
THÈSE NO 3377 (2005)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE à LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut des systèmes informatiques et multimédias

SECTION D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

M.Sc. in Electrical Engineering, University of Tehran, Iran
et de nationalité iranienne

acceptée sur proposition du jury:

Lausanne, EPFL
2005

Prof. P. Fua, directeur de thèse
Dr T. Drummond, rapporteur
Prof. N. Paragios, rapporteur
Prof. S. Süsstrunk, rapporteur

probabilistic modeling of texture transition
for fast tracking and delineation

Seyed Ali SHAHROKNI

To my loving family

Acknowledgements

Accomplishment of this thesis would have never been such a memo-

rable and rewarding experience without interaction with many people.

First of all, I am thankful to the thesis jury members: Prof. Daniel

Thalmann, Dr. Tom Drummond, Prof. Nikos Paragios and Dr.

Sabine Süsstrunk for accepting to evaluate this work.

A huge investment in my thesis originates from the useful discussions

with Dr. Vincent Lepetit that I would like to thank profoundly for

his patience and valuable hints and ideas. It was also a great advan-

tage for me to be exposed to the mathematical and machine learning

knowledge of Dr. François Fleuret as well as his “Parisian” sense of

humor. I am indebted to Dr. Tom Drummond for his key ideas that

bestowed richness to this thesis and also for the great time that I

spent during my visit to his laboratory at University of Cambridge.

I would like to express immense gratitude to my thesis advisor, Prof.

Pascal Fua, for all the knowledge that he transmitted to me and for

forging a “researcher” out of me!

Last but not least, I should thank my dear colleagues at CVLAB and

VRLAB, EPFL, my family and relatives in Iran for their support as

well as my friends who were by my side in my fascinating adventures

in the land of Helvètes!

Abstract

In this thesis a probabilistic approach to texture boundary detection for tracking

applications is presented. We have developed a novel fast algorithm for Bayesian es-

timation of texture transition locations from a short sequence of pixels on a scanline

that combines the desirable speed of edge-based line search and the sophistication of

Bayesian texture analysis given a small set of observations. For the cases where the

given observations are too few for reliable Bayesian estimation of probability of texture

change we propose an innovative machine learning technique to generate a probabilistic

texture transition model. This is achieved by considering a training dataset containing

small patches of blending textures. By encompassing in the training set enough exam-

ples to accurately model texture transitions of interest we can construct a predictor

that can be used for object boundary tracking that can deal with few observations and

demanding cases of tracking of arbitrary textured objects against cluttered background.

Object outlines are then obtained by combining the texture crossing probabilities

across a set of scanlines. We show that a rigid geometric model of the object to be

tracked or smoothness constraints in the absence of such a model can be used to coa-

lesce the scanline texture crossing probabilities obtained using the methods mentioned

above. We propose a Hidden Markov Model to aggregate robustly the sparse transition

probabilities of scanlines sampled along the projected hypothesis model contour. As

a result continuous object contours can be extracted using a posteriori maximization

of texture transition probabilities. On the other hand, stronger geometric constraints

such as available rigid models of the target are directly enforced by robust stochastic

optimization.

In addition to being fast, the allure of the proposed probabilistic framework is

that it accommodates a unique infrastructure for tracking of heterogeneous objects

which utilizes the machine learning-based predictor as well as the Bayesian estimator

interchangeably in conjunction with robust optimization to extract object contours

robustly. We apply the developed methods to tracking of textured and non textured

rigid objects as well as deformable body outlines and monocular articulated human

motion in challenging conditions. Finally, because it is fast, our method can also serve

as an interactive texture segmentation tool.

Résumé

Cette thèse présente une approche probabiliste de la détection de changement de tex-

ture appliquée au suivi d’objets texturés. Nous avons développé un nouvel algorithme

pour estimer la position d’un changement de texture à partir d’une courte séquence

de pixels. Cet algorithme cumule la rapidité des méthodes basées sur le gradient et

la sophistication de l’analyse Bayésienne de textures étant donné un ensemble limité

d’observations. Lorsque les observations données ne sont pas suffisantes pour une esti-

mation Bayésienne fiable de la probabilité du changement de texture, nous proposons

une technique novatrice d’apprentissage pour construire un modèle probabiliste de tran-

sition de textures. Ceci est obtenu en considérant un ensemble d’apprentissage formé de

petites images composées de deux moitiés de textures différentes. Ayant suffisamment

d’exemples dans la base d’apprentissage pour modeler exactement des transitions de

texture d’intérêt, nous pouvons construire un prédicteur qui peut être employé pour le

suivi de frontière d’objets.

Les probabilités de transitions de texture ainsi obtenues sur plusieurs scanlines

peuvent être combinées pour obtenir des contours d’objet. Nous démontrons qu’un

modèle géométrique rigide de l’objet à suivre ou des contraintes de connectivité en

l’absence d’un tel modèle peuvent être employés pour fusionner les probabilités de

transition de textures de scanlines obtenues en utilisant les méthodes mentionnées ci-

dessus. Nous proposons un Modèle de Markov Caché pour combiner les probabilités de

transition de scanlines de manière robuste. En conséquence, des bords d’objet continus

peuvent être extraits en maximisant des probabilités postérieures de transitions de

textures. D’autre part, des contraintes géométriques plus fortes telles que les modèles

rigides de la cible sont directement imposées par optimisation stochastique robuste.

En plus d’être rapide, le cadre proposé fournit une infrastructure unique pour le

suivi d’objets hétérogènes qui utilise aussi bien un prédicteur basé sur des techniques

d’apprentissage statistique qu’un estimateur Bayésien, combiné avec une optimisation

robuste pour extraire des bords d’objet. Nous appliquons les méthodes développées

au suivi, dans les conditions difficiles, d’objets rigides texturés ou non texturés ainsi

que des contours déformables de corps et mouvement humain articulé monoculaire.

Grâce à sa rapidité, nous avons pu utiliser notre méthode pour un outil interactif de

segmentation de texture.

Contents

1 Introduction 1

1.1 Rigid Models . 2

1.2 Deformable Models . 2

1.3 Articulated Model . 3

1.4 Achievements . 6

1.4.1 Fast Bayesian Boundary Estimation 6

1.4.2 Machine Learning Approach 8

1.5 Summary . 8

2 Edge-based Tracking Using Gradient 11

2.1 RAPiD . 12

2.2 Robust RAPiD . 15

2.3 Explicit Edge Extraction . 17

2.4 Direct Optimization on Gradients 18

2.5 Summary . 18

3 State of the Art on Texture Analysis 21

3.1 Texture Operators . 23

3.1.1 Local Binary Pattern Methods 24

3.1.2 Cooccurrence Features . 24

3.1.3 Extensions of LBP . 25

3.1.4 Texton Statistics . 26

3.2 Graph Cut Image Segmentation 28

3.2.1 Graph Representation . 28

3.2.2 Markov Random Fields . 30

i

CONTENTS

3.3 Learning-based Texture Segmentation 32

3.4 Summary . 35

4 Line Search for Texture Boundary 37

4.1 Scanlines . 38

4.1.1 Solving for the 0th Order Model 39

4.1.2 Solving for the 1st Order Model 40

4.2 The Binary Case . 42

4.2.1 Exact Conditional Probability 43

4.2.2 Numerical Simulations . 44

4.2.3 Theoretical Analysis . 44

4.2.4 Performance of the Optimal Estimator 45

4.2.5 Fast Computation of the Posterior Cut Probability 46

4.3 Transition Between Brodatz Textures 47

4.4 Scanstripes . 49

4.5 Learning a Target Texture Model 53

4.5.1 Log Probability and the Entropy of Texture 53

4.5.1.1 0th Order Model 53

4.5.1.2 1st Order Distribution 55

4.5.2 Updating the Texture Model 56

4.6 Summary . 57

5 Contour Point Classification 59

5.1 Ensemble Learning . 61

5.1.1 Bagging . 61

5.1.2 Boosting . 62

5.2 Database . 63

5.3 Classifiers . 63

5.3.1 Intensity and Frequency Mean Energy 64

5.3.2 Cooccurrence Matrix Features 65

5.4 Training Classifiers . 66

5.5 Boundary Score vs. Boundary Label 69

5.6 Model of the Conditional Probability 69

5.7 Learning Specific Object Boundaries 70

ii

CONTENTS

5.8 Summary . 72

6 Imposing Geometric Constraints 77

6.1 Rigid Constraints . 78

6.1.1 Hypotheses Generation . 78

6.1.2 Hypotheses Verification . 78

6.1.3 Algorithm Enhancement 79

6.1.4 Robust Model Fitting to Scanstripes 80

6.2 Smoothness Constraint . 81

6.2.1 Definition of Hidden Markov Model 82

6.2.2 HMM and Smooth Silhouettes 83

6.3 Summary . 86

7 Evaluation and Comparison 89

7.1 Markov Texture Model . 90

7.1.1 Scanline . 90

7.1.2 Scanstripe . 91

7.2 Classification . 92

7.3 Gaussian Texture Model . 95

7.4 Probabilistic Gradient Edge Detection 98

7.5 Tracking Performance . 98

7.6 Quantitative Analysis of the Error Histograms 101

7.6.1 Earth Mover’s Distance . 103

7.6.2 Time . 105

7.7 Summary . 105

8 Results 111

8.1 Scanline-based Tracking . 111

8.1.1 Monocular Body Motion Tracking 114

8.1.1.1 Overview of the Tracking System 115

8.2 Bayesian Scanstripe Robust Silhouette Extraction 121

8.2.1 Tracking Using RANSAC 122

8.2.2 Delineation Using HMM 124

8.3 Classification-based Approach . 126

iii

CONTENTS

8.4 Summary . 130

9 Conclusion 133

A Human Perception of Contours and Texture 137

B Projective Geometry and Camera Model 145

B.1 Projective Geometry . 145

B.2 Transformations . 146

B.3 Camera Model . 147

B.4 The Projection Matrix . 148

B.5 Projection of a Quadric . 148

C The Distance Between Distributions 151

C.1 Parametric Approaches: . 151

C.2 Non Parametric Measures: . 152

C.3 Measure of Confidence . 154

References 167

iv

List of Figures

1.1 Our method has been used for 3–D edge tracking using texture

boundary detection for geometrically well-defined objects. 3

1.2 Interactive silhouette detection. Our method can extract a smooth

outline of the subject’s dress (thick red curves) given an initial

guess (thin green curve). 4

1.3 3–D model-based articulated tracking using silhouettes. 5

2.1 In RAPiD-like approaches, control points are sampled along the

model edges. The small white segments in the left image join the

control points in the previous image to their detected position in

the new image. The pose can be inferred from these matches,

even in presence of occlusions by introducing robust estimators.

(From Drummond & Cipolla (2002), figures courtesy of T. Drum-

mond and R. Cipolla). 12

2.2 Searching for the new control point position in RAPiD-like ap-

proaches. m is the predicted control point position and m′ is the

actual control point position. The search is performed along the

direction of vector ~n, and only the perpendicular distance l is mea-

sured. 14

3.1 Can we find a proper definition for the texture of this purple fish? 23

3.2 Local Binary Pattern is computed by thresholding the pixels in a

window using the intensity value of the central pixel and summing

up the weighted binary values. 24

v

LIST OF FIGURES

3.3 Examples of position operator used to compute cooccurrence ma-

trices. The dots show the considered positions for pairs of gray

level values. 25

3.4 Illustration of a weighted graph G with two terminal nodes (labels).

The weights of the edges are represented by their thickness. 29

3.5 Image patches used to learn texture boundaries in natural images.

Images courtesy of Martin et al. (2004). 32

3.6 Results obtained by Martin et al. (2004) using the texture and

brightness gradient cues (second row) of images shown in the top

row. Human extracted edges are shown in the third row. Images

courtesy of Martin et al. (2004). 34

4.1 Contour-based 3-D tracking. Search for a real contour in the direc-

tion normal to projected edge. A scanline, centered on a hypothesis

model sample p, is used to search for a texture crossing position c

on the actual boundary of the object. The model pose is obtained

by minimizing the distances dp for all sample points. 38

4.2 Histogram of the values ρi − ρ̂l
i for i = 1, . . . , N and l = 1, . . . , L. . 45

4.3 Distribution of the distance (in pixels) between the optimal cut

and the true one for a sequence of binary bits of length 10. 46

4.4 Brodatz textures results. (a) texture patch used to learn the target

texture model (the dark stripe). This model is used to detect

the boundary of the target texture with another texture. (b) and

(c) detected boundary using 0th and 1st order model respectively.

White dots are the detected change point and the black line is the

fitted texture boundary. 48

4.5 Analysis of error for results shown in Fig. 4.4: (a) distances from

edge in 0th order model and (b) distances from edge in 1st order

model. 49

4.6 In this challenging case of boundary detection between two similar

textures, the results obtained by 0th order model (a) are less precise

than the 1st order one (b). As before, white dots are the detected

change point and the black line is the fitted texture boundary. . 49

vi

LIST OF FIGURES

4.7 Segmentation of a polygonal patch. (a) Initialization: texture

patch used to learn the target texture model (the dark region).

This model is used to detect the boundary of the target texture

with another texture. (b) and (c) show the boundaries detected

using 0th and 1st Markov model respectively. 0th order model is

more sensitive to the initial conditions. As before, white dots are

the detected change point and the black line is the fitted texture

boundary. 50

4.8 Texture boundary detection with no a priori model assumption. . 51

4.9 Scanstripe vs. scanline log probabilities for the texture image

shown in (a). Individual scanlines and a single transition matrix

(b). Parallel and vertical transition matrices on scanstripes made

of 5 scanlines (c). One single transition matrix containing both

parallel and vertical transitions on scanstripes made of 5 scanlines

(d). Finally (e) and (f) show examples the extracted boundaries

obtained using the HMM approach discussed in Section 6.2 on the

test image and in presence of occlusion. 52

4.10 Ĥ(n)/n or the deviation of the sequence log probability lnP (Sn
1)

from the entropy for C = 16. 55

4.11 H̃ − H for the true and a lousy learnt model. (a) 0th order model

using Eq. 4.19 to calculate H, (b) 1st order model using Eq. 4.21

to calculate H. Red dashed lines are KL divergence of the poor

model and the thick solid line is the KL divergence of the true model. 57

5.1 Contour extraction by classification of texture transition given an

initial curve (dotted curve). Classification score is computed for

pixels on scanlines (black lines) by sliding a small classification

window along them. The score is then transformed to a probability

measure of texture transition that can be coalesced rigorously to

extract object contours (white curve). 60

5.2 The database samples with a texture transition in the middle are

made using blending of random image regions and down sampling. 63

vii

LIST OF FIGURES

5.3 Examples of (a) positive, and (b) negative training samples used to

classify texture cut in the middle of the test image. The database

items are 32 × 8 pixels long. 64

5.4 (a) Intensity and FFT feature parameters defined on the images.

(b) Some position operators used to generate cooccurrence features. 64

5.5 The first four trained classifiers. The bars show the indices of pixel

on left and right side of a sample image and whether features are

in intensity or FFT domain. The hatched bars indicate the parity

of the classifier. 66

5.6 Classification error rate vs. number of weak learners trained using

2000 positive and 2000 negative samples. Adaboost (thin curve)

and regularized boosting (thick curve) are used for the training of

weak learners. (a) is the error rate on the original training set and

(b) is the error rate on a test set of 1000 positive and 1000 negative

samples. 67

5.7 Classification error rate vs. number of weak learners trained using

different feature sets. 68

5.8 Histograms of texture transition detection error in pixels on 1000

test images using different numbers of trained weak learners. The

error decreases with higher number of weak learners. 73

5.9 The sigmoid function used to model the conditional probability of

texture cut classification score. 74

5.10 Small patches selected from borders of an object in a single frame

are used for training of classifiers on a specific object. 74

5.11 Magnified samples of the border of a magazine. The database for

learning the borders of a specific object is made using small patches

selected from borders of the object in three levels of resolution.

These patches are then concatenated against random backgrounds

to form the training data. 75

5.12 Tracking in motion blur using a classifier trained using the database

composed of patches selected from Fig. 5.10. The fitted model is

shown by the white wire frame. 75

viii

LIST OF FIGURES

5.13 Tracking in motion blur using the classifier trained using a database

composed of general texture boundaries as explained in Section 5.2.

The fitted model is shown by the white wire frame. 76

5.14 More tracking results with cluttered background and motion blur

using the classifier trained on the magazine. The fitted model is

shown by the white wire frame. 76

6.1 Geometric constraints can be exploited to extract object contours

(white curve) by coalescing texture transition probabilities of scan-

lines (black lines) sampled along the object contour using an initial

guess (dotted curve). 77

6.2 RANSAC fitting of the model. Some drawn hypotheses for the sail

pose are shown. Some illustrative scanstripe probabilities which

are used to calculate the support of each hypothesis are also de-

picted in black. 80

6.3 RANSAC fitting of the model. Observation generation and calcu-

lation of the RANSAC support. 81

6.4 Definition of the HMM on the conditional probability classifier

responses over a search image. 83

6.5 Detected boundary on a test image (a) and the corresponding

pseudo color image, (b), showing the HMM probability field on

the test image. Red is the highest and blue is the lowest probabil-

ity value. 84

6.6 Halftone image and the detected boundary using the Viterbi algo-

rithm. 85

6.7 Texture boundary detection on occluded patterns using HMM. . . 86

7.1 Magnified examples of the scanstripes of 256×8 pixels used as test

bed for analysis of different methods. 90

7.2 Examples of test set images and the detected texture cut positions

using scanlines. 91

7.3 Examples of test set images and the detected texture cut positions

using scanstripes. 91

ix

LIST OF FIGURES

7.4 Error histogram for Markov texture model using (a) scanline and

(b) scanstripes. 92

7.5 Error histogram for classification using intensity features (a) 10

weak learners (b) 50 weak learners and (c) 100 weak learners. . . 93

7.6 Error histogram for classification using cooccurrence matrix fea-

tures with varying number of weak learners. The neighborhood

radius used is 5 pixels (CM = 5). 93

7.7 Error histogram for classification using intensity and cooccurrence

matrix features using (a) 10 weak learners (b) 50 weak learners

and (c) 100 weak learners. 94

7.8 Error histogram for classification using intensity, cooccurrence ma-

trix and Fourier transform coefficients features using (a) 10 weak

learners (b) 50 weak learners and (c) 100 weak learners. 94

7.9 Examples of test set images and the detected texture cut positions

using the classifier with 10 weak learners. 95

7.10 Examples of test set images and the detected texture cut positions

using the classifier with 50 weak learners. 95

7.11 Examples of test set images and the detected texture cut positions

using the classifier with 100 weak learners. 96

7.12 Error histogram for Fisher’s discriminant metric. 97

7.13 Examples of test set images and the detected texture cut positions

using Fisher’s discriminant metric. 97

7.14 Fisher’s discriminant-based classification for texture boundary de-

tection. 98

7.15 Two examples where Fisher’s discriminant-based classification fails

to detect the true texture boundary. In (a) we wish to find the

border between the farthest zebra and the grass while in (b) we

are looking for the boundary between the two zebras. 99

7.16 Boundary detected by Markov model and scanstripes correspond-

ing to Fig. 7.15-(b). In (a) We use the Markov model technique

on independent scanlines while in (b) we use the scanline results

in conjunction with the Viterbi algorithm to extract a continuous

boundary between the zebras. 100

x

LIST OF FIGURES

7.17 Error histogram for probabilistic gradient edge detection. 101

7.18 Examples of test set images and the detected texture cut positions

using the probabilistic gradient method. 101

7.19 Comparison between different contour tracking algorithms. First

row: Tracking results using an edge-based tracker. Second row:

Tracking results using Fisher discriminant function. Third row:

Tracking results using Markov scanstripe texture boundary detec-

tion and fourth row: Tracking results using classifier based method. 102

7.20 Tracking a chair using a simple model made of two perpendicular

planes. Top row: Using the Markov texture model and scanline

method, the chair is properly tracked throughout the sequence.

Bottom row: Using a gradient-based method to detect contours,

the tracker starts being imprecise after the 3rd frame and fails com-

pletely thereafter. The numbers shown indicate the frame number. 103

7.21 Plotting the motion of the center of gravity of the chair of Fig. 7.20.

(a) and (b): Top and side views of the plane fitted to the recovered

positions of the center of gravity. (c): Deviations of trajectory

points from the plane, which are very small (all measurements are

in mm). 104

8.1 Tracking a textured box against a cluttered background. The num-

bers show the frame number. 112

8.2 Tracking a textured box against a cluttered background without

using prior models. The model is materialized by black lines. The

numbers show the frame number. Images and results are courtesy

of Tom Drummond, university of Cambridge. 113

8.3 Tracking of a non textured O2 computer against a cluttered back-

ground. The numbers show the frame number. 114

8.4 Overview of the tracking system. 115

8.5 A set of matched point between two frames. 116

8.6 Scanning a line through model sample point p for which a 1st order

statistical model is used to find the texture crossing point c. . . . 117

xi

LIST OF FIGURES

8.7 Examples of the detected silhouette points on the body (a, b, c).

White circles are the detected texture boundaries corresponding

to the body outlines. (d) illustrates the training phase for Markov

texture modeling, the white patches show the areas used to com-

pute the model for each body part. This is done by rendering the

initial pose given by manual initialization and obtaining the mask

of its projection on the corresponding frame. 118

8.8 Several frames of a tracking sequence of 100 frames with the 3–D

model superimposed on corresponding frames. 119

8.9 The resynthesized view of the tracking results shown in Fig. 8.8

seen from frontal top. 120

8.10 The credibility of the results in 3–D space are verified by augment-

ing the frames obtained by a second camera that was not used for

tracking. 121

8.11 Walking avatar of the tracked subject. 122

8.12 Tracking under extreme conditions. The subject is wearing a

highly textured dress. The background is highly cluttered and

contains a moving person. 123

8.13 Examples of silhouettes obtained using Markov scanline model

(left) compared with those obtained by a gradient-based method

(right). 124

8.14 Tracking with KLD-based update of the prior model. RANSAC

is used to fit straight lines (shown in red) to the scanstripe prob-

abilities directly which are then used to calculate the pose of the

model (white wire frame). 125

8.15 Tracking without dynamic texture model update. Tracking is lost

well before 100 frames due to changes in target appearance. . . . 126

8.16 Frame # 90 for tracking using different methods: (a) edge-based

tracker, (b) scanlines only, (c) scanstripes only, and (d) RANSAC

linkage of scanstripes. 127

xii

LIST OF FIGURES

8.17 Fast interactive texture segmentation. An initial guess is given

by the user (thin circles or straight lines). The HMM is used to

link scanstripes and the Viterbi algorithm gives the final texture

boundary shown as a thick curve. In the case of the zebras, note

that the algorithm finds the boundary between similar textures of

different orientations. 128

8.18 More interactive texture segmentation results with initial curve

defined by a spline curve. The black curve on white band marks

the detected outline and the thin gray line is the spline curve. . . 129

8.19 Tracking textured object against cluttered background. 130

8.20 Tracking of deforming body outlines. 131

8.21 3–D Tracking of deforming body outlines. 131

8.22 Interactive segmentation using trained classifiers. 131

A.1 Unless we are given enough observations to build a model of texture

on both side we are not able to visually detect a texture boundary.

The edge in the left image is easy to detect, on the other hand we

look only to a small patch on the edge of the texture we cannot

perceive the boundary (right). 138

A.2 Visual effect of low-pass filtering. “All is Vanity” by Charles Allen

Gillbert (1873-1929). Is it a young woman at her mirror, or a skull?139

A.3 Visual perception influenced by high-pass filtering. “Gala Con-

templating the Mediterranean Sea” by Salvador Dali (1904-1989).

The original painting (left) seen from a distance of 30 meters turns

into a portrait of Abraham Lincoln (right). 140

A.4 Lack of color information (right) has no effect on visual inference

of texture and patterns. 141

A.5 The optical illusion introduced by circles with missing sectors. The

visual system percepts fictitious opaque white shapes in front of

circles. 142

xiii

LIST OF FIGURES

A.6 Stochastic completion field. Input image(left), potential bound-

aries (middle) given by the stochastic completion field. (Right)

is the human perception of the complete image. Image courtesy

of Williams & Jacobs (1997). 142

B.1 Perspective projection principles. 147

C.1 Bhattacharyya Distance for different and similar texture on both

sides of hand marked boundary points. The x-axis corresponds to

the points along the detected boundary. The y-axis shows the

Bhattacharyya distance of pixel intensity distributions on both

sides of each detected point on the scanline that passes through

it. 156

C.2 Detected boundaries on vertical scanlines. (a) Test image, (b) dis-

tance between textures on both sides of the detected boundary

points. The dotted line shows distance between two regions se-

lected from the upper texture and the thick solid line shows the

distance between two textures selected from the upper and lower

regions. It can be observed that the distance found on boundary

points is close to the distance between two texture selected from

the two textures. This idea can be used to measure the quality of

the detected boundary. 157

xiv

Chapter 1

Introduction

Outlines play a fundamental role in computerized methods of object recognition,

tracking and segmentation. In this thesis, we investigate ways to automatically

detect object outlines for tracking purposes. Unlike earlier approaches that relied

on gradient-based detection, we focus here on analysis of texture boundaries and

transitions. Outline and silhouettes are particularly helpful in our perception of

the surroundings. As discussed in Appendix A, texture interpretation plays an

important role in helping the visual system locate object boundaries.

Traditionally, edge-based tracking methods tend to rely on processing image

gradient information. While gradient-based tracking algorithms are computa-

tionally fast and therefore favorable, they can easily fail due to loss of intensity

information. Due to this fact and considering the guidelines from the study of

the human visual system given in Appendix A, in a system dedicated to fast

boundary extraction, the traditional gradient-based method should be extended

to handle texture models. Unfortunately, available techniques for texture analy-

sis are not adapted to fast contour extraction for tracking in that respect. The

main distinction between the concept of texture segmentation and texture-based

tracking is the fact that for tracking a known object we are mainly interested

in the ways its texture and boundary appear with respect to the background.

Therefore it can be stated that for tracking applications the “relative texture”

of the target and background and transitions between texture processes are the

main issue, while in texture segmentation problem we are interested in criteria

1

1. INTRODUCTION

that allow partitioning of an image into separate regions and therefore the em-

phasis is more on regional properties rather than local interaction of textures.

Moreover, the tracking problem is associated with a set of assumptions regarding

the object’s appearance and motion which can be exploited to restrict the search

to a limited search space and thus reduce the computations. These are the issues

that need to be addressed in order to apply texture analysis approaches to the

tracking problem.

In this thesis, we explore ways to identify texture boundaries can be identified

for tracking and interactive segmentation purposes. These investigations result in

several texture-based approaches to finding the projected contours of 3–D objects

while retaining the speed of standard edge-based techniques. More specifically,

we explore silhouette tracking techniques that can deal with the following kinds

of models.

1.1 Rigid Models

Detection of outlines of objects with predefined geometric shapes, such as those

shown in Fig. 1.1 is of broad interest. In this case geometrical constraints imposed

by the object shape, in conjunction with probabilistic sampling methods, serve

as a reliable mechanism for outline extraction. Here the challenge is to handle

complex geometries in a manageable manner and at a low computational cost.

1.2 Deformable Models

Next we consider the outlines of deformable and non-regular shapes such as hu-

man body with textured or non-textured clothing and arbitrary background such

as the one shown in Fig. 1.2 without prior shape models. These silhouettes are

characterized by their continuity and often separate locally coherent patterns.

The texture on both sides of these outlines can be of arbitrary complexity or lack

any distinctive pattern. We show that Hidden Markov Models provide appro-

priate tools for handling such cases. Interactive object selection tools and blob

tracking applications can benefit from this method.

2

1.3 Articulated Model

Figure 1.1: Our method has been used for 3–D edge tracking using texture bound-

ary detection for geometrically well-defined objects.

1.3 Articulated Model

3–D tracking of model-based articulated human motion is key to a large number

of activities and applications such as security, character animation, virtual reality,

human-machine interfaces, biomechanics studies, traffic and customer monitoring.

To date, a number of promising silhouette-based approaches to body tracking and

human pose estimation have been proposed (Agarwal & Triggs, 2004a; Mittal

et al., 2003; Sminchisescu & Triggs, 2003). However most of them rely on the

fact that silhouettes can be extracted using relatively simple algorithms such as

background subtraction (Davis & Bobick, 1998) or standard edge- and gradient-

based techniques (Agarwal & Triggs, 2004a; Athitsos & Sclaroff, 2003).

However in practice, and as in the other cases discussed above, this assumption

rarely holds and these silhouette extraction methods can be very brittle. They

3

1. INTRODUCTION

Figure 1.2: Interactive silhouette detection. Our method can extract a smooth

outline of the subject’s dress (thick red curves) given an initial guess (thin green

curve).

tend to fail in the presence of highly textured objects and clutter, which produce

too many irrelevant edges. In such situations, it would be advantageous to detect

texture boundaries instead. However, because texture segmentation techniques

require computing statistics over image patches, they tend to be computationally

intensive and have therefore not been felt to be suitable for such purposes. Fur-

thermore, all of the commercially available techniques for motion capture require

either employing dedicated human operators or using ad-hoc sensors. This tends

to make them:

• Cumbersome. The user needs to wear markers or other ad-hoc equipment

which may be impractical, uncomfortable, constrain the user to a limited

work space, be difficult to transport.

• Expensive. They require both hardware and skilled human operators.

• Slow. The data only becomes available after a lag required to process

batches of images using manual techniques.

4

1.3 Articulated Model

Figure 1.3: 3–D model-based articulated tracking using silhouettes.

If motion capture could become both automated and non-invasive, these lim-

itations would disappear and many more applications would become practical.

Multi-camera approaches have the potential to achieve this goal. However, single

camera solutions would be even more widely applicable. This is a challenging

problem because it involves tackling such difficult issues as ambiguities associ-

ated with articulated motion seen from a single camera, very high dimensional

search spaces, self-occlusions, and poor quality of image features in the absence

of markers. Therefore in addition to body outlines we employ constraints such

as 2–D image point matching across frames and impose joint limits for the artic-

ulated structure to ensure realistic poses and avoid ambiguities to some extend.

Fig. 1.3 depicts the articulated model we use for tracking of human motion.

So far we discussed three main challenging areas in computer vision where

silhouettes can be used and studied the problems associated with them. In the

next section we go briefly through the contributions of this thesis in each of those

areas.

5

1. INTRODUCTION

1.4 Achievements

In this thesis a probabilistic approach to texture boundary detection for tracking

is presented. We have developed a fast and efficient algorithm for Bayesian esti-

mation of texture transition from a small sequence of pixels on a scanline. This is

very efficient when enough observations are available for reliable estimation of the

texture models. In the absence of this condition, we use machine learning tech-

niques to efficiently generate a probabilistic texture transition model which can

be used for tracking of arbitrary textured objects against cluttered background.

We then combine the texture crossing probabilities across a set of scanlines using

robust probabilistic contour extraction.

The allure of this probabilistic framework is that it accommodates a unique in-

frastructure for using the machine learning-based predictor as well as the Bayesian

estimator interchangeably in conjunction with robust optimization to extract ob-

ject contours robustly. We apply the developed methods to tracking of textured

and non textured rigid objects as well as deformable body outlines and monocu-

lar articulated human motion in challenging conditions in addition to interactive

texture segmentation.

In the remainder of this section we briefly outline these methods.

1.4.1 Fast Bayesian Boundary Estimation

We propose a texture-based approach to finding the projected contours of objects

while retaining the speed of standard edge-based techniques. Our technique is in-

spired by work of Drummond & Cipolla (2001) on edge-based tracking that starts

from the estimated projection of a 3–D object model and performs a line search

in the direction perpendicular to the projected edges to find the most probable

boundary location. This is challenging because speed requirements compel us

to restrict ourselves to computing statistics along a line, and therefore a fairly

limited number of pixels. We calculate the probability of texture crossing by in-

tegration of likelihood probabilities using a uniform prior on the statistical model

of the texture processes. We demonstrate that the exact Bayesian estimation of

the texture transition probability can be calculated in closed form using a Markov

model of texture process.

6

1.4 Achievements

We will show that this rigorous and formal statistical treatment has allowed

us to reach our goal under demanding circumstances. Our proposed algorithm

results in a near real-time 3–D tracker that uses only a fraction of the computa-

tional resources of a modern PC, thus opening the possibility to simultaneously

track many objects on ordinary hardware. Furthermore, this opens the door for

other applications that require near real-time performance, such as the inter-

active drawing of image boundaries that are becoming increasingly popular in

image-processing systems such as Photoshop.

However, the approach as described above suffers from a couple of drawbacks.

The first issue is that for complex texture transitions we need more observations

to build an accurate texture model. This calls for longer scanlines which is not

always possible. We also need to come up with a way to combine several scanline

results to extract object boundaries. Moreover, in case of using a prior texture

model of the object to be tracked, we need to establish a way to update that

texture model in the course of tracking as the appearance of the object changes.

We overcome these problems by incorporating the following tools:

• Scanstripes. We extend scanlines to scanstripes which help the texture

models converge faster as described in Section 4.4.

• HMM. A Hidden Markov Model is defined in Chapter 6 to bind and exploit

local texture information in form of texture crossing probabilities.

• Stochastic optimization. When available geometric constraints are imposed

by robust stochastic model fitting to texture crossing probabilities. These

ideas are explained in Chapter 6.

• Kullback-Leibler Divergence (KLD): The relative entropy between the ac-

tual target texture and the prior target texture model. It is measured in

the course of tracking and used to dynamically update the texture model.

We will show that this yields more robust tracking behavior, for example

under lighting changes.

7

1. INTRODUCTION

1.4.2 Machine Learning Approach

As mentioned in Section 1.4.1, the Bayesian estimation of texture cut requires

relatively long scanlines to reliably estimate models for complex textures and to

calculate the probability of the boundary locations between them. An alternative

to using scanstripes is to train a boundary predictor to obtain a probabilistic

measure of texture transition using a small image patch. We investigate the use

of machine learning techniques to detect boundaries between potentially textured

regions.

We demonstrate the effectiveness of this approach in the context of tracking

of rigid or deformable objects. More specifically, we show how a small set of weak

learners can be used to estimate the conditional probability of texture discon-

tinuity, given a small pixel neighborhood. Weighted sum of weak learners can

be seen as an approximation of a log-likelihood which, similar to the Bayesian

estimator, can be combined with robust techniques to enforce shape constraints.

These constraints together with trained weak learner responses provide a natural

way to detect contours of objects which are not attainable through conventional

methods.

1.5 Summary

In this thesis we explore machine learning and statistical modeling techniques

through which texture boundaries can be identified for tracking and interactive

segmentation. We look for silhouette extraction methods that can achieve reli-

able, fast and robust pattern transition detection for geometrically well-defined

as well as deformable or 3–D articulated objects. Our main contribution can be

regarded as the introduction of a novel probabilistic formalism for detection of

object outlines for applications that require low computational costs, which were

traditionally supplied by gradient-based algorithms.

This thesis is organized as folllows. In Chapter 2 we describe the gradient-

based approaches to tracking and the line search tracking scheme that is used in

this thesis to apply texture models to object tracking. In Chapter 3, texture anal-

ysis and segmentation methods are described and their strength and weaknesses

8

1.5 Summary

for tracking applications are discussed. We then introduce a fast Markov-based

line search method for texture boundary detection in Chapter 4. An alternative

method based on trained classifiers is then presented in Chapter 5. These meth-

ods can be used to robustly extract object contours with geometric constraints.

This issue is addressed in Chapter 6. Finally, we provide analysis and comparison

of the performance of different proposed methods in Chapter 7 and show some

experimental results in Chapter 8.

9

1. INTRODUCTION

10

Chapter 2

Edge-based Tracking Using

Gradient

Historically, the early approaches to tracking were all gradient-based mostly be-

cause these methods are both computationally efficient, and relatively easy to

implement. They are also naturally stable to lighting changes, even for specular

materials. In this chapter, we discuss these approaches which can be grouped

into two categories:

• One approach is to look for strong gradients in the image around a first esti-

mation of the object pose, without explicitly extracting the contours (Com-

port et al., 2003; Drummond & Cipolla, 2002; Harris, 1992; M. Armstrong

and A. Zisserman, 1995; Marchand et al., 2001; Vacchetti et al., 2004). This

is fast and general.

• Another approach is to first extract image contours, such as straight line

segments and to fit the model outlines to these image contours (Gennery,

1992; Koller et al., 1993; Kosaka & Nakazawa, 1995; Lowe, 1992; Ruf et al.,

1997). In this case the loss in generality is compensated by a gain in ro-

bustness.

The first category is of special importance to this work, because we employ a

similar line search approach for fast object tracking and delineation. The prin-

cipal difference is that the we replace the gradient-based objective function with

texture-based models of pattern transition.

11

2. EDGE-BASED TRACKING USING GRADIENT

Figure 2.1: In RAPiD-like approaches, control points are sampled along the

model edges. The small white segments in the left image join the control points

in the previous image to their detected position in the new image. The pose can

be inferred from these matches, even in presence of occlusions by introducing

robust estimators. (From Drummond & Cipolla (2002), figures courtesy of T.

Drummond and R. Cipolla).

2.1 RAPiD

Because of its low computational complexity, RAPiD (Harris, 1992) was one of

the first 3–D trackers to successfully run in real-time. Even though many im-

provements have been proposed since, we describe it here in detail because many

of its basic components have been retained in more recent systems. Furthermore,

we use the same search and optimization framework in our texture-based 3–D

tracking approach for rigid objects. The key idea is to consider a set of 3–D ob-

ject points, called control points, that are most likely to project on high-contrast

image edges. As shown in Fig. 2.1, the control points can be sampled along the

3–D model edges and in the areas of rapid albedo change. They can also be gen-

erated on the fly as points on occluding contours. The 3–D motion of the object

between two consecutive frames can be recovered from the 2–D displacement of

the control points.

Once initialized, the system performs a simple loop: For each frame, the pre-

dicted pose, which can simply be the pose estimated for the previous frame, is

used to predict which control points will be visible and what their new locations

should be. The control points are matched to the image contours, and the new

pose is estimated from these correspondences. For each control point, the sys-

tem looks for its projection m′ in the new image around m, its projection in

12

2.1 RAPiD

the previous frame. Because of the aperture problem, the position m′ can not

be completely determined. As depicted by Fig. 2.2 only the perpendicular dis-

tance l of m from the appropriate image edge is measured. Assuming that the

orientations of the image edge and the model edge are nearly the same, a one-

dimensional search for the image edge is conducted by looking in the direction of

a vector ~n from m where ~n is a unit vector orthogonal to the projected object

contour at point m. For a fast implementation, the search is often performed in

the horizontal, vertical, or diagonal direction, closest to the actual edge normal.

(Comport et al., 2003) uses a precomputed convolution kernel function of the con-

tour orientation to find only edges with an orientation similar to the reprojected

contour orientation, as opposed to all edges in the scan-line.

In the original RAPiD formulation, the motion is estimated in the object coor-

dinate system whose origin is located at T = (Tx, Ty, Tz)
T in camera coordinates,

and whose axes are aligned with the camera coordinate system. A control point

P = (Px, Py, Pz)
T in object coordinates is expressed as M = T + P = (X,Y, Z)T

in the camera frame. Its projection in the image is then m = KM with K being

the matrix of internal camera parameters as defined in Appendix B.

After a motion δp rotating the object about the object origin by ∆R and

translating it by δt, the control point location in camera coordinates becomes

M′ = T + δt + ∆RP. RAPiD assumes that the new image is acquired after

a small motion, which makes it possible to linearize the object projection with

respect to motion. The rotation ∆R can be approximated as ∆R ≈ I+Ω, where

Ω is a skew-symmetric matrix. Thus, we have M′ ≈ M+δt+ΩP. The expression

of the projection m′ of M′ can then be expanded in Ωx, Ωy, Ωz and δt and, by

retaining only terms up to first order, becomes

u′ = u + 1
Tz+Pz

(δtx + ΩyPz − ΩzPy − u (δtz + ΩxPy − ΩyPx)) ,

v′ = v + 1
Tz+Pz

(δty + ΩzPx − ΩxPz − v (δtz + ΩxPy − ΩyPx)) .
(2.1)

This can be written in matrix form as

m′ = m + Wδp , (2.2)

13

2. EDGE-BASED TRACKING USING GRADIENT

m

n

l
m’

Figure 2.2: Searching for the new control point position in RAPiD-like ap-

proaches. m is the predicted control point position and m′ is the actual control

point position. The search is performed along the direction of vector ~n, and only

the perpendicular distance l is measured.

where δp = (Ωx,Ωy,Ωz, δtx, δty, δtz)
T is a six-vector made of the rotation coeffi-

cients and the translation components, and W a 2 × 6 matrix that is a function

of the coordinates of T and P.

The distance l of Fig. 2.2 can be written as

l = ñT (m′ − m) . (2.3)

From Eqs. (2.3) and (2.2), each control point Mi then yields one equation of the

form

ñiWiδp = li .

Given enough control points, δp can then be computed by minimizing the sum

of squares of the perpendicular distances, which we write as

δp = argmin
δp

∑

i

(ñiWiδp − li)
2 . (2.4)

Therefore, it can be recovered by solving a least-squares problem of the form

l = Aδp ,

where l is the vector made of the distances li and A depends on the ñi and Wi.

The solution can then be found using the pseudo-inverse of matrix A, and taking

δp to be

δp = (ATA)−1Al.

14

2.2 Robust RAPiD

Finally the pose p is incremented by δp, which yields pt = pt−1 + δp.

In (Harris, 1992), some enhancements to this basic approach are proposed.

When the edge response at a control point becomes too weak, it is not taken into

account into the motion computation, as it may subsequently incorrectly latch on

to a stronger nearby edge. As we will see below, this can also be handled using a

robust estimator. An additional clue that can be used to reject incorrect edges is

their polarity, that is whether they correspond to a transition from dark to light

or from light to dark. A way to use occluding contours of the object is also given.

In (Evans, 1990), integrating a Kalman filter into RAPiD is proposed.

The control points can be defined on the fly. Harris (1992) show how profile

edge points can be created along occluding contours defined by the model pro-

jection. Marchand et al. (2001) also discuss the discretization of the model edges

visible at time t to produce the control points for the estimation of the pose at

time t + 1.

2.2 Robust RAPiD

The main drawback of of the original RAPiD formulation is its lack of robustness.

The weak contours heuristics is not enough to prevent incorrectly detected edges

from disturbing the pose computation. In practice, such errors are frequent. They

arise from occlusions, shadows, texture on the object itself, or background clutter.

Several methods have been proposed to make the RAPiD computation more

robust. Drummond & Cipolla (2002) use a robust estimator and replaces the

least-squares estimation by an iterative reweighted least-squares to solve the new

problem. Marchand et al. (2001) use a framework similar to RAPiD to estimate

a 2–D affine transformation between consecutive frames, but substitutes a robust

estimator for the least-squares estimator of Eq. (2.4). The affine transformation is

used to infer an approximate 3–D pose, which is then refined as will be discussed

Section 2.4.

In fact, when using a more powerful minimization algorithm, linearizing the

problem is not required, instead one can minimize the actual distances between

the detected features and the reprojected 3–D primitives. Let the Mi be those

15

2. EDGE-BASED TRACKING USING GRADIENT

primitives, and let
{
m′

i,j

}
be the set of associated image features, the pose can

now be estimated as:

p = argmin
p

∑

i,j

ρ
(
dist

(
PpMi,m

′
ij

))
, (2.5)

where Pp is the projection defined by parameters p and PpMi denotes the 2–D

curve obtained projecting Mi. For example, Marchand & Chaumette (2002) dis-

cuss the computation of the relevant Jacobian matrices when the 3–D primitives

such as straight lines segments, circles or occluding boundaries of cylinders can

be defined analytically. Simon & Berger (1998) consider free-form curves and

uses an approximation of the distance.

In the approaches described above, the control points were treated individ-

ually, without taking into account that several control points are often placed

on the same edge, and hence their measurements are correlated. By contrast,

in (M. Armstrong and A. Zisserman, 1995; Simon & Berger, 1998) control points

lying on the same object edge are grouped into primitives, and a whole primitive

can be rejected from the pose estimation. In (M. Armstrong and A. Zisserman,

1995), a RANSAC methodology is used to detect outliers among the control

points forming a primitive. If the number of remaining control points falls below

a threshold after elimination of the outliers, the primitive is ignored in the pose

update. Using RANSAC implies that the primitives have an analytic expression,

and precludes tracking free-form curves. By contrast, Simon & Berger (1998)

use a robust estimator to compute a local residual for each primitive. The pose

estimator then takes into account all the primitives using a robust estimation on

the above residuals.

When the tracker finds multiple edges within its search range, it may end-up

choosing the wrong one. To overcome this problem, in (Drummond & Cipolla,

2002), the influence of a control point is inversely proportional to the number

of edge strength maxima visible within the search path. Vacchetti et al. (2004)

introduce another robust estimator to handle multiple hypotheses and retain all

the maxima as possible correspondents in the pose estimation.

16

2.3 Explicit Edge Extraction

2.3 Explicit Edge Extraction

The previous approaches rely on matching points sampled on edges. An alter-

native approach is to globally match model primitives with primitives extracted

from the image (Gennery, 1992; Koller et al., 1993; Kosaka & Nakazawa, 1995;

Lowe, 1992; Ruf et al., 1997). In these specific examples, the primitives are

straight line segments, but, in theory, they could be more complex parametric

curves.

For each image, straight line edge segments are extracted, while the model

edge segments are projected with respect to the predicted pose. The matching

is based on the Mahalanobis distance of line segment attributes. For example,

in Koller et al. (1993) segments are represented by X = (cx, cy, θ, l) defined by

the coordinates of the middle point, the orientation and the length of the seg-

ment Deriche & Faugeras (1990). Given the attribute vector Xm of a model

segment and the attribute vector Xd of an extracted segment, the Mahalanobis

distance between Xm and Xd can be then defined as

d = (Xm − Xd)
T (Λm + Λd)

−1(Xm − Xd) , (2.6)

where Λd is the covariance matrix of Xd, and depends on the extraction procedure.

The covariance matrix Λm of a model segment depends on the covariance matrix

of the predicted pose estimation. Kosaka & Nakazawa (1995) also integrate the

uncertainty in the Hough transform used for segment extraction and limits its

search to the uncertainty region predicted by the Λm matrices.

An iterative procedure is used to find the best correspondences between 3–D

model edge segments Mi and 2–D image segments Di, while estimating the pose.

In Koller et al. (1993), a model segment Mi is matched with the closest data

segment Di according to the Mahalanobis distance of Eq. (2.6), if this distance

is lower than a threshold. The pose p is then estimated by minimizing

∑

i

(
Xi

d − Xi
m(p)

)T
Λi

d

(
Xi

d − Xi
m(p)

)
, (2.7)

with respect to p where Xi
m(p) is the attribute vector of the model segment

Mi projected with respect to the pose p. An additional term can be added to

17

2. EDGE-BASED TRACKING USING GRADIENT

the criterion of Eq. (2.7) to account for a motion model. The minimization is

performed using the Levenberg-Marquardt algorithm. The process is repeated

until a stable pose is found.

Such approaches, which are only adapted to polyhedral object tracking, have

been applied to vehicle and robot arm tracking, but they seem to have fallen

out of use and been replaced by RAPiD like algorithms. We believe this can be

attributed to bottom-up nature of the edge-extraction process, which makes it

unreliable. The RAPiD approach both avoids this drawback thanks to the local

search around an a priori pose and tends to be significantly faster.

2.4 Direct Optimization on Gradients

Balcisoy et al. (2001); Kollnig & Nagel (1997); Marchand et al. (2001) propose to

recover the pose by fitting the model projection directly to the image gradients.

A simple approach is to maximize the gradient norm along the model reprojection

but there is no guarantee that the model edges should correspond to high intensity

gradient values.

It is better to take into account the expected direction of the projected con-

tour: Marchand et al. (2001) propose to minimize the sum of the values ∇I.~n
‖∇I‖2 ,

where ∇I denotes the spatial gradient of the image I, and ~n the expected direc-

tion. This measure tends to support locations where the gradient is both strong

and in the expected direction. Kollnig & Nagel (1997) maximize the correlation

between the predicted and the measured gradient norm plus an additional term

to constrain the motion.

Such approaches require a very good initial estimate to converge to the correct

pose. Therefore, they are best used as a refinement step.

2.5 Summary

Different methods of edge-based tracking using gradient information have been

discussed in this chapter. While line search methods that look for strong gradients

are very fast and general, they lack robustness associated with methods that

explicitly extract contours and then fit the model outlines to them. Explicit

18

2.5 Summary

extraction of reliable gradient features on the other hand is not always possible

nor efficients. To overcome these shortcomings in the next chapter we consider

texture analysis tools for segmentation and tracking and then in the remainder

of this thesis we explore methods to combine the two approaches of line search

and texture analysis.

19

2. EDGE-BASED TRACKING USING GRADIENT

20

Chapter 3

State of the Art on Texture

Analysis

Contour-based tracking finds applications in a wide variety of domains such as

polyhedral object tracking (Drummond & Cipolla, 2002), human (Agarwal &

Triggs, 2004a), face (Gupta et al., 2004), hand tracking (Thayananthan et al.,

2004), road detection (Taylor et al., 1996), etc. The most common way to ex-

tract contours used for these applications is either based on local gradient in-

formation (Drummond & Cipolla, 2002; Taylor et al., 1996) or edge distance

transform (Agarwal & Triggs, 2004b; Athitsos & Sclaroff, 2003; Gupta et al.,

2004; Thayananthan et al., 2004) as discussed in Chapter 2. These methods are

appealing due to their simplicity and speed, but their application is restricted to

the cases where the contrast is sufficient. Furthermore, these methods tend to fail

in the presence of highly textured objects and clutter, which produce too many

irrelevant edges. This is due to their inadequacy to exploit the intensity values

and structures available in the image. The main reason for not utilizing this

information is the complexity of texture patterns and difficulty to adapt texture

segmentation and analysis techniques to tracking applications.

However, like many other problems in vision, texture segmentation is ill posed.

Texture segmentation is an old and important topic in image processing and

computer vision. It aims at dividing a textured image into several regions with

the same certain characteristics. An effective and efficient texture segmenta-

tion method finds application in the analysis of aerial, biomedical and seismic

21

3. STATE OF THE ART ON TEXTURE ANALYSIS

images as well as the automation of industrial tasks. The segmentation of tex-

tures involves determination of suitable and discriminative features. Three major

categories for texture feature extraction methods are statistical, structural and

spectral features. In statistical approaches, different textures are distinguished

using statistical moments of the histogram, or statistics based on cooccurrence

matrix. Structural approaches use “Textons”, the basic element of textures, to

derive rules that are used to generate complex texture patterns. Finally, in spec-

tral approaches , frequency domain transformation of texture is used to analyze

textures (Lee & Chen, 2001).

The fact of partitioning the image into subregions of “uniform texture” raises

some fundamental issues which are discussed below (Rubner & Tomasi, 1996).

• Complex procedures are required to explicitly identify uniform texture re-

gions and often the application requires information about boundaries rather

than parts inside the regions of similar texture instead. Processing regions

is computationally expensive and not always helpful. This is true for track-

ing and interactive segmentation problems which include useful hypotheses

about the nature of the problem. This information needs to be exploited

to obtain better results with less effort.

• There is no concrete definition for “texture”, for instance in Fig. 3.1 it

is not meaningful to state that the purple fish has a uniform texture, on

the other hand we expect the texture segmentation algorithm to extract

the fish as a single region. The fundamental fact is that the notion of

uniform texture is of dubious validity and it depends on the perception

of the observer. Moreover two similar textures in the world can produce

unsimilar patterns in the images due to various effects such as difference

in distance, foreshortening, shading and lighting. On the other hand, a

detailed and sophisticated model which can cover all these effects might

lead to unrealistic and restrictive criterion.

• Due to noise and blurring introduced by the photographing device and its

sensor, the exact location of texture boundaries is not well determined.

These physical phenomena can cause textures to blend into each other and

therefore the boundary to be blurred.

22

3.1 Texture Operators

Figure 3.1: Can we find a proper definition for the texture of this purple fish?

Based on the above discussion, in the remainder of this chapter we review the

existing approaches which can be used to extract object delineations. There exists

various ways of categorizing these methods, here we classify them into texture

segmentation using texture operators, graph cut and supervised learning-based

methods which correspond approximately to their complexity and chronological

order of emergence.

3.1 Texture Operators

Statistical and structural descriptors are used extensively in texture segmenta-

tion and classification approaches. Statistical operators describe the formation

of texture with the statistical properties o pixel intensities and their spatial con-

figuration. Cooccurrence statistics and histogram analysis are examples of this

approach. In the structural approach however the concept of texture primitives

is employed to describe a texture composition. In this section we briefly review

these approaches. This survey is inspired by the work of Mäenpää (2003).

23

3. STATE OF THE ART ON TEXTURE ANALYSIS

3
5 6 8

2 3 1

3 2 7

1 11

101

41

3128 8

64 32 16

pattern=01010111 LBP=87

ThresholdedExample Weights

00

2

Figure 3.2: Local Binary Pattern is computed by thresholding the pixels in a

window using the intensity value of the central pixel and summing up the weighted

binary values.

3.1.1 Local Binary Pattern Methods

The Local Binary Pattern (LBP) operator introduced by Ojala et al. (1996) is

a gray scale invariant descriptor which measures the contrast of textures. It

performs well in terms discrimination performance and contains simultaneously

structural and statistic information. Heikkila et al. (2004) use local binary pat-

tern analysis to extract moving objects for blob tracking people by background

subtraction assuming a static background. However, the extracted contours using

such techniques are not usually detailed and accurate enough to be used for 3–D

tracking.

The LBP operator assigns a binary code to a pixel based on its neighborhood

as illustrated by the example shown in Fig. 3.2. The intensity value of the central

pixel is used to threshold the neighboring pixels to generate a binary pattern. This

binary pattern is then converted to the LBP code by summing up the weighted

thresholded values. The LBP operator can also be made invariant to rotation

and scale.

3.1.2 Cooccurrence Features

Statistics of gray levels of pairs of pixels can be measures by computation of a

two-dimensional cooccurrence matrix. This matrix is formed by considering a

position operator and counting the number of pairs of intensity values that fit

24

3.1 Texture Operators

Figure 3.3: Examples of position operator used to compute cooccurrence matrices.

The dots show the considered positions for pairs of gray level values.

in the spatial configuration described by the position operator. In other words,

the cooccurrence matrix represents the joint probability of pairs of gray levels

that occur in relative positions defined by the position operator (Tomita & Tsuji,

1990). Fig. 3.3 shows examples of position operator which compares two pixels

at different positions. Cooccurrence matrices can be used to extract useful and

discriminant statistical features such as energy, entropy, correlation, homogeneity

and inertia (Conners & Harlow, 1980).

Other extensions of cooccurrence statistics include the gray-level difference

(GLD) method (Weszka et al., 1976) which is invariant to changes in global

luminance of an image due to the fact of considering the difference of gray levels

instead of their absolute values. Later, multidimensional cooccurrence features

have also been introduced by Valkealahti & Oja (1998) for texture analysis.

3.1.3 Extensions of LBP

The LBP can be regarded as a special case of gray-level difference methods. It

reduces the dimensionality by considering only the sign of the differences and

therefore omits the need for vectorial quantization for dimensionality reduction.

Other extensions of LBP include tri-level thresholding instead of the original bi-

level case. As a result, the number of texture units increases considerably without

remarkable improvement in performance (Mäenpää, 2003). N arbitrary neighbors

can be used to generate the LBP code instead of the original eight-neighbors of

a pixel. This is referred to as N-tuple method which is proposed by Patel &

25

3. STATE OF THE ART ON TEXTURE ANALYSIS

Stonham (1992) to obtain gray-level texture cooccurrence spectrum (GLTCS) for

texture image classification and segmentation.

3.1.4 Texton Statistics

In texture segmentation terminology, “textons” are the fundamental texture units

that can be recognized by human vision (Julesz, 1981). Malik J (1999) refers to

representative vectors of Gabor filter bank responses as textons in their model for

texture segmentation. In this approach the texton vocabulary is created for a set

of textures and then used for texture recognition (Leung & Malik, 2001; Varma

& Zisserman, 2002).

The main distinction between Gabor filter and LBP operator is that LBP

considers each pixel in the neighborhood while Gabor filter calculates the weighted

mean of pixel values over a window. Therefore LBP can regarded as a micro-

texton while Gabor filter represents macro-textons (Mäenpää, 2003). Studies

show that the Gabor texton approach has inferior performance compared to LBP

and cooccurrence methods on challenging sets of textures (Pietikäinen et al.,

2003; Randen & Husoy, 1999).

As an alternative to texture segmentation, Rubner & Tomasi (1996) proposed

a method to coalesce Gabor descriptors of adjacent image patches with similar

textural content into clusters. Significant regions are characterized as those with

low texture contrast, which is defined as the maximum derivative of the texture

descriptor vector. This is in principal similar to applying an edge-preserving

smoothing, such as anisotropic diffusion filter (Perona & Malik, 1990), but in

space of texture vectors rather than image intensities.

The compass edge detector operator (Ruzon & Tomasi, 1999a) uses the Earth

Mover Distance (Rubner et al., 2001) to measure the distance between color

distributions in CIE-Lab color space on two sides of a potential edge position.

The performance of the compass operator is superior to the one of purely gradient-

based techniques such as Canny (1986), due to the fact that color distributions are

introduced and their distance is measured during the operation. Their proposed

method is also extended to detect corners (Ruzon & Tomasi, 1999b).

26

3.1 Texture Operators

The effectiveness of different multi-scale edge detection cues on black and

white and color images can be computed using information theoretic measures

such as Chernoff information (Konishi et al., 1999). They provide a statistical

study of information supplied by edge detection cues. They use the Sowerby

image database of country side to learn the distributions of off-boundary and

on-boundary edge detector responses, Pon and Poff respectively. They show that

the expected error rate of classification is bound exponentially by Chernoff infor-

mation between Pon and Poff (Cover & Thomas, 1991).

Therefore the higher the Chernoff information provided by Pon and Poff ,

the more reliable the corresponding edge detector cue would be. In their work,

Konishi et. al. have compared three edge detectors, namely magnitude of the

intensity gradient, the Nitzberg edge detector (Nitzberg et al., 1993) which is

based on eigenvalues of the second moment matrix and the Laplacian of Gaussian.

Their results shows superior performance of Nitzberg operator in multi-scale form

on both gray-level or color images. Moreover they establish the fact that the step

edge model is by far the most valid assumption of an edge detector. This is

verified through psychophysiological studies of human observers and validated

through tests (Konishi et al., 1999). This observation is consistent with the

results that are reported in this thesis which are obtained by exhaustive search

of edge classification cues, as explained in Chapter 5.

Geodesic active region framework (Paragios & Deriche, 2001) is used in a level-

set optimization scheme for image segmentation and tracking by Paragios & De-

riche (2005). They exploit Minimum Description Length criterion and Maximum

Likelihood in order to approximate image histogram by a mixture of Gaussians.

Then different region boundaries are detected using a probabilistic edge detector

which determines the local discontinuities in the statistical models of neighboring

regions. Their regularized optimization of the region- and boundary-based (and

in case of tracking also motion-based) objective function adaptively deals with

changes of topology regardless of initial conditions. The key hypothesis is that

image is composed of homogeneous regions which can be modeled with a Gaussian

distribution. This is also true for the work of Hanek & Beetz (2004) who propose

a method for fitting parametric curve models using the EM algorithm. They use

local Gaussian distributions to model stripes perpendicular to the curve.

27

3. STATE OF THE ART ON TEXTURE ANALYSIS

Assuming a Gaussian model for the texture reduces the flexibility of the algo-

rithm. Paragios & Deriche (2002) relax the segmentation hypothesis that image

is composed of homogeneous regions by learning probabilistic texture descriptors

for a given set of texture patterns. They use multidimensional features captured

using a set of filter operators namely, isotropic, anisotropic and Gabor filters.

The training filter responses are then represented as a Gaussian mixture model

which is used for segmentation. The problem of supervised and unsupervised tex-

ture segmentation is then cast as a geodesic active contour model scheme similar

to (Paragios & Deriche, 2001) that looks for a minimal length geodesic curve with

simultaneous boundary probability maximization and optimal region grouping.

3.2 Graph Cut Image Segmentation

A wide variety of computer vision tasks can be expressed in terms of a label-

ing problem to pixel regions on noisy image data. Stereo reconstruction, image

restoration and segmentation are among such tasks which can be regarded as an

optimization problem in presence of uncertainties. For such labeling problems

a specialized graph can be defined corresponding to the energy function to be

minimized which fits into an elegant minimum cut optimization framework. It

can be shown that we can solve the maximum cut problem without exhaustive

computation using maximum flow algorithms. Next, we briefly describe the graph

cut optimization concept and review some related work.

3.2.1 Graph Representation

A graph is defined on the image to be segmented by considering each pixel as

a node of a weighted graph G = (E, V), which consists of a set of edges E

that connect nodes or vertices of the graph V , the weights of the graph are

associated with the edges and measure the strength of the link between two

nodes as illustrated in Fig. 3.4.

In a graph, the nodes with only ingoing or outgoing edges are referred to

as terminal nodes, furthermore nodes with only inward edges are called sink

and those with only outgoing edges are called source nodes. Similarly, edges

28

3.2 Graph Cut Image Segmentation

a c
A

b d fe

B

A

AB

CUT

Figure 3.4: Illustration of a weighted graph G with two terminal nodes (labels).

The weights of the edges are represented by their thickness.

connecting pixels to terminal nodes (or labels in case of segmentation) are called

t-link and edges connecting pairs of neighboring pixels are called n-links. The goal

is then to find a labeling for all pixels (nodes) that minimize an energy function

of the form

E(l) =
∑

p

D(p, lp) +
∑

p

∑

q∈Vp

V{p,q}(lp, lq) (3.1)

where D(p, lp) is the cost of assigning label lp to pixel p which indicates how

well the intensity of the pixel is defined by the given label and represents the

t-link edges. V{p,q}(lp, lq) is the regularization term in the neighborhood of pixel

p defined by Vp. It represents the n-links in the graph and is a measure of how

well the pixel’s label agrees with neighboring labels.

The smallest set of edges to cut that will disconnect a graph can be efficiently

found using flow methods by defining a capacity on each edge which is equal

to its weight and searching the maximum flow from source to sink satisfying

the capacity constraints. However smallest set obtained this way favors isolated

clusters and therefore normalized cuts must be used which take into account size

of different clusters. The minimum normalized cut solution is however an NP-

hard problem. the minimum cut is shown in Fig. 3.4 where edge weights are

represented by their thickness. Shi & Malik (2000) use normalized cut approach

29

3. STATE OF THE ART ON TEXTURE ANALYSIS

to locate clusters. Their method performs recursive bisection using eigenvector of

the second smallest eigenvalue of the Laplacian matrix of the graph (the degree

matrix 1 minus the adjacency matrix 2)

An alternative to the normalized minimum cut approach is the concept of

graph commute times which leads to clusters of nodes with increased dissociation

of separate clusters and association inside each cluster. Association is a measure of

total edge linkage within a graph cluster (Qiu & Hancock, 2005). The commute

time between a pair of nodes in a graph is related to the closeness of the two

nodes, the value of the sum of weights of the path relating the two nodes, and

the number of paths between them. Spectral graph theory and analysis of how

information flows with time across the graph is used to model commute time.

The spectral analysis of graph is characterized by the heat equation and the

Laplacian eigensystem. This formalism can be used to compute random walk on

the graph for image segmentation, (Meila & Shi, 2001), among other applications

in the field of information retrieval and pattern analysis. However, most of the

proposed methods are confined to improper approximations based on the major

eigenvector of the Laplacian matrix.

Graph cut techniques are closely related to the theory of Markov Random

Fields. The optimization of the graph cut energy function of Eq. 3.1 is commonly

done using the Markov Random Field (MRF) model which is described next.

3.2.2 Markov Random Fields

The model of a Markov Random Field is defined by a set of neighborhood system,

N , a set of sites (pixels), S, and a random field F representing the site labels.

The MRF model states that the probability of having a configuration of labels

on sites must satisfy the Markov property that each random variable depends

only on the label of its neighbors. This idea is useful in the optimization of the

1A diagonal matrix corresponding to a graph that has the vertex degree (i.e. number of

touching edges) of vi in the ith position.
2the adjacency matrix for a finite graph G with n vertices is an n×n matrix where the non

diagonal entry aij is the number of edges joining vertex i and vertex j, and the diagonal entry

aii is twice the number of loops at vertex i.

30

3.2 Graph Cut Image Segmentation

energy function using Bayes theorem that relates the optimization of the energy

function of Eq. 3.1 with the maximum a posterior (MAP) of the Markov field.

Graph cut has been used in interactive texture segmentation problems such

as work by Blake et al. (2004) where one starts from an initial user-provided

guess about foreground, background and undetermined regions and the goal is

to segment the undetermined regions to foreground and background subregions.

Other proposed texture segmentation methods based on graph cuts (Boykov &

Jolly, 2001; Kolmogorov & Zabih, 2004; Rivera & Gee, 2004) require computing

Markov Random Field (MRF) models from a training set and require heavy

computation for optimization. These features tend to make such approaches not

suitable for tracking.

Rother et al. (2004) introduced a technique based on graph cuts which yields

impressive interactive segmentation results thanks to improvements in the op-

timization stage and local post-processing. Their relies on post-processing to

extract details and therefore not adapted for tracking using 2–D contours.

Another prototype texture-based tracker is the set forth by Ozyildiz et al.

(2002) in which a formulation for fusing texture and color is presented in a man-

ner that makes the segmentation reliable while keeping the computational cost

low. The texture is modeled by an auto binomial Gibbs Markov Random Field

(GMRF) while a 2–D Gaussian distribution is used for modeling the color. How-

ever since the MRF model is used to learn the global characteristics of target

texture, it can not extract fine contours of the object as is required by 3–D pose

tracking algorithms. Instead, this method is used to track the object as a whole in

the image. Moreover training MRF’s would lead to difficulties in tracking objects

with different local textures and patterns.

Another issue with Gibbs potential field is the difficulty to obtain good priors

by sampling the potential field. Kumar et al. (2005) introduce a Bayesian frame-

work to insert priors in form of pictorial structures in MRF’s. Their method is

used to detect and segment instances of a particular object category within an

image. The pictorial structures form a set of 2–D probabilistic patterns which

contain information on shape, appearance and spatial configuration of patches

representing object parts which ensure a global shape prior across the image

plane.

31

3. STATE OF THE ART ON TEXTURE ANALYSIS

MRF-based optimization has also been used by Paragios & Ramesh (2001) to

change detection and crowding/congestion density estimation for subway moni-

toring. Their method consists of change detection using a discontinuity preserv-

ing MRF formalism that combines different sources such as color and temporal

information with additional constraints to provide a detection map. The final ob-

jective function is minimized in a multi-scale fashion in order to fulfill real-time

constraints and results in a geometric measure of occupancy rather than precise

detection and tracking of each individual object.

3.3 Learning-based Texture Segmentation

Machine learning methods have been used extensively for object detection (Fleuret

& Geman, 2002; Viola & Jones, 2001) and recognition, character recognition and

speech processing. However, we are interested in learning low level generic dis-

criminant characteristics of textures which can be used in finding texture discon-

tinuities (cuts) in a narrow image band. The main motivation behind this idea

is that such a tool can prove to be useful in a wide variety of applications that

require reliable and fast boundary detection.

Figure 3.5: Image patches used to learn texture boundaries in natural images.

Images courtesy of Martin et al. (2004).

An interesting work on learning texture boundaries in natural images is put

forth by Martin et al. (2004). Their goal is to use features such as brightness,

color, and texture measures to estimate the posterior probability of a boundary

passing through the center point of an image patch in form of a disc as shown

in Fig. 3.5. Examples of their reported results are shown in Fig. 3.6. They use

a large database of manually segmented natural images as the training set to

32

3.3 Learning-based Texture Segmentation

model the probability of a pixel being on or off-boundary conditioned on some

set of local image features. These image features consist of two brightness features

(oriented energy and brightness gradient), one color feature (color gradient) and

one texture feature (texture gradient). The parameters of each of these features

are trained based on the training database. The gradient-based features involve

obtaining histograms of intensity, chrominance or banks of texture filter responses

on two sides of oriented discs and then calculating the χ2 distance between the

histograms on both sides.

The above cues are then combined into a single function that gives the pos-

terior probability of a boundary at each pixel and orientation. The task of com-

bination is treated as a supervised learning problem where the combination rule

is learned from a hand-marked dataset. Different types of classifiers reported

by Martin et al. (2004) such as SVM, classification trees, density estimation, lo-

gistic regression, boosted regression, quadratic logistics and hierarchical mixture

have equal performances with different measures of stability, bias and variance.

The performance is measured in term of F-measure and precision-recall curves.

F-measure is a metric that is widely used in information retrieval and machine

learning algorithms. The two components of F-measure are recall and precision.

Recall measures how well a search method pinpoints the desired outputs and

precision measures how well it weeds out undesired results. Mathematically, the

recall is the ratio of the number of positive examples correctly recognized to the

total number of all positive examples in the database. The precision is the ratio of

the number of true positive responses to the total number of positive detections.

F-measure is then defined below.

F − measure =
recall × precision

α × recall + (1 − α) × precision

Texture can also be defined by statistical properties of the regions. For in-

stance Will et al. (2000) define the texture as the statistical distribution of Gabor

filter responses and come up with a tunable criterion which is optimized for si-

multaneous detection reliability and localization accuracy as in Canny’s edge

detector (Canny, 1986). Their method detects edges by calculating the a pos-

teriori probability of a pixel or site belonging to a class. Assuming that the

33

3. STATE OF THE ART ON TEXTURE ANALYSIS

Figure 3.6: Results obtained by Martin et al. (2004) using the texture and bright-

ness gradient cues (second row) of images shown in the top row. Human extracted

edges are shown in the third row. Images courtesy of Martin et al. (2004).

Gabor-responses are statistically independent, their methods amounts to finding

the pixels with equal probability for both textures.

34

3.4 Summary

3.4 Summary

An overview of different approaches to boundary extraction is given in this chap-

ter. Several categories have been presented which include texture operators,

graph cuts and machine learning methods. While gradient-based algorithms are

the computationally favorable, they suffer from vulnerabilities due to loss of inten-

sity information. Texture segmentation techniques and graph cuts using Markov

random fields on the other hand are computationally expensive and not adapted

to tracking. Machine learning can be used to learn transition between textures

and model arbitrary texture boundaries, however, to date, it has been applied

only to texture segmentation and thus lacks specific requirements of tracking

applications such as speed and integration of the geometrical constraints of the

tracking target.

Another important issue in tracking is the evolution of the target model. Up-

dating the prior model is of particular importance in tracking since the initial

model of the target changes in the course of tracking due to vicissitudes in light-

ing conditions and object views. In the texture-based tracking scheme proposed

in Ozyildiz et al. (2002) a statistical model for the adaptation over time of the

mean and covariance vectors is proposed which uses L previous mean and co-

variance estimates. This causes rapid accumulation of the drift error and gives

undesirable tracking results in a long sequence. We show that the Kullback-

Leibler Divergence can be exploited to update the target model in an adaptive

way.

35

3. STATE OF THE ART ON TEXTURE ANALYSIS

36

Chapter 4

Line Search for Texture

Boundary

In this chapter, we will first recall how contour tracking can be performed by line

search through sample points. These principles apply to 2–D and 3–D tracking

of rigid, deformable and articulated objects. We will then introduce a method

to search for texture boundary based on Bayesian estimation of texture crossing

probabilities.

In a standard tracking paradigm, successive pose parameters are estimated

by minimizing the observed distances from the rendered model to the measured

observations. The correspondence and the distance between model and measured

silhouettes can be defined in two ways as discussed in Chapter 2.

One method is to fit the projected edges directly to the measured silhouettes.

While robust this method requires an exhaustive nonlinear search. However as

explained in detail in Section 2.1 and Drummond & Cipolla (2002) an approxi-

mate yet both sound and more practical alternative is to use RAPiD-like iterative

closest point (ICP) algorithm for distance minimization between model and ob-

servation points. In this case we need to establish direct point correspondences on

the model and the measured silhouettes. This is not particularly precise due to

the approximate search directions associated with the model sampled points and

the aperture problem which implies that the motion of a homogeneous contour

is locally ambiguous. However,given the fact that usually the rendered model is

37

4. LINE SEARCH FOR TEXTURE BOUNDARY

d p

scan line

p

rendered model edge

Object Boundary

c

Figure 4.1: Contour-based 3-D tracking. Search for a real contour in the direction

normal to projected edge. A scanline, centered on a hypothesis model sample p,

is used to search for a texture crossing position c on the actual boundary of the

object. The model pose is obtained by minimizing the distances dp for all sample

points.

close enough to the real silhouettes the approximate edge normals and the for-

mulation given in Section 2.1 can be used for tracking without loss of precision.

As illustrated in Fig. 4.1 the search line directions are chosen to be orthogonal

to projection of model silhouettes (dotted line) at the position of the model sample

point p. The search line associated to a sample point on the model is referred to

as scanline and used to locate the corresponding texture crossing point c, that

is the point where the underlying statistics change. In the remainder of this

chapter, we formalize the Bayesian search criteria and derive the algorithms we

use to extract object boundaries using scanlines.

4.1 Scanlines

A texture is modeled as a statistical process which generates a sequence of pix-

els. The problem is then cast as follows: A sequence of n pixel intensities,

Sn
1 = (s1, s2, ...sn), is assumed to have been generated by two distinct texture

38

4.1 Scanlines

processes each operating on either side of an unknown change point, as shown

in Fig. 4.1. Thus the observed data is considered to have been produced by the

following process: First a changepoint c is selected uniformly at random from

the range [1 − n]. Then the pixels to the left of the changepoint (the sequence

Sc
1) are produced by a texture process T1 and the pixels to the right (Sn

c+1) are

produced by process T2. The task is then to recover c from Sn
1 . If both T1 and

T2 are known then this corresponds to finding the c that maximizes:

P (changepoint at c|Sn
1 , T1, T2) = KP (Sc

1|T1)P (Sn
c+1|T2) . (4.1)

where K is a normalization constant. If one of the textures, for example, T1

is unknown, then the term P (Sc
1|T1) must be replaced by the integral over all

possible texture processes:

P (Sc
1) =

∫
P (Sc

1|T)P (T) dT . (4.2)

While it may be tempting to approximate this by considering only the most

probable T to have generated Sc
1, this yields a poor approximation for small data

sets, such as are exhibited in this problem. We show how the integral can be

solved in closed form for reasonable choices of the prior P (T) (e.g. uniform).

We consider two kinds of texture processes: first, one in which the pixel

intensities are independently drawn from a probability distribution and second,

one in which they are generated by a 1st order Markov process, which means that

the probability of selecting a given pixel intensity depends (only) on the intensity

of the preceding pixel. We refer to these two processes as 0th and 1st order models.

4.1.1 Solving for the 0th Order Model

The 0th order model states that the pixel intensities are drawn independently

from a probability distribution over I intensities (T = {pi}; i = 1..I). If such a

texture is known a priori then P (Sc
1|T) =

∏
i psi

. If the texture is unknown then:

P (Sc
1) =

∫
P (Sc

1|T)P (T) dT =

∫
P (sc|T)P (Sc−1

1 |T)P (T) dT (4.3)

= P (Sc−1
1)

∫
psc

P (T |Sc−1
1) dT (4.4)

39

4. LINE SEARCH FOR TEXTURE BOUNDARY

The integral in (4.4) is E(psc
|Sc−1

1): i.e. the expected value of the probability psc

in the texture given the observed sequence Sc−1
1 . If we assume a uniform prior for

T over the I-1 simplex of probability distributions, then this integral becomes:

E(psc
|Sc−1

1) =

∫ 1

0

∫ 1−p1

0
· · ·
∫ 1−

PI−2
i=1 pi

0
psc

∏I
j=1 p

oj

j dpI−1 · · · dp2dp1

∫ 1

0

∫ 1−p1

0
· · ·
∫ 1−

PI−2
i=1 pi

0

∏I
j=1 p

oj

j dpI−1 · · · dp2dp1

(4.5)

where there are oj occurrences of symbol j in the sequence Sc−1
1 . Note that both of

these integrals have the same form, since the additional psc
in the numerator can

be absorbed into the product by adding one to osc
. Substituting pI = 1 −

∑I−1
i=1 pi

and repeatedly integrating by parts yields:

E(psc
|Sc−1

1) =
osc

+ 1

c + I − 1
(4.6)

This result states that if an unknown probability distribution is selected uni-

formly at random and a set of samples are drawn from this distribution, then the

expected value of the distribution is the distribution obtained by adding one to

the number of instances of each value observed in the sample set.

For example, if a coin is selected with a probability of flipping heads ran-

domly drawn from the uniform distribution over [0,1], and it is flipped 8 times,

giving 3 heads and 5 tails, then the probability that the next flip will be heads is

(3+1)/(8+2) = 0.4.

This result can be applied recursively to the whole sequence to give Algo-

rithm 1.

4.1.2 Solving for the 1st Order Model

This idea can be immediately extended to a 1st order Markov process in which the

intensities are drawn from a distribution which depends on the intensity of the

preceding pixel (T = {pi|j}; i, j = 1..I, where pi|j is the probability of observing

intensity i given that the previous pixel had intensity j). These pi|j can be

considered as a transition matrix (row i, column j). Again, the probability of a

sequence given a known texture is easy to compute:

P (Sc
1|T) = P (s1|T)

c∏

i=2

psi|si−1
where P (s1|T) is using the 0th order model.

(4.7)

40

4.1 Scanlines

Algorithm 1 Rapid 0th order computation of
∫

P (Sc
1|T)P (T) dT .

sequence probability (S[], c)

dim Observations[NUM CLASSES]

// seed Observations[] with 1 sample per bin

for i=1..NUM CLASSES do

Observations[i]=1

end for

Probability=1

for i=1..c do

Probability = Probability * Observations[S[i]] /
∑

Observations[]

Observations[S[i]] = Observations[S[i]]+1

end for

return Probability

For a first order Markov process, the 0th order statistics of the samples must

be an eigenvector of pi|j with eigenvalue 1. Unfortunately, this means that a

uniform prior for T over pi|j is inconsistent with the uniform prior used in the

0th order case. To re-establish the consistency, it is necessary to choose a 1st

order prior such that the expected value of a column of the transition matrix pi|j

is obtained by adding 1/I rather than 1 to the number of observations in that

column of the co-occurrence matrix before normalizing the column to sum to 1.

This means that the transition matrix is

E(pi|j|S
c
1) =

Cij + 1/I

1 +
∑

i Cij

=
Cij + 1/I

1 + oj

, (4.8)

where Cij is the number of times that intensity i follows intensity j in the sequence

Sc
1. And hence the expected 0th order distribution (which is the vector

(oj+1)

(c+I)
) has

the desired properties since

∑

j

E(pi|j|S
c
1)

(oj + 1)

(c + I)
=

∑
j Cij + 1/I

c + I
=

oi + 1

c + I
. (4.9)

This modification is equivalent to imposing a prior over pi|j that favors structure

in the Markov process and is proportional to
∏

ij p
(1/I−1)
i|j . This gives Algorithm 2.

41

4. LINE SEARCH FOR TEXTURE BOUNDARY

Algorithm 2 Rapid 1st order computation of
∫

P (Sc
1|T)P (T) dT .

sequence probability (S[], c)

dim CoOccurrence[NUM CLASSES][NUM CLASSES]

// seed CoOccurrence[][] with 1/NUM CLASSES samples per bin

for r=1..NUM CLASSES do

for c=1..NUM CLASSES do

CoOccurrence[r][c]=1/NUM CLASSES

end for

end for

Probability=1/NUM CLASSES // probability of the first symbol

for i=2..c do

Probability = Probability * CoOccurrence[S[i]][S[i-1]] /
∑

CoOccurrence[][S[i-1]]

CoOccurrence[S[i]][S[i-1]] = CoOccurrence[S[i]][S[i-1]]+1

end for

return Probability

4.2 The Binary Case

To fully comprehend the relationship between our developed algorithm and the

Bayesian estimation of texture transition probability, let us consider analysis of

the simplified case where we have only binary symbols 0 or 1. We denote by N

the number of pixels in the line, by Θ1 and Θ2 two random variables uniform on

[0, 1] and by C the cut position, a random variable uniform on {1, . . . , N}. The

pixels are binary and independent and for the two texture processes separated by

the cut at C we have

∀i, 1 ≤ i ≤ C, P (Xi = 1) = Θ1

and

∀i, C + 1 ≤ i ≤ N, P (Xi = 1) = Θ2 .

42

4.2 The Binary Case

4.2.1 Exact Conditional Probability

From this model we can compute the exact value of

P (C = c |SN
1) (4.10)

with Sb
a = Xa, . . . , Xb. We denote the above term ρc for simplicity. It can be

rewritten as follows:

P (C = c |SN
1) =

∫
θ1

∫
θ2

P (C = c, Θ1 = θ1, Θ2 = θ2 |S
N
1)

= 1
P (SN

1)

∫
θ1

∫
θ2

P (SN
1 |C = c, Θ1 = θ1, Θ2 = θ2)

P (C = c, Θ1 = θ1, Θ2 = θ2)dθ2dθ1

= 1
P (SN

1)
P (C = c)

∫
θ1

∫
θ2

P (Sc
1 |Θ1 = θ1)P (Θ1 = θ1)

P (SN
c+1 |Θ2 = θ2)P (Θ2 = θ2) dθ2dθ1

= K
∫

θ1
P (Sc

1 |Θ1 = θ1)dθ1

∫
θ2

P (SN
c+1 |Θ2 = θ2)dθ2

= KP (Sc
1)P (SN

c+1)

(4.11)

where K is a constant for normalization, and:

P (Sc
1) =

∫ 1

0
P (Sc

1 |Θ1 = θ)P (Θ1 = θ)dθ

=
∫ 1

0
θAc

(1 − θ)Bc

dθ = γ(Ac, Bc)

(4.12)

with Ac =
∑c

i=1 Xi and B = c−Ac, being the number of occurrences the binary

pixel value of 1 and 0 has appeared in the sequence Sc
1 respectively. The integral

γ(Ac, Bc) can be computed by parts:

γ(a, b) =
∫ 1

0
θa(1 − θ)bdθ

= b
a+1

γ(a + 1, b − 1)
(4.13)

with γ(a, 0) = 1
a+1

. Therefore we have:

γ(Ac, Bc) =
Ac!Bc!

(Ac + Bc + 1)!
(4.14)

43

4. LINE SEARCH FOR TEXTURE BOUNDARY

Therefore the probability 4.11 can be expressed by:

P (C = c |SN
1) = KP (Sc

1)P (SN
c+1)

= K Ac!Bc!
(Ac+Bc+1)!

× Dc!Ec!
(Dc+Ec+1)!

(4.15)

similar to Ac and Bc defined above, Dc =
∑N

i=c+1 Xi and E = (N − c) − Dc are

the number of occurrences of the binary pixel value of 1 and 0 in the sequence

SN
c+1 respectively.

4.2.2 Numerical Simulations

For a given value of sequence length N , say 10, we can check the expression of the

exact value by computing numerically a randomly generated reference sequence.

Given the reference sequence (x1, . . . , xN), we generate enough random draws of

(x
(m)
1 , . . . , x

(m)
N) for 1 ≤ m ≤ M so that we have M ≈ 10, 000 samples with exactly

the same (x1, . . . , xN) and estimate empirically P̂ (C = c |X1 = x1, . . . , XN =

xn) = ρ̂c.

We then repeat the process L ≈ 1000 times to obtain the distribution of the

ρ̂l
c, l = 1, . . . , L.

Fig. 4.2 shows the histogram of the difference between the probability values ρ̂c

computed above with the analytical values of ρc calculated using Eq. 4.15. It can

be seen that it has a normal distribution with the mean equal to µ = 1.66e−10 ≈ 0

and the standard deviation of σ = 0.0032. The probability that error falls within

distance of σ from the mean value, µ is ≈ 0.25.

4.2.3 Theoretical Analysis

The statistical behavior of the empirical estimation of the cut probability is re-

lated to its analytical solution through the law of large numbers. If we treat each

of the possible cut positions γ, 1 ≤ γ ≤ N , as a random binary variable Uγ, which

is 1 if the cut is at position γ and 0 otherwise, then the empirical estimation of

the cut probability at position γ is equal to P̂ (C = γ |X1 = x1, . . . , XN = xn) =

44

4.2 The Binary Case

1
M

∑M
i=1 Ui = P̂γ . For Ui we have:

P (Ui = 1) = P (C = γ |X1 = x1, . . . , XN = xn) = Pγ

Var(Ui) = (1 − Pγ)Pγ

(4.16)

Therefore, given the fact that the Ui’s are i.i.d. variables, the law of the large

numbers states that E(P̂ (γ)) = E(Ui) and Var(P̂γ) = 1
M

Var(Ui). Moreover if

we repeat the experiment L times these values do not change due to the i.i.d.

assumption for the variables. This is in compliance with the observations where

the order of magnitude for the standard deviation of the empirical estimation

σ = 0.0032 is the same as its estimated value using Eq. 4.16,

σP̂γ
=

√
1

M
(1 − Pγ)Pγ ≈ 0.004

for M = 10, 000 and a randomly selected value of Pγ = 0.170.

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
0

100

200

300

400

500

600

700

Figure 4.2: Histogram of the values ρi − ρ̂l
i for i = 1, . . . , N and l = 1, . . . , L.

4.2.4 Performance of the Optimal Estimator

We can estimate empirically the probability to catch the cut by taking the opti-

mal cut (arg maxc P (C = c |SN
1)) and the actual one, or the distribution of the

distance between this optimal cut and the true one. Fig. 4.3 shows this distri-

bution for 1, 000, 000 tries of generating a random sequence of 10 pixels with a

45

4. LINE SEARCH FOR TEXTURE BOUNDARY

random cut position uniformly distributed over the sequence and measuring the

distance between the true cut and the one given arg maxc P (C = c |SN
1), where

P (C = c |SN
1) is calculated using Eq. 4.15.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4.3: Distribution of the distance (in pixels) between the optimal cut and

the true one for a sequence of binary bits of length 10.

4.2.5 Fast Computation of the Posterior Cut Probability

We have shown previously in Section 4.1.1 that the probability given by Eq. 4.15

can be calculated rapidly using a recursive formula. Here we restate the formula

for the case of the problem stated above. We can write the integral I in Eq. 4.12

as:

I =
P (Sc−1

1)

P (Sc−1
1)

×
∫ 1

0
P (Sc

1 |Θ1 = θ)P (Θ1 = θ)dθ

= P (Sc−1
1) ×

R 1
0 P (Sc

1 |Θ1=θ)P (Θ1=θ)dθ
R 1
0 P (Sc−1

1 |Θ1=θ)P (Θ1=θ)dθ

= P (Sc−1
1) ×

R 1
0 P (Sc

1 |Θ1=θ)dθ
R 1
0 P (Sc−1

1 |Θ1=θ)dθ

= P (Sc−1
1) × (Osc+1)!(c−Osc−1)!/(c+1)!

(Osc)!(c−1−Osc)!/c!

= P (Sc−1
1) × Osc+1

c+1

(4.17)

46

4.3 Transition Between Brodatz Textures

where Osc
is the number of occurrences of the binary symbol sc of position c

in the sequence Sc−1
1 . Eq. 4.17 is equivalent to Eq. 4.6 and provides us with a

recursive formula which can be implemented easily using Algorithm 1.

4.3 Transition Between Brodatz Textures

We illustrate these ideas by considering the problem of locating the boundary

between two Brodatz textures.

Fig. 4.4 shows detection results in a case where the texture is different at

the top and bottom of the image. Marked by a dark stripe in Fig. 4.4-(a) is

the region used to generate model statistics for the upper texture. In (b) the

boundary between the upper and lower textures is correctly found using 0th order

Markov model for both sides. (c) shows the boundary found using 1st order

Markov model for both sides. While the model for the lower points is built in an

autoregressive manner, the model of the upper points is the one created during

an initialization phase (a). White dots show the exact detected points on the

boundary along vertical scanlines, to which we robustly fit a line shown in black.

The distribution of the distances from white points to the black line for results

of Fig. 4.4 are shown in Fig. 4.5-(d) and (e) for the 0th order and 1st order

respectively. As can be noticed the distribution peak is less sharp for the 0th

order model than the 1st order. This can hamper the detection of boundaries

when the distributions are similar as shown in Fig. 4.6.

An example of texture segmentation for a piece of texture for which we have

a geometric model is shown in Fig. 4.7. This is a especially difficult case due

to the neighboring texture mixture. Nevertheless, both 0th and 1st order models

detect the boundary of the target object (black lines) accurately by robust fitting

of the polygonal model to the detected changepoints (white dots). However it

was observed that 0th order model is more sensitive to initial conditions and

converges more slowly, which can be explained by the fact that the 0th order

observations carry less information than the 1st order ones and essentially ignore

spatial structure of the texture.

The final example on textures involves the case where there is no a priori

model for the texture on either side and is shown in Fig. 4.8. As can be seen

47

4. LINE SEARCH FOR TEXTURE BOUNDARY

(a)

(b) (c)

Figure 4.4: Brodatz textures results. (a) texture patch used to learn the target

texture model (the dark stripe). This model is used to detect the boundary of

the target texture with another texture. (b) and (c) detected boundary using 0th

and 1st order model respectively. White dots are the detected change point and

the black line is the fitted texture boundary.

the texture boundary can be found without prior model of either of the present

textures successfully using the Markov-based scanline search. The performance

of this technique is also evaluated quantitatively in Chapter 7.

48

4.4 Scanstripes

−20 −15 −10 −5 0 5 10 15
0

200

400

600

800

1000

1200

−10 −8 −6 −4 −2 0 2 4 6
0

500

1000

1500

2000

2500

3000

(a) (b)

Figure 4.5: Analysis of error for results shown in Fig. 4.4: (a) distances from

edge in 0th order model and (b) distances from edge in 1st order model.

(a) (b)

Figure 4.6: In this challenging case of boundary detection between two similar

textures, the results obtained by 0th order model (a) are less precise than the 1st

order one (b). As before, white dots are the detected change point and the black

line is the fitted texture boundary.

4.4 Scanstripes

In this section we investigate aggregation of the information from multiple scan-

lines to improve the probability distribution of texture boundaries. We use a

bundle of neighboring scanlines, that we refer to as scanstripes, in order to better

49

4. LINE SEARCH FOR TEXTURE BOUNDARY

(a)

(b) (c)

Figure 4.7: Segmentation of a polygonal patch. (a) Initialization: texture patch

used to learn the target texture model (the dark region). This model is used to

detect the boundary of the target texture with another texture. (b) and (c) show

the boundaries detected using 0th and 1st Markov model respectively. 0th order

model is more sensitive to the initial conditions. As before, white dots are the

detected change point and the black line is the fitted texture boundary.

estimate the transition matrices.

Scanstripes are a set of parallel scanlines that are scanned simultaneously to

count the number of pixel occurrences of a substring Si
i−1 in the scanstripe in two

perpendicular directions. This improves the estimation of scanline probabilities

by basing the estimation on more observations using the neighboring lines around

each scanline. In general this results in earlier convergence of the transition

matrix.

One might be tempted to use two transition matrices to represent the pixel

joint probabilities in two orthogonal directions, one parallel to the scanline, and

one normal to it. Although this might seem to be the right choice in the case of

non-isotropic textures, it has the disadvantage of doubling the number of param-

50

4.4 Scanstripes

Figure 4.8: Texture boundary detection with no a priori model assumption.

eters used to model the texture. Moreover, in the case for tracking, the initial

guess allows rectification of the texture orientation with respect to scanlines and

therefore the error in the transition matrix due to anisotropy of texture and

changes in its orientation is often negligible. Therefore in practice we use only

one transition matrix to keep the number of degrees of freedom small.

To illustrate the effects of scanstripes we have conducted several tests. Fig. 4.9-

(b) shows the individual scanlines texture crossing log probabilities on the test

image shown in Fig. 4.9-(a) as intensities values where white corresponds to the

maximum probability on each scanline and black corresponds to the minimum

probability. This depicts the case where we use only one observation at a time

to update the transition matrix as suggested in Section 4.1. Fig. 4.9-(c) shows

the case where we apply a transition matrix corresponding to the direction par-

allel to the scanstripe as well as another one for the perpendicular direction on

a scanstripe made of five scanlines. Fig. 4.9-(d) shows the case where we use

the parallel and normal transitions to update one single transition matrix on a

scanstripe made of five scanlines. The superiority of scanstripes over scanlines

can be seen in this example where the textures on both sides are quite simi-

lar. The result obtained using scanlines are relatively noisier and it is hardly

possible to distinguish a texture boundary from the probability image whereas

51

4. LINE SEARCH FOR TEXTURE BOUNDARY

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Scanstripe vs. scanline log probabilities for the texture image shown in

(a). Individual scanlines and a single transition matrix (b). Parallel and vertical

transition matrices on scanstripes made of 5 scanlines (c). One single transition

matrix containing both parallel and vertical transitions on scanstripes made of

5 scanlines (d). Finally (e) and (f) show examples the extracted boundaries

obtained using the HMM approach discussed in Section 6.2 on the test image

and in presence of occlusion.

using scanstripes reduces the noise and yields a visible bright boundary (high

probability) in the probability image. The rate of convergence of the transition

matrix is proportional to the minimum scanline (scanstripe) length required for

correct texture boundary estimation. In the above example the convergence of

the transition matrix happens 3 times faster when using 5 scanlines to update

the transition matrix instead of one scanline.

52

4.5 Learning a Target Texture Model

4.5 Learning a Target Texture Model

It is sometimes helpful to learn the transition matrix of a known target a priori

in order to detect its boundary with an arbitrary background. This is particu-

larly useful in tracking or segmentation of complex texture compositions. Un-

fortunately this is not a trivial issue because the initial values of the transition

matrices on both sides of the scanstripes (corresponding to the exterior and in-

terior textures) would no longer be equal. The final changepoint probability in

this case will be biased. If the effects of this bias are too large, they can obscure

the true peaks in the scanline probability curves and therefore push the detected

boundary towards the inside of the learnt target. Moreover, it is useful to measure

the consistency of the learnt texture model and the actual object texture during

tracking. This measure can be used to update the model as the object’s texture

and the scene’s ambiance are evolving. In the following we propose a method to

detect and correct a bad prior model and adaptively update the texture model.

4.5.1 Log Probability and the Entropy of Texture

The log probability curves of a scanstripe have an important mathematical inter-

pretation. We show how this curve relates to the entropy of the texture. This is

an important issue since it can be exploited to distinguish the prior models which

are not in compliance with the current texture and moreover it gives us a dis-

tance measure which can be directly used to update them as discussed in the next

section. First we derive the relationship between the log probability curves and

entropy for the 0th (histogram) and 1st order (transition matrix) texture model,

using the estimated probability of texture symbols using Algorithms 1 and 2.

4.5.1.1 0th Order Model

Imagine that we have C classes in our texture model (bins of intensity histogram

for example). The uniform texture distribution prior implies that the probability

of a given sequence of n pixels drawn from an unknown texture process T is given

53

4. LINE SEARCH FOR TEXTURE BOUNDARY

by:

P (Sn
1) =

Os1

(1+C−1)
×

Os2

(2+C−1)
× · · · × Osn

(n+C−1)

=
QC

i=1 Osi
!

(n+C−1)!
(C−1)!

(4.18)

where Osi
is the number of times a class, to which pixel Si belongs, has

appeared in the sequence Si
1. If n is large enough we have Osi

= npi, with pi

being the probability of class i.

The log probability of this term is therefore:

ln P (Sn
1) =

C∑

i=1

ln(npi)! − ln(n + C − 1)! + ln(C − 1)!

Using the Stirling’s formula, lnx! ≈ x ln x − x + 1, we get:

ln P (Sn
1) =

∑C
i=1(npi ln(npi) − npi + 1)

− (n + C − 1) ln(n + C − 1)
+ n + (C − 1) ln(C − 1) .

Simplifications give:

ln P (Sn
1) = −nH −

(n ln(n+C−1
n

) + (C − 1) ln(n+C−1
C−1

) − C)

= −nH − Ĥ(n) .

Thus:

H = −(ln P (Sn
1) + Ĥ(n))/n (4.19)

with H being the entropy of the texture. Ĥ(n) determines the amount of drift

from the real entropy in the sequence as n changes. The above equation suggests

that the entropy can be derived from the probability of the sequence. Fig. 4.10

shows the deviation of the sequence log probability lnP (Sn
1) from the entropy,

i.e. Ĥ(n)/n vs. n. As can be seen this deviation approaches zero for large n.

While for small sequence lengths it should be taken into consideration.

54

4.5 Learning a Target Texture Model

Devi
ation

 from
 Entr

opy

sequence length

Figure 4.10: Ĥ(n)/n or the deviation of the sequence log probability lnP (Sn
1)

from the entropy for C = 16.

4.5.1.2 1st Order Distribution

The probability of a given sequence drawn from a 1st order Markov texture process

T governed by a transition matrix instead of a histogram can be obtained by

employing Eq. 4.9 and expanding the sequence probability term. This gives:

P (Sn
1) =

∏C
j=1

∏C
i=1(1/C + Oij − 1)!
∏C

j=1 Oj!

The log probability of this probability term is therefore:

ln P (Sn
1) =

C∑

j=1

C∑

i=1

ln(1/C + Oij − 1)! −
C∑

j=1

ln Oj!

where Oij is the number of times symbol j is followed by symbol i in the

sequence of n pixels Sn
1 drawn from a texture. Unlike the 0th order it is not

straight forward to derive a direct formula for the entropy in this case. However,

letting Oij = npjpij and 1/C + Oij − 1 ≈ Oij would make appear the entropy

term. These assumptions are not accurate for small n. Nevertheless, they allow

us to estimate the relationship between the log probability curve and the 1st order

entropy of the texture:

H = −(ln P (Sn
1) + Ĥ)/n

with

Ĥ = C2 − C . (4.20)

55

4. LINE SEARCH FOR TEXTURE BOUNDARY

We can see that unlike the 0th order model, the deviation from the entropy,

Ĥ, does not increase with n which indicates the advantage of using a transition

matrix instead of a histogram.

However, as mentioned earlier the approximation 1/C + Oij − 1 ≈ Oij is not

a good one for small n. Instead, our experiments show that we can approximate

the entropy using the equation:

H ≈ − ln P (Sn
1)/n − 1 (4.21)

for small n and common choices of number of pixel intensity classes C < 20.

4.5.2 Updating the Texture Model

As the tracking goes on the appearance of the learnt texture of the target changes

due to various lighting conditions. Measuring these changes and updating the

learnt model is indispensable for a successful tracking. The predicted position

given by the previous tracking stage allows us to calculate the entropy of the

current target texture as discussed above from the log probability of a sequence

of pixels. A second entropy H̃ can be computed from the sequence by using the

prior texture model, T1: H̃ = − ln P (Sn
1 |T1)/n. The difference H̃ − H is the

same as Kullback-Leibeler divergence of Eq. C.5 and is always a positive value.

The KL Divergence gives a clear measure of how different our calculated model

is from the actual texture process. We can use the KL divergence to mix the

current texture and the learnt model in order to update the model. In that case

we use a filter with a parameter

α = 1 − exp(−
H̃ − H − B

τc

) (4.22)

which depends on the KLD measure. τc is the user-defined time constant that

determines the latency of the filter. In practice we use a small constant B to

compensate the effects of approximations and it is value is determined manually.

We set it to be B ≈ 0.4. The prior model T1 is thus updated with

T ′
1 = α T2 + (1 − α) T1 (4.23)

56

4.6 Summary

0 50 100 150 200
0

0.5

1

1.5

2

sequence length

K
L

 d
iv

er
ge

nc
e

0 50 100 150 200
0

0.5

1

1.5

2

sequence length

K
L

 d
iv

er
ge

nc
e

(a) (b)

Figure 4.11: H̃ − H for the true and a lousy learnt model. (a) 0th order model

using Eq. 4.19 to calculate H, (b) 1st order model using Eq. 4.21 to calculate H.

Red dashed lines are KL divergence of the poor model and the thick solid line is

the KL divergence of the true model.

where T2 is the current texture model. Fig. 4.11 shows the curves of H̃ − H

for the true and a poor learnt model for 20 < n < 200 derived using Eqs. 4.19

and 4.21 for the 0th and 1st order model respectively. We show in Section 8.2.1

that this model update scheme can be used to improve tracking results of objects

with changing appearance due to lighting.

4.6 Summary

Scanline, scanstripes and a novel Markov texture representation are introduces

in this chapter which are used to model the exact conditional probability of tex-

ture transition given a sequence of pixels. Extensive numerical and qualitative

analysis show the effectiveness of this approach in finding the boundaries be-

tween complex patterns and textures. The theoretical validity of the algorithm is

demonstrated using the Bayesian framework and verified through computer sim-

ulations for detection of transitions between binary sequence generator processes.

As a result, an algorithm is proposed which can estimate texture transition prob-

abilities across scanlines with low computational cost that is adapted for real-time

application. Furthermore, the relationship between the texture entropy and the

57

4. LINE SEARCH FOR TEXTURE BOUNDARY

conditional texture transition probability is derived and exploited as a tool for

updating the dynamic prior texture model during tracking to cope with changes

in illumination or object’s appearance adaptively.

58

Chapter 5

Contour Point Classification

The Bayesian formulation presented in Chapter 4 is a novel technique that com-

bines the desirable speed of edge-based line search and the sophistication of Bayes

formulation given a small set of observations. However the tracking paradigm in-

volves situations where the given observations are too few for reliable estimation

of probability of texture change. An example of such a case for human visual

system is illustrated in Fig. A.1 of Appendix A. In this chapter we explore ways

to ensure correct decision making about texture boundaries based on very Small

images patches. This can be achieved by considering a training dataset containing

small patches of blending textures. If the training set contains enough examples

to accurately model texture transitions of interest we can construct a predictor

that can be used for object boundary tracking. The predictor can then be used

on longer scanlines by sliding a small classification window and calculating the

score of how well the image area under the classification window corresponds to

a patch with a texture transition in the middle as illustrated in Fig. 5.1. Further-

more, the training labels and their associated scores are used to obtain a model

of conditional probability of texture transition given the score. The probabilistic

notion allows coalescence for scanline information rigorously to extract object

contours (white curve in Fig. 5.1).

Given the above incentives, we present a novel approach to texture boundary

detection based on supervised learning of texture cuts. We show how trained

classifiers can be used to provide a likelihood measure of texture cut for the

points in the vicinity of a given contour point. Here, the input to each classifier is

59

5. CONTOUR POINT CLASSIFICATION

gives texture transition score for the middle pixel
Scanline

Classification window

Final boundary

Initial guess

Figure 5.1: Contour extraction by classification of texture transition given an

initial curve (dotted curve). Classification score is computed for pixels on scan-

lines (black lines) by sliding a small classification window along them. The score

is then transformed to a probability measure of texture transition that can be

coalesced rigorously to extract object contours (white curve).

a narrow image band and the output of each classifier is a binary decision which

is ’1’ if it determines that there is a texture cut in the middle of the band and ’0’

if otherwise.

We use a set of simple trained classifiers as opposed to a single sophisticated

one due to the fact that complex predictors tend to overfit to training data and

are also hard to compute. Using a set of classifiers is a popular machine learning

technique referred to as ensemble learning. In this chapter we first briefly intro-

duce the ensemble learning principles and two major techniques in this category

namely, Bagging and Boosting. We choose Boosting technique for training of

our classifiers. Each of the final trained classifiers obtained by Boosting method

are associated with a weight. The weight of each such classifier is related to its

total classification error on the training set. In the remainder of this chapter the

details of training dataset and classification features are described and the final

classifier is presented and evaluated.

60

5.1 Ensemble Learning

5.1 Ensemble Learning

The ensemble learning is an alternative method to training a single predictor

from a hypothesis classifier space, in which several simpler classifiers are trained

to make the decision in an aggregated manner. Given the training data set

L = {(x1, y1), . . . , (xN , yN)} where xi ∈ X, yi ∈ Y = {0, 1} a predictor ϕ(x,L) is

trained to predict the label yi of the input vector xi. The optimum predictor is

equal to the unknown function F which relates input vectors and output labels

which are drawn from a (unknown) distribution D. The idea behind learning is

to come up with a predictor that is as close as possible to F. The predictor is

chosen from a hypothesis classifier space H.

The motivation for ensemble learning is two-fold. The first reason is that,

due to the independence of the predictors, decisions based on results of several

predictors are obviously more reliable and moreover and more importantly, the

hypothesis classifier space does not often contain the function F therefore a single

predictor trained on the training dataset L could yield unexpected results on the

test datasets due to overfitting.

There are different widely used techniques to train several sufficiently di-

verse predictors and select an aggregation scheme to produce a valid decision

as an approximation of F. Bagging or Bootstrap AggregatING and its exten-

sion Arcing or Adaptive Reweighting and CombinING have been introduced by

Breiman (Breiman, 1996, 1998). In the rest of this section we briefly introduce

Bagging and Boosting methods. We use the latter to train classifiers for silhouette

detection.

5.1.1 Bagging

The combination of classifiers is particularly useful in case of instability of the

procedure of the hypothesis selection (Breiman, 1996), or the diversity of the

classifiers. The idea of the Bagging method is to ensure diversity by using dif-

ferent subsets of the training set for each classifier. Using different features and

decorrelation of classifiers during training can also help achieve robust and simple

classifiers. At each iteration of the Bagging algorithm, m training samples are

selected at random with replacement. The learning algorithm is then trained on

61

5. CONTOUR POINT CLASSIFICATION

selected examples to generate hypothesis ht. This process is repeated T times

and the final hypothesis is a simple majority vote (denoted by MAJ):

H(x) = MAJ(h1(x), . . . , hT (x)) .

In summary, Bagging reduces classifier variance by improving unstable classifiers

for which small changes in training data leads to significantly different classifiers

and large changes in accuracy. On the other hand the drawback of this method

is that it does not reduce the classifier bias.

5.1.2 Boosting

The Boosting approach has two major differences with respect to Bagging. Firstly,

instead of a random sample of the training data, a weighted sample set is used to

focus learning of most difficult examples and secondly, a weighted voting scheme

is used instead of simple majority vote used in Bagging algorithm. Here we con-

sider only boosting in the form of AdaBoost which was invented by Freund &

Schapire (1996).

Adaboost offers many practical advantages, namely simple and easy to im-

plement with almost no parameters to tune, its theoretically proved efficiency in

case of consistency of existence of rules of thumb and finally possibility to use

and combine many classifiers (or features). Some of the features used in the lit-

erature for training using Adaboost include stumps, decision trees, multi-layer

perceptrons, radial basis function etc. Moreover Adaboost can be regularized to

reduce the effect of outliers. This is done by introducing a notion of memory in

the training so that the penalty terms (weights) for the misclassified samples do

not increase unboundedly (Rätsch et al., 1998).

Based on the above discussion, we choose the Adaboost algorithm for training

of the weak learners for texture boundary classification together with different

features such as mean energy of Fourier coefficients or intensity values as well as

cooccurrence features. The Adaboost algorithm integrates these features into a

single decision making scheme according to their classification performance.

62

5.2 Database

Image patches from random regions of two randomly selected images in an image database

Random boundary used for blending the two parts

Downsampled image gives the database item used for classification

Figure 5.2: The database samples with a texture transition in the middle are

made using blending of random image regions and down sampling.

5.2 Database

We build the training database so that it can detect texture transitions even in

small image patches. This would lead to a probabilistic model that does not need

a large convergence margin as will be discussed later in Chapter 8. Moreover the

processing time of each sample remains considerably small. Our set of training

examples consists of images of size 32 × 8 pixels. The positive examples are

composed of two randomly selected patches of size 128× 32 from random images

collected from the web. These patches are concatenated to each other to form an

image of size 256 × 32 with a texture transition in the middle. To produce more

realistic texture transitions, the concatenation is done by stochastic blending of

the connecting ends of the two patches as illustrated in Fig. 5.2. Finally the

results are downsampled to give 32 × 8 images with a smooth texture transition

in the middle. The negative samples contain only one downsampled randomly

selected image region. Examples of both positive and negative samples are shown

in Fig. 5.3.

5.3 Classifiers

As mentioned earlier the boosting technique has the advantage of offering the

possibility to use and combine many features to find weak learners. Three types of

features are discussed and used in our weak learners. Namely, we compare mean

63

5. CONTOUR POINT CLASSIFICATION

(a) positive sample (b) negative sample

Figure 5.3: Examples of (a) positive, and (b) negative training samples used to

classify texture cut in the middle of the test image. The database items are 32×8

pixels long.

intensity or frequency coefficients at different size-varying regions or frequency

bands on two sides on an image in order to decide whether there is a texture

transition in the middle or not. Another type of feature used to distinguish

images with varying patterns is comparison of cooccurrence frequencies of pixel

intensities in two side. These features are described below.

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

m m+g n+hn

...

(a) (b)

Figure 5.4: (a) Intensity and FFT feature parameters defined on the images. (b)

Some position operators used to generate cooccurrence features.

5.3.1 Intensity and Frequency Mean Energy

The mean of the different bands on the left and right sides of an image in frequency

or intensity domains provide intuitive basis for classification of database images.

The morphology of each such weak learner using intensity of frequency features

is shown in Fig. 5.4-(a). Therefore, a feature f(s) corresponding to a sequence s

of image pixels can be defined by 4 parameters:

f(s) = fm,g,n,h(s) = 1/(g + 1)

g∑

k=m

Il(k) − 1/(h + 1)
h∑

k=n

Ir(k) (5.1)

64

5.3 Classifiers

where Il and Ir are the intensity values or the magnitude of FFT coefficients of

the left and right pixel sequences of the image respectively. The total number of

intensity and frequency features is 2× [z × (z + 1)/2]2 where z equals half of the

image length in pixels. Thus for a 32-pixel training image database, there are

total of 36, 992 such features.

5.3.2 Cooccurrence Matrix Features

Let M be a n × n matrix whose element M [i][j] is the number of occurrences of

intensity level i in the position specified by a position operator P (i, j) relative to

the gray level j. Dividing M with the total number of point pairs that satisfy

the operator P yields a n × n matrix C which is called the cooccurrence matrix

defined by P . For a given texture, C[i][j], calculated on an image patch, provides

an estimation of the joint probability that a pair of points belonging to that

texture satisfying P will have intensity values i and j.

The position operator P can be defined so as to consider any kind of neigh-

borhood. Some examples are shown in Fig. 5.4-b for a given database patch for

the left image side. These include, for instance, the position where point i is

above j or i is two rows below and five columns to the left of j, etc. During the

training phase we consider all possible occurrences within a given neighborhood

radius, CM . A neighborhood radius CM includes CM × (CM + 1)/2 position

operators (excluding symmetrically identical positions). Moreover, each element

of these n × n operators, n is the number of gray levels, can be associated to

a weak learner. Consequently, similar to intensity and frequency, cooccurrence

features are defined by 4 parameters, i and j gray level indices, and two more pa-

rameters to define the operator P . Cooccurrence measures provide a large source

of CM × (2 ∗CM − 1)× n2 elements for the training of weak learners which will

later be boosted along with other features used. For example CM = 5 will create

11, 520 features.

65

5. CONTOUR POINT CLASSIFICATION

5.4 Training Classifiers

We associate a feature to each classifier and use the Adaboost Algorithm for

training them. At each stage r the trained classifier hr is given a threshold Tr,

a parity Pr and a weight wr, as explained in Section 5.1.2. The output label of

such classifier is then given by

hr(s) =

{
1 if Pr f(s) > Pr Tr

0 otherwise
. (5.2)

The first four trained classifier using intensity and FFT features are shown in

Fig. 5.5. The bars show the indices of pixel on left and right side of a sample

image and whether features are in intensity or FFT domain. The hatched bars

indicate the parity of the classifier (i.e. Pr is −1 in Eq. 5.2 if the hatched bars are

on the left side). We see that the first two classifiers compare intensity values of

the last pixels on the left side with the first pixel on the right side with different

parities. That basically means that the best way to determine whether there is

texture cut in the middle of an image is simply by comparing pixels around the

potential cut position. We speculate that the reason why there is one pixel space

between the indices compared on both sides in the case of the first two classifiers

is that in most edges the two textures tend to blend into each other. The next

two classifiers are in FFT domain and compare different frequency bands of the

two sides of the image.

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

13

... ...
14 0

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

��
��
��
��
��

��
��
��
��
��... ...

14 0

(a) 1st weak learner (b) 2nd weak learner

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

��
��
��
��
��

��
��
��
��
��

... ...
0 3

left
FFT(i)

left
Intensity(i)

right
Intensity(i)

right
FFT(i)

��
��
��
��
��

��
��
��
��
��

... ...
14 0

(c) 3rd weak learner (d) 4th weak learner

Figure 5.5: The first four trained classifiers. The bars show the indices of pixel

on left and right side of a sample image and whether features are in intensity or

FFT domain. The hatched bars indicate the parity of the classifier.

66

5.4 Training Classifiers

A boosted set of classifier with R weak learners then gives a score xi =
∑R

r=1 wr × hr(i) to input sequence s. Once the classifiers have been trained and

boosted using enough training samples, we can check the performance on the

training and test databases for different numbers of weak learners. Fig. 5.6 shows

the error rate of classifications on training and test sets versus the number of weak

learners. The graphs shown correspond to trained classifiers using Adaboost and

regularized Adaboost (Rätsch et al., 1998) techniques.

We see that Adaboost error rate decreases on the training set by employing

more weak learners while it remains constant on the test dataset after about 50

weak learners due to over-fitting. Fig. 5.6 shows that although the over-fitting is

reduced in the case of the training set, no significant improvement is observed on

the test set in the case of regularized Adaboost. Therefore, we use non-regularized

version of Adaboost algorithm to train the weak classifiers.

0 50 100 150 200
rounds

0.1

0.15

0.2

0.25

0.3

0.35

0.4

er
ro

r
ra

te

Regularized Adaboost
Adaboost

0 50 100 150 200
rounds

0.1

0.15

0.2

0.25

0.3

0.35

0.4

er
ro

r
ra

te

Regularized Adaboost
Adaboost

(a) training set (b) test set

Figure 5.6: Classification error rate vs. number of weak learners trained using

2000 positive and 2000 negative samples. Adaboost (thin curve) and regularized

boosting (thick curve) are used for the training of weak learners. (a) is the error

rate on the original training set and (b) is the error rate on a test set of 1000

positive and 1000 negative samples.

Similar evaluations of the performance of the classifier using different feature

sets are shown in Fig. 5.7 It can be seen that the error rate versus the number

of weak learners decreases almost at the same rate on both training and test sets

using (i) only intensity, (ii) intensity and cooccurrence (intensity + CM), and

67

5. CONTOUR POINT CLASSIFICATION

0 10 20 30 40 50 60 70 80 90 100 110
0.1

0.15

0.2

0.25

0.3

0.35

0.4
CM = 5
Intensity
Intensity + CM
Int + FFT + CM

0 10 20 30 40 50 60 70 80 90 100 110
0.1

0.15

0.2

0.25

0.3

0.35

0.4
CM = 5
Intensity
Intensity + CM
Int + FFT + CM

(a) training set (b) test set

Figure 5.7: Classification error rate vs. number of weak learners trained using

different feature sets.

(iii) intensity, cooccurrence and FFT features (Int + CM + FFT). Although

using intensity together with cooccurrence and FFT features offers slight advan-

tage in both training and test error rates, computation of the FFT coefficients is

not efficient for probabilistic measurements where the classification score is cal-

culated under a sliding window along a scanstripe to estimate the probability of

texture cut along the scanstripe as explained later in this chapter. On the other

hand, the slight advantage gained by employing CM and intensity over only in-

tensity features has no computational overload due to simplicity of calculation of

the cooccurrence features (Once trained there is no need to calculate the whole

cooccurrence matrix but only the elements required).

It can also be noted in Fig. 5.7 that using only cooccurrence features is not

enough to learn to classify the training set thoroughly and reduce the error to

zero. However, error is reduced by over 95% of its final value by using less that 20

or 10 first trained weak learners on the training and test sets respectively. This is

interesting and means that we can reduce the computational load by using only

a few weak learners without noticeable increase in error.

68

5.5 Boundary Score vs. Boundary Label

5.5 Boundary Score vs. Boundary Label

The classifier described so far gives a binary decision about existence of boundary

in the middle of a small image patch. The score of the classification carries

supporting information regarding this decision. More specifically, we show how

to use this score to surpass the binary decision making to selecting the best

boundary position in a textured image. To achieve this goal we use a sliding

window over the test image and observe the classification score which corresponds

to the “boundary score” of the pixel in the middle of image region under the

window as it is moved over the image. The maximum score corresponds to the

“best boundary” position.

To study the performance of the classifier in detecting the texture boundary

in an image as explained above, the following simulation was conducted. Fig. 5.8

shows the distribution of error in pixels of the detected texture transition position

from the real texture boundary in 1000 randomly generated images using different

numbers of weak learners. The histograms are obtained using only intensity

features, comparison between boundary histograms using different features is

given in Chapter 7. The images are 256 pixels long and are made by blending two

random textures in the middle, therefore we can assume a texture change in the

middle of them. The sliding window is 32 pixels long which is the same size as

the 4000 used as training examples. The detected boundary corresponds to the

position which maximizes the weighted sum of classifiers response. We can see in

Fig. 5.8 that as the number of weak learners increases, the peak around zero error

gets more prominent and the distribution elsewhere becomes flat. Moreover, it

can be deduced again that a small number of weak learners is enough for reliable

detection.

5.6 Model of the Conditional Probability

To apply this concept to the prototype tracking framework used through out

this thesis, we compute the classifier score using the sliding window along a

search direction (i.e. scanline or scanstripe). For each location of such scanline,

we obtain a response equal to the weighted sum of weak learners as defined in

69

5. CONTOUR POINT CLASSIFICATION

Section 5.4. We propose to combine those responses into a probabilistic model

by first converting them into conditional probabilities as follows.

At a given location, we denote by Y a random variable standing for the

presence of a cut, by S the pixel intensities in the considered neighborhood on

the search direction and by X the weighted sum of weak learners at that location.

The posterior probability of having a texture transition at that location is thus

given by:

P (Y = 1 |S = s) = P (Y = 1|X = x) =
1

1 + P (X=x |Y =0)
P (X=x |Y =1)

. (5.3)

Under the assumption that X|Y = 0 and X|Y = 1 both follow normal laws of

expectation µ0 and µ1 and of same variance σ, we obtain

P (Y = 1 |S = s) = 1
1+exp{−α (x−β)} (5.4)

with α = (µ1 − µ0)/σ
2 and β = (µ1 + µ0)/2, and µ0, µ1 and σ estimated with

a trivial likelihood maximization. Eq. 5.4 represents the conditional probability

of texture transition as a Sigmoid function with the form shown in Fig. 5.9.

Finally, the weighted sum of weak learners X can be seen as an approximation

of a log-likelihood log P (Y =1|X)
P (Y =0|X)

, similarly to the combination of weak learners in

a naive Bayesian predictor (Langley et al., 1992). Thus, the parameters α and β

stand for a correcting factor for the dependency between weak learners and the

prior log-ratio respectively.

Later we show in Chapter 6 how the object model can be used, in conjunction

with the classifier responses around the object outlines, to robustly find silhouette

for tracking applications.

5.7 Learning Specific Object Boundaries

Training can be concentrated on a single object when the tracking target is known

a priori. In this case the database examples are made using samples of the

silhouette of the target which are collected offline. In this section we describe

a method for construction of the database and discuss some preliminary results.

70

5.7 Learning Specific Object Boundaries

We also compare these results with the case where we use the general database

of Section 5.2 to find object boundaries.

To create the positive examples of the database, the patches from a single or

multiple view of the object are collected along the object boundary. These patches

are then downsampled to create multiple levels of resolution for each patch. An

example of a single frame used to collect patches and rescaled instances of a

single patch are shown in Figs. 5.10 and 5.11. Using multiple scale for each patch

makes the training robust to changes in the scale of the object when it is seen from

different points of view. The collected and rescaled patches are then concatenated

against random patches from arbitrary images to be used for training. Similar to

the general training, the negative training examples are random patches selected

from arbitrary images.

In our preliminary test we trained weak learners composed of intensity and

cooccurrence matrix features on an asymmetric database composed of 3000 multi

scale examples of borders of the magazine shown in Fig. 5.10 as the positive

set and 1000 random patches as the negative set. The training was done using

Adaboost. We then used the trained classifier to track the magazine in a sequence.

The pose is estimated in 3–D using the frame work explained in Section 2.1

while observations are straight line segments returned by the modified RANSAC

approach using the classifier responses as described in Section 6.1.4. The tracking

results are shown using the white wire frame in Fig. 5.12 and demonstrate the

success of the method even in presence of strong motion blur in the sequence.

In Fig. 5.13 we show the results on the same sequence using the classifier

using intensity, Fourier coefficients and cooccurrence matrix elements trained

on the general database of Section 5.2. It can be noticed that the results are

less accurate with respect to the case where the training is concentrated on the

borders of the magazine. In both cases we employ 10 weak learners to calculate

the conditional probability of texture cut.

Finally Fig. 5.14 shows more results obtained using 10 weak learners trained

on the magazine database in presence of clutter and motion blur. The reported

preliminary results show that this method is promising and can be used to learn

the silhouettes of specific objects.

71

5. CONTOUR POINT CLASSIFICATION

5.8 Summary

We have reviewed two ensemble learning techniques and compared their advan-

tages and drawbacks. Boosting using Adaboost offers versatility and robustness

and assures fast convergence and is therefore apt for training weak hypotheses for

texture boundary estimation. Adaboost has been employed to train weak learn-

ers to classify image patches into those with a texture transition in the middle

and those without one. The training can be done for general boundary detection

as well as specific object boundary detection simply by changing the positive

training examples to contain samples of the target boundary. The weak learn-

ers compare intensity, Fourier coefficients or cooccurrence matrix features on two

sides of an image patch. Each weak learner is associated with one feature and a

weight determined by Adaboost. The final classifier score is the weighted sum of

the weak learners’ responses. Furthermore, the classification score on the labeled

training set is used to fit a Sigmoid function that measures the probability that

a pixel belongs to the boundary between two regions. This probabilistic model is

essential in robust object outline extraction as discussed in Chapter 6.

72

5.8 Summary

-100 0 100
0

50

100

150

200

250

-100 0 100
0

50

100

150

200

250

1 weak learners 10 weak learners

-100 0 100
0

50

100

150

200

250

-100 0 100
0

50

100

150

200

250

50 weak learners 100 weak learners

Figure 5.8: Histograms of texture transition detection error in pixels on 1000 test

images using different numbers of trained weak learners. The error decreases with

higher number of weak learners.

73

5. CONTOUR POINT CLASSIFICATION

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

α

Figure 5.9: The sigmoid function used to model the conditional probability of

texture cut classification score.

Figure 5.10: Small patches selected from borders of an object in a single frame

are used for training of classifiers on a specific object.

74

5.8 Summary

Figure 5.11: Magnified samples of the border of a magazine. The database for

learning the borders of a specific object is made using small patches selected

from borders of the object in three levels of resolution. These patches are then

concatenated against random backgrounds to form the training data.

Figure 5.12: Tracking in motion blur using a classifier trained using the database

composed of patches selected from Fig. 5.10. The fitted model is shown by the

white wire frame.

75

5. CONTOUR POINT CLASSIFICATION

Figure 5.13: Tracking in motion blur using the classifier trained using a database

composed of general texture boundaries as explained in Section 5.2. The fitted

model is shown by the white wire frame.

Figure 5.14: More tracking results with cluttered background and motion blur

using the classifier trained on the magazine. The fitted model is shown by the

white wire frame.

76

Chapter 6

Imposing Geometric Constraints

In this chapter we show that a rigid geometric model of the object to be tracked or

smoothness constraints in the absence of such a model can be used to coalesce the

scanline or scanstripe texture crossing probabilities obtained using the methods

described in Chapters 4 and 5.

Final boundary

Initial guess

Scanstripes

Figure 6.1: Geometric constraints can be exploited to extract object contours

(white curve) by coalescing texture transition probabilities of scanlines (black

lines) sampled along the object contour using an initial guess (dotted curve).

We propose efficient ways to aggregate robustly the sparse transition proba-

bilities of scanlines sampled along the hypothesis model contour. As a result we

77

6. IMPOSING GEOMETRIC CONSTRAINTS

obtain the a posteriori distribution of contour paths that separates the textures

in larger regions. This idea is illustrated in Fig. 6.1. Based on the nature of

the available constraints we propose to exploit two different methods to coalesce

robustly the scanline/scanstripe1 probabilities.

6.1 Rigid Constraints

Given a geometric (3–D) model of the object, the probability of a hypothesized

pose can be calculated from the scanstripe probabilities. Therefore we can use a

robust estimator to maximize the pose probability given the scanstripe probabil-

ities.

The RANSAC algorithm introduced by Fischler & Bolles (1981) is a robust

model fitting algorithm. The main advantage of the RANSAC algorithm is its

robustness to outliers in the observed data. It is used in a wide variety of computer

vision applications such as feature matching, registration and detection (Cantzler,

2005) and can provide estimation with a desired probability of correctness given

a large enough number of iterations in presence of significant outliers.

6.1.1 Hypotheses Generation

In the original RANSAC algorithm at each iteration input data samples are drawn

uniformly and at random. The number of samples drawn is taken to be the

minimum needed to compute all model parameters. For example to fit an ellipse

to the data, five points are required to calculate the parameters of the ellipse.

Using more samples is inefficient as it increases the probability of having samples

that do not agree with the true model.

6.1.2 Hypotheses Verification

The degree of compliance of the estimated model parameters with the whole

input data is a measure of quality of the model. This measure is referred to as

the support of the model and usually corresponds to the number of data points

1Without loss of accuracy we use these terms interchangeably.

78

6.1 Rigid Constraints

that agree with the model within a tolerance range. The hypothesis with the

maximum support is then selected at the end of the algorithm as the best model

fit. Commonly the model computed this way is not very precise and is used

as initial value for a gradient descent and least square minimization in order

to obtain accurate model parameters. If the data comes from several discrete

models, RANSAC algorithm can be used iteratively to determine one model at

each time and then compute the next one by removing the data points that agree

with the previous model. The vigor of the algorithm lies in the fact that it is

likely that at least one set of data samples concurs with the true model and thus

derive a correct model.

6.1.3 Algorithm Enhancement

Several crafts can be solicited to improve the efficiency of the algorithm. The size

of the data inputs and the probability of having a correct model are the main

factors of its speed. The higher the required confidence in the model parameters

the more the number of iterations required for convergence. As a matter of fact,

it can be shown that given a failure probability, Pfail, and the probability that a

randomly selected data item is part of the good model, Pg, the required number

of iterations is determined by

L =
log(Pfail)

log(1 − (Pg)N)
.

The effects of the second factor, the input data set size, can be controlled by

measuring the support of each hypothesis on a random subset of the database first

in order to filter out the models that are far from accurate. Speed of convergence

can also be improved by smart selection of samples that are used in hypotheses

generation. Since outliers in general follow uniform distribution, whereas inliers

are often clustered, it is sometimes helpful to select uniformly a few samples and

then select the rest by drawing from their neighborhood. As another alternative,

the uniform draw of samples can also be replaced by a prior distribution on the

database points. This would privilege drawing samples which are more likely to

belong to the model and therefore reach faster convergence.

79

6. IMPOSING GEOMETRIC CONSTRAINTS

In the problem of fitting the projection of a geometrically well-defined model to

the scanstripe probabilities, the enhanced RANSAC algorithm described above

can be efficiently used with scanstripe texture transition probabilities as prior

distribution. This idea is discussed in detail below.

6.1.4 Robust Model Fitting to Scanstripes

Figure 6.2: RANSAC fitting of the model. Some drawn hypotheses for the sail

pose are shown. Some illustrative scanstripe probabilities which are used to

calculate the support of each hypothesis are also depicted in black.

The conditional probability of texture change along scanstripes can be used as

prior to draw sample points to which we can fit the projection of the 3–D model.

This is illustrated in Fig. 6.2 where a polygonal model is used for tracking the sail

of the boat. However, it is not trivial to procure model pose parameters using the

samples point. This is due to the fact that establishing correspondences between

sampled image points and 3–D points on the model and the pose parameters

80

6.2 Smoothness Constraint

involves solving an under-determined nonlinear system of equations to find the

pose parameters. Solving this system requires introducing boundary limits of the

model edges which leaves it nonetheless a perplexing problem which depends on

the geometry of the subject.

As an alternative, we can draw observations for each model edge separately

using the modified RANSAC method as illustrated in Fig. 6.3. At each iteration

of the modified RANSAC algorithm, first, two scanstripes are selected randomly

with uniform probability. Then, two points (shown by circles in Fig. 6.3) are

drawn at random to generate a hypothesis for an edge of the model. The support

of each line is then calculated by summing the scanline probabilities of the point

on each hypothesis line. After enough iterations the line with the highest support

is chosen as the observation (the thick line in Fig. 6.3). Pose parameters are then

taken to be those that minimize the distance of the model’s projection to the

selected lines.

Figure 6.3: RANSAC fitting of the model. Observation generation and calculation

of the RANSAC support.

6.2 Smoothness Constraint

When a geometric model is not available or is too complex to deal with, robust

stochastic search for the optimum model parameters is not trivial. In this case we

81

6. IMPOSING GEOMETRIC CONSTRAINTS

present a Hidden Markov Model (HMM) to relate the responses of the classifier

along different lines orthogonal to the candidate edge. This is for example the

case when the model does not consist of straight or geometrically well defined

edges.

6.2.1 Definition of Hidden Markov Model

The Hidden Markov Model consists of a finite set of states and their associated

probability distribution. For each particular state, the probability of going to

another state is given by state transition probabilities. The likelihood distribution

of observing an output for each state is also part of the model. Usually only

the output, not the states are observable and therefore states are referred to as

“hidden”; hence the name Hidden Markov Model. The following elements are

needed to define completely a Hidden Markov Model (Warakagoda, 1996):

• The number of states of the model, N and the number of output symbols,

M .

• A likelihood distribution in each of the states.

• A set of state transition probabilities.

• The initial probability of being in each state.

Some hypotheses are often postulated to facilitate model parametrization and

calculations. The assumption of first order Markov process is often associated

with HMMs and implies that the state at time t depends only on the state at

time t − 1. Other important assumption in Hidden Markov models are the as-

sumption of stationary state transition probabilities which states that the transi-

tion probabilities do not change over time and the independence of the observed

output symbols. The last assumption is of limited credibility and might lead to

unexpected prediction errors. In terms of application, HMMs are traditionally

used in dealing with three types of dilemmas.

82

6.2 Smoothness Constraint

1. Decoding problem in which we are looking for the state sequence that maxi-

mizes the joint probability of hidden state and observation sequences, given

the model parameters. This problem is efficiently solved using the Viterbi

algorithm (Forney, 1973) and concerns our application of extracting con-

tours given the search line probabilities as elaborated later in this section.

2. Evaluation problem in which we would like to compute the likelihood of

the observation sequence given the model parameters. This problem is

efficiently solved using the Forward Algorithm by using the definition of

conditional probabilities and by recursion over time (Warakagoda, 1996).

3. Learning problem deals with adjusting model parameters given a model

and a sequence of observations. Baum-Welch Algorithm which is based

on the EM algorithm is utilized to minimize the output estimation error

on the training database (observations) and estimate model parameters

simultaneously (Warakagoda, 1996).

6.2.2 HMM and Smooth Silhouettes

S1

SN

S2

Z i
Z i+1

.

.
.

.

search region

true object contour

hidden state

pixel sequence

Figure 6.4: Definition of the HMM on the conditional probability classifier re-

sponses over a search image.

83

6. IMPOSING GEOMETRIC CONSTRAINTS

When the only constraint at hand on the outline of an object is its smoothness

and continuity a Hidden Markov model can serve best to extract the optimal con-

tour in terms of likelihood and smoothness by combining separate scanstripe/scanline

probabilities. This is the case when a well-defined geometric model of the (track-

ing) target is not available.

(a) (b)

Figure 6.5: Detected boundary on a test image (a) and the corresponding pseudo

color image, (b), showing the HMM probability field on the test image. Red is

the highest and blue is the lowest probability value.

We define a HMM with, as observable state, a set of pixel sequences S =

{Si | i = 1, ..., N} where each sequence Si has M pixels as illustrated in Fig. 6.4.

The HMM is characterized by the visible state Si which is the sequence of pixel

intensities on line i and the hidden state Zi which is the location of the real edge

along the line i. The likelihood distribution in each of the states, P (St |Zt), is

given by individual sequence probabilities of Chapters 4 and 5. The dependency

between successive hidden states, P (Zt+1 |Zt), is modeled by a Gaussian kernel

which ensures connectivity and smoothness of the boundary. A typical Gaussian

kernel that we use, is centered around zero and has a standard deviation of a few

pixels (for example 5). Finally, the initial state distribution P (Z0) is assumed to

be uniform. We wish to maximize the probability of the hidden states for a given

84

6.2 Smoothness Constraint

set of sequences, S:

arg max
z1,...,zN

P (Z1 = z1, ..., ZN = zN |S1, ..., SN) (6.1)

Solving Eq. 6.1 yields the state sequence which corresponds to the most likely

contour in the search line and it can be efficiently done by dynamic programming.

The posterior distribution given by Eq. 6.1 can readily be used to obtain tex-

ture boundaries using the Viterbi algorithm, which provides an efficient way to

extract the highest probability path in the distribution that separates two tex-

tures. This idea is illustrated in Fig. 6.5 where the most probable path obtained

thus is superposed on the test image and the posterior probability of states,

P (Z1 = z1, ..., ZN = zN |S1, ..., SN), is shown in pseudo color (red is the highest

and blue is the lowest value).

Figure 6.6: Halftone image and the detected boundary using the Viterbi algo-

rithm.

The response of the Viterbi algorithm in a particular case of illusory boundary

in a halftone image is also shown in Fig. 6.6. Finally the effects of occluded

85

6. IMPOSING GEOMETRIC CONSTRAINTS

boundary in the resulting detected boundary using the Viterbi algorithm are

shown in Fig. 6.7. These examples show that the Viterbi algorithm and the

presented probabilistic framework can handle robustly the presence of strong

partial occlusion.

Figure 6.7: Texture boundary detection on occluded patterns using HMM.

6.3 Summary

As a conclusion, we can state that scanstripe information can be reliability and

robustly aggregated. While scanstripe probabilities are results of observations

concentrated on local patterns, further linkage is required to enforce constraints

characterized by the nature of the silhouettes of interest. The selection of the

robust linkage using either the HMM or the RANSAC algorithm depends on the

available geometric constraints on the object.

The HMM posterior distribution can be used to extract the most probable

texture boundary efficiently using the Viterbi algorithm in case of tracking de-

formable objects or in cases where smoothness and continuity of the outline is

the natural constraint.

86

6.3 Summary

On the other hand, stochastic robust pose estimation is preferable to find a

pose that maximizes the sum of probabilities of contour points of rigid object with

a geometrically well-defined model. In terms of implementation it is advantageous

to break the model into simple building blocks for which a simpler model and

therefore less parameters are needed to be estimated from data points. Further-

more, scanstripe texture transition probabilities can be used as prior distribution

for hypotheses generation. Drawing hypotheses according the prior distribution

leads to faster convergence towards the most probable observations.

87

6. IMPOSING GEOMETRIC CONSTRAINTS

88

Chapter 7

Evaluation and Comparison

To study the performance of the different methods presented so far, for detec-

tion of transition through different textures, we conducted several qualitative

and quantitative tests. The methods that we are interested in are scanline and

scanstripe boundary detection using the Markov model and Bayesian framework

presented in Chapter 4 and the classifier-based method with different features

introduced in Chapter 5. In addition to these methods we also consider two

other techniques associated with the scanline approach, namely gradient-based

and Fisher’s metric for the purpose of comparison.

Among other quantitative and qualitative test that will be presented in this

chapter, we perform an analysis of the error distribution for each method on

a test set. The test set is built in a way to resemble long random scanstripes

that can be encountered during tracking of arbitrary objects. It consists of 1000

randomly generated images. The images in the test set are 256 × 8 pixels and

are made by blending of two random patches from various images. The blending

is done around the center of the image and therefore we can assume to have a

texture change in the middle. The randomness introduced in creation of the test

set, makes it a challenging testbed which resembles the natural texture mixture

effects as apperceived through images and the eye. some examples of the images

in the test set are shown in Fig. 7.1. Note that other texture cuts can appear in

the stripes.

The results obtained using different methods are represented in terms of his-

tograms of error in pixel from the known texture crossing point in the test set.

89

7. EVALUATION AND COMPARISON

Figure 7.1: Magnified examples of the scanstripes of 256 × 8 pixels used as test

bed for analysis of different methods.

Moreover we provide quantitative measure of performance such as mean error for

each distribution and a distance metric to compare these histograms with the

ground truth distribution. Finally we present illustrated results of the perfor-

mance of each method on the test set and other images and also compare the

performance of each method in terms of computation time.

7.1 Markov Texture Model

First we consider the transition matrix model representation of texture which

is based on a 1st order Markov sequence model as described in Chapter 4. We

use and compare scanline method of Section 4.1.2 as well as scanstripe technique

described in Section 4.4.

7.1.1 Scanline

The algorithm described in Section 4.1.2 is used with horizontal scanlines to

detect the texture crossing position on the test images. Since we can have several

scanlines per image, we take the median of the responses of all scanlines as the

90

7.1 Markov Texture Model

texture boundary for each image. Examples of the texture cut positions are

shown in Fig. 7.2 for six randomly selected images of the test set. As can be seen,

the scanline method performs well and can detect complex texture transitions

however it has some difficulty in finding smooth transitions such as the one shown

in Fig. 7.2 bottom left and right.

Figure 7.2: Examples of test set images and the detected texture cut positions

using scanlines.

Histogram of error of the detected boundary position on the test set images

is shown in Fig. 7.4-(a). As could be expected, the error distribution is normal

and centered around 0.

Figure 7.3: Examples of test set images and the detected texture cut positions

using scanstripes.

7.1.2 Scanstripe

In Fig. 7.3 we show the detected boundary using a single scanstripe as described

in Section 4.4 per image on the same samples of the test set as for the previous

part. The error histogram for this method is shown in Fig. 7.4-(b). As can be seen

in Fig. 7.4-(b) the error variance is considerably less than what we observed when

using scanlines only. Scanstripe cuts shown in the set of examples of Fig. 7.3 are

similar but slightly more accurate than those found using scanlines, nevertheless

91

7. EVALUATION AND COMPARISON

the problem in finding smooth transition in Fig. 7.3 bottom left persists although

the correct cut position is found for the bottom right image. Also in the bottom

middle image, the boundary has been taken to be the middle of the narrow band

in the middle of the image. This result can be interpreted as a compromise

between the two strong boundaries on both sides of the detected one.

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

(a) (b)

Figure 7.4: Error histogram for Markov texture model using (a) scanline and (b)

scanstripes.

7.2 Classification

The classification method for texture boundary detection as described in Chap-

ter 5 is also evaluated on the test set. We use a 32-pixel long sliding window,

which has the same size of images used for training of the classifiers, on the 256×8

images of the test set to obtain a classification score as illustrated in Fig. 5.1.

The detected boundary position corresponds to the position which maximizes the

weighted sum of classifier’s responses to the subimage under the sliding window.

We analyze different features introduced in Chapter 5 for a classifier with differ-

ent number of weak learners, namely, 10, 50 or 100. In the following, we evaluate

different features described in Section 5.3 and combinations of them on the test

set. Similar to the reported histograms in Chapter 5, we start the evaluation

92

7.2 Classification

by classification using only intensity features as shown in Fig. 7.5 for different

number of weak learners.

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

(a) (b) (c)

Figure 7.5: Error histogram for classification using intensity features (a) 10 weak

learners (b) 50 weak learners and (c) 100 weak learners.

Similarly, using trained classifiers made of cooccurrence matrix features to

classify the test set results in the error histograms shown in Fig. 7.6. Here we

consider the maximum cooccurrence neighborhood size, denoted by CM, or the

maximum radius of the position operator of cooccurrence matrices, to be 5 pixels.

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

10 weak learners 50 weak learners 100 weak learners

Figure 7.6: Error histogram for classification using cooccurrence matrix features

with varying number of weak learners. The neighborhood radius used is 5 pixels

(CM = 5).

The results obtained by combination of features are shown in Fig. 7.7 for

intensity and cooccurrence matrix features with neighborhood of size 5 and in

93

7. EVALUATION AND COMPARISON

Fig. 7.8 for intensity, cooccurrence matrix features with neighborhood of size 5

and Fourier transform coefficients.

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

(a) (b) (c)

Figure 7.7: Error histogram for classification using intensity and cooccurrence

matrix features using (a) 10 weak learners (b) 50 weak learners and (c) 100 weak

learners.

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

(a) (b) (c)

Figure 7.8: Error histogram for classification using intensity, cooccurrence matrix

and Fourier transform coefficients features using (a) 10 weak learners (b) 50 weak

learners and (c) 100 weak learners.

In general, it can be seen that as the number of weak learners increases,

the peak around zero error gets more prominent and the distribution elsewhere

becomes flat. Moreover, it can be noted that a small number of weak learners

is enough for an acceptably high chance of correct detection. Therefore, a small

number of weak learners (< 10) with a probability of success as high as 70

percent in conjunction with a robust method of contour extraction, as described

in Chapter 6, is usually enough for most applications. Visual inspection of the

94

7.3 Gaussian Texture Model

histograms further reveals that the best results are obtained by combination of

different types of features. On the other hand Fourier transform coefficients do not

hand over remarkable improvements to compensate for their heavy computational

cost.

For the purpose of illustration the cut positions on the same set of examples

as before obtained using the combination of intensity and cooccurrence matrix

features are shown in Figs. 7.9, 7.10 and 7.11 using 10, 50 and 100 weak learners

respectively. Some cuts for the examples shown are placed in unexpected posi-

tioned by classifiers. This effect is speculated to be due to some training dataset

examples which might resemble the pattern that has been selected for a cut.

Figure 7.9: Examples of test set images and the detected texture cut positions

using the classifier with 10 weak learners.

Figure 7.10: Examples of test set images and the detected texture cut positions

using the classifier with 50 weak learners.

7.3 Gaussian Texture Model

Fisher’s linear discriminant function provides a linearly optimal decision bound-

ary for two classes that simultaneously maximizes the between class variance

while minimizing the within class variance of intensity values thus detecting a

95

7. EVALUATION AND COMPARISON

Figure 7.11: Examples of test set images and the detected texture cut positions

using the classifier with 100 weak learners.

transition between patterns or classes. It can be shown that Fisher’s function is

equivalent to the Bayesian solution if the two classes have normal distributions

with equal covariance matrix. We can therefore assume normal distribution for

textures on both sides of a texture cut and measure the Fisher’s score given by

Eq. C.1. The best texture cut position according to Fisher’s metric is then the

position for which the Fisher’s score is maximum. Furthermore we can normal-

ize this score in order to obtain a distribution which can be used in conjunction

with the Viterbi algorithm in order to extract the maximum a posteriori path

separating two textures through out a search region. The histogram of error on

the test set along with some example of the detected cut positions are shown in

Figs. 7.12 and 7.13 respectively. It can be seen that error distribution has two

peaks at the extremities of the histogram. This error accumulation is due to the

premature convergence of the Gaussian model on one side of the scanline which

can produce wrong local maxima. This means that the Fisher’s metric requires

a longer margin for convergence with respect to other techniques.

The results obtained using Fisher’s discriminant are reliable as long as the

assumption of Gaussian distribution for the two textures is not violated as shown

in Fig. 7.13. This is further illustrated in Fig. 7.14 where the normal distribution

yields a good relative approximation of the textures on both side of the detected

boundaries. In Fig. 7.14-left, the texture of the grass can be well approximated

with a normal distribution. Moreover, in the right hand side case, the stripes

of the zebra are almost parallel to the search direction and thus follow normal

distribution (corresponding to white or black stripes).

On the other hand presence of non-Gaussian patterns or textures causes the

Fisher classifier to fail as shown in the two examples of Fig. 7.15. In Fig. 7.15-

96

7.3 Gaussian Texture Model

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

Figure 7.12: Error histogram for Fisher’s discriminant metric.

Figure 7.13: Examples of test set images and the detected texture cut positions

using Fisher’s discriminant metric.

(a) the border between the farthest zebra and the grass is misdetected due to

the stripes of the zebra while in (b) the algorithm fails to correctly detect the

boundary between the two zebras. These results are obtained using Fisher’s

metric and the Viterbi algorithm and reveal the limits of the Gaussian texture

model assumption of the Fisher’s metric method.

For the purpose of comparison. We apply the Markov texture model and

scanstripes method on the boundary of the two zebras for which the Fisher’s

metric had difficulties as shown in Fig. 7.15-(b). The results are shown in Fig. 7.16

and demonstrate the capability of the Markov model method to detect boundaries

of similar textures. In Fig. 7.16-(a) the detected boundary points on individual

scanlines are shown while the final boundary obtained by the Viterbi algorithm

is shown in Fig. 7.16-(b).

97

7. EVALUATION AND COMPARISON

Figure 7.14: Fisher’s discriminant-based classification for texture boundary de-

tection.

7.4 Probabilistic Gradient Edge Detection

For the purpose of exhaustivity of analysis we consider also simple gradient mea-

sure as a technique to find the texture crossings. We refer to this method as

probabilistic gradient measure because we associate a probability of texture tran-

sition at each pixel which is exponentially related to the unidirectional gradient

value at that point. We then normalize all the values of exponents so that the val-

ues sum to one on the image, therefore yielding a normalized distribution, which

is useful when combined with robust techniques of Chapter 6. The histogram of

the error on the test set for this technique is shown in Fig. 7.17 and examples of

cut positions are shown in Fig. 7.18. The asymmetry observed in the histogram

shape is conjectured to be specific to the database samples which occur to contain

stronger edges in their left side. Based on these observations it can be discerned

that although the histogram is well centered around zero error and the method

is simple and fast, the results are not reliable for random textures and patterns.

7.5 Tracking Performance

For the tracking applications, we tried different texture boundary detection meth-

ods in a unique tracking systems. The methods compared are gradient-based

98

7.5 Tracking Performance

(a) (b)

Figure 7.15: Two examples where Fisher’s discriminant-based classification fails

to detect the true texture boundary. In (a) we wish to find the border between

the farthest zebra and the grass while in (b) we are looking for the boundary

between the two zebras.

tracker (Drummond & Cipolla, 2002), Fisher’s metric, classifier- and Markov-

based methods. The texture crossing probabilities obtained are then used with

the RANSAC algorithm for robust tracking as explained in Chapter 6. The results

obtained on a short sequence are shown in Fig. 7.19 and are discussed below.

The gradient-based tracker proposed by Drummond & Cipolla (2002) starts

from the estimated projection of a 3–D object model and performs a line search in

the direction perpendicular to the projected edges to find the boundary location

as explained in Chapter 2. Pose parameters are then taken to be those that

minimize the distance of the model’s projection to those estimated locations.

The corresponding implementation is fast and works well when the target object

stands out clearly against the background. However it tends to fail for textured

objects whose boundaries are hard to detect unambiguously using conventional

gradient-based techniques, as shown in the first row of Fig. 7.19.

Fisher’s discriminant analysis has been used successfully in applications such

as lip tracking (Kaucic & Blake, 1998) in a scanline search framework similar

the one used in this work. However, as can be expected from its definition,

Fisher’s criterion for edge-based tracking works well only when the assumption

of two classes with normal distribution is valid around the object boundary. The

99

7. EVALUATION AND COMPARISON

(a) (b)

Figure 7.16: Boundary detected by Markov model and scanstripes corresponding

to Fig. 7.15-(b). In (a) We use the Markov model technique on independent

scanlines while in (b) we use the scanline results in conjunction with the Viterbi

algorithm to extract a continuous boundary between the zebras.

tracking results are shown in the second row of Fig. 7.19, where some of the

detected edges are drifted from the real ones.

Scanstripe (scanline) Markov texture method is fast and adapted for real-

time tracking. However, correct estimation of texture distribution relies on a

relatively long scanline in order for the transition matrices to converge. The 3rd

row in Fig. 7.19 shows tracking results using this method.

Using the classification technique of texture boundary detection described in

Chapter 5 reduces the length of the search line required to almost half (60 pixels)

and yields good tracking results as shown in the last row of Fig. 7.19.

In another tracking experiment, we compare the results of 3–D tracking of a

chair in a video sequence using the gradient-based method of Section 2.1 and the

Markov model and scanline technique proposed in Section 4.1. The use of the

latter technique improves the tracking results as shown in Fig. 7.20 while keeping

the computational costs almost unchanged (tracking runs at 15 fps).

To further verify the chair tracking quality we plot in Fig. 7.21 the derived

3–D trajectory of the motion of the center of gravity of the model recovered using

the texture-based method. The trajectory is given by the null space of the linear

transformation matrix computed by the tracker at each frame. Since the chair

100

7.6 Quantitative Analysis of the Error Histograms

−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

200

220

Figure 7.17: Error histogram for probabilistic gradient edge detection.

Figure 7.18: Examples of test set images and the detected texture cut positions

using the probabilistic gradient method.

remains on the ground, its true motion is indeed planar. The tracker however

is not equipped with such constraint and works with six degrees of freedom,

three rotations and three translations. The fact that the recovered motion is also

planar is therefore a good indication that the Markov-based 3–D tracking using

silhouette information is accurate.

7.6 Quantitative Analysis of the Error Histograms

In this section we strive to extract useful information from the error histograms

presented earlier in this chapter in order to better understand the characteristics

of different methods of texture boundary detection. Intuitively we start by mea-

suring the absolute value of error on the mean cut position for different methods

as reflected in table 7.6. It can be seen that the gradient-based method has the

101

7. EVALUATION AND COMPARISON

Figure 7.19: Comparison between different contour tracking algorithms. First

row: Tracking results using an edge-based tracker. Second row: Tracking results

using Fisher discriminant function. Third row: Tracking results using Markov

scanstripe texture boundary detection and fourth row: Tracking results using

classifier based method.

biggest mean error of almost 6 times higher than other methods. It can also

be noticed that using fewer weak learners reduced the mean error in classifier-

based detector. Finally scanline method has a lower mean error with respect

to scanstripe version and is second best method in terms of mean error on cut

position.

Although the mean error measure is to some extent demonstrative, it suffers

102

7.6 Quantitative Analysis of the Error Histograms

Markov-base scanline method

(0) (10) (33) (40)

Gradient-based method

(0) (1) (3) (10)

Figure 7.20: Tracking a chair using a simple model made of two perpendicular

planes. Top row: Using the Markov texture model and scanline method, the chair

is properly tracked throughout the sequence. Bottom row: Using a gradient-based

method to detect contours, the tracker starts being imprecise after the 3rd frame

and fails completely thereafter. The numbers shown indicate the frame number.

from loss of large amount of information relative to higher moments contained

in the histogram. Therefore we need to look for a way to measure quantitatively

the similarity of the histograms obtained using different methods with the ground

truth response on test set. The ground truth histogram basically states that all

the 1000 images of the test set have the texture cut in the center of the image

(corresponding to zero error). This is what we investigate next.

7.6.1 Earth Mover’s Distance

A distance measure between two distributions that is a true metric and moreover,

corresponds to human perception is an ideal means of evaluation and analysis of

different methods. While the distance measures discussed in Appendix C are

widely used in specific domains, most of them fail to fulfill the metric and per-

ceptual similarity criteria. For example, KL divergence measures the average

inefficiency of coding one distribution using the other but it considers only cor-

103

7. EVALUATION AND COMPARISON

−50
−40

−30
−20

−10
0

10
20

0

5

10

15

200

220

240

260

280

−50−40−30−20−1001020
0

5

10

15

200

210

220

230

240

250

260

270

0 5 10 15 20 25 30 35 40 45 50
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(a) (b) (c)

Figure 7.21: Plotting the motion of the center of gravity of the chair of Fig. 7.20.

(a) and (b): Top and side views of the plane fitted to the recovered positions of

the center of gravity. (c): Deviations of trajectory points from the plane, which

are very small (all measurements are in mm).

respondences between bins with the same index. This is also true for statistical

measures such as χ2 or Minkowski form distance Ln defined in Appendix C.

On the other hand, cross-bin dissimilarity measures such as quadric form of

Eq. C.6 can be used as metrics but they fail to fulfill the perceptual similarly

criterion (Rubner et al., 2001).

Consequently, we chose the Earth Mover’s Distance (EMD) proposed by Rub-

ner et al. (2001) and defined in Appendix C to measure the dissimilarity between

the presented error histograms and the ground truth. This measure corresponds

to the least amount of work that is needed to transform a given histogram to the

other. The most important advantage of EMD is that it matches perceptual sim-

ilarity better than other distances and it can be made a true metric with a proper

definition of “ground distance” as a metric (Rubner et al., 2001). The EMD mea-

sures with respect to the ground truth for different methods are summarized in

table 7.2.

The results show that adding more weak learners in the classification-based

method reduces the EMD error distance. It can also be noted that in terms of

EMD, the Markov scanline and scanstripe outperform other methods followed

with a considerable gap by other methods including classification-based, Fisher’s

and gradient-based. The relatively high EMD error of classification-based ap-

proach with respect to the Markov methods can be explained by considering the

shape of the histograms obtained using these techniques. The classification-based

104

7.7 Summary

histograms can be approximated with a sharp Gaussian plus a uniform distribu-

tion while the Markov-model-based histograms correspond more to a single nor-

mal distribution. The uniform component of the classification based histograms

is the main reason for their high EMD value. However, in practice a uniform error

distribution can not cause critical problems for boundary detection in presence

of a sharp normal peak, since a robust estimator such as RANSAC efficiently

eliminates the outliers introduced by the uniform law.

7.6.2 Time

Computational load of the discussed method is the last evaluation parameter

that we consider in this chapter. The mean computational time in second for all

presented methods is shown in table 7.6.2. The time given is for processing 1000

image of size 256 × 8 pixels in the test set used to generate the error histogram

presented in this chapter. As explained earlier in this chapter, classification meth-

ods (the first three rows) are based on sliding a window of 32 × 8 pixels on the

image. The scanstripe width equals 8 pixels on the other hand, scanline, Fisher

and gradient methods work on single-pixel-width scanlines and are therefore the

fastest. The overload introduced by scanline and scanstripe method is negligible

compared to classification methods.

7.7 Summary

The performances of the different methods of texture boundary detection have

been analyzed through different qualitative and quantitative assessments. The

error distribution on a test set of 1000 images is obtained using different methods

namely, Fisher’s metric, gradient-based, classification-based, Markov scanline and

Markov scanstripe methods. Markov-based scanstripe results are desirable in

terms of histogram shape. Classifier-based detection using only cooccurrence

matrix features, on the other hand, presents rather poor response with a large

standard deviation. However, by using combined types of features, it can be seen

that as the number of weak learners increases, the peak around zero error gets

more prominent and the distribution elsewhere becomes flat.

105

7. EVALUATION AND COMPARISON

In terms of mean error we also notice that all texture-based methods (that

is excluding gradient-based) provide acceptable error range inferior to 3 pixels

on 250-pixel long images. The similarity of the histograms to the ground truth

histogram is measured using EMD which is a true distance metric. The results

show that scanline and scanstripe outperform other methods in resemblance to the

ground truth error histogram followed, with a considerable gap, by other methods

including classification-based and Fisher’s and gradient-based method. Finally in

terms of computational performance, scanline, Fisher and gradient methods are

fastest and most adapted for real-time applications while the overload introduced

by scanstripe method is negligible compared to classification methods.

106

7.7 Summary

Method and parameters Mean

G 13.620

I + CM , r = 50 2.890

CM = 5 , r = 100 2.570

CM = 3 , r = 100 2.570

CM = 7 , r = 100 2.540

F 2.510

CM = 5 , r = 50 2.490

CM = 3 , r = 50 2.490

CM = 7 , r = 50 2.460

I + CM + FFT , r = 10 2.240

I + CM , r = 100 2.240

Scanstripe TM 2.050

I , r = 50 1.920

I , r = 100 1.740

I + CM + FFT , r = 50 1.670

I , r = 10 1.540

CM = 7 , r = 10 1.480

CM = 5 , r = 10 1.480

CM = 3 , r = 10 1.480

I + CM + FFT , r = 100 1.300

Scanline TM 1.290

I + CM , r = 10 1.120

Table 7.1: The absolute value of error of mean cut position on the test set

using different methods. Abbreviations refer to different methods and features

as follows. TM refers to the Markov texture model method. r is the number of

weak learners used in the classifier-based method. I, CM and FFT are inten-

sity, cooccurrence feature and Fourier coefficients respectively, used as features

associated with weak learners. G indicates probabilistic gradient-based method

and F refers to Fisher’s metric method. when CM is mentioned without a value

the maximum radius used for the position operators of cooccurrence matrices is

5 pixels (CM = 5).

107

7. EVALUATION AND COMPARISON

Method and parameters EMD

CM=7 , r=10 47.611

CM=5 , r=10 47.611

CM=3 , r=10 47.611

CM=7 , r=50 45.015

CM=5 , r=50 45.004

CM=3 , r=50 45.004

CM=7 , r=100 44.915

CM=5 , r=100 44.900

CM=3 , r=100 44.900

I + CM , r=10 44.446

I + CM , r=50 42.341

I , r=10 41.821

I + CM , r=100 41.421

I + CM + FFT , r=10 41.358

G 40.685

F 39.839

I, r=50 37.972

I, r=100 37.663

I + CM + FFT, r=100 37.140

I + CM + FFT, r=50 35.897

Scanstripe TM 23.987

Scanline TM 22.336

Table 7.2: Earth Mover’s Distance between the error histogram of texture cut

detection using different methods and the ground truth. Abbreviations refer to

different methods and features as follows. TM refers to the Markov texture model

method. r is the number of weak learners used in the classifier-based method. I,

CM and FFT are intensity, cooccurrence feature and Fourier coefficients respec-

tively, used as features associated with weak learners. G indicates probabilistic

gradient-based method and F refers to Fisher’s metric method. when CM is

mentioned without a value the maximum radius used for the position operators

of cooccurrence matrices is 5 pixels (CM = 5).

108

7.7 Summary

Method Time (sec.)

I + CM , r = 100 0.498

I + CM , r = 50 0.277

I + CM , r = 10 0.063

Scanstripe TM 0.010

Scanline TM 0.004

F 0.003

G 0.002

Table 7.3: Mean computation time of texture cut detection on the test set using

different methods. Abbreviations refer to different methods and features as fol-

lows. TM refers to the Markov texture model method. r is the number of weak

learners used in the classifier-based method. I, CM and FFT are intensity, cooc-

currence feature and Fourier coefficients respectively, used as features associated

with weak learners. G indicates probabilistic gradient-based method and F refers

to Fisher’s metric method. The maximum radius used for the position operators

of cooccurrence matrices is 5 pixels (CM = 5).

109

7. EVALUATION AND COMPARISON

110

Chapter 8

Results

In this chapter we demonstrate the aptitude of different schemes of texture bound-

ary detection developed thus far. We first consider tracking results obtained solely

through use of Markov model scanline search which has the benefit of being very

fast and adapted for real-time tracking. Next we present tracking and interactive

texture segmentation results achieved by Markov scanstripes and robust bound-

ary reasoning. Finally, examples of tracking of geometric and deformable objects

and interactive texture segmentation employing trained classifiers are apprised.

8.1 Scanline-based Tracking

We consider first the transition matrix model representation of texture based on

a 1st order Markov sequence model as described in Chapter 4 which we refer to

as Markov-based scanline method. The algorithm described in Section 4.1.2 is

used to detect the texture crossing position on scanlines which are perpendicular

to regularly spaced sampled points on the projection of the object model. The

independently detected boundary points are then used to estimate the 3–D model

pose for the current frame.

Figs. 8.1 shows the results of real-time tracking of a diversely textured box

against a cluttered background. The fact that transition matrices of each scanline

are formed according to the pixel sequences that lie beneath them, makes it

possible to deal with the presence of totally different patterns on the target. This

111

8. RESULTS

(5) (36)

(45) (101)

Figure 8.1: Tracking a textured box against a cluttered background. The numbers

show the frame number.

is in contrast to the use of global texture models which fail to finely attain local

characteristics of the texture.

To illustrate the effects of first order statistics of texture in the texture bound-

ary detection method, we consider tracking an object against a background with

similar histograms, where the spatial distribution of intensity values are differ-

ent. Fig. 8.2 shows the tracking of a brightly colored box with dark traces. The

histogram of the color intensity of the box resembles that of the newspapers in

background, however, the alternation of dark to bright pixels and vice versa is

more frequent on the regions corresponding to newspaper. This distinction is

taken into account in the transition matrix since it represents the frequency of

occurrence of different pixel intensities in neighboring pixels. Therefore we expect

to be able to find texture boundaries in those cases which is confirmed by the

observed results.

112

8.1 Scanline-based Tracking

(30) (110)

(190) (260)

Figure 8.2: Tracking a textured box against a cluttered background without

using prior models. The model is materialized by black lines. The numbers show

the frame number. Images and results are courtesy of Tom Drummond, university

of Cambridge.

Finally an O2 computer is tracked and some frame of the results are shown in

Fig. 8.3. The significance of this example is to demonstrate that the transition

matrix model adapts also to objects which lack distinctive texture features.

The implementation used to generate the above results can process up to 120

fps on a 2.6 GHz machine. The tracking speed depends linearly on the number

of samples (scanlines) per visible edge of the model. This low computational cost

potentially allows the tracking of multiple textured and non-textured objects in

parallel using a single PC.

113

8. RESULTS

(1) (12)

(29) (110)

Figure 8.3: Tracking of a non textured O2 computer against a cluttered back-

ground. The numbers show the frame number.

8.1.1 Monocular Body Motion Tracking

Monocular articulated human tracking is challenging because it involves tackling

such difficult issues as ambiguities associated with articulated motion seen from

a single camera, very high dimensional search spaces, partial self-occlusions, and

poor quality of image features in the absence of markers. In this part we present

a multiple cue optimization framework which uses the Markov-based scanline

silhouette extraction method for 3–D human motion tracking.

We start with a system that uses feature points to track and we add to it

contour tracking and ambiguity detection. For the latter we chose a method

similar to the one described in (Shimada et al., 1998) which considers all possible

3–D positions that can generate the same projection. These 3–D positions are

114

8.1 Scanline-based Tracking

mirror images of each other with respect to the image plane and we refer to them

as ”ambiguity conjugates”. In case of ambiguous body motion, i.e. when the

body part is nearly parallel to the image plane, the ambiguity conjugates can be

used as starting guess for nonlinear optimization.

8.1.1.1 Overview of the Tracking System

Given a set of frames, and a reference pose for a single frame, we extract cues

about silhouettes and point correspondences. These cues are used iteratively for

the generated hypotheses along with known joint limits in an optimization frame-

work to estimate the pose for the subsequent frames. This idea is schematically

presented in Fig. 8.4.

Figure 8.4: Overview of the tracking system.

We model each body part in the chain of articulations by a quadric (ellipsoid,

cylinder or truncated cone) represented by a 4 × 4 matrix Q that describes both

115

8. RESULTS

its shape and its position in space, which is a function of body poses defined

in the hypothesis set. Finding the pose in the next frame is then carried out

by minimizing the cost associated to each hypothesis set element. The cost is a

combined energy function consisting of the following terms:

F =
∑

i F
pnt
i +

∑
i F

silh
i

F pnt
i = wpnt

i ‖p̂i − pi‖
2

F silh
i = wsilh

i Dist2
si

(8.1)

We describe these terms in detail below.

Figure 8.5: A set of matched point between two frames.

Regions Inside Target (Term F pnt) Robust image point matching is used

to generate point correspondences which serve as observations for projection er-

ror minimization in the subsequent frames. In order to increase accuracy of the

correspondences, we incorporate affine 2–D image motion estimation for match-

ing in the subsequent frames. The set of matched points is further refined by

robust fundamental matrix computation and enforcement of epipolar geometry

constraints on each body part separately. This provides the first term in the

energy function given by Eq. 8.1, where pi is a matched point in frame t, and p̂i is

the estimated projected point using model pose corresponding to frame t. A set

116

8.1 Scanline-based Tracking

of matched points in two successive frames are shown in Fig. 8.5, where different

colors represent points belonging to different body parts.

Target’s Outline (Term F silh) Given an approximate body pose and cor-

responding model outlines in the image such as those shown in Fig. 8.6 where

an ellipsoid is used to model the arm, the body silhouette points are detected

using the Markov-based scanline method explained in Chapter 4. The silhouette

points are then used to calculate distances Distsi
of the cast ray passing through

a given silhouette image point si = (u′, v′) from the associated quadric Q on the

model in 3–D space. These distances are added to the energy function to be min-

imized. The silhouette terms along with the terms corresponding to the image

point observations are robustly weighted to exclude outliers and normalized to

have balanced impact on the energy function.

Background
Human body

c
d

True Boundary of the human body

pp

P(S |T)
c

scan line

Projected body model outline

P(S |T)
n

c+1 2

11

Figure 8.6: Scanning a line through model sample point p for which a 1st order

statistical model is used to find the texture crossing point c.

Fig. 8.7 shows some detected body outlines obtained from a quadric body

model samples. The search starts from samples on the projected model outline in

the previous position. The computation of the projection of generalized quadrics

is described in Appendix B. This starting point is not necessarily close to the real

outline. This is due to the fact that the model is an approximation of the real

subject and moreover its pose comes from the previous frame. During tracking,

117

8. RESULTS

the statistical model of the texture of the tracked subject is constructed in the

first frame in terms of a transition matrix for each body part. This is done by

manual initialization and considering the pixels under the projection of the body

pose on the corresponding frame. The patches used for this training phase are

shown in Fig. 8.7-(d).

(a) (b)

(c) (d)

Figure 8.7: Examples of the detected silhouette points on the body (a, b, c).

White circles are the detected texture boundaries corresponding to the body

outlines. (d) illustrates the training phase for Markov texture modeling, the

white patches show the areas used to compute the model for each body part.

This is done by rendering the initial pose given by manual initialization and

obtaining the mask of its projection on the corresponding frame.

In practice not all possible joint angle values are acceptable and we constrain

them to remain within an acceptable range. For each such constraint, we add a

penalty term which is nonzero if the parameter goes beyond the limits. Another

118

8.1 Scanline-based Tracking

plausibility factor is the smoothness of motion. Furthermore, we suppose that

the human motion is reasonably steady in a short frame interval. It implies that

body parts do not tend to change direction abruptly. This gives the last term

in the energy function of Eq. 8.1 where θt
i is the joint angle i at frame t. In our

implementation observations from three adjacent frames are used to minimize

this objective function for each hypothesis. The resulting pose are iteratively

used in the same manner throughout the sequence.

Figure 8.8: Several frames of a tracking sequence of 100 frames with the 3–D

model superimposed on corresponding frames.

We consider a sequence of walking toward the camera with considerable change

in target’s dimensions. The motion towards the camera is used due to the fact

that no motion model is assumed to handle occluding body parts. Fig. 8.8 shows

some shots of the original 100 frame sequence with superimposed tracking results.

The results are further verified by resynthesizing the scene as seen by an arbitrary

camera. Fig. 8.9 shows the resynthesized view of the tracking results from frontal

top to let us observe the forward motion of the model towards the camera. We

119

8. RESULTS

Figure 8.9: The resynthesized view of the tracking results shown in Fig. 8.8 seen

from frontal top.

have further tested the accuracy of the results and the validity of the 3–D pose

tracking by augmenting the frames obtained by a second camera that was not

used during tracking as shown in Fig. 8.10. We can see that the virtual logo

on the shirt and the virtual box attached to the hand of the moving person are

placed in the right position in the scene throughout the sequence. Finally for

the purpose of illustration of applicability of our tracking method in Fig. 8.11 we

have applied the recovered motion to a 3–D human animation model.

The second example consists of tracking a person wearing a highly textured

dress. Moreover the background is highly cluttered and contains a moving person.

Fig. 8.12 shows some frames of tracking results with the superposed model.

We also compare the Markov-based algorithm with the gradient-based method.

Fig. 8.13 shows part of the body and the silhouettes extracted using texture-based

(left) and gradient-based (right). This results illustrate the advantage of using

the Markov-based texture boundary detection technique instead of gradient-based

120

8.2 Bayesian Scanstripe Robust Silhouette Extraction

Figure 8.10: The credibility of the results in 3–D space are verified by augmenting

the frames obtained by a second camera that was not used for tracking.

techniques.

8.2 Bayesian Scanstripe Robust Silhouette Ex-

traction

In this section we lay on our experimental results of applying the scanstripe

Markov model of texture cut and the robust texture boundary detection to both

tracking and interactive texture segmentation. The resulting system is obviously

computationally more expensive with respect to the system presented in previous

section which is composed of independent scanlines, however, it has the advantage

of being robust and reliable. Scanstripes cause faster convergence of the texture

transition matrices and consequently require shorter search lines. Furthermore,

robust reasoning restricts the extracted boundary to conform with the object ge-

ometry or outline characteristics such as smoothness. Geometrical constraints are

121

8. RESULTS

Figure 8.11: Walking avatar of the tracked subject.

realized in terms of RANSAC algorithm are illustrated in tracking examples. On

the other hand, smoothness constraints are enforced using the Viterbi algorithm

as shown in the remainder of this section.

8.2.1 Tracking Using RANSAC

Robust scanstripe texture boundary tracking with KL divergence-based update

described in Section 4.5.2 is tested using a video sequence of a shiny magazine

cover. The KLD is used to update the prior texture model in order to cope

with changes in lighting conditions. The magazine reflects light differently as the

camera moves around it. Moreover, there is a high amount of motion blur due to

the motion of the camera and the interlaced images.

In this tracking example, we use the fact that model is made of straight

edges and therefore robustly fit straight lines to the scanstripe change probability

distribution directly using the enhanced RANSAC method explained Section 6.

Moreover, we update the texture model in course of tracking using Eq. 4.23

122

8.2 Bayesian Scanstripe Robust Silhouette Extraction

Figure 8.12: Tracking under extreme conditions. The subject is wearing a highly

textured dress. The background is highly cluttered and contains a moving person.

with the parameter α which depends on the KLD of the prior learnt model and

the current target texture according to Eq. 4.22. Sample frames of the 300-

frame sequence of tracking are shown in Fig. 8.14. The hypothesis line segments

generated by RANSAC algorithm for each edge are shown in red and the white

wire frame shown is the final fitted model position.

On the other hand, if we use a constant (including zero, i.e. no update) value

for α in Eq. 4.23, the tracking fails after a few seconds as shown in Fig. 8.15.

Next, we compare results obtained on the magazine sequence employing other

methods, namely, an edge-based tracker (Drummond & Cipolla, 2002), the tracker

with only scanlines and only scanstripes without robust linkage. Observations

show that the RANSAC linkage of scanstripes with the KLD-based update out-

performs other methods. Moreover the speed of the method remains close to

real-time (6-10 fps on a 2.8 GHz Pentium 4). The edge-based tracker goes astray

by the strong edges in the cover of the magazine as can be seen in Fig. 8.16-(a)

123

8. RESULTS

Figure 8.13: Examples of silhouettes obtained using Markov scanline model (left)

compared with those obtained by a gradient-based method (right).

for the 90th frame. The scanline tracker is also adrifted due to poor estimation of

texture parameters for some edges as shown in Fig. 8.16-(b). Using scanstripes

improves the results (Fig. 8.16-(c)), while RANSAC linkage of scanstripes which

enforces the fact that the searched boundary is composed of straight lines im-

proves the stability of the tracking results as shown in Fig. 8.16-(d)

8.2.2 Delineation Using HMM

Another application of the proposed robust outline detection method is inter-

active texture segmentation. The impulse for this application is the fact that

our developed algorithms take as input an initial estimate of the boundary posi-

tion which defines the samples and the search direction. In the case of tracking

the initial guess comes usually from previous frame. In the case of interactive

segmentation the initial guess is provided by a small gesture of the user.

Fig. 8.17 shows some detected texture boundaries starting from an initial

guess. The user draws a circle or some straight lines which are used to define the

124

8.2 Bayesian Scanstripe Robust Silhouette Extraction

frame # 1 frame # 100

frame # 200 frame # 300

Figure 8.14: Tracking with KLD-based update of the prior model. RANSAC is

used to fit straight lines (shown in red) to the scanstripe probabilities directly

which are then used to calculate the pose of the model (white wire frame).

scanstripe directions. Scanstripe probabilities are then linked using the HMM

described in Section 6. The state transition of the hidden Markov model is rep-

resented by a Gaussian kernel which ensure that boundary points on succeeding

scanstripes are spatially smooth. The optimal boundary is then obtained using

the Viterbi algorithm.

Using a single transition matrix in modeling horizontal and vertical inten-

sity cooccurrences in scanstripes might seem counterfactual as discussed in Sec-

tion 4.4, however, the results on detection of the boundary between two zebras

illustrate that the a single scanstripe transition matrix can handle difficult cases

such as presence of similar non-isotropic textures with a single distinction of being

differently oriented.

To deal with general and complex outlines, a relatively accurate initial guess

125

8. RESULTS

frame # 1 frame # 10

frame # 40 frame # 73

Figure 8.15: Tracking without dynamic texture model update. Tracking is lost

well before 100 frames due to changes in target appearance.

is required. This is due to the effect of the state transition distribution which

assumes a good alignment of scanstripes in a rectified sense using the associated

normal directions. To deal with such cases we can use a spline technique to fit

a smooth curve to a few control points provided by user. Some segmentation

results are shown in Fig. 8.18 where the initial guess in obtained by fitting an

spline curve on a few user-provided points.

8.3 Classification-based Approach

Similar to the scanstripe and scanline tracking scheme, we assume that at each

frame during tracking to have an initial guess for the object silhouette. We con-

sider tracking of deformable and rigid objects. The trained classifier’s conditional

probability model is applied at each model sample point in a directional search

126

8.3 Classification-based Approach

(a) (b)

(c) (d)

Figure 8.16: Frame # 90 for tracking using different methods: (a) edge-based

tracker, (b) scanlines only, (c) scanstripes only, and (d) RANSAC linkage of

scanstripes.

normal to the model edge at that location. Each scanline gives independently the

probability of texture change across it. These probabilities are then aggregated

to yield a probability distribution for the most probable contour, i.e. the object

boundary.

The implementation of the classifier-based system can reach a speed up to 8

fps on a 2.8 GHz Pentium 4. Its speed mainly depends on the number of samples

on the model, length of the pixel sequences on each sample point, and the number

of weak learners used in the conditional probability classifier. According to our

experiments a low number of classifiers (e.g. 4 to 10) depending on the complexity

of the sequence is enough for reliable contour tracking. In the remainder of this

section we provide examples of tracking of rigid and deformable objects as well

as interactive segmentation.

127

8. RESULTS

Figure 8.17: Fast interactive texture segmentation. An initial guess is given by

the user (thin circles or straight lines). The HMM is used to link scanstripes and

the Viterbi algorithm gives the final texture boundary shown as a thick curve.

In the case of the zebras, note that the algorithm finds the boundary between

similar textures of different orientations.

We track a rigid object using the classification-based system and RANSAC

pose optimization which used the available CAD model of the target. Fig. 8.19

shows several frames of the tracking results in presence of clutter on a sequence

of 600 frames with large and fast camera motions.

When the model does not consist of straight or geometrically well defined

edges stochastic search for the optimum model parameters is not trivial. In

this case we apply the HMM with a Gaussian state transition to the classifier’s

responses similar to the scanstripe framework of Section 8.2.2.

The performance of this approach is demonstrated by tracking of the upper

body deformation. In this system, the user defines an initial path by clicking

on some points around the body outline. These points are used to fit a spline

128

8.3 Classification-based Approach

Figure 8.18: More interactive texture segmentation results with initial curve de-

fined by a spline curve. The black curve on white band marks the detected outline

and the thin gray line is the spline curve.

curve which serves as the starting guess for the body outline. The outline is then

obtained using the conditional probability classifier in conjunction with HMM

and it serves as the initial guess for the successive frames. Several frames of the

tracking results are shown in Fig. 8.20.

Provided a 3–D mesh we can use the extracted silhouettes to deform the

mesh to track 3–D deformations using an implicit representation of the mesh (Ilić

& Fua, 2005). Fig. 8.21 shows some frames of the 3–D reconstruction results

obtained by using the extracted 2–D silhouette observations to track 3–D implicit

mesh deformations.

Finally we can use the classifier with a small set of weak learners to perform

interactive texture segmentation. Examples shown in Fig. 8.22 use 4 weak learners

to calculate the conditional texture cut probability. The user provided spline

curve is shown by the thin line and the calculated outline is marked by the thick

curve. In the case of the llama a Gaussian state transition kernel with standard

deviation of 5 pixels is used in the HMM to extract the outline. On the other

hand a uniform state transition probability in neighborhood of 5 pixels is used to

handle great curvatures and distant initial guess in the case of the flower.

129

8. RESULTS

Figure 8.19: Tracking textured object against cluttered background.

8.4 Summary

Some experimental results of tracking and interactive texture segmentation using

our proposed methods are presented in this chapter. Independent Markov model

scanline search has the benefit of being very fast and adapted for real-time track-

ing. However robustness can be achieved by employing scanstripes, classifiers

and object specific constraints in expense of more computational cost which are

nonetheless considerably low with respect to existing texture segmentation meth-

ods. Among other covered results, the advantage of using KLD adaptive prior

model update is also illustrated in a tracking case. Lastly, interactive texture

segmentation results are reported for challenging examples using both methods

of Markov and trained classifier with HMM concluding.

130

8.4 Summary

Figure 8.20: Tracking of deforming body outlines.

Figure 8.21: 3–D Tracking of deforming body outlines.

Figure 8.22: Interactive segmentation using trained classifiers.

131

8. RESULTS

132

Chapter 9

Conclusion

We have presented a novel probabilistic substratum for silhouette detection and

tracking which has the advantage of being fast and robust. While tracking using

gradient-based algorithms are computationally fast and therefore favorable, they

suffer from vulnerabilities due to loss of intensity information. Texture segmenta-

tion techniques and graph cuts on the other hand are computationally expensive

and not adapted to tracking. We have explored two distinct approaches to fast

silhouette extraction for tracking applications which draw together the speed of

gradient-based and the robustness of texture segmentation algorithms.

We have introduced a fast algorithm based on a Markov model that uses a

simple line search to detect the transition from one texture to another that oc-

curs at object boundaries. This algorithm provides the exact solution to Bayesian

estimation of the boundary given a sequence of pixels. Furthermore, direct re-

lationship between the texture entropy and the texture probability given by the

algorithm is derived and exploited to update the dynamic prior texture model

during tracking to cope with changes in illumination or object’s appearance adap-

tively.

For the cases where the given observations are too few for reliable Bayesian

estimation of probability of texture change we have proposed an innovative ma-

chine learning technique to generate a probabilistic texture transition model. The

problem is expressed in terms of classification of a set of images with texture tran-

sitions in the middle. The classification is then handled by a small set of trained

weak learners. The weak learners are associated with different features namely,

133

9. CONCLUSION

mean energy of intensity or Fourier transform coefficients as well as cooccurrence

matrix elements. The total classifier score is a weighted sum of weak learners

responses where training and weights are calculated by the Adaboost algorithm.

In order to estimate the conditional probability of texture cut, given the neigh-

borhood we have developed a normalization scheme which uses the classification

score on the training set to model that probability with a Sigmoid function.

The advantage of using the trained classifier over the Markov Bayesian esti-

mation of texture crossing lies in the fact that training is carried on off-line and

therefore it offers better convergence for complex texture models compared to the

Markov method. Moreover, the classifier-based method is capable of learning a

specific target texture. However it does not include dynamic texture models and

it requires more computational power.

The probabilistic model of texture transition given by the classifier or the

Markov model accommodate a convenient way to incorporate the constraints

associated with the tracked object. These constraints are expressed in terms of a

likelihood distribution given in the vicinity of each contour point, thus allowing

the extraction of the optimum contour for tracking. This is done in two different

fashions depending on the nature of the tracked object:

• HMM. A Hidden Markov Model is defined to calculate the joint law of

local conditional probabilities along the contour which is particularly useful

in case of tracking deformable objects or in cases where smoothness and

continuity of the outline is the natural constraint.

• Stochastic pose estimation in case of rigid objects. Enhanced RANSAC

method is used to find a pose that maximizes the sum of probabilities of

contour points given by the classifier. This method is preferable to find

a pose that maximizes the sum of probabilities of contour points of rigid

objects with geometrically well-defined models. Furthermore, scanstripe

texture transition probabilities can be used as prior distribution for hy-

potheses generation. Drawing hypotheses according the prior distribution

leads to faster convergence towards the most probable observations.

134

The performances of the different methods of texture boundary detection

have been analyzed through various qualitative and quantitative assessments.

The results show that Markov texture model with scanline and scanstripe search

outperform other methods in term of relative similarity to ground truth results

and computational load. We have also demonstrated the effectiveness of tracking

and interactive texture segmentation using our proposed methods. Independent

Markov model scanline search has the benefit of being very fast and adapted

for real-time tracking. However more robustness can be achieved by employing

scanstripes, classifiers and object specific constraints in expense of more com-

putational cost which are nonetheless considerably low with respect to existing

methods.

In short, our approach provides a reliable texture-based alternative to gradient-

based techniques under difficult conditions. It combines the desirable speed of

edge-based line search and the sophistication of Bayesian texture analysis given

a small set of observations. In terms of direction for further improvements and

future work, it would be interesting to examine the ways the classification ap-

proach can be combined with the Markov texture model. It is possible to train

classifiers on scanline probabilities obtained using the proposed Markov model

on a training set. This method has the potential of being fast, stable and robust

using a few observations. The stability is due to the fact that the classification

method is based on a large training set. Moreover this method is fast since the

classifiers are trained over and use the output of Markov scanlines not on images.

Moreover as shown in this thesis, the log of Markov scanline probabilities is re-

lated to texture entropy and therefore this approach has the virtue that classifiers

will be trained to detect changes in texture entropies.

135

9. CONCLUSION

136

Appendix A

Human Perception of Contours

and Texture

In this Appendix we provide a brief study of the human visual perception and how

outline and silhouettes are interpreted and treated by human brain to understand

our surroundings. This study is useful in coming across guidelines in development

of computerized techniques for silhouette detection and tracking.

Understanding how the complex system of visual perception and cortical pro-

cessing leads to identification of 3–D structure of the objects and environment is

an arduous task. According to the studies of the visual systems, various image

primitives and their location within the scene are processed by the visual cortex

and a neural description is produced to represent them. The original retinal im-

age is thus approximated by this description. The details of the visual image are

believed to be processed hierarchically by the neural mechanisms of visual per-

ception (Tse & Hughes, 2004). This processing is carried out at different steps,

the first of which is a filtering that allows extraction of different building blocks,

clusters and primitive features.

Independent modules in the cortical tissues are responsible for extracting and

processing different primitive features from visual information and higher levels

of visual processing combine mixtures of those features into progressively more

complicated structures. This higher level interpretation can identify surfaces and

objects either by their contours and boundaries as perceived by the visual system

137

A. HUMAN PERCEPTION OF CONTOURS AND TEXTURE

Figure A.1: Unless we are given enough observations to build a model of texture

on both side we are not able to visually detect a texture boundary. The edge in

the left image is easy to detect, on the other hand we look only to a small patch

on the edge of the texture we cannot perceive the boundary (right).

or by employing localized spatial frequency filters (Tse & Hughes, 2004). The dis-

cernment of edges and contours by humans is remarkably excellent, provided that

there is a large enough patch of texture on each side available as demonstrated

in Fig. A.1. This observation indicates the underlying fact that a decent texture

boundary detection requires a reliable texture model of the adjacent textures to

enable precise localization of edges.

Low- and high-pass filtering in the early cortical stage can convey informa-

tion about overall image structure and may contribute to certain Gestalt1-like

operations such as grouping, closure and good-continuation. The painting shown

in Fig. A.2 is a good example of perceptional effects of low pass filtering, where,

the blurred version turns into a human skull. On the other hand, it can happen

that the low-spatial frequency information is masked by high spatial frequencies

as shown in the painting of Fig. A.3, which becomes the portrait of Abraham

Lincoln when blurred.

Many of the contour extraction, pattern analysis, segmentation and tracking

1The perceptual process of separating figure and ground to create an overall visual under-

standing of an image.

138

Figure A.2: Visual effect of low-pass filtering. “All is Vanity” by Charles Allen

Gillbert (1873-1929). Is it a young woman at her mirror, or a skull?

methods rely on different cues based on color and texture information. It is there-

fore of great importance to consider the relationship between color and texture

perception in the human visual system. Intuitively, texture analysis methods

work with gray-level images. In addition to simplicity of using intensity values

instead of 3-channel color information, the human visual system also treats color

and texture information separately (Mäenpää, 2003) and color information is not

always necessary for inference of images by brain. Fig. A.4 shows a case where the

only incertitude about the gray-level image (right) is the color of the scene and

all other information about texture of the entities can equally be extracted from

it. Then we can roughly say that color is a complementary source of information

and it acts as a cue for detailed visualization of the image. This hypothesis also

explains the fact that color blind people can still recognize textures of the objects.

Color is apperceived by the brain as a regional property (Wandell, 1995).

therefore the high frequency information of color is not treated by the visual

system. This fact is exploited in fabrication of imaging sensors and image and

video compression techniques. Most CCD sensors have one color receptor (R, G,

139

A. HUMAN PERCEPTION OF CONTOURS AND TEXTURE

Figure A.3: Visual perception influenced by high-pass filtering. “Gala Contem-

plating the Mediterranean Sea” by Salvador Dali (1904-1989). The original paint-

ing (left) seen from a distance of 30 meters turns into a portrait of Abraham

Lincoln (right).

or B) for each pixel and the color is then interpolated between pixels and the

resulting image adequate in terms of human perception.

As further evidence on separation of color and texture information, scientific

research shows that the image signal in the brain is composed of luminance and

chrominance components (Mäenpää, 2003). These signals are treated in different

regions of brain with some secondary interaction (DeValois & DeValois, 1990).

Furthermore, the psychological investigation of Poirson & Wandell (1996) illus-

trate that color and pattern processing occurs separately.

Another study proposed by Mojsilovic et al. (2000) shows that color pattern

is formed through interaction of luminance, chrominance and achromatic signals.

The chrominance and luminance components are treated in early visual cortical

areas while higher levels of image formation are responsible for the processing of

the achromatic signal. The luminance and chrominance generate color informa-

tion while the achromatic signal is used to extract texture. Mojsilovic et al. (2000)

conclude that human perception of patterns is independent of the color informa-

140

Figure A.4: Lack of color information (right) has no effect on visual inference of

texture and patterns.

tion in the image. Therefore it can be stated that human visual perception can

be decomposed into independent dimensions. The major dimensions correspond-

ing to color are overall color and color purity which correspond to representative

and dominant color and level of colorfulness respectively. On the other hand tex-

ture dimensions form a subspace with major dimensions such as “directionality

and orientation”, regularity and placement rules”and “pattern complexity and

heaviness” (Mäenpää, 2003).

Finally, another impressive aspect of our visual system is its capability to con-

struct and complete object contours that are occluded, or even imagine illusory

contours as illustrated in Fig. A.5. This characteristic of the visual system is pro-

duced by the grouping procedure in the early visual cortical areas that compare

contour orientations across the image combined with low- and high-pass filtering

operations (Tse & Hughes, 2004). These observations also suggest that a reliable

object (texture) segmentation algorithm should be able to acquire the fact that

individual objects or a set of similar objects in the world tend to produce image

regions covarying in certain ways.

The completion shape and salience problem addresses the computation of the

shape and relative likelihood of the family of curves that potentially connect a set

of boundary fragments. Stochastic completion fields and a neural model of illusory

contour shape and salience are treated by Williams & Jacobs (1997). They show

that the probability distribution of boundary completion shape can be modeled

141

A. HUMAN PERCEPTION OF CONTOURS AND TEXTURE

Figure A.5: The optical illusion introduced by circles with missing sectors. The

visual system percepts fictitious opaque white shapes in front of circles.

by a Hidden Markov model and a random walk of position and orientation in

image plane.

Figure A.6: Stochastic completion field. Input image(left), potential boundaries

(middle) given by the stochastic completion field. (Right) is the human perception

of the complete image. Image courtesy of Williams & Jacobs (1997).

A stochastic completion field is a parallel distributed representation of the

family of curves that potentially connect two subsets of states, P and Q repre-

senting the beginning and ending points of a set of boundary fragments. The

stochastic completion field provides the probability that a particle, initially in

state (xp, yp, θp), for some p ∈ P , will do a random walk, ruled by the prior on

completion shape, pass through state (xq, yq, φq), for some q ∈ Q, for all values

142

of u, v and φ, this is illustrated in Fig. A.6. The random walk model allows

definition of a Markov process defined on three dimensional state space inspired

by the receptive field of neurons in area V1 of visual cortex and governed by some

equations of motion.

143

A. HUMAN PERCEPTION OF CONTOURS AND TEXTURE

144

Appendix B

Projective Geometry and

Camera Model

In this appendix we review briefly the projective geometry and concepts such as

points, lines, planes, conics and quadrics in two or three dimensions. We also

present the pinhole camera model that is used to represent the image generation

process. We use the projective camera model extensively in the 3–D tracking

framework represented in Section 2.1 as well as 3–D articulated human body

tracking results of Section 8.1.1. The conic formulation and analysis of its different

forms are used in Section 8.1.1 to project body parts represented by generalized

quadrics and resampling of their contours.

B.1 Projective Geometry

In homogeneous coordinate system a point in projective 3–D space, P3, is given

by a 4-vector of coordinates x = [x1 . . . x4]
⊤. If x4 is zero then point is defined

to be at infinity. Two points x and y are equal if for a nonzero scalar λ we

have xi = λyi, for every i (1 ≤ i ≤ 4). This is denoted by x ∼ y. Under

a transformation represented by a matrix H points are transformed linearly:

x 7→ x′ ∼ Hx. Note that matrices H and λH with λ a nonzero scalar represent

the same transformation.

In projective 3–D space P3 a point M = [X Y Z W]⊤ is located on a plane Π,

145

B. PROJECTIVE GEOMETRY AND CAMERA MODEL

which is also represented by a 4-vector, if and only if

Π⊤M = 0 . (B.1)

Therefore, in P3 planes are the dual entities of points.

On the other hand, in the projective plane P2 a point m = [x y w]⊤ is located

on a line l, which is also represented by a 3-vector, if and only if

l⊤m = 0 . (B.2)

Therefore a line is the dual of a point in 2–D projective plane. A line l passing

through two points m1 and m2 is given by their vector product m1 × m2:

l ∼ [m1]×m2 with [m1]× =

0 w1 −y1

−w1 0 x1

y1 −x1 0

 . (B.3)

The duality of lines and points implies that the intersection of two lines is

obtained through vector product of two lines.

B.2 Transformations

Linear transformations are represented by a matrix T . Under such a transforma-

tion a point is transformed as follows:

m 7→ m′ ∼ Tm . (B.4)

The point transformation T transforms the planes in 3–D space P3 in the

following manner:

M 7→ M′ ∼ TM (B.5)

Π 7→ Π′ ∼ T−⊤Π (B.6)

146

B.3 Camera Model

c

m

Optical Axis

f

R

M

C

Figure B.1: Perspective projection principles.

B.3 Camera Model

The perspective camera model can be represented by an ideal pinhole camera.

The geometric process for image formation in a pinhole camera is illustrated

in Fig. B.1. The process is completely determined by choosing a perspective

projection center and a retinal or image plane. The projection of a scene point

is then obtained as the intersection of a line passing through this point and the

center of projection C with the retinal plane R.

The optical axis passes through the center of projection C and is orthogonal

to the retinal plane R. It’s intersection with the retinal plane is defined as the

principal point c.

147

B. PROJECTIVE GEOMETRY AND CAMERA MODEL

B.4 The Projection Matrix

The image of a world point on a pinhole camera is obtained through the following

expression:

x
y
1

 ∼

fx s cx

0 fy cy

0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

[

R⊤ −R⊤t

0T
3 1

]

X
Y
Z
1

 , (B.7)

with fx, fy being the focal length in x and y directions and (cx, cy) the coordinates

of the principal point c and with a specific position and orientation defined by R

and t respectively.

Eq. B.7 can be simplified to

m ∼ K
[
R⊤ -R⊤t

]
M (B.8)

or even

m ∼ PM . (B.9)

The 3 × 4 matrix P is called the camera projection matrix.

B.5 Projection of a Quadric

A quadratic surface can be represented by a 4×4 matrix Q which can be decom-

posed to the product of matrices containing shape and position and orientation

parameters:

Q = A⊤Q′A (B.10)

with A = [R | t] is the transformation from world coordinate system to the

canonical reference system of the quadric and

Q′ =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 −1

 (B.11)

contains the shape parameters of the quadric. Given a projection matrix of the

form M, an image point p = [u v 1]′ defines a line of sight l 7→ λm̃p + O

148

B.5 Projection of a Quadric

in 3–D space, where O is the optical center of the camera and m̃ is the inverse

of the 3× 3 leftmost submatrix of M. Therefore, the trajectory of the projection

of the tangent line to the quadric, i.e. the outline of the quadric, is obtained by

calculating the double root of quadratic equation given by the intersection of the

ray l and the quadric. Mathematically speaking, a 3–D point P = λm̃p + O on

the ray l is on the quadric Q if and only if P⊤QP = 0.

This implies a quadratic equation in λ which is parametrized by u and v.

Forcing this equation to have a double root will yield the equation of the conic

which is the trajectory of the projection of the silhouette on the image plane.

The conic curve is in the form of general bivariate quadratic curve and it can be

written as

au2 + 2buv + cv2 + 2du + 2fv + g = 0 (B.12)

This equation can be written in homogeneous system as:

pCp⊤ = 0 (B.13)

with

C =

a b d
b c f
d f g

 . (B.14)

The conics can be classified into the several curves by defining the following

quantities:

∆ =

∣∣∣∣∣∣

a b d
b c f
d f g

∣∣∣∣∣∣

J =

∣∣∣∣
a b
b c

∣∣∣∣

I = a + c

K =

∣∣∣∣
a d
d g

∣∣∣∣ +

∣∣∣∣
c f
f g

∣∣∣∣ .

(B.15)

Using these parameters we can classify the conic curve into the following

categories1:

1source: www.mathworld.com

149

http://mathworld.wolfram.com/QuadraticCurve.html

B. PROJECTIVE GEOMETRY AND CAMERA MODEL

curve ∆ J ∆/I K
coincident lines 0 0 0
ellipse (imaginary) 6= 0 > 0 > 0
ellipse (real) 6= 0 > 0 < 0
hyperbola 6= 0 < 0
intersecting lines (imaginary) 0 > 0
intersecting lines (real) 0 < 0
parabola 6= 0 0
parallel lines (imaginary) 0 0 > 0
parallel lines (real) 0 0 < 0

In the case of real intersecting lines (e.g. projection of truncated cones) the

equation of these lines are obtained by eigenvalue decomposition of the conic

C = UDU⊤ where U = [V1
⊤V2

⊤V3
⊤] is the matrix of eigenvectors Vi

⊤ and

D is a diagonal matrix containing the eigenvalues of C. After some manipulation

the conic equation of Eq. B.13 yields the following.

[(V1
⊤ +

√
−

λ1

λ2

V2
⊤) · X][(V1

⊤ −

√
−

λ1

λ2

V2
⊤) · X] = 0 (B.16)

where λ1 and λ2 are the nonzero eigenvalues associated with V1 and V2. Eq. B.16

gives the equations of the lines that are the projection of the outlines of the

truncated cone.

In the case of projection of a cylinder, its outline is given by the two eigen-

vectors associated with the nonzero eigenvalues.

150

Appendix C

The Distance Between

Distributions

Measuring the difference between two textures on two sides of a potential bound-

ary is a reliable tool to verify and analyze the quality of the boundary. We use

this tool to evaluate different methods of texture transition detection in Chap-

ter 7 and to adaptively update the texture model of the object to be tracked in

Section 4.5. Different metrics are available in literature for non parametric and

parametric texture representations. A survey of dissimilarity distances and their

characteristics can be found in Rubner et al. (2001). The distance between two

texture representations can be categorized in measures for parametric and non

parametric models of textures. In this section we introduce some of these mea-

sures that we use and refer to in this thesis. We also provide illustrative examples

of how distance between two distributions can be used to express the quality of

a boundary between image regions.

C.1 Parametric Approaches:

Here we consider the simple Gaussian model for the two distributions K1(µ1, σ1)

and K2(µ2, σ2). Where µ1 and µ2 are means and σ1 and σ2 are standard deviations

of the two distributions. Among these methods we mention only Fisher’s metric

151

C. THE DISTANCE BETWEEN DISTRIBUTIONS

in this category which is defined as

D(K1, K2) =
(µ1 − µ2)

2

σ2
1 + σ2

2

(C.1)

and measures the intraclass coherency and interclass separation at the same time.

C.2 Non Parametric Measures:

Non parametric models for the texture are expressed in terms of histograms. In

the following definitions, the histogram entry K(n; Ti) corresponds to the number

of pixels in bin n in image patch or distribution Ti. Some of the dissimilarity

measures for histograms are the following.

• Minkowski-form distance is defined based on the Lp norm:

D(K1, K2) = (
∑

n |K1(n; T1) − K2(n; T2)|
p)

1/p
(C.2)

where K1(n; T1) and K2(n; T2) are two distributions and 1 ≤ p ≤ ∞. L1

computes the city block or Manhattan distance, L2 is the Euclidean distance

and finally L∞ measures the maximal difference.

• Bhattacharyya distance measures the statistical separability of classes, lead-

ing to an estimate of the probability of correct classification. For two given

distributions K1(n; T1) and K2(n; T2) this distance is given by:

d(K1, K2) =

(
1 −

N∑

n=1

√
K1(n; T1) ∗ K2(n; T2)

)1/2

. (C.3)

The Bhattacharyya distance provides a measure of pattern similarity using

the correlation between the bin contents. This implies that empty bins do

not contribute to the distance.

• The χ2 statistic measures the likeliness of one distribution being drawn from

another one and is given by:

D(K1, K2) =
∑

n

(K1(n; T1) − K(n))2

K(n)
(C.4)

152

C.2 Non Parametric Measures:

where K(n) = [K1(n; T1) + K2(n; T2)]/2 is the mean histogram. The main

disadvantage of χ2 distance is that it yields inaccurate results with low

number of observations. Moreover no bin in the histograms can have zero

counts.

• The Kullback-Leibler divergence (KLD) or relative entropy is a quantity

which measures the difference between two probability distributions. It is

expressed as:

L = −

∫
p(x) ln

p̃(x)

p(x)
dx (C.5)

it can be shown that L ≥ 0. For two discrete distribution the integration

becomes a summation over the bins of K1(n; T1) and K2(n; T2).

• The Quadric Form (QF). The histogram quadratic distance is designed to

measure the weighted similarity between histograms Niblack et al. (1993).

The quadratic distance provides better results than “like-bin” only com-

parisons at the price of high computational costs. The quadratic distance

between histograms and is given by:

D(K1, K2) =
[
(K1(n; T1) − K2(n; T2))

t A (K1(n; T1) − K2(n; T2))
]1/2

(C.6)

where A = [aij] is a N × N matrix and aij is the similarity coefficient

between indices (bins) i and j. aij is given by aij = 1 − dij/dmax and

dij = |K1(i; T1) − K2(j; T2)| and denotes the similarity between bins i and

j.

• The Earth Mover’s Distance (EMD): This distance considers each value of

one distribution as a quantity to be moved (earth) to the other distribution

(holes). The EMD is thus defined as the minimum cost of transferring one

distribution to another one. The computation of EMD comes from a well-

known transportation problem (Rubner et al., 2001). The advantage of

EMD is that it works on distributions with a different number of bins. The

most important advantage of EMD is that it can be used as a true metric.

153

C. THE DISTANCE BETWEEN DISTRIBUTIONS

Different measures presented above should be employed based on the nature

of the problem at hand. In the case of texture boundary detection for tracking,

usually we should resort to distances which are accurate even with small num-

ber of observations. For small sample sizes, parametric distances such as Fisher

which have few number of parameters to estimate perform best provided that the

Gaussian model assumption is valid. These distances only estimate means and

variances and are less sensitive to sampling noise. EMD also performs well for

small sample size. In general, marginal distributions do better than multidimen-

sional distributions when we have few samples. On the other hand distances like

χ2 and KL perform better with large number of observations. In terms of speed

parametric distances such as Fisher are the fastest while EMD requires heavy

computations.

C.3 Measure of Confidence

The texture distance measures described above can be used to evaluate a measure

of confidence in the detected boundary. We show by a few examples that they

can be used to provide mathematical measures of the quality of the boundary

points in terms of visual perception.

Fig. C.1 shows Bhattacharyya distances between the distributions on both

sides of hand marked silhouette of a Swiss cow (a) and the hedge boundary

(c). The distances for boundaries in Fig. C.1-(a) and (c) are shown (b) and

(d) respectively. The textures on both side of the cow silhouette are (visually)

different while in the case of the hedge the boundary is not visually well-defined.

We choose Bhattacharyya distance because it varies between 0 and 1 and therefore

is self normalized. It can be observed that for the case where the textures on both

sides are distinguishable, the distance is close to 1 while for the complex texture

case the mean value of the distance falls well below 1.

In the next example we compare the Bhattacharyya distance between distri-

butions on both sides of boundary points detected using the Bayesian scanline

method of Section 4.1 as shown in Fig. C.2-(b). The scanlines are vertical lines

passing through the two Brodatz textures shown in Fig. C.2-(a). The detected

154

C.3 Measure of Confidence

boundary points are marked by red dots. For the purpose of comparison the dot-

ted line in Fig. C.2-(b) shows the distance between two region selected from the

upper texture while the solid thick line shows the Bhattacharyya distance for two

regions selected from upper and lower textures. We can observe that in general

the distances for the detected boundaries on scanlines are closer to the distance

between two regions selected from different textures (solid line). Therefore we

can eliminate outliers by comparing the distance for the detected points with

the distances between two similar and two different textures. This measure of

confidence can be improved using a better learning scheme than the ad-hoc try

explained here and it can be applied to any kind of distribution model.

Furthermore, the maximum likelihood framework can be used in conjunction

with a training set of textures and their distances obtained using the metrics

described above, in order to measure the dissimilarity of two texture. For this

purpose we need to label the distance on the training examples into “similar” and

“non-similar” textures and assume a prior distribution model (e.g. Gaussian) for

each label. Assuming equal chance of having similar and unsimilar textures and

using the Bayes formula we can calculate the posterior probability of error in

boundary detection.

155

C. THE DISTANCE BETWEEN DISTRIBUTIONS

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) (d)

Figure C.1: Bhattacharyya Distance for different and similar texture on both

sides of hand marked boundary points. The x-axis corresponds to the points

along the detected boundary. The y-axis shows the Bhattacharyya distance of

pixel intensity distributions on both sides of each detected point on the scanline

that passes through it.

156

C.3 Measure of Confidence

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure C.2: Detected boundaries on vertical scanlines. (a) Test image, (b) dis-

tance between textures on both sides of the detected boundary points. The dotted

line shows distance between two regions selected from the upper texture and the

thick solid line shows the distance between two textures selected from the upper

and lower regions. It can be observed that the distance found on boundary points

is close to the distance between two texture selected from the two textures. This

idea can be used to measure the quality of the detected boundary.

157

C. THE DISTANCE BETWEEN DISTRIBUTIONS

158

Bibliography

Agarwal, A. & Triggs, B. (2004a). 3d human pose from silhouettes by rele-

vance vector regression. In Conference on Computer Vision and Pattern Recog-

nition. 1.3, 3

Agarwal, A. & Triggs, B. (2004b). Tracking articulated motion with piece-

wise learned dynamical models. In European Conference on Computer Vision,

III 54–65, Prague. 3

Athitsos, V. & Sclaroff, S. (2003). Estimating 3d hand pose from a cluttered

image. In Conference on Computer Vision and Pattern Recognition, 432–439,

Madison, WI. 1.3, 3

Balcisoy, S., Kallmann, M., Torre, R., Fua, P. & Thalmann, D.

(2001). Interaction Techniques with Virtual Humans in Mixed Environment.

In International Symposium on Mixed Reality , Yokohama, Japan. 2.4

Blake, A., Rother, C., Brown, M., Perez, P. & Torr, P. (2004). In-

teractive image segmentation using an adaptive gmmrf model. In European

Conference on Computer Vision, vol. 1, 428–441. 3.2.2

Boykov, Y. & Jolly, M. (2001). Interactive graph cuts for optimal boundary

and region segmentation of objects in n-d images. In International Conference

on Computer Vision, Vol I:105–112, Vancouver, Canada. 3.2.2

Breiman, L. (1996). Bagging predictors. Machine Learning , 24, 123–140. 5.1,

5.1.1

159

BIBLIOGRAPHY

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801–849.

5.1

Canny, J. (1986). A computational approach to edge detection. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 8. 3.1.4, 3.3

Cantzler, H. (2005). Random Sample Consensus (RANSAC). CVonline. 6.1

Comport, A., Marchand, E. & Chaumette, F. (2003). A Real-Time

Tracker for Markerless Augmented Reality. In International Symposium on

Mixed and Augmented Reality , Tokyo, Japan. 2, 2.1

Conners, R. & Harlow, C. (1980). A theoretical comparison of texture algo-

rithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2.

3.1.2

Cover, T.M. & Thomas, J. (1991). Elements of Information Theory . Wiley

Interscience Press, New York. 3.1.4

Davis, J. & Bobick, A. (1998). A robust human-silhouette extraction technique

for interactive virtual environments. In Workshop on Modelling and Motion

Capture Techniques for Virtual Environments , 12–25, Geneva, Switzerland.

1.3

Deriche, R. & Faugeras, O. (1990). Tracking Line Segments. Image and

Vision Computing , 8, 271–270. 2.3

DeValois, R. & DeValois, K. (1990). Spatial Cision. Oxford University Press.

A

Drummond, T. & Cipolla, R. (2001). Real-time tracking of highly articulated

structures in the presence of noisy measurements. In International Conference

on Computer Vision, Vancouver, Canada. 1.4.1

Drummond, T. & Cipolla, R. (2002). Real-time visual tracking of complex

structures. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27, 932–946. (document), 2, 2.1, 2.2, 2.2, 3, 4, 7.5, 8.2.1

160

BIBLIOGRAPHY

Evans, R. (1990). Filtering of Pose Estimates Genrated by the RAPiD Tracker

in Applications. In British Machine Vision Conference, 79–84, Oxford. 2.1

Fischler, M. & Bolles, R. (1981). Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated Car-

tography. Communications ACM , 24, 381–395. 6.1

Fleuret, F. & Geman, D. (2002). Fast Face Detection with Precise Pose

Estimation. In Proceedings of International Conference on Pattern Recognition,

I:235–238. 3.3

Forney, G.D. (1973). The Viterbi algorithm. In Proceedings of IEEE , vol. 61,

268–278. 1

Freund, Y. & Schapire, R. (1996). Experiments with a New Boosting Al-

gorithm. In International Conference on Machine Learning , 148–156, Morgan

Kaufmann. 5.1.2

Gennery, D. (1992). Visual Tracking of Known Three-Dimensional Objects.

International Journal of Computer Vision, 7, 243–270. 2, 2.3

Gupta, H., Roy-Chowdhury, A. & Chellappa, R. (2004). Contour based

3d face modeling from a monocular video. In British Machine Vision Confer-

ence, 367–376, Kingston University, England. 3

Hanek, R. & Beetz, M. (2004). The contracting curve density algorithm:

Fitting parametric curve models to images using local self-adapting separation

criteria. Int. J. Comput. Vision, 59, 233–258. 3.1.4

Harris, C. (1992). Tracking with Rigid Objects . MIT Press. 2, 2.1, 2.1

Heikkila, M., Pietikainen, M. & Heikkila, J. (2004). A texture-based

method for detecting moving objects. In British Machine Vision Conference,

187–196, Kingston University, England. 3.1.1

Ilić, S. & Fua, P. (2005). Implicit Meshes for Surface Reconstruction. IEEE

Transactions on Pattern Analysis and Machine Intelligence, accepted for pub-

lication. 8.3

161

BIBLIOGRAPHY

Julesz, B. (1981). Textons, the elements of texture perception, and their inter-

actions. Nature, 290, 91–97. 3.1.4

Kaucic, R. & Blake, A. (1998). Accurate, real-time, unadorned lip tracking.

In International Conference on Computer Vision, 370–375. 7.5

Koller, D., Daniilidis, K. & Nagel, H.H. (1993). Model-Based Object

Tracking in Monocular Image Sequences of Road Traffic Scenes. International

Journal of Computer Vision, 10, 257–281. 2, 2.3, 2.3

Kollnig, H. & Nagel, H.H. (1997). 3D Pose Estimation by Directly Matching

Polyhedral Models to Gray Value Gradients. International Journal of Computer

Vision, 23, 283–302. 2.4

Kolmogorov, V. & Zabih, R. (2004). What energy functions can be mini-

mized via graph cuts? IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26, 147–159. 3.2.2

Konishi, S., Yuille, A.L., Coughlan, J. & Zhu, S.C. (1999). Fundamental

bounds on edge detection: An information theoretic evaluation of different edge

cues. In Conference on Computer Vision and Pattern Recognition, 573–579.

3.1.4

Kosaka, A. & Nakazawa, G. (1995). Vision-Based Motion Tracking of Rigid

Objects Using Prediction of Uncertainties. In International Conference on

Robotics and Automation, 2637–2644, Nagoya, Japan. 2, 2.3, 2.3

Kumar, M.P., Torr, P.H.S. & Zisserman, A. (2005). OBJ CUT. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

San Diego. 3.2.2

Langley, P., Iba, W. & Thompson, K. (1992). An analysis of bayesian

classifiers. In Proceedings of AAAI-92 , 223–228. 5.6

Lee, K.L. & Chen, L.H. (2001). Unsupervised Texture Segmentation by De-

termining the Interior of Texture Regions Based on Wavelet Transform. Inter-

national Journal of Pattern Recognition and Artificial Intelligence, 15, 1231–

1250. 3

162

BIBLIOGRAPHY

Leung, T. & Malik, J. (2001). Representing and recognizing the visual ap-

pearance of materials using three-dimensional textons. International Journal

of Computer Vision, 43, 29–44. 3.1.4

Lowe, D.G. (1992). Robust model-based motion tracking through the integra-

tion of search and estimation. International Journal of Computer Vision, 8,

113–122. 2, 2.3

M. Armstrong and A. Zisserman (1995). Robust Object Tracking. In Pro-

ceedings of Asian Conference on Computer Vision, 58–62. 2, 2.2

Mäenpää, T. (2003). The local binary pattern approach to texture analysis-

extensions and applications . University of Oulu, Oulu Finland. 3.1, 3.1.3, 3.1.4,

A, A

Malik J, S.J..L.T., Belongie S (1999). Textons, contours and regions: cue

integration in image segmentation. In International Conference on Computer

Vision, vol. 2, 918–925, Kerkyra, Greece. 3.1.4

Marchand, E. & Chaumette, F. (2002). Virtual Visual Servoing: A Frame-

work for Real-Time Augmented Reality. In Computer Graphics Forum, 289–

298, Sarrebruck, Allemagne. 2.2

Marchand, E., Bouthemy, P. & Chaumette, F. (2001). A 2d-3d model-

based approach to real-time visual tracking. Journal of Image and Vision Com-

puting , 19, 941–955. 2, 2.1, 2.2, 2.4

Martin, D., Fowlkes, C. & Malik, J. (2004). Learning to detect natural

image boundaries using local brightn ess, color and texture cues. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 26. (document), 3.5,

3.3, 3.3, 3.6

Meila, M. & Shi, J. (2001). A random walks view of spectral segmentation.

AISTATS. 3.2.1

Mittal, A., Zhao, L. & Davis, L.S. (2003). Human body pose estimation

using silhouette shape analysis. In IEEE Conference on Advanced Video and

Signal Based Surveillance (AVSS’03), 263, Miami, Florida. 1.3

163

BIBLIOGRAPHY

Mojsilovic, A., Kovacevic, J., Kall, D., Safranek, R. & Ganapathy,

S. (2000). Matching and retrieval based on the vocabulary and grammar of

color patterns. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 9, 38–54. A

Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E.,

Petkovic, D., Yanker, P. & Faloutsos, C. (1993). The qbic project:

Querying images by content using color, texture, and shape. In In Storage and

Retrieval for Image and Video Databases , vol. SPIE Vol. 1908. C.2

Nitzberg, M., Mumford, D. & Shiota, T. (1993). Filtering, segmentation,

and depth, vol. 662. Springer-Verlag. 3.1.4

Ojala, T., Pietikäinen, M. & Harwood, D. (1996). A comparative study

of texture measures with classification based on feature distributions. Pattern

Recognition, 29, 51–59. 3.1.1

Ozyildiz, E., Krahnstoever, N. & Sharma, R. (2002). Adaptive texture

and color segmentation for tracking moving objects. Pattern Recognition, 35,

2013–2029. 3.2.2, 3.4

Paragios, N. & Deriche, R. (2001). Coupled Geodesic Active Regions for

Image Segmentation: A Level Set Approach. In European Conference on Com-

puter Vision, vol. II, 224–240. 3.1.4

Paragios, N. & Deriche, R. (2002). Geodesic Active Regions and Level Set

Methods for Supervised Texture Segmentation. International Journal of Com-

puter Vision, 223–247. 3.1.4

Paragios, N. & Deriche, R. (2005). Geodesic Active Regions and Level Set

Methods for Motion Estimation and Tracking. Computer Vision and Image

Understanding , 259–282. 3.1.4

Paragios, N. & Ramesh, V. (2001). A MRF-based Real-Time Approach for

Subway Monitoring. In Conference on Computer Vision and Pattern Recogni-

tion, vol. I, 1034–1040. 3.2.2

164

BIBLIOGRAPHY

Patel, D. & Stonham, T. (1992). Texture image classification and segmenta-

tion usin rankorder clustering. In International Conference on Pattern Recog-

nition, vol. 3, 92–95, Jerusalem, Israel. 3.1.3

Perona, P. & Malik, J. (1990). Scale-space and edge detection using

anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12, 629–639. 3.1.4

Pietikäinen, M., Nurmela, T., Mäenpää, T. & Turtinen, M. (2003).

View-based recognition of 3-D textured surfaces. In International Conference

on Image Analysis and Processing , 530–535, Mantova, Italy. 3.1.4

Poirson, A. & Wandell, B. (1996). Pattern-color separable pathways predict

sensitivity to simple colored patterns. In Vision Research, vol. 36, no. 4, pp.

515–526. A

Qiu, H. & Hancock, E.R. (2005). Image segmentation using commute times.

In British Machine Vision Conference, 929–938, Oxford, England. 3.2.1

Randen, T. & Husoy, J. (1999). Filtering for texture classification: a compar-

ative study. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21, 291–310. 3.1.4

Rätsch, G., Onoda, T. & Müller, K.R. (1998). Regularizing adaboost. In

Neural Information Processing Systems , 564–570, MIT Press. 5.1.2, 5.4

Rivera, M. & Gee, J.C. (2004). Two–level mrf models for image restoration

and segmentation. In British Machine Vision Conference, 809–818, Kingston

University, England. 3.2.2

Rother, C., Kolmogorov, V. & Blake, A. (2004). ”GrabCut”: Interac-

tive Foreground Extraction using Iterated Graph Cuts. ACM Transactions on

Graphics , 23, 309–314. 3.2.2

Rubner, Y. & Tomasi, C. (1996). Coalescing texture descriptors. Proc. ARPA

Image Understanding Workshop. 3, 3.1.4

165

BIBLIOGRAPHY

Rubner, Y., Puzicha, J., Tomasi, C. & Buhmann, J.M. (2001). Empirical

evaluation of dissimilarity measures for color and texture. Comput. Vis. Image

Underst., 84, 25–43. 3.1.4, 7.6.1, C, C.2

Ruf, A., Tonko, M., Horaud, R. & Nagel, H.H. (1997). Visual Tracking

by Adaptive Kinematic Prediction. In Proceedings of International Conference

on Intelligent Robots and Systems , 893–898. 2, 2.3

Ruzon, M. & Tomasi, C. (1999a). Color Edge Detection with Compass Op-

erator. In Conference on Computer Vision and Pattern Recognition, vol. 2,

160–166. 3.1.4

Ruzon, M. & Tomasi, C. (1999b). Corner Detection in Textured Color Images.

In International Conference on Computer Vision, 1039–1045. 3.1.4

Shi, J. & Malik, J. (2000). Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22, 888–905. 3.2.1

Shimada, N., Shitirai, Y., Kuono, Y. & Miura, J. (1998). Hand Gesture

Estimation and Model Refinement using Monocular Camera – Ambiguity Lim-

itation by Inequality Constraints. In Automated Face and Gesture Recognition,

268–273, Nara, Japan. 8.1.1

Simon, G. & Berger, M.O. (1998). A two-stage robust statistical method for

temporal registration from features of various type. In International Conference

on Computer Vision, 261–266, Bombay, India. 2.2

Sminchisescu, C. & Triggs, B. (2003). Kinematic Jump Processes for Monoc-

ular 3D Human Tracking. In Conference on Computer Vision and Pattern

Recognition, vol. I, 69, Madison, WI. 1.3

Taylor, C., Malik, J. & Weber, J. (1996). A real-time approach to stere-

opsis and lane-finding. In Intelligent Vehicles , 207–212. 3

Thayananthan, A., Torr, P. & Cipolla, R. (2004). Likelihood models for

template matching. In British Machine Vision Conference, 949–958. 3

166

BIBLIOGRAPHY

Tomita, F. & Tsuji, S. (1990). Computer analysis of visual textures. Kluwer.

3.1.2

Tse, P.U. & Hughes, H.C. (2004). Visual form perception. Entry in the En-

cyclopedia of Neuroscience. Adelman, G. and Smith, B. (Eds.). Elsevier. A, A,

A

Vacchetti, L., Lepetit, V. & Fua, P. (2004). Combining Edge and Texture

Information for Real-Time Accurate 3D Camera Tracking. In International

Symposium on Mixed and Augmented Reality , Arlington, VA. 2, 2.2

Valkealahti, K. & Oja, E. (1998). Reduced Multidimensional Cooccurrence

Histograms in Texture Classification. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20, 90–94. 3.1.2

Varma, M. & Zisserman, A. (2002). Classifying materials from images: to

cluster or not to cluster. In 2nd International Workshop on Texture Analysis

and Synthesis , 139–143. 3.1.4

Viola, P. & Jones, M. (2001). Rapid Object Detection using a Boosted Cas-

cade of Simple Features. In Conference on Computer Vision and Pattern Recog-

nition, 511–518. 3.3

Wandell, B.A. (1995). Foundation of vision. Stanford University, Sinauer As-

sociates, Sunderland, Mass. A

Warakagoda, N.D. (1996). A Hybrid ANN-HMM ASR system with NN based

adaptive preprocessing . Master’s thesis, Norges Tekniske Hogskole, Institutt for

Teleteknikk, Transmisjonsteknikk. 6.2.1, 2, 3

Weszka, J., Dyer, C. & Rosenfeld, A. (1976). A comparative study of tex-

ture measures for terrain classification. IEEE Transactions on Systems, Man,

and Cybernetics , 6, 269–285. 3.1.2

Will, S., Hermes, L., Buhmann, J. & Puzicha, J. (2000). On learning

texture edge detectors. In International Conference on Image Processing , vol.

III, 877–880, Vancouver, Canada. 3.3

167

BIBLIOGRAPHY

Williams, L.R. & Jacobs, D.W. (1997). Stochastic completion fields: a neural

model of illusory contour shape and salience. Neural Comput., 9, 837–858.

(document), A, A.6

168

SEYED ALI SHAHROKNI
Date of Birth: 20/09/1976
Marital status: single

Rue du Centre 2B
1025 st-Sulpice
Switzerland

tel: (+41) (0)78 722 88 59
fax: (+41) (0)21 693 75 20
email: ali.shahrokni@epfl.ch
http://cvlab.epfl.ch/∼ali

Education Ph.D. In Computer Science: Computer Vision

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland

2001–(graduation date 12/2005)

Thesis subject: Probabilistic Modeling of Texture Transition for Fast Tracking

and Delineation

M.Sc. in Communications Systems Engineering

University of Tehran, Tehran, Iran, 1998–2000

Thesis subject: volumetric data quantification, visualization and feature

extraction in confocal microscopic images

B.Sc. in Electronics Engineering

University of Tehran, Tehran, Iran, 1994–1998

Experience Tracking and surveillance

• Developed a 3–D markerless monocular tracking of human motion system
(European Union joint research project VIBES: Video Browsing, Explo-
ration and Structuring system)

• Assisted in development of an automatic vehicle tracking using a mobile
camera, electronics Lab. Amir Kabir university of technology, Tehran,
Iran, Sept. 2000–May 2001

• Implemented a vision-based vehicle tracking program, DSP Lab. univer-
sity of Tehran, Tehran, Iran, April 1998–November 1998

Statistical learning

• Developed a texture-based segmentation method using Markov models
and different pattern recognition techniques

Biomedical engineering

• Developed a method for volumetric data quantification, visualization and
feature extraction in confocal microscopic images (also master’s thesis), In-
stitute for studies in theoretical Physics and Mathematics (IPM),Tehran,
Iran, 1999–2001

Vision for sports

• Visual analysis of sports activities. Assisted in design and development
of a golf swing tracking system (project partly funded by Dart Fish Co.
LTD.) June-Dec. 2001

Advised student diploma projects at EPFL

• Background subtraction on sequences with a moving camera, spring
semester 2003

• Pose estimation for real-time tracking, spring semester 2003

• Texture based tracking, winter semester 2003

• Application of visual tracking results to animate a 3dSMax character,
winter semester 2003

Management

• Founding chairman of the first IEEE student branch in Iran at University
of Tehran, 1997

• Entrepreneurship course, Venture lab, Switzerland, spring 2005

Languages Persian native language English fluent French fluent

German basic knowledge Arabic basic knowledge

Honors • Awarded IEEE region 8 Dr. Larry k. Wilson student activities prize
(1998)

• Ranked 15 among over 200,000 participants in nation-wide university en-
trance exam

• Invited visiting researcher at university of Cambridge, summer 2004

Technical

proficiency

Languages C/C++ (> 100, 000 lines of code), Delphi,

MaxScript, Java, CSS, XML

APIs MatLab(advanced), Maple, OpenGL, 3dSMax, QT,

Maya (Basic), Open Inventor (Basic)

Systems Linux, Unix , Sun,Windows XP

Others LATEX, CVS, MS .NET, OpenCV

References Available upon request

Hobbies Sailing

Ice skating and winter sports

Publications

1. A. Shahrokni, T. Drummond, P. Fua. Fast Texture-Based Tracking

and Delineation Using Texture Entropy. In proceedings of Interna-
tional Conference on Computer Vision, Beijin, China, 2005

2. A. Shahrokni, F. Fleuret, P. Fua. Classifier-based Contour Tracking

for Rigid and Deformable Objects. In proceedings of British Machine
Vision Conference, Oxford, England 2005

3. A. Shahrokni, V. Lepetit, T. Drummond, P. Fua. Markov-based

Silhouette Extraction for Three–Dimensional Monocular Body

Tracking in Presence of Cluttered Background. In proceedings of
British Machine Vision Conference, Kingston, England 2004

4. A. Shahrokni, T. Drummond, P. Fua. Texture Boundary Detection

for Real-Time Tracking. In proceedings of European Conference on
Computer Vision, Prague, Czech Republic, May 2004

5. V. Lepetit, A. Shahrokni, P. Fua. Robust Data Association. In pro-
ceedings of International Conference on Computer Vision and Pattern
Recognition, USA, June 2003

6. A. Shahrokni, V. Lepetit, and P. Fua. Bundle Adjustment for Mark-

erless Body Tracking in Monocular Video Sequences. In ISPRS
workshop on Visualization and Animation of Reality-based 3D Models,
Switzerland, 2003

7. A. Shahrokni, L. Vacchetti, V. Lepetit, P. Fua. Polyhedral Object

Detection and Pose Estimation for Augmented Reality Applica-

tions. In proceedings of Computer Animation 2002, Geneva, Switzerland

8. H. Soltanian-Zadeh, A. Shahrokni, R.A. Zoroofi. A voxel-coding

method for quantification of vascular structure from 3D images.
In rroceedings of SPIE Medical Imaging Conference, San. Diego, CA, Feb.
17-23, 2001

9. A. Shahrokni, R.A. Zoroofi, H. Soltanian-Zadeh. A fast skeletonization

algorithm for 3-D elongated objects. In proceedings of SPIE Medical
Imaging Conference, San. Diego, CA, Feb. 17-23, 2001

10. A. Behrad, A. Shahrokni, S. A. Motamedi and K. Madani. A Robust

Vision-based Moving Target Detection and Tracking System. In
proceedings of Image and Vision Computing conference (IVCNZ2001),
University of Otago, Dunedin, New Zealand Nov. 26-28, 2001

11. A. Shahrokni. Fuzzy-Based Segmentation of 2- and 3-D images.
In proceedings of the 3rd symposium on intelligent systems, University of
Tehran, Tehran, Iran, April 2000

	Thesis
	1 Introduction
	1.1 Rigid Models
	1.2 Deformable Models
	1.3 Articulated Model
	1.4 Achievements
	1.4.1 Fast Bayesian Boundary Estimation
	1.4.2 Machine Learning Approach

	1.5 Summary

	2 Edge-based Tracking Using Gradient
	2.1 RAPiD
	2.2 Robust RAPiD
	2.3 Explicit Edge Extraction
	2.4 Direct Optimization on Gradients
	2.5 Summary

	3 State of the Art on Texture Analysis
	3.1 Texture Operators
	3.1.1 Local Binary Pattern Methods
	3.1.2 Cooccurrence Features
	3.1.3 Extensions of LBP
	3.1.4 Texton Statistics

	3.2 Graph Cut Image Segmentation
	3.2.1 Graph Representation
	3.2.2 Markov Random Fields

	3.3 Learning-based Texture Segmentation
	3.4 Summary

	4 Line Search for Texture Boundary
	4.1 Scanlines
	4.1.1 Solving for the 0th Order Model
	4.1.2 Solving for the 1st Order Model

	4.2 The Binary Case
	4.2.1 Exact Conditional Probability
	4.2.2 Numerical Simulations
	4.2.3 Theoretical Analysis
	4.2.4 Performance of the Optimal Estimator
	4.2.5 Fast Computation of the Posterior Cut Probability

	4.3 Transition Between Brodatz Textures
	4.4 Scanstripes
	4.5 Learning a Target Texture Model
	4.5.1 Log Probability and the Entropy of Texture
	4.5.1.1 0th Order Model
	4.5.1.2 1st Order Distribution

	4.5.2 Updating the Texture Model

	4.6 Summary

	5 Contour Point Classification
	5.1 Ensemble Learning
	5.1.1 Bagging
	5.1.2 Boosting

	5.2 Database
	5.3 Classifiers
	5.3.1 Intensity and Frequency Mean Energy
	5.3.2 Cooccurrence Matrix Features

	5.4 Training Classifiers
	5.5 Boundary Score vs. Boundary Label
	5.6 Model of the Conditional Probability
	5.7 Learning Specific Object Boundaries
	5.8 Summary

	6 Imposing Geometric Constraints
	6.1 Rigid Constraints
	6.1.1 Hypotheses Generation
	6.1.2 Hypotheses Verification
	6.1.3 Algorithm Enhancement
	6.1.4 Robust Model Fitting to Scanstripes

	6.2 Smoothness Constraint
	6.2.1 Definition of Hidden Markov Model
	6.2.2 HMM and Smooth Silhouettes

	6.3 Summary

	7 Evaluation and Comparison
	7.1 Markov Texture Model
	7.1.1 Scanline
	7.1.2 Scanstripe

	7.2 Classification
	7.3 Gaussian Texture Model
	7.4 Probabilistic Gradient Edge Detection
	7.5 Tracking Performance
	7.6 Quantitative Analysis of the Error Histograms
	7.6.1 Earth Mover's Distance
	7.6.2 Time

	7.7 Summary

	8 Results
	8.1 Scanline-based Tracking
	8.1.1 Monocular Body Motion Tracking
	8.1.1.1 Overview of the Tracking System

	8.2 Bayesian Scanstripe Robust Silhouette Extraction
	8.2.1 Tracking Using RANSAC
	8.2.2 Delineation Using HMM

	8.3 Classification-based Approach
	8.4 Summary

	9 Conclusion
	A Human Perception of Contours and Texture
	B Projective Geometry and Camera Model
	B.1 Projective Geometry
	B.2 Transformations
	B.3 Camera Model
	B.4 The Projection Matrix
	B.5 Projection of a Quadric

	C The Distance Between Distributions
	C.1 Parametric Approaches:
	C.2 Non Parametric Measures:
	C.3 Measure of Confidence

	References

