start on page boundaries and their length is a multiple of
the page size (Our methods work in the presence of false
sharing. This simplification is for explanatory purposes
only). Processes arrive at Barrier(2) at the end of each
iteration, resulting in 2(n — 1) messages with n proces-
sors. At the departure from the barrier (an acquire), pages
containing elements of the boundary columns are invali-
dated since they have been modified on the neighboring
processors. When a processor accesses a page in one of its

do k = 1,100
do j = begin,end
do i= 2,M-1
a(i,j) = 0.25 *
(b(i-1,j)+b(i+1,j)+b(i,j-1)+b(i,j+1))
enddo
enddo
call Barrier(1)
do j = begin,end
do i= 1,M
b(i,j) = a(i,j)
enddo
enddo
call Barrier(2)
enddo

Fig. 4. Pseudo-code for the TreadMarks Jacobi program: The vari-
ables begin and end are used to partition the work among the
processors, with each processor working on a different partition
of the shared array b.

do k = 1,100

do j = begin,end
do i= 2,M-1
a(i,j) = 0.25 *
(b(i-1,j)+b(i+1,j)+b(i,j-1)+b(i,j+1))
enddo
enddo
call Barrier(1)
call Validate(1,{b,2,DIRECT,
{b[1,M:begin,end]}},WRITE_ALL,1);
do j = begin,end
do i= 1,M
b(i,j) = a(i,j)
enddo
enddo
call Push(b[1,M:begin(p)-1,end(p)+1],
b[1,M:begin(p),end(p)])
enddo

Fig. 5. Pseudo-code for the transformed Jacobi program: A Validate
has been inserted, and Barrier(2) has been replaced by Push. In
the arguments to Push, the dependence of begin and end on the
processor number p has been made explicit.

neighbor’s boundary columns in the first half of the next
iteration, it takes a page fault, which causes TreadMarks
to fetch a diff from its neighbor. With m pages in a bound-
ary column, the result is 4m(n — 1) messages. In addition,
there are another 2(n — 1) messages at Barrier (1) that
ends the first half of the iteration. Finally, there is consis-
tency overhead for write detection during the second half
of the iteration, including page faults, memory protection
operations, and creating twins and diffs.

In a message passing version of Jacobi, whether hand-
coded or compiler-generated, at the end of an iteration,
each processor sends two messages, one to each of its neigh-
bors, containing the boundary column to be used by that
neighbor in the next iteration. It waits to receive the
boundary columns from its neighbors, and proceeds with
the next iteration. The result is only 2(n — 1) messages per
iteration for the message passing program.

Compiler analysis and transformation can virtually elim-
inate the extra overhead in the SDSM version of the pro-
gram. Figure 5 shows the transformed program.

First, by examining the sections of data written by indi-
vidual processors before Barrier (2) and read afterwards,

the compiler recognizes that Barrier(2) can be replaced
by a Push. The sections of data accessed are supplied as ar-
guments to the Push run-time call (in reality, functions that
will compute these per-processor sections are passed). In
this case, the run-time will perform a point-to-point mes-
sage exchange among neighboring processors after inter-
secting the sections of data read and written by the indi-
vidual processors. The Push eliminates barrier overhead
and pushes the data rather than requesting or pulling it.

Second, by examining the accesses during the second half
of each iteration, the compiler can determine that between
Barrier (1) and Barrier(2), a processor writes all ele-
ments of the pages in its assigned section of the array,
without reading the data. Hence, it inserts a Validate
for that section with a WRITE_ALL argument, which causes
the run-time not to make twins and diffs for these pages,
eliminating consistency overhead.

The only extra overhead that now exists is Barrier(1).
This barrier cannot be eliminated due to the anti-
dependence across it, and remains because shared memory
semantics are assumed.

In this particular example, analysis is precise: the com-
piler can determine exactly what data is read or written
as a function of the processor identifier. In such a case
it is also possible for the compiler to directly generate a
message passing program. As will be seen in Section III
the performance of this strategy and ours are very similar.
However, our methods can also be applied to applications
for which the analysis cannot be made precise, or for which
only some phases can be analyzed.

E.2 Moldyn

Moldyn is a molecular dynamics simulation. Its com-
putational structure resembles the non-bonded force cal-
culation in CHARMM [5], which is a well-known molec-
ular dynamics code used at NIH to model macromolecu-
lar systems. Non-bonded forces are long-range interactions
existing between each pair of molecules. CHARMM ap-
proximates the non-bonded calculation by ignoring all pairs
which are beyond a certain cutoff radius. The cutoff ap-
proximation is achieved by maintaining an interaction list
of all the pairs within the cutoff distance, and iterating over
this list at each timestep. The interaction list is used as
an indirection array to identify interacting partners. Since
molecules change their spatial location every iteration, the
interaction list must be periodically updated. Figure 6 il-
lustrates the program structure of Moldyn, and the force
computation subroutine.

Due to implementation limitations (no interprocedural
analysis), the compiler inserts a Validate call at the begin-
ning of ComputeForces. The compiler analyzes the access
patterns for each statement in the subroutine. In this case,
the access pattern consists of reads to x, the only shared ar-
ray, through the interaction list indirection array. The
accesses to the indirection array are themselves regular and
determinable at compile-time. Hence, the compiler can de-
termine the section of the indirection array through which
the shared array x is accessed. This information is con-

veyed through the Validate call.

The run-time system traverses the section of the indi-
rection array supplied through the Validate call to deter-
mine the pages in x that will be accessed, or the schedule.
This traversal is performed only if the indirection array
has changed since the last time the schedule has been up-
dated. Requests for the invalid pages in the schedule are
then sent out, and the data is aggregated before being sent
back to the requesting processor. This results in a reduced
number of messages compared to the base system.

program moldyn

do step = 1, nsteps
if (mod(step,UPDATE_INTERVAL) .eq. 0) then
call build_interaction_list()
endif

subroutine ComputeForces()

Validate(1, {x, 1, INDIRECT,
{interaction_list[1:2, 1:num_inter]}},READ,1)

do i = 1, num_inter

nl = interaction_list(1, i)
n2 = interaction_list(2, i)
force = x(n1) - x(n2)

local_forces(nl) = local_forces(nl) + force
local_forces(n2) = local_forces(n2) - force
enddo

Fig. 6. Transformed Moldyn program

III. RESULTS

Our experimental environment is an 8-processor IBM
SP/2 running AIX version 3.2.5. Each processor is a 66.7
MHz RS6000 thin node with 64 KBytes of data cache and
128 Mbytes of main memory. Interprocessor communica-
tion is accomplished over the IBM SP/2 high-performance
two-level cross-bar switch, using IBM’s MPL message pass-
ing layer. Unless indicated otherwise, all results are for
8-processor runs.

The minimum roundtrip time using send and receive for
the smallest possible message is 365 useconds, including
an interrupt.! The time for a remote 4Kbyte page fetch
is 1054 pseconds. In TreadMarks, the minimum time to
acquire a free lock is 427 pseconds. The minimum time to
perform an 8-processor barrier is 893 pseconds. Under AIX
3.2.5, the time for both page faults and memory protection
operations is a linear function of the page number and the
number of pages in use. For instance, the memory protec-
tion operation time can vary between 18 and 800 useconds
with 2000 pages in use.

LAlthough substantially faster round-trip times are possible if in-
terrupts are disabled, interrupts are required to implement lock and
page requests in TreadMarks. For XHPF and CHAOS, interrupts
were disabled.

Application Data set size Time

(secs)
Jacobi - 4Kx4K 4096x4096 288.3
Jacobi - 1Kx1K 1024x1024 17.7
3D-FFT - 6x6x6 20 % 26 x 26 9.5
3D-FFT - 5x6x5 2% x 26 x 25 2.3
Shallow - 1Kx1K 1024x1024 74.8
Shallow - 1Kx.5K 1024x512 36.9
IS - 23-19 N =22 B =2 91.2
IS - 20-15 N =22 B, =2 3.9
Gauss - 2Kx2K 2048x2048 3344.8
Gauss - 1Kx1K 1024x1024 271.5
MGS - 2Kx2K 2048x2048 449.3
MGS - 1Kx1K 1024x1024 56.4
Tomcatv - 1.4Kx1.4K | 1400x1400 25.9
Tomcatv - 1IKx1K 1024x1024 14.5
Grid - 2Kx2K 2000x2000 382.2
Grid - 1.5Kx1.5K 1500x1500 215.0
Moldyn - 20 iter 16384 267.2
Moldyn - 11 iter 16384 467.3
NBF - 64x1024 64x1024 78.3
NBF - 64x1000 64x1000 76.5

TABLE I

APPLICATIONS, DATA SET SIZES, AND UNIPROCESSOR EXECUTION
TIMES

We separate our results in terms of regular and irregular
applications. Our aim is to compare performance against
state-of-the-art compiler techniques currently available to
optimize performance for these types of applications.

A. Overall Results for Reqular Applications

We used eight Fortran programs: IS and 3D-FFT from
the NAS benchmark suite [4], the Shallow benchmark from
the National Center for Atmospheric Research, Tomcatv
from the SPEC benchmark suite [9], Grid from Applied
Parallel Research, Inc., and Jacobi, Gauss, and Modified
Gramm-Schmidt (MGS), three locally developed bench-
marks. For each application, we use two data set sizes
to illustrate any effects from changing the computation
to communication ratio, as well as due to false sharing.
Table I describes the data set sizes and the correspond-
ing uniprocessor execution times.? Uniprocessor execution
times were obtained by removing all synchronization from
the TreadMarks programs; these times were used as the
basis for the speedup figures.

We present the performance of these applications in three
different versions:

1. The base TreadMarks program executing with the base
TreadMarks run-time system — Tmk.

2. The compiler-optimized TreadMarks program execut-
ing with the augmented TreadMarks run-time system —

2 All measurements for Tomcatv and Grid were made on 120 MHz
thin nodes.

Opt-Tmk.

3. A message passing version automatically generated by
the Forge XHPF compiler [3] from Applied Parallel Re-
search, Inc. (APR) — XHPF.

The results for the XHPF compiler are provided in order
to compare performance against a commercial parallelizing
compiler for data-parallel programs.

Figure 7 shows the speedups achieved for all applica-
tions using the three different environments. The numbers
for the compiler-optimized TreadMarks version reflect the
gains achieved by the most sophisticated level of analysis
possible for each application. There are no entries for IS
using XHPF in the figure. XHPF cannot parallelize IS
because of an indirect access to the main array in the com-
putation.

Compiler optimization achieves substantial execution
time improvements in comparison to the base TreadMarks,
ranging from 0% to 59%.% For programs for which base
TreadMarks achieves relatively good speedups (Jacobi,
Shallow, Gauss, Tomcatv, Grid, and MGS), the execution
time improvements are moderate: 0% to 18%. For the two
programs (IS and 3D-FFT) for which base TreadMarks per-
forms poorly compared to XHPF, execution time improve-
ments are quite large, ranging from 48% to 59%. These
gains are mainly due to communication aggregation, and
elimination of consistency overhead. The execution times
achieved by the compiler-optimized shared memory pro-
grams are within 0-9% of XHPF (except for Tomcatv with
the 1IKx1K dataset, where cache effects result in the XHPF
version showing significant performance degradation).

The compiler-optimized version of Jacobi (from our ex-
ample in Figure 5) shows a 10-16% improvement in execu-
tion time over the base TreadMarks and is within 8% of the
execution times of the XHPF version. For the 4096x4096
data set, Jacobi derives most of its improvement from com-
munication aggregation, because of a significant reduction
in the number of messages (5-fold). For the 1024x1024 data
set, communication aggregation does not improve execu-
tion time, because the boundary rows are exactly one page.
Eliminating Barrier (2) through the use of a Push provides
most of the benefit. With a smaller data set, the cost of
the barrier becomes proportionally higher, and hence its
elimination results in some improvement in running time
(10%). Correspondingly, in comparison to XHPF, while
the performance of the 4096x4096 data set is similar, there
is a slight drop in performance for the 1024x1024 data set.
This is because of the extra Barrier (1), which was not
eliminated.

Performance gains for 3D-FFT for the larger problem
size come mainly from communication aggregation and
twin/diff creation elimination. The gains from the smaller
problem size, however, also come from the elimination of
data communication due to false sharing by the use of the
Push directive (an additional 11%). The Push directive
only updates those sections of data specified as being read

3Percentage improvements are calculated by the formula (base —
opt) + base.

by the processor, thereby resulting in reduced data com-
munication in the presence of false sharing.

IS has a migratory access pattern. The use of diffs in
TreadMarks results in extra data communicated due to the
diff accumulation [24] problem - that of multiple overlap-
ping diffs being communicated due to multiple processors
successively modifying the same data. With the compiler-
based directives, this overhead can be eliminated. The per-
formance gains of ~50% in comparison to Tmk for Opt-Tmk
come from the above optimization (reduced data commu-
nication) in addition to communication aggregation.

Shallow, Gauss, Tomcatv, and MGS benefit mainly from
communication aggregation. There are also some ad-
ditional gains from combining synchronization and data
transfer when the amount of data transferred is small. The
performance of all three versions of Grid is similar due to
the high computation to communication ratio resulting in
near perfect speedups in all cases.

B. Owerall Results for Irreqular Applications

In the case of the irregular applications, we compare the
compiler-optimized TreadMarks programs (Opt-Tmk) with
the hand-coded CHAOS (inspector-executor based [29])
programs (CHAOS), as well as the base TreadMarks pro-
grams (Tmk). Our intent in presenting the CHAOS per-
formance numbers is to compare performance with state-
of-the-art compiler technology for irregular applications.
The compiler-optimized TreadMarks programs include op-
timizations for both regular and irregular access patterns.
Figure 8 presents the speedups at 8 processors for two
programs, Moldyn from CHARMM [5] and NBF from the
GROMOS benchmark [12], both molecular dynamics sim-
ulation kernels. Table I presents the sequential execution
time and data set sizes used. In the case of Moldyn, we
vary the frequency with which the indirection array is re-
computed. In the case of NBF, we vary the data set size
to introduce false sharing.

For Moldyn (from which our example in Figure 6 is
taken), our optimized system is 11% faster than base
TreadMarks, a result of an almost 5-fold reduction in
the number of messages due to communication aggrega-
tion. Our optimized system is also up to 23% faster than
CHAOS, depending on the frequency with which the indi-
rection array is updated. The cost of access pattern compu-
tation (the inspector), which in our case consists of travers-
ing the indirection array, is lower than in the inspector-
executor approach. In the inspector-executor approach,
global communication of data schedules is required since
the communication is not request-response in nature.

To separate the effects of inspector computation, for
NBF, we do not include the time to execute the inspector
in the measured computation. In this case, our optimized
system is no worse than 14% slower than CHAOS, and is
up to 38% faster than the base TreadMarks system. If we
include the execution time of the inspector, our approach
is faster than CHAOS by up to 20% for 10 iterations of
the program loop. Changing the data set from 64x1024
to 64x1000 introduces false sharing, resulting in the two

7 ~H
o
6 'Il
i
i+
= * HE
gl
= i+
_g 4 ’Il 0
gz
C%_ gll ’-
s HE - 7
FH oo ¢
2 gil gl
gll ¥m ’
il Emigs
gl Pmpy
1 gl oaf 2
gl oaf 2
o piuf Eml &
¥ 35 € 2 3 x5 2 3
BEdd 55
= p—
5 %

Bl Tk
Opt-Tmk
0 XHPF

)

Bt b b b i b b i

MGS-2Kx2K

~
~—

><
=
i
b
D
=

>
=
—

><
>
=
=
=
=
O
=
o
=

GAUSS-IKXIK 5 5 55 55 55 % 55 % s s % 5]

GRID-2Kx2K
GRID-L5KxL5K

TOMCATV-1Kx1K m

Fig. 7. Speedup (at 8 processors) for TreadMarks, Compiler-Optimized Version of TreadMarks, and XHPF. The IS bar is missing for XHPF

because it cannot parallelize IS.

7 [R
Opt-Tmk

HH CHAOS

Speedup

Moldyn-20 iter Moldyn-11 iter NBF-64x1024 NBF-64x1000

Fig. 8. Speedup (at 8 processors) for TreadMarks, Compiler Opti-
mized Version of TreadMarks, and CHAOS.

TreadMarks versions sending more data than CHAOS.

Our compile-time optimizations successfully reduce the
number of messages used during program execution, mak-
ing performance comparable to a system such as CHAOS.
The advantage of our approach increases as the frequency
of changes to the indirection array increases. Its disadvan-
tage is the potential for false sharing overhead when the
data set is small or has poor spatial locality.

IV. APPLICABILITY TO OTHER PLATFORMS

While the experimental results presented here are
specific to the TreadMarks SDSM system, the tech-
niques described generalize to other SDSM systems such
as Cashmere [30], home-based lazy release consistency
(HLRC) [34], or Shasta [28]. In these systems, each co-
herence unit has a home where modifications are collected
or where directory information is maintained. While care-
ful placement of the home can result in a prefetching ef-
fect, such placement using purely run-time information
does not capture either phase changes or complex ac-
cess patterns, and can result in additional overhead. The
compiler-provided access information can be used to op-
timize the migration/placement of the home. Write-first
accesses, something the run-time has no knowledge of, can
avoid data communication merely by changing the cur-
rent home. The benefits of communication aggregation
and consistency overhead elimination continue to apply
in such systems, although the run-time mechanisms will
differ. For virtual memory-based systems such as Cash-
mere and HLRC, memory protection operations are elimi-
nated. Also, the Push interface can avoid extra data com-
munication as a result of false sharing. For variable-grain
instrumentation-based systems such as Shasta, the instru-
mentation overhead can be further reduced.

Our experimental results have also been presented in the
context of a fairly high-latency communication subsystem.
If a low-latency network were to be used, the benefits of
aggregation would shift from being purely due to a reduc-
tion in the number of messages, to being able to overlap
communication with computation.

Our compiler framework was implemented for explicitly

parallel programs. However, the general principle is also
applicable to automatic parallelization with the SDSM sys-
tem as the target. The access pattern information can be
folded into the shared memory parallelization directives.
These directives identify all data races, and hence perform
a similar function to the synchronization in the explicitly
parallel programs in terms of identifying the appropriate
points at which to supply the access pattern information.
This information can be utilized by the run-time, not only
to optimize communication, but also to balance load [15].

Several recent proposals for hardware shared memory
machines include a message passing subsystem designed in
part to allow applications to take advantage of bulk data
transfer [20], [21]. Woo et al. [33] evaluate one such de-
sign in the context of the Flash system. While Woo et
al. focus on establishing the magnitude of the performance
benefits of bulk data transfer with hardware-based shared
memory, we have explored in addition ways for the com-
piler to automate the use of the bulk data transfer facility
in a software shared memory environment. The same ac-
cess pattern information can be used in a hardware shared
memory environment to exploit the bulk transfer features.
The information can also be used for optimal page place-
ment and re-mapping in machines such as the Origin-2000.

V. RELATED WORK

Mowry et al. [25] examine the effect of combining
prefetching and multithreading in a software DSM system.
Their prefetching strategy involves fetching data in advance
of synchronization operations. Our strategy involves lever-
aging the program synchronization in order to reduce re-
dundant messages, as well as eliminating consistency over-
head where possible.

Jeremiassen et al. [16] present a static algorithm for com-
puting per-process memory references to shared data in
coarse-grained parallel programs. We use a similar anal-
ysis in terms of processor identifiers in order to replace a
barrier with a Push.

Mukherjee et al. [26] compare the CHAOS inspector-
executor system to the TSM (transparent shared mem-
ory) and the XSM (extendible shared memory) systems,
both implemented on the Tempest interface [27]. They
conclude that TSM is not competitive with CHAOS, while
XSM achieves performance comparable to CHAOS after in-
troducing several special-purpose protocols. In our work,
we use a fairly straight-forward compiler to optimize the
shared memory programs, rather than relying on hand-
coded special-purpose protocols.

Keleher and Tseng [18] describe a run-time interface and
compile-time system that couples the compiler and the run-
time in a manner similar to our system. Their interface
and implementation are, however, more run-time intensive.
Chandra and Larus [7] also describe a combined compiler
and run-time system that is similar in spirit to our system,
but in the context of fine-grained software shared memory.

VI. CONCLUSION

We have described an integrated compile-time/run-time
approach for executing regular and irregular computations
on distributed memory machines. This approach is based
on a modified software distributed shared memory layer,
and fairly simple compile-time support. Our compiler com-
putes data access summaries using regular section analy-
sis and feeds that information to the TreadMarks run-time
SDSM system. Improvements in execution time range from
0 to 59% on an 8-processor IBM SP /2 in comparison to the
base run-time system for the applications analyzed. The
combination of static prediction of shared memory accesses
by the compiler with dynamic detection of accesses by the
run-time allows the combined system to approach the per-
formance of compiler-generated message passing (within
9% of XHPF for regular programs, and up to 23% bet-
ter than CHAOS for irregular programs). It does so with-
out incurring the programming difficulties of message pass-
ing or the limitations on automatic parallelization of data-
parallel programs for message passing targets. A combined
compile-time run-time system of this nature retains the
ease of programming of shared memory, while exploiting
the message passing capabilities of the underlying hard-
ware.

REFERENCES

[1] G. Agarwal and J. Saltz. Interprocedural compilation of irregular
applications for distributed memory machines. In Proceedings of
Supercomputing 95, December 1995.

[2] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-
mony, and W. Zwaenepoel. TreadMarks: Shared memory com-
puting on networks of workstations. IEEE Computer, 29(2):18—
28, February 1996.

[3] Applied Parallel Research. FORGE High Performance Fortran
User’s Guide, version 2.0 edition.

[4] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS par-
allel benchmarks. Technical Report 103863, NASA, July 1993.

[5] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States,
S. Swaminathan, and M. Karplus. Charmm: A program for
macromolecular energy, minimization, and dynamics calcula-
tions. Journal of Computational Chemistry, 4:187, 1983.

[6] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for
reducing consistency-related information in distributed shared
memory systems. ACM Transactions on Computer Systems,
13(3):205-243, August 1995.

[7] S. Chandra and J. R. Larus. Optimizing communication in hpf
programs for fine-grain distributed shared memory. In Proceed-
ings of the 6th Symposium on the Principles and Practice of
Parallel Programmaing, June 1997.

[8] R. Das, P. Havlak, J. Saltz, and K. Kennedy. Index array flat-
tening through program transformation. In Proceedings of Su-
percomputing ’95, December 1995.

[9] K. M. Dixit. The spec benchmarks. Parallel Computing, pages
1195-1209, 1991.

[10] S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. An integrated
compile-time/run-time software distributed shared memory sys-
tem. In Proceedings of the 7th Symposium on Architectural Sup-
port for Programming Languages and Operating Systems, Octo-
ber 1996.

[11] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy. Memory consistency and event ordering in
scalable shared-memory multiprocessors. In Proceedings of the
17th Annual International Symposium on Computer Architec-
ture, pages 1526, May 1990.

[12] W.F. van Gunsteren and H.J.C. Berendsen. = GROMOS:
GROningen MOlecular Simulation software. Technical report,
Laboratory of Physical Chemistry, University of Groningen,
1988.

[13]

[14]

[15]

(16]

[17]

(18]

[19]

20]

21]

(22]

23]

24]

(25]

(26]

(27]

(28]

31]

32]

33]

P. Havlak and K. Kennedy. An implementation of interproce-
dural bounded regular section analysis. IEEE Transactions on
Parallel and Distributed Systems, 2(3):350-360, July 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran
D for MIMD distributed-memory machines. Communications of
the ACM, 35(8):66-80, August 1992.

S. Ioannidis and S. Dwarkadas. Compiler and run-time support
for adaptive load balancing in software distributed shared mem-
ory systems. In Fourth Workshop on Languages, Compilers, and
Run-time Systems for Scalable Computers, May 1998.

T.E. Jeremiassen and S. Eggers. Computing per-process sum-
mary side-effect information. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Fifth Workshop on Lan-
guages and Compilers for Parallelism, pages 175-191, August
1992.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consis-
tency for software distributed shared memory. In Proceedings of
the 19th Annual International Symposium on Computer Archi-
tecture, pages 13-21, May 1992.

P. Keleher and C. Tseng. Enhancing software DSM for compiler-
parallelized applications. In Proceedings of the 11th Interna-
tional Parallel Processing Symposium, April 1997.

K. Kennedy, K. S. McKinley, and C. Tseng. Analysis and trans-
formation in an interactive parallel programming tool. Concur-
rency: Practice and Ezperience, 5(7), October 1993.

D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B. Lim.
Integrating message-passing and shared-memory: Early experi-
ence. In Proceedings of the 1993 Conference on the Principles
and Practice of Parallel Programming, May 1993.

J. Kuskin and D. Ofelt et al. The Stanford FLASH multiproces-
sor. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, April 1994.

K. Li and P. Hudak. Memory coherence in shared virtual
memory systems. ACM Transactions on Computer Systems,
7(4):321-359, November 1989.

H. Lu, A.L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepoel. Compiler and software distributed shared mem-
ory support for irregular applications. In Proceedings of the 6th
Symposium on the Principles and Practice of Parallel Program-
ming, pages 48-56, June 1997.

H. Lu, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. Message
passing versus distributed shared memory on networks of work-
stations. In Proceedings SuperComputing ’95, December 1995.
T.C. Mowry, C.Q.C. Chan, and A.K.W. Lo. Comparative eval-
uation of latency tolerance techniques for software distributed
shared memory. In Proceedings of the Fourth High Performance
Computer Architecture Symposium, February 1998.

S.S. Mukherjee, S.D. Sharma, M.D. Hill, J.R. Larus, A. Rogers,
and J. Saltz. Efficient support for irregular applications on dis-
tributed memory machines. In Proceedings of the 5th ACM Sym-
posium on the Principles and Practice of Parallel Programming,
July 1995.

Steven K. Reinhardt, James R. Larus, and David A. Wood. Tem-
pest and typhoon: User-level shared memory. In Proceedings of
the 21st Annual International Symposium on Computer Archi-
tecture, April 1994.

D.J. Scales, K. Gharachorloo, and C.A. Thekkath. Shasta: A
low overhead, software-only approach for supporting fine-grain
shared memory. In Proceedings of the 7th Symposium on Ar-
chitectural Support for Programming Languages and Operating
Systems, pages 174-185, October 1996.

S. D. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das,
and J. Saltz. Run-time and compile-time support for adaptive
irregular problems. In SuperComputing, 1994.

R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M.L. Scott. Cashmere-2I:
Software coherent shared memory on a clustered remote-write
network. In Proceedings of the 16th ACM Symposium on Oper-
ating Systems Principles, pages 170-183, October 1997.

R. von Hanxleden and K. Kennedy. Give-N-Take — a balanced
code placement framework. In Proceedings of the ACM SIG-
PLAN 91 Conference on Programming Language Design and
Implementation, June 1994.

R. von Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz.
Compiler analysis for irregular problems in Fortran D. In Pro-
ceedings of the 5th Workshop on Languages and Compilers for
Parallel Computing, August 1992.

S.C. Woo, J.P. Singh, and J.L. Hennessy. The performance

34]

advantages of integrating block data transfer in cache-coherent
multiprocessors. In Proceedings of the 6th Symposium on Ar-
chitectural Support for Programming Languages and Operating
Systems, pages 219-231, October 1994.

Y. Zhou, L. Iftode, and J.P. Singh. Performance evaluation of
two home-based lazy release consistency protocols for shared vir-
tual memory systems. In Proceedings of the Second USENIX
Symposium on Operating System Design and Implementation,
October 1996.

