
Combining Compile�Time and Run�Time Support for

E�cient Software Distributed Shared Memory

Sandhya Dwarkadasy� Honghui Luz� Alan L� Cox��

Ramakrishnan Rajamonyz� and Willy Zwaenepoel�

y Department of Computer Science� University of Rochester
z Department of Electrical and Computer Engineering� Rice University

� Department of Computer Science� Rice University

Abstract

We describe an integrated compile�time and run�time
system for e�cient shared memory parallel computing
on distributed memory machines� The combined system
presents the user with a shared memory programming
model� with its well�known bene�ts in terms of ease of use�
The run�time system implements a consistent shared mem�
ory abstraction using memory access detection and auto�
matic data caching� The compiler improves the e�ciency
of the shared memory implementation by directing the run�
time system to exploit the message passing capabilities of
the underlying hardware� To do so� the compiler analyzes
shared memory accesses� and transforms the code to insert
calls to the run�time system that provide it with the access
information computed by the compiler� The run�time sys�
tem is augmented with the appropriate entry points to use
this information to implement bulk data transfer and to
reduce the overhead of run�time consistency maintenance�
In those cases where the compiler analysis succeeds for

the entire program� we demonstrate that the combined sys�
tem achieves performance comparable to that produced by
compilers that directly target message passing� If the com�
piler analysis is successful only for parts of the program�
for instance� because of irregular accesses to some of the
arrays� the resulting optimizations can be applied to those
parts for which the analysis succeeds� If the compiler anal�
ysis fails entirely� we rely on the run�time�s maintenance
of shared memory� and thereby avoid the complexity and
the limitations of compilers that directly target message
passing� The result is a single system that combines e��
cient support for both regular and irregular memory access
patterns�

I� Introduction

Parallel programming using a shared memory platform
has the advantage of ease�of�use� In contrast to message
passing� the user does not have to worry about data loca�
tion or have to explicitly manage communication� Unfortu�
nately� as parallel computers move away from the uniform
memory access model in order to improve scalability� this

This work was supported in part by NSF grants CCR��������	
CCR����

��	 CCR������
�	 CCR���
����	 CCR��
��
��	 CCR�
�
����
	 CDA��
�����	 and MIP��
���
�	 by the Texas TATP pro�
gram under Grant ����������	 and by grants from IBM Corporation
and from Tech�Sym	 Inc� Ram Rajamony is also supported by an
IBM Cooperative Fellowship�

transparency of shared memory comes into question� Mes�
sage passing programs� tuned to non�uniform memory ac�
cess latencies� often produce better performance� Our goal
is to develop a system that continues to provide the user
with a transparent shared memory programming model�
but underneath is capable of exploiting the hardware�s mes�
sage passing capabilities� We focus our work on distributed
memory machines� in which the shared memory abstraction
is provided entirely in software�

A software distributed shared memory �SDSM	 system
�e�g�� 
���	 provides a shared memory abstraction on a dis�
tributed memory machine using purely run�time mecha�
nisms� During execution� a SDSM system detects shared
memory accesses� handles faults by fetching the missing
data� and caches data for future reference� Such a system
can handle any kind of data access pattern� However� when
the access patterns are predictable� the on�demand data
fetching causes extra messages and consistency actions� in�
creasing overheads and resulting in reduced performance
compared to message passing�

Research and commercial compilers for parallel comput�
ing on distributed memory machines have to date targeted
the underlying message passing layer directly �e�g�� 

��

���	� The compiler analyzes memory access patterns to
generate message passing code� which is then optimized to
aggregate communication and minimize data movement�
For programs with regular access patterns that can be pre�
cisely analyzed� these compile�time systems provide supe�
rior performance since they avoid the run�time overhead
present with SDSM systems� However� when the access
patterns cannot be analyzed precisely� the message passing
code generated by the compiler becomes ine�cient� In the
case of irregular accesses� for example� a simplistic compiler
approach would result in a broadcast of all data produced
by a processor� causing large amounts of communication�

Inspector�executor methods have been proposed to deal
with this problem of irregular computations on distributed
memory machines 
���� A separate loop� the inspector� pre�
cedes the actual computational loop� called the executor�
The inspector precomputes the data that will be accessed
by the individual processors when executing the compu�
tational loop� This information is used to create a com�

munication schedule� which is then used to aggregate the
movement of data from the producers to the consumers at
the beginning and�or end of each loop� The high cost of the



inspector is amortized� when possible� by executing it only
once for a set of executor iterations� A compiler algorithm
to automate this procedure is described in von Hanxleden
et al� 

��� However� the required compiler analysis can be
quite complex � 
��� 
��� 

��	�

Our goal is to combine the bene�ts of SDSM systems
with those of compiler�based approaches for generating
code for distributed memory systems� In the combined
system� the run�time library remains the basic vehicle for
implementing shared memory� while the compiler performs
optimization rather than implementation� Instead of gener�
ating a message passing program directly� the compiler gen�
erates a shared memory program augmented with run�time
calls that describe the data access patterns� By informing
the run�time system of future shared access patterns� these
calls allow the run�time system to avoid memory access de�
tection and on�demand fetching of missing data� Further�
more� they permit the aggregation of several data fetches
into a single message�

An interesting aspect of this combined system is that
it e�ciently supports programs with regular accesses� pro�
grams with both regular and irregular accesses� and pro�
grams with completely irregular accesses� If the accesses
are completely regular� then the compiler can analyze all of
them� and the resulting code is as e�cient as that of hand�
coded or compiler�generated message passing� If the pro�
gram contains code in which an array is accessed indirectly
through an indirection array� we can still analyze the �usu�
ally regular	 accesses to the indirection array� and derive
considerable performance improvement from that analysis�
If the compiler analysis fails� the program is unmodi�ed�
and handled solely by the run�time system� The combina�
tion of a shared memory compiler and an SDSM system
thus avoids the complexity of the inspector�executor ap�
proach for irregular access patterns� without compromising
e�ciency for regular access patterns�

We extended the Parascope parallel programming en�
vironment 
��� to analyze and transform explicitly parallel
programs� We use regular section analysis 
�
� to determine
the shared data access patterns� The resulting regular sec�
tion descriptors �RSDs	 describe the accesses to the data
array �in the case of regular accesses	 or to the indirection
array �in the case of irregular accesses	� We also extended
the interface �
���� 
�
�	 to the TreadMarks 
�� run�time
SDSM system to take advantage of the compiler analysis�

We have measured the performance of these techniques
on an ��node IBM SP�� for applications with both regu�
lar and irregular access patterns� Compiler optimization in
conjunction with the augmented run�time system achieves
substantial execution time improvements in comparison to
the base run�time system� ranging from �� to ��� on �
processors� Performance is also comparable to that us�
ing compile�time alternatives such as Applied Parallel Re�
search�s XHPF compiler �for regular access patterns	 and
the CHAOS 
��� inspector�executor based system �for ir�
regular access patterns	�

The outline of the rest of this paper is as follows�
Section II describes the combined compile�time run�time

shared memory system� Section III presents the perfor�
mance results� In Section IV� we outline the applicability
of our techniques to other platforms and architectures� Fi�
nally� we survey related work in Section V and conclude in
Section VI�

II� The Combined Compile�Time Run�Time Shared

Memory System

We �rst provide some background on TreadMarks 
���
the run�time system we used in our implementation� We
then discuss how the compiler analyzes the shared data
accesses in TreadMarks programs� The run�time primitives
by which the compiler informs TreadMarks of the results
of its analysis are discussed next� We are then ready to
describe the transformation from TreadMarks source code
into code augmented by calls to these primitives� Finally�
we illustrate the entire process with two sample programs�

A� The Base Run�Time Shared Memory System

TreadMarks 
�� is an SDSM system built at Rice Uni�
versity� It is an e�cient user�level SDSM system that runs
on commonly available Unix systems� We use TreadMarks
version ����� as the base shared memory run�time system
in our experiments�
TreadMarks provides explicitly parallel programming

primitives similar to those used in hardware shared mem�
ory machines� namely� process creation� shared memory al�
location� and lock and barrier synchronization� The system
supports a release consistent �RC	 memory model 
���� re�
quiring the programmer to use explicit synchronization to
ensure that changes to shared data become visible�
TreadMarks uses a lazy invalidate 
��� version of RC and

a multiple�writer protocol 
�� to reduce the overhead in�
volved in implementing the shared memory abstraction�
The virtual memory hardware is used to detect accesses

to shared memory� Consequently� the consistency unit is a
virtual memory page� The multiple�writer protocol reduces
the e�ects of false sharing with such a large consistency
unit� With this protocol� two or more processors can simul�
taneously modify their own copy of a shared page� Their
modi�cations are merged at the next synchronization op�
eration in accordance with the de�nition of RC� thereby
reducing the e�ects of false sharing� The merge is accom�
plished through the use of di�s� A di� is a run�length
encoding of the modi�cations made to a page� generated
by comparing the page to a copy saved prior to the modi�
�cations �called a twin	�
With the lazy invalidate protocol� a process invalidates�

at the time of an acquire synchronization operation 
����
those pages for which it has received notice of modi�ca�
tions by other processors� On a subsequent page fault� the
process fetches the di�s necessary to update its copy�

B� Compiler Analysis

The purpose of our compiler analysis is to provide ac�
cess pattern information to the run�time system� This in�
volves not only analyzing the program statements to deter�
mine what data is accessed� but also determining at which



statement in the program to supply this information to the
run�time system�
To answer the latter question� we take advantage of the

special role that synchronization points play in release�
consistent parallel programs� First� they are the points in
the execution of a program where shared data needs to be
made consistent� Second� they are also the points at which
it is determined what data modi�ed on other processors
needs to be re�ected locally for memory to be consistent�
We therefore analyze code segments between consecutive
synchronization statements� and provide the run�time sys�
tem with a description of the accesses in a segment at that
segment�s initial synchronization statement�
In practice� limitations of the analysis tool may restrict

the extent to which we can implement this general princi�
ple� For instance� the presence of conditional statements or
� in the absence of interprocedural analysis � procedure
calls may limit the region of code for which we can summa�
rize the shared memory access patterns� In those cases� we
may need to limit analysis accordingly� and place the calls
that provide the access information to the run�time system
at procedure entry points or at control �ow statements�
Our main tool for access analysis is regular section anal�

ysis 
�
�� Regular section descriptors �RSDs	 concisely rep�
resent the array accesses in a loop nest� The RSDs repre�
sent the accessed data as linear expressions of the upper
and lower loop bounds along each dimension� and include
stride information� When indirection arrays are involved�
the RSDs can be used recursively� with each indirection
representing the regular section for the indirection array
used� The access patterns that can be analyzed are� how�
ever� limited to linear expressions of the loop indices� In
addition to the memory locations accessed� our RSDs also
contain a tag indicating� among other things� whether the
accesses are read or write or both� Figure � outlines the
steps in our algorithm�

C� The Augmented Run�Time System

In addition to the original TreadMarks primitives� the
augmented run�time system provides two primary inter�
faces for use by the compiler� Validate and Push�
Validate and its variant� Validate w sync� sup�

port aggregated communication� They can fetch di�s
for multiple pages with a single message exchange�
Validate w sync� in addition� piggy�backs the request for
di�s on the next synchronization operation� The calls pro�
vide a set of access descriptors corresponding to the RSDs
obtained in the analysis �see Section II�B	� The run�time
system uses these descriptors to determine the set of in�
valid pages that will be accessed� The data for the invalid
pages can then be requested in a single message exchange
per processor� An additional access type parameter in the
Validate interface allows further optimizations to avoid
communication and to reduce the overhead of consistency
maintenance�
Details of the interface are provided in Figure �� An ac�

cess descriptor consists of the section� access type� and
schedule number� The section� or RSD� contains the fol�

�� Create V 	 the set of shared variables in the program� Create S	
the set of all synchronization operations in the program� Initialize
F 	 the set of all transformation points	 to S�

�� For each statement p in the program

�a� By traversing the abstract syntax tree �AST� in all possible
control �ow directions along which p can be reached	 create the
set Fprec�p� of all the directly preceding synchronization points� If
no synchronization statements are found along any one direction	
include the control �ow statement along that direction in F and
Fprec�p��

�b� By traversing the AST in all possible control �ow directions
starting from p	 create the set Ssucc�p� of all possible synchronization
points that directly succeed the statement�

�c� For each statement f in the set Fprec�p�	
i� Determine the location of the outermost loop that encloses p but

not f or any member of the set Ssucc�p�� Intuitively	 this corresponds
to determining the code segment between consecutive synchronization
statements for which accesses must be summarized�
ii� Construct a regular section for each de�nition or reference	 both

regular and irregular	 in p to a variable in V � Add a freadg or
fwriteg tag to the section� Determine the reaching de�nitions for
each reference to a variable in V �this can be done during the AST
traversal to create Fprec�p��� If these de�nitions occur after f 	 add
the write�first attribute to the tag�
iii� Perform a union of the resulting section	 with the other sec�

tions that have already been generated for f � A union of the tags
freadg and fwriteg is fread� writeg� A union of the tags fread�
write�firstg and fwriteg	 is fread� write�firstg�

Fig� �� Access Pattern Determination

lowing information about the accesses � the base address�
the dimension or number of indices� followed by the type

of access �DIRECT or INDIRECT	� and either the DIRECT in�
formation �lower bound� upper bound� and stride	� or the
RSD for the indirection array� along each dimension� This
basic structure allows us to handle any recursive indirec�
tions that might be used in a program� The access type

is one of READ� WRITE� or READ�WRITE� Shared arrays ac�
cessed directly along every dimension have two additional
access types� WRITE ALL and READ�WRITE ALL� which are
used when the compiler analysis can determine that every
element in the section will be written� WRITE ALL indicates
that all data in the section will be written but not read�
READ�WRITE ALL indicates that all data will be both read
and written� The run�time system uses this information to
reduce consistency maintenance overheads by eliminating
the creation of twins for such pages� In addition� since ac�
cesses marked WRITE ALL are not read� the run�time system
can also avoid the communication that would make such
data consistent before the write�

The schedule number is an identi�er for the schedule�
or the set of shared pages accessed in the section� For
INDIRECT accesses� this set is recomputed by re�traversing
the indirection array only if it has changed since the last
time it was examined� The run�time system uses the vir�
tual memory protection mechanism to detect any modi��
cations to the indirection array� This eliminates the need
for compile�time knowledge of when the indirection array
will be modi�ed�

Push is used to replace a barrier synchronization and to



send data to a processor in advance of when it is needed�
The arguments to Push are the sections of data that are
written by individual processors before the barrier and read
after the barrier� Details of the Push interface are also
provided in Figure �� A Push on processor P computes the
intersection of the sections written by P with those that
will be read by another processor� and sends the data in
the intersection to the corresponding processor� P then
computes the intersection of the sections written by other
processors with the sections that will be read by P � and
posts a receive for that data�

Unlike Validate� which does not change the un�
derlying consistency guarantees �unless a WRITE ALL or
READ�WRITE ALL access is speci�ed	� Push guarantees con�
sistency only for the sections of data received through the
Push� The rest of the shared address space may be incon�
sistent until the next barrier� Hence� Push can be used
only if the compiler has determined with certainty that
the processors do not read the regions of shared data left
inconsistent� Given the large consistency unit� the Push

directive can be useful in eliminating data communication
due to false sharing� Push provides the capabilities of a
message passing interface within a shared memory envi�
ronment� However� unlike pure compile�time approaches�
Push can be used selectively by restricting its use to a pro�
gram phase where complete analysis is possible� The run�
time system ensures that the entire address space is made
consistent at the barrier that must terminate such a phase�

Validate�int num�descs� �� number of descriptors ��
RSD section� �� section of shared data

�through indirection array
if necessary� ��

int access�type� �� READ� WRITE� READ	WRITE�
WRITE�ALL� or READ	WRITE�ALL ��

int sched�num� �� schedule number ��



 �

�� Similar to Validate except that the request for data is
piggybacked on a synchronization ��

Validate�w�sync� 


 �

�� does not preserve consistency
� N is the number of processors ��

Push�r�section��

N�
�� �� Sections of data read ��
w�section��

N�
�� �� Sections of data written ��

Fig� �� Augmented Run�Time Interface

D� Compiler Transformations

Following the analysis described in Section II�B� the com�
piler transforms the program using the augmented run�time
interface discussed in Section II�C� The compiler �rst at�
tempts to �nd opportunities for using the Push interface�
because this interface results in the largest performance
gains� Subsequently� it tries to �nd opportunities to use
Validate� Figure 
 describes the decision process used to
determine whether Push or Validate can be applied�

For each statement f in F

�� If f is a barrier	 create the set Fprec�f� of elements of F that
immediately precede f �by traversing the AST as before�	 and the
set Fsucc�f� of elements of F that immediately succeed f �

�� If �� can a Push be applied� ��
� Fprec�f� contains one and only one barrier	
� Fsucc�f� is non�empty and contains only barriers	
� the sections associated with Fprec�f� and f are all precise �the

compiler is able to analyze all data accesses made between the two
consecutive synchronization points�	 and
� the sections associated with Fprec�f� contain write accesses	

then �� apply the Push transformation ��
� replace f with a Push	 passing as arguments	 the read sections of

f 	 and the write sections of Fprec�f� in terms of processor identi�ers
�in practice	 this transformation will involve the creation of functions
that take the processor number as a parameter	 and return the
section of data accessed by that processor��

�� else if �� can a Validate be applied� ��
� there are precise sections associated with f

then
� if
� f is a synchronization statement
� then
� insert a Validate w sync
� else
� insert a Validate
� for each precise section associated with f
� if
� the analysis for this variable is precise �no unanalyzable accesses�	
� tagged as fread� writeg but not fread� write� write�firstg	
� and refers to a contiguous range of addresses	
� then
� supply the section with access type READ WRITE ALL�
� else if
� the analysis for this variable is precise	
� the tag contains the attribute write�first	 and
� the section refers to a contiguous range of addresses	
� then
� supply the section with access type WRITE ALL�
� else
� supply the section with access type �READ	 WRITE	 or READ	WRITE�

depending on the tag�

Fig� �� Program Transformation

E� Examples

We illustrate our analysis and transformation with two
examples� one with regular accesses� and one with irregular
accesses through an indirection array�

E�� Jacobi

Jacobi is an iterative method for solving partial di�eren�
tial equations� with nearest�neighbor averaging as the main
computation �See Figure �	� The array b is shared� while a
is a local scratch array� To simplify the discussion� we as�
sume that there is no false sharing� i�e�� boundary columns
start on page boundaries and their length is a multiple of
the page size �Our methods work in the presence of false
sharing� This simpli�cation is for explanatory purposes
only	� Processes arrive at Barrier��� at the end of each
iteration� resulting in ��n � �	 messages with n proces�
sors� At the departure from the barrier �an acquire	� pages
containing elements of the boundary columns are invali�
dated since they have been modi�ed on the neighboring
processors� When a processor accesses a page in one of its



do k � 
�
��
do j � begin�end

do i� ��M�

a�i�j� � �
�� �
�b�i�
�j��b�i�
�j��b�i�j�
��b�i�j�
��

enddo
enddo
call Barrier�
�
do j � begin�end

do i� 
�M
b�i�j� � a�i�j�

enddo
enddo
call Barrier���

enddo

Fig� �� Pseudo�code for the TreadMarks Jacobi program� The vari�
ables begin and end are used to partition the work among the
processors	 with each processor working on a di�erent partition
of the shared array b�

do k � 
�
��
do j � begin�end

do i� ��M�

a�i�j� � �
�� �
�b�i�
�j��b�i�
�j��b�i�j�
��b�i�j�
��

enddo
enddo
call Barrier�
�
call Validate�
��b���DIRECT�

�b�
�M�begin�end����WRITE�ALL�
��
do j � begin�end

do i� 
�M
b�i�j� � a�i�j�

enddo
enddo
call Push�b�
�M�begin�p��
�end�p��
��

b�
�M�begin�p��end�p���
enddo

Fig� 
� Pseudo�code for the transformed Jacobi program� A Validate
has been inserted	 and Barrier��� has been replaced by Push� In
the arguments to Push	 the dependence of begin and end on the
processor number p has been made explicit�

neighbor�s boundary columns in the �rst half of the next
iteration� it takes a page fault� which causes TreadMarks
to fetch a di� from its neighbor� With m pages in a bound�
ary column� the result is �m�n� �	 messages� In addition�
there are another ��n � �	 messages at Barrier��� that
ends the �rst half of the iteration� Finally� there is consis�
tency overhead for write detection during the second half
of the iteration� including page faults� memory protection
operations� and creating twins and di�s�

In a message passing version of Jacobi� whether hand�
coded or compiler�generated� at the end of an iteration�
each processor sends two messages� one to each of its neigh�
bors� containing the boundary column to be used by that
neighbor in the next iteration� It waits to receive the
boundary columns from its neighbors� and proceeds with
the next iteration� The result is only ��n��	 messages per
iteration for the message passing program�

Compiler analysis and transformation can virtually elim�
inate the extra overhead in the SDSM version of the pro�
gram� Figure � shows the transformed program�

First� by examining the sections of data written by indi�
vidual processors before Barrier��� and read afterwards�

the compiler recognizes that Barrier��� can be replaced
by a Push� The sections of data accessed are supplied as ar�
guments to the Push run�time call �in reality� functions that
will compute these per�processor sections are passed	� In
this case� the run�time will perform a point�to�point mes�
sage exchange among neighboring processors after inter�
secting the sections of data read and written by the indi�
vidual processors� The Push eliminates barrier overhead
and pushes the data rather than requesting or pulling it�
Second� by examining the accesses during the second half

of each iteration� the compiler can determine that between
Barrier��� and Barrier���� a processor writes all ele�
ments of the pages in its assigned section of the array�
without reading the data� Hence� it inserts a Validate

for that section with a WRITE ALL argument� which causes
the run�time not to make twins and di�s for these pages�
eliminating consistency overhead�
The only extra overhead that now exists is Barrier����

This barrier cannot be eliminated due to the anti�
dependence across it� and remains because shared memory
semantics are assumed�
In this particular example� analysis is precise� the com�

piler can determine exactly what data is read or written
as a function of the processor identi�er� In such a case
it is also possible for the compiler to directly generate a
message passing program� As will be seen in Section III
the performance of this strategy and ours are very similar�
However� our methods can also be applied to applications
for which the analysis cannot be made precise� or for which
only some phases can be analyzed�

E�� Moldyn

Moldyn is a molecular dynamics simulation� Its com�
putational structure resembles the non�bonded force cal�
culation in CHARMM 
��� which is a well�known molec�
ular dynamics code used at NIH to model macromolecu�
lar systems� Non�bonded forces are long�range interactions
existing between each pair of molecules� CHARMM ap�
proximates the non�bonded calculation by ignoring all pairs
which are beyond a certain cuto� radius� The cuto� ap�
proximation is achieved by maintaining an interaction list

of all the pairs within the cuto� distance� and iterating over
this list at each timestep� The interaction list is used as
an indirection array to identify interacting partners� Since
molecules change their spatial location every iteration� the
interaction list must be periodically updated� Figure � il�
lustrates the program structure of Moldyn� and the force
computation subroutine�
Due to implementation limitations �no interprocedural

analysis	� the compiler inserts a Validate call at the begin�
ning of ComputeForces� The compiler analyzes the access
patterns for each statement in the subroutine� In this case�
the access pattern consists of reads to x� the only shared ar�
ray� through the interaction list indirection array� The
accesses to the indirection array are themselves regular and
determinable at compile�time� Hence� the compiler can de�
termine the section of the indirection array through which
the shared array x is accessed� This information is con�



veyed through the Validate call�

The run�time system traverses the section of the indi�
rection array supplied through the Validate call to deter�
mine the pages in x that will be accessed� or the schedule�
This traversal is performed only if the indirection array
has changed since the last time the schedule has been up�
dated� Requests for the invalid pages in the schedule are
then sent out� and the data is aggregated before being sent
back to the requesting processor� This results in a reduced
number of messages compared to the base system�

program moldyn

do step � 
� nsteps
if �mod�step�UPDATE�INTERVAL� 
eq
 �� then

call build�interaction�list��
endif



 



call ComputeForces��



 




enddo

subroutine ComputeForces��

Validate�
� �x� 
� INDIRECT�
�interaction�list�
��� 
�num�inter����READ�
�

do i � 
� num�inter
n
 � interaction�list�
� i�
n� � interaction�list��� i�
force � x�n
� � x�n��
local�forces�n
� � local�forces�n
� � force
local�forces�n�� � local�forces�n�� � force

enddo

Fig� �� Transformed Moldyn program

III� Results

Our experimental environment is an ��processor IBM
SP�� running AIX version 
����� Each processor is a ����
MHz RS���� thin node with �� KBytes of data cache and
��� Mbytes of main memory� Interprocessor communica�
tion is accomplished over the IBM SP�� high�performance
two�level cross�bar switch� using IBM�s MPL message pass�
ing layer� Unless indicated otherwise� all results are for
��processor runs�

The minimum roundtrip time using send and receive for
the smallest possible message is 
�� �seconds� including
an interrupt�� The time for a remote �Kbyte page fetch
is ���� �seconds� In TreadMarks� the minimum time to
acquire a free lock is ��� �seconds� The minimum time to
perform an ��processor barrier is ��
 �seconds� Under AIX

����� the time for both page faults and memory protection
operations is a linear function of the page number and the
number of pages in use� For instance� the memory protec�
tion operation time can vary between �� and ��� �seconds
with ���� pages in use�

�Although substantially faster round�trip times are possible if in�
terrupts are disabled	 interrupts are required to implement lock and
page requests in TreadMarks� For XHPF and CHAOS	 interrupts
were disabled�

Application Data set size Time
�secs	

Jacobi � �Kx�K ����x���� ����

Jacobi � �Kx�K ����x���� ����


D�FFT � �x�x� �� � �� � �� ���

D�FFT � �x�x� �� � �� � �� ��


Shallow � �Kx�K ����x���� ����
Shallow � �Kx��K ����x��� 
���

IS � �
��� N � ���� Bmax � ��� ����
IS � ����� N � ���� Bmax � ��� 
��

Gauss � �Kx�K ����x���� 

����
Gauss � �Kx�K ����x���� �����

MGS � �Kx�K ����x���� ����

MGS � �Kx�K ����x���� ����

Tomcatv � ���Kx���K ����x���� ����
Tomcatv � �Kx�K ����x���� ����

Grid � �Kx�K ����x���� 
����
Grid � ���Kx���K ����x���� �����

Moldyn � �� iter ��
�� �����
Moldyn � �� iter ��
�� ����


NBF � ��x���� ��x���� ���

NBF � ��x���� ��x���� ����

TABLE I

Applications� data set sizes� and uniprocessor execution

times

We separate our results in terms of regular and irregular
applications� Our aim is to compare performance against
state�of�the�art compiler techniques currently available to
optimize performance for these types of applications�

A� Overall Results for Regular Applications

We used eight Fortran programs� IS and 
D�FFT from
the NAS benchmark suite 
��� the Shallow benchmark from
the National Center for Atmospheric Research� Tomcatv
from the SPEC benchmark suite 
��� Grid from Applied
Parallel Research� Inc�� and Jacobi� Gauss� and Modi�ed
Gramm�Schmidt �MGS	� three locally developed bench�
marks� For each application� we use two data set sizes
to illustrate any e�ects from changing the computation
to communication ratio� as well as due to false sharing�
Table I describes the data set sizes and the correspond�
ing uniprocessor execution times�� Uniprocessor execution
times were obtained by removing all synchronization from
the TreadMarks programs� these times were used as the
basis for the speedup �gures�
We present the performance of these applications in three

di�erent versions�
�� The base TreadMarks program executing with the base
TreadMarks run�time system � Tmk�
�� The compiler�optimized TreadMarks program execut�
ing with the augmented TreadMarks run�time system �

�All measurements for Tomcatv and Grid were made on ��� MHz
thin nodes�



Opt�Tmk�

� A message passing version automatically generated by
the Forge XHPF compiler 

� from Applied Parallel Re�
search� Inc� �APR	 � XHPF�

The results for the XHPF compiler are provided in order
to compare performance against a commercial parallelizing
compiler for data�parallel programs�

Figure � shows the speedups achieved for all applica�
tions using the three di�erent environments� The numbers
for the compiler�optimized TreadMarks version re�ect the
gains achieved by the most sophisticated level of analysis
possible for each application� There are no entries for IS
using XHPF in the �gure� XHPF cannot parallelize IS
because of an indirect access to the main array in the com�
putation�

Compiler optimization achieves substantial execution
time improvements in comparison to the base TreadMarks�
ranging from �� to ����� For programs for which base
TreadMarks achieves relatively good speedups �Jacobi�
Shallow� Gauss� Tomcatv� Grid� and MGS	� the execution
time improvements are moderate� �� to ���� For the two
programs �IS and 
D�FFT	 for which base TreadMarks per�
forms poorly compared to XHPF� execution time improve�
ments are quite large� ranging from ��� to ���� These
gains are mainly due to communication aggregation� and
elimination of consistency overhead� The execution times
achieved by the compiler�optimized shared memory pro�
grams are within ���� of XHPF �except for Tomcatv with
the �Kx�K dataset� where cache e�ects result in the XHPF
version showing signi�cant performance degradation	�

The compiler�optimized version of Jacobi �from our ex�
ample in Figure �	 shows a ������ improvement in execu�
tion time over the base TreadMarks and is within �� of the
execution times of the XHPF version� For the ����x����
data set� Jacobi derives most of its improvement from com�
munication aggregation� because of a signi�cant reduction
in the number of messages ���fold	� For the ����x���� data
set� communication aggregation does not improve execu�
tion time� because the boundary rows are exactly one page�
Eliminating Barrier��� through the use of a Push provides
most of the bene�t� With a smaller data set� the cost of
the barrier becomes proportionally higher� and hence its
elimination results in some improvement in running time
����	� Correspondingly� in comparison to XHPF� while
the performance of the ����x���� data set is similar� there
is a slight drop in performance for the ����x���� data set�
This is because of the extra Barrier���� which was not
eliminated�

Performance gains for 
D�FFT for the larger problem
size come mainly from communication aggregation and
twin�di� creation elimination� The gains from the smaller
problem size� however� also come from the elimination of
data communication due to false sharing by the use of the
Push directive �an additional ���	� The Push directive
only updates those sections of data speci�ed as being read

�Percentage improvements are calculated by the formula �base �
opt�� base�

by the processor� thereby resulting in reduced data com�
munication in the presence of false sharing�
IS has a migratory access pattern� The use of di�s in

TreadMarks results in extra data communicated due to the
di� accumulation 
��� problem � that of multiple overlap�
ping di�s being communicated due to multiple processors
successively modifying the same data� With the compiler�
based directives� this overhead can be eliminated� The per�
formance gains of ���� in comparison to Tmk for Opt�Tmk
come from the above optimization �reduced data commu�
nication	 in addition to communication aggregation�
Shallow� Gauss� Tomcatv� and MGS bene�t mainly from

communication aggregation� There are also some ad�
ditional gains from combining synchronization and data
transfer when the amount of data transferred is small� The
performance of all three versions of Grid is similar due to
the high computation to communication ratio resulting in
near perfect speedups in all cases�

B� Overall Results for Irregular Applications

In the case of the irregular applications� we compare the
compiler�optimized TreadMarks programs �Opt�Tmk	 with
the hand�coded CHAOS �inspector�executor based 
���	
programs �CHAOS	� as well as the base TreadMarks pro�
grams �Tmk	� Our intent in presenting the CHAOS per�
formance numbers is to compare performance with state�
of�the�art compiler technology for irregular applications�
The compiler�optimized TreadMarks programs include op�
timizations for both regular and irregular access patterns�
Figure � presents the speedups at � processors for two
programs� Moldyn from CHARMM 
�� and NBF from the
GROMOS benchmark 
���� both molecular dynamics sim�
ulation kernels� Table I presents the sequential execution
time and data set sizes used� In the case of Moldyn� we
vary the frequency with which the indirection array is re�
computed� In the case of NBF� we vary the data set size
to introduce false sharing�
For Moldyn �from which our example in Figure � is

taken	� our optimized system is ��� faster than base
TreadMarks� a result of an almost ��fold reduction in
the number of messages due to communication aggrega�
tion� Our optimized system is also up to �
� faster than
CHAOS� depending on the frequency with which the indi�
rection array is updated� The cost of access pattern compu�
tation �the inspector	� which in our case consists of travers�
ing the indirection array� is lower than in the inspector�
executor approach� In the inspector�executor approach�
global communication of data schedules is required since
the communication is not request�response in nature�
To separate the e�ects of inspector computation� for

NBF� we do not include the time to execute the inspector
in the measured computation� In this case� our optimized
system is no worse than ��� slower than CHAOS� and is
up to 
�� faster than the base TreadMarks system� If we
include the execution time of the inspector� our approach
is faster than CHAOS by up to ��� for �� iterations of
the program loop� Changing the data set from ��x����
to ��x���� introduces false sharing� resulting in the two



JA
CO

BI
-4K

x4
K

JA
CO

BI
-1K

x1
K

3D
-FF

T-6
x6

x6

3D
-FF

T-5
x6

x5

SH
AL

LO
W-

1K
x1

K

SH
AL

LO
W-

1K
x.5

K

IS-
23

-19

IS-
20

-15

GA
US

S-2
Kx

2K

GA
US

S-1
Kx

1K

MG
S-2

Kx
2K

MG
S-1

Kx
1K

TO
MC

AT
V-

1.4
Kx

1.4
K

TO
MC

AT
V-

1K
x1

K

GR
ID

-2K
x2

K

GR
ID

-1.
5K

x1
.5K

0

1

2

3

4

5

6

7

8

Sp
eed

up

Tmk

Opt-Tmk

XHPF

Fig� �� Speedup �at 
 processors� for TreadMarks	 Compiler�Optimized Version of TreadMarks	 and XHPF� The IS bar is missing for XHPF
because it cannot parallelize IS�

Moldyn-20 iter Moldyn-11 iter NBF-64x1024 NBF-64x1000
0

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p

Tmk

Opt-Tmk

CHAOS

Fig� 
� Speedup �at 
 processors� for TreadMarks	 Compiler Opti�
mized Version of TreadMarks	 and CHAOS�

TreadMarks versions sending more data than CHAOS�

Our compile�time optimizations successfully reduce the
number of messages used during program execution� mak�
ing performance comparable to a system such as CHAOS�
The advantage of our approach increases as the frequency
of changes to the indirection array increases� Its disadvan�
tage is the potential for false sharing overhead when the
data set is small or has poor spatial locality�

IV� Applicability to Other Platforms

While the experimental results presented here are
speci�c to the TreadMarks SDSM system� the tech�
niques described generalize to other SDSM systems such
as Cashmere 

��� home�based lazy release consistency
�HLRC	 

��� or Shasta 
���� In these systems� each co�
herence unit has a home where modi�cations are collected
or where directory information is maintained� While care�
ful placement of the home can result in a prefetching ef�
fect� such placement using purely run�time information
does not capture either phase changes or complex ac�
cess patterns� and can result in additional overhead� The
compiler�provided access information can be used to op�
timize the migration�placement of the home� Write��rst
accesses� something the run�time has no knowledge of� can
avoid data communication merely by changing the cur�
rent home� The bene�ts of communication aggregation
and consistency overhead elimination continue to apply
in such systems� although the run�time mechanisms will
di�er� For virtual memory�based systems such as Cash�
mere and HLRC� memory protection operations are elimi�
nated� Also� the Push interface can avoid extra data com�
munication as a result of false sharing� For variable�grain
instrumentation�based systems such as Shasta� the instru�
mentation overhead can be further reduced�

Our experimental results have also been presented in the
context of a fairly high�latency communication subsystem�
If a low�latency network were to be used� the bene�ts of
aggregation would shift from being purely due to a reduc�
tion in the number of messages� to being able to overlap
communication with computation�

Our compiler framework was implemented for explicitly



parallel programs� However� the general principle is also
applicable to automatic parallelization with the SDSM sys�
tem as the target� The access pattern information can be
folded into the shared memory parallelization directives�
These directives identify all data races� and hence perform
a similar function to the synchronization in the explicitly
parallel programs in terms of identifying the appropriate
points at which to supply the access pattern information�
This information can be utilized by the run�time� not only
to optimize communication� but also to balance load 
����

Several recent proposals for hardware shared memory
machines include a message passing subsystem designed in
part to allow applications to take advantage of bulk data
transfer 
���� 
���� Woo et al� 


� evaluate one such de�
sign in the context of the Flash system� While Woo et
al� focus on establishing the magnitude of the performance
bene�ts of bulk data transfer with hardware�based shared
memory� we have explored in addition ways for the com�
piler to automate the use of the bulk data transfer facility
in a software shared memory environment� The same ac�
cess pattern information can be used in a hardware shared
memory environment to exploit the bulk transfer features�
The information can also be used for optimal page place�
ment and re�mapping in machines such as the Origin������

V� Related Work

Mowry et al� 
��� examine the e�ect of combining
prefetching and multithreading in a software DSM system�
Their prefetching strategy involves fetching data in advance
of synchronization operations� Our strategy involves lever�
aging the program synchronization in order to reduce re�
dundant messages� as well as eliminating consistency over�
head where possible�

Jeremiassen et al� 
��� present a static algorithm for com�
puting per�process memory references to shared data in
coarse�grained parallel programs� We use a similar anal�
ysis in terms of processor identi�ers in order to replace a
barrier with a Push�

Mukherjee et al� 
��� compare the CHAOS inspector�
executor system to the TSM �transparent shared mem�
ory	 and the XSM �extendible shared memory	 systems�
both implemented on the Tempest interface 
���� They
conclude that TSM is not competitive with CHAOS� while
XSM achieves performance comparable to CHAOS after in�
troducing several special�purpose protocols� In our work�
we use a fairly straight�forward compiler to optimize the
shared memory programs� rather than relying on hand�
coded special�purpose protocols�

Keleher and Tseng 
��� describe a run�time interface and
compile�time system that couples the compiler and the run�
time in a manner similar to our system� Their interface
and implementation are� however� more run�time intensive�
Chandra and Larus 
�� also describe a combined compiler
and run�time system that is similar in spirit to our system�
but in the context of �ne�grained software shared memory�

VI� Conclusion

We have described an integrated compile�time�run�time
approach for executing regular and irregular computations
on distributed memory machines� This approach is based
on a modi�ed software distributed shared memory layer�
and fairly simple compile�time support� Our compiler com�
putes data access summaries using regular section analy�
sis and feeds that information to the TreadMarks run�time
SDSM system� Improvements in execution time range from
� to ��� on an ��processor IBM SP�� in comparison to the
base run�time system for the applications analyzed� The
combination of static prediction of shared memory accesses
by the compiler with dynamic detection of accesses by the
run�time allows the combined system to approach the per�
formance of compiler�generated message passing �within
�� of XHPF for regular programs� and up to �
� bet�
ter than CHAOS for irregular programs	� It does so with�
out incurring the programming di�culties of message pass�
ing or the limitations on automatic parallelization of data�
parallel programs for message passing targets� A combined
compile�time run�time system of this nature retains the
ease of programming of shared memory� while exploiting
the message passing capabilities of the underlying hard�
ware�

References

��� G� Agarwal and J� Saltz� Interprocedural compilation of irregular
applications for distributed memory machines� In Proceedings of
Supercomputing ���	 December ���
�

��� C� Amza	 A�L� Cox	 S� Dwarkadas	 P� Keleher	 H� Lu	 R� Raja�
mony	 and W� Zwaenepoel� TreadMarks� Shared memory com�
puting on networks of workstations� IEEE Computer	 �������
�
�
	 February �����

��� Applied Parallel Research� FORGE High Performance Fortran
User�s Guide	 version ��� edition�

��� D� Bailey	 J� Barton	 T� Lasinski	 and H� Simon� The NAS par�
allel benchmarks� Technical Report ���
��	 NASA	 July �����

�
� B�R� Brooks	 R�E� Bruccoleri	 B�D� Olafson	 D�J� States	
S� Swaminathan	 and M� Karplus� Charmm� A program for
macromolecular energy	 minimization	 and dynamics calcula�
tions� Journal of Computational Chemistry	 ���
�	 ��
��

��� J�B� Carter	 J�K� Bennett	 and W� Zwaenepoel� Techniques for
reducing consistency�related information in distributed shared
memory systems� ACM Transactions on Computer Systems	
��������
����	 August ���
�

��� S� Chandra and J� R� Larus� Optimizing communication in hpf
programs for �ne�grain distributed shared memory� In Proceed�
ings of the �th Symposium on the Principles and Practice of
Parallel Programming	 June �����

�
� R� Das	 P� Havlak	 J� Saltz	 and K� Kennedy� Index array �at�
tening through program transformation� In Proceedings of Su�
percomputing ���	 December ���
�

��� K� M� Dixit� The spec benchmarks� Parallel Computing	 pages
���
�����	 �����

���� S� Dwarkadas	 A�L� Cox	 and W� Zwaenepoel� An integrated
compile�time�run�time software distributed shared memory sys�
tem� In Proceedings of the �th Symposium on Architectural Sup�
port for Programming Languages and Operating Systems	 Octo�
ber �����

���� K� Gharachorloo	 D� Lenoski	 J� Laudon	 P� Gibbons	 A� Gupta	
and J� Hennessy� Memory consistency and event ordering in
scalable shared�memory multiprocessors� In Proceedings of the
��th Annual International Symposium on Computer Architec�
ture	 pages �
���	 May �����

���� W�F� van Gunsteren and H�J�C� Berendsen� GROMOS�
GROningen MOlecular Simulation software� Technical report	
Laboratory of Physical Chemistry	 University of Groningen	
��

�



���� P� Havlak and K� Kennedy� An implementation of interproce�
dural bounded regular section analysis� IEEE Transactions on
Parallel and Distributed Systems	 ������
�����	 July �����

���� S� Hiranandani	 K� Kennedy	 and C� Tseng� Compiling Fortran
D for MIMD distributed�memory machines� Communications of
the ACM	 �
�
�����
�	 August �����

��
� S� Ioannidis and S� Dwarkadas� Compiler and run�time support
for adaptive load balancing in software distributed shared mem�
ory systems� In Fourth Workshop on Languages	 Compilers	 and
Run�time Systems for Scalable Computers	 May ���
�

���� T�E� Jeremiassen and S� Eggers� Computing per�process sum�
mary side�e�ect information� In U� Banerjee	 D� Gelernter	
A� Nicolau	 and D� Padua	 editors	 Fifth Workshop on Lan�
guages and Compilers for Parallelism	 pages ��
����	 August
�����

���� P� Keleher	 A� L� Cox	 and W� Zwaenepoel� Lazy release consis�
tency for software distributed shared memory� In Proceedings of
the ��th Annual International Symposium on Computer Archi�
tecture	 pages �����	 May �����

��
� P� Keleher and C� Tseng� Enhancing software DSM for compiler�
parallelized applications� In Proceedings of the ��th Interna�
tional Parallel Processing Symposium	 April �����

���� K� Kennedy	 K� S� McKinley	 and C� Tseng� Analysis and trans�
formation in an interactive parallel programming tool� Concur�
rency
 Practice and Experience	 
���	 October �����

���� D� Kranz	 K� Johnson	 A� Agarwal	 J� Kubiatowicz	 and B� Lim�
Integrating message�passing and shared�memory� Early experi�
ence� In Proceedings of the ���� Conference on the Principles
and Practice of Parallel Programming	 May �����

���� J� Kuskin and D� Ofelt et al� The Stanford FLASH multiproces�
sor� In Proceedings of the ��st Annual International Symposium
on Computer Architecture	 April �����

���� K� Li and P� Hudak� Memory coherence in shared virtual
memory systems� ACM Transactions on Computer Systems	
����������
�	 November ��
��

���� H� Lu	 A�L� Cox	 S� Dwarkadas	 R� Rajamony	 and
W� Zwaenepoel� Compiler and software distributed shared mem�
ory support for irregular applications� In Proceedings of the �th
Symposium on the Principles and Practice of Parallel Program�
ming	 pages �
�
�	 June �����

���� H� Lu	 S� Dwarkadas	 A�L� Cox	 and W� Zwaenepoel� Message
passing versus distributed shared memory on networks of work�
stations� In Proceedings SuperComputing ���	 December ���
�

��
� T�C� Mowry	 C�Q�C� Chan	 and A�K�W� Lo� Comparative eval�
uation of latency tolerance techniques for software distributed
shared memory� In Proceedings of the Fourth High Performance
Computer Architecture Symposium	 February ���
�

���� S�S� Mukherjee	 S�D� Sharma	 M�D� Hill	 J�R� Larus	 A� Rogers	
and J� Saltz� E�cient support for irregular applications on dis�
tributed memory machines� In Proceedings of the �th ACM Sym�
posium on the Principles and Practice of Parallel Programming	
July ���
�

���� Steven K� Reinhardt	 James R� Larus	 and David A� Wood� Tem�
pest and typhoon� User�level shared memory� In Proceedings of
the ��st Annual International Symposium on Computer Archi�
tecture	 April �����

��
� D�J� Scales	 K� Gharachorloo	 and C�A� Thekkath� Shasta� A
low overhead	 software�only approach for supporting �ne�grain
shared memory� In Proceedings of the �th Symposium on Ar�
chitectural Support for Programming Languages and Operating
Systems	 pages �����

	 October �����

���� S� D� Sharma	 R� Ponnusamy	 B� Moon	 Y� Hwang	 R� Das	
and J� Saltz� Run�time and compile�time support for adaptive
irregular problems� In SuperComputing	 �����

���� R� Stets	 S� Dwarkadas	 N� Hardavellas	 G� Hunt	 L� Kon�
tothanassis	 S� Parthasarathy	 and M�L� Scott� Cashmere��l�
Software coherent shared memory on a clustered remote�write
network� In Proceedings of the ��th ACM Symposium on Oper�
ating Systems Principles	 pages �����
�	 October �����

���� R� von Hanxleden and K� Kennedy� Give�N�Take � a balanced
code placement framework� In Proceedings of the ACM SIG�
PLAN �� Conference on Programming Language Design and
Implementation	 June �����

���� R� von Hanxleden	 K� Kennedy	 C� Koelbel	 R� Das	 and J� Saltz�
Compiler analysis for irregular problems in Fortran D� In Pro�
ceedings of the �th Workshop on Languages and Compilers for
Parallel Computing	 August �����

���� S�C� Woo	 J�P� Singh	 and J�L� Hennessy� The performance

advantages of integrating block data transfer in cache�coherent
multiprocessors� In Proceedings of the �th Symposium on Ar�
chitectural Support for Programming Languages and Operating
Systems	 pages �������	 October �����

���� Y� Zhou	 L� Iftode	 and J�P� Singh� Performance evaluation of
two home�based lazy release consistency protocols for shared vir�
tual memory systems� In Proceedings of the Second USENIX
Symposium on Operating System Design and Implementation	
October �����


