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The philosophical paradigm

– Laplacian determinism
• The future state of the universe can be 

determined from its present state

– Quantum theory and uncertainty
• We can neither observe nor control 

microscopic features with accuracy

• Science at the onset of the XX century
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The philosophical paradigm

– Design determinism
• The complete behavior and features of 

a microelectronic circuit can be derived 
from a hardware model

• Synthesis technology

– Design uncertainty with      
nanoscale technologies

• Need for high-level abstractions
• Inaccuracy of low-level models

• Design technology at the onset of the XXI century

Ir << fetch(pc);
case ir is
when => and
acc=rega and regb
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The economic perspective

• System on Chip (SoC) design:
– Increasingly more complex:

• Many detailed electrical problems 
• Integration of different technologies

– Increasingly more expensive and risky
• A mask set may cost over a million dollars
• A single functional error can kill a product

– Fewer design starts

• Large volume needed to recapture hw costs
– Software solutions are more desirable
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Correctness
Reliability and safety
Robustness

The SoC market
• SoCs find application in many 

embedded systems
• Concerns:

Performance
Energy consumption
Cost



De Micheli  6
ASPDAC 2003

Robust design

• SoCs must preserve correct operation and 
performance:
– Under varying environmental conditions
– Under changes of design assumptions

• Designing correct and performing circuits 
becomes increasingly harder
– Too many factors to take into account

• Paradigm shift needed
– Design error-tolerant and adaptive circuits
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Issues

• Extremely small size
– Coping with deep submicron (DSM) technologies

• Spreading of parameters

• Extremely large scale
– System complexity

• Changing environmental conditions

• New fabrication materials
– Novel technologies

• How to make the leap
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Extremely small size

Intel’s 50nm transistor  [Source: IEEE Spectrum]
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Year Gate 
length 
(nm) 
 

Transistor 
density 
(million/cm2) 

Clock 
rate 
(GHz) 
 

Supply 
voltage 
(V) 

 
2002 

 
75 

 
 48 

 
 2.3 

 
1.1 

2007 35 154  6.7 0.7 

2013 13 617 19.3 0.5 

 
 

Silicon technology roadmap
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Qualitative trends

• Continued gate downscaling

• Increased transistor density and frequency
?Power and thermal management

• Lower supply voltage
?Reduced noise immunity

• Increased spread of physical parameters
?Inaccurate modeling of physical behavior
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Critical design issue

• Achieve desired performance levels with 
limited energy consumption

• Dynamic power management (DPM)
– Component shut off

– Frequency and voltage downscaling

• Explore (at run time) the voltage/delay trade 
off curve
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Design space exploration
worst case analysis

Voltage

Delay

max
typ

min
Pareto points on w.c. curve
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?

Adaptive design space
worst case analysis

Voltage

Delay
min

typ
max

As parameters spread,
w.c. design is too pessimistic

?
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Self-calibrating circuits

• The operating points of a circuit 
should be determined on-line
– Variation from chip to chip
– Operation at the edge of failure

• Analogy
– Sailing boat tacking against the wind
– Max gain when sailing close to wind

• When angle is too close, large loss of speed
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• General paradigm
– A circuit may be in correct or faulty operational state, depending 

on a parameter (e.g., voltage)

– Computed/transmitted data need checks
• If data is faulty, data is recomputed and/or retransmitted

– Error rate is monitored on line

– Feedback loop to control operational state parameter based on 
error rate

• Circuits can generate errors: 
– Errors must be detected and corrected
– Correction rate is used for calibration

How to calibrate?
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FIFO1 2

Example:                              
on chip transmission scheme

• Globally asynchronous, locally synchronous (GALS)
• FIFO for decoupling
• Variable transmission frequency

ddv ddv
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ddv

1 2

Adaptive low-power
transmission scheme

FIFO
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FIFOn
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• Self-calibration makes circuit robust against: 
– Design process variations
– External disturbances

• E.g., soft errors, EM interference, environment

• Self-calibration may take different embodyments
– May be applied during normal operation

• To compensate for environmental changes

– May be used at circuit boot time
• To compensate for manufacturing variations

• General paradigm to cope with DSM problems

Self-calibration
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• Engineers will always attempt to design chips 
at the edge of human capacity

• Challenges:
– Large scale: billion transistor chips
– Heterogeneity: digital, analog, RF, optical, MEMS, 

sensors, micro-fluidics

• Many desiderata: high performance, low 
power, low cost, fast design, small team, …

Extremely large scale
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Component-based design

• SoCs are designed (re)-using large macrocells
– Processors, controllers, memories…
– Plug and play methodology is very desirable
– Components are qualified before use

• Design goal: 
– Provide a functionally-correct, reliable operation of the 

interconnected components
• Critical issues:

– Properties of the physical interconnect
– Achieving robust system-level assembly
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Physical interconnection

• Electrical-level information transfer is unreliable
– Timing errors

• Delay on global wires and delay uncertainty
• Synchronization failure across different islands
• Crosstalk-induced timing errors

– Data errors:
• Data upsets due to EM interference and soft errors

• Noise is the abstraction of the error sources
• The problem will get more and more acute as 

geometries and voltages  scale down
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Systems on chips:                    
a communication-centric view

• Design component interconnection under:

– Uncertain knowledge of physical medium

– Incomplete knowledge of environment

• Workload, data traffic, …

• Design interconnection as a micro-network

– Leverage network design technology

– Manage information flow

• To provide for performance

– Power-manage components based on activity

• To reduce energy consumption
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Micro-network characteristics

• Micro-networks require:
– Low communication latency
– Low communication energy consumption
– Limited adherence to standards

• SoCs have some physical parameters that:
– Can be predicted accurately
– Can be described by stochastic distributions
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Micro-network stack

Design choices at each stack 
level affect:
– Communication speed
– Reliability
– Energy

Control Protocols:
– Layered
– Implemented in Hw or Sw
– Providing error correction

••applicationapplication
••systemsystem

SoftwareSoftware

ArchitectureArchitecture
and controland control

••transporttransport
••networknetwork
••data linkdata link

••wiringwiring
PhysicalPhysical
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Achieving robustness in 
micro-networks

• Error detection and correction is applied 
at various layers in micro-networks

• Paradigm shift:
– Present design methods reduce noise

• Physical design (e.g., sizing, routing) 

– Future methods must cope with noise
• Push solution to higher abstraction levels
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ICACHE MEM.CTRL.
AMBA BUS
INTERFACE

FROM  EXT.

MEMORY

HRDATA AMBA BUS

• Compare original AMBA bus to 
extended bus with error detection 
and correction or retransmission
– SEC coding
– SEC-DED coding
– ED coding

• Explore energy efficiency

Data-link protocol example:
error-resilient coding

H DECODER H ENCODER

MTTF
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Advanced bus techniques:
CDMA on bus

• Motivation: many data sources
– Support multiple concurrent write on bus
– Discriminate against background noise

• Spread spectrum of information
– Driver/receiver multiply data by random 

sequence generated by LFSR
• LFSR signature is key for de-spreading

LFSR
data

LFSR
data LFSR

data



De Micheli  30
ASPDAC 2003

Going beyond buses

• Buses:
– Pro: simple, existing standards
– Contra: performance, energy-efficiency, arbitration

• Other network topologies:
– Pro: higher performance, experience with MP
– Contra: physical routing, need for network and 

transport layers

•• Challenge: exploit appropriate network Challenge: exploit appropriate network 
architecture and corresponding protocolsarchitecture and corresponding protocols



De Micheli  31
ASPDAC 2003

Network and transport layers

• Information is in packets
• Network issues:

– Network switching
• Circuit, packet, cut-through, wormhole

– Network routing
• Deterministic and adaptive routing

• Transport issues:
– Decompose and reconstruct information
– Packet granularity
– Admission/congestion control
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SPIN micro-network

• Applied to SoCs
• 36-bit packets 

– Header: destination
– Trailer: checksum

• Fat-tree network architecture
• Cut-through switching
• Deterministic tree routing 

EOP Variable size payload

A
d

d
re

ss
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SPIN micro-network

Address Stream 

Other
OtherRAMCPU

FIR

RouterRouter Router Router

RouterRouter Router Router

Address AddressStream Stream 
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Benefits of packets

• Reliable error-control mechanism 
– With small overhead

• Exploit different routing paths
– Spread information to avoid congestion

• Several user-controllable parameters
– Size, retransmission schemes, …

• Use retransmission rate for calibrating 
parameters



De Micheli  35
ASPDAC 2003

System assembly
around micro-network

• Network architecture provides backbone

• Component plug and play:
– Programmable network interface

– Reconfigurable protocols

– Recognize network and self configure

• Self-assembly of SoCs addresses the issue 
of component reuse and heterogeneity
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Extremely large scale design
• Heterogeneous components with malleable interfaces

• Macroscopic self-assembly
– Exploit degrees of freedom in component/interface specifications

– Self-configuration realizes interfacing details abstracted by designers

– Self-configuration, together with redundancy, addresses self-
correction of some possible design errors

• Self-healing
– Correcting for run-time failures

– Method to increase availability and robustness
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Example: Biowall

• Embryonics project at EPFL, Switzerland
• Cellular design with redundancy

– Each cell programmed by a string (gene)
– FPGA technology

• Self-healing property:
– Upon cell failure, neighbors reconfigure to take over function
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Cellular self-repair

RG+OG

2 3 4X=1 SPARE 
CELL

faulty molecule
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Cellular self-repair

RG+OG

2 3 4X=1 SPARE 
CELL

3 4

KILL=1
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Autonomic computing

• Broad R&D project launched by IBM
• Self-healing

– Design computer and software that perform 
self-diagnostic functions and can fix 
themselves without human intervention

– Strong analogies to biological systems

• Reduced cost of design and maintenance
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Autonomics principles

• An autonomic system:
– must know itself

– reconfigures itself under varying condition

– optimizes its operations at run time

– must support self-healing

– must defend itself against attacks

– must know the environment

– manages and optimizes internal resources without 
human intervention
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Evolving computing materials

• When will current semiconductor technologies run out of steam?

• What factor will provide a radical change in technology?
– Performance, power density, cost?

• Several emerging technologies:
– Carbon nanotubes, nanowires, quantum devices, molecular electronics, 

biological computing, …

• Are these technologies compatible with silicon?
– What is the transition path?

• What are the common characteristics, from a design      
technology standpoint?
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Rosette nanotubes

[Source: Purdue University]
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Common characteristics of 
nano-devices

• Self-assembly used to create structures

– Manufacturing paradigm is bottom-up

• Significant presence of physical defects

– Design style must be massively fault-tolerant

• Competitive advantage stems from extreme high density of computing 

elements

– 1011-1012 dev/cm2  vs. 3x109 dev/cm2 for CMOS in 2016

• Some nano-array technologies are compatible with silicon technology 

and can be embedded in CMOS
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• Key ingredients:
– Massive parallelism and redundancy

– Exploit properties of crosspoint architectures
• E.g., Programmable Logic Arrays (PLAs)

– Local and global reconfiguration

• Some design technologies for robust DSM CMOS 
design can be applied to nanotechnology

Robust nano-design
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Summary
problem analysis

• The electronic market is driven by embedded applications 
where reliability and robustness are key figures of merit

• System design has to cope with uncertainty
– Lack of knowledge of details, due to abstraction

– Physical properties of the material

• As design size scales up, the design challenge is related 
to interconnecting high-level components

• As technology scales down, and as nanotechnologies are 
introduced, electrical-level information becomes unreliable
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Summary
design strategies

• Robust and reliable design is achieved by:
– Self-calibrating system components

– Networking components on chip with adaptive interfaces
• Encoding, packet switching and routing provide a new view of logic 

and interconnect design

– Self-healing components that can diagnose failures and 
reconfigure themselves

• New emerging technologies will require massive use 
of error correction and redundancy
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