# DESIGNING ROBUST SYSTEMS with UNCERTAIN INFORMATION

Giovanni De Micheli CSL - Stanford University

### The philosophical paradigm

Science at the onset of the XX century

#### Laplacian determinism

 The future state of the universe can be determined from its present state

#### Quantum theory and uncertainty

We can neither observe nor control microscopic features with accuracy



### The philosophical paradigm

Design technology at the onset of the XXI century

#### Design determinism

 The complete behavior and features of a microelectronic circuit can be derived from a hardware model

Synthesis technology

 Design uncertainty with nanoscale technologies

- Need for high-level abstractions
- Inaccuracy of low-level models



#### The economic perspective

- System on Chip (SoC) design:
  - Increasingly more complex:
    - Many detailed electrical problems
    - Integration of different technologies
  - Increasingly more expensive and risky
    - A mask set may cost over a million dollars
    - A single functional error can kill a product
  - Fewer design starts
- Large volume needed to recapture hw costs
  - Software solutions are more desirable

#### The SoC market

- SoCs find application in many embedded systems
- Concerns:



1000 September 1000 S

Correctness
Reliability and safety
Robustness

Performance
Energy consumption
Cost







#### Robust design

- SoCs must preserve correct operation and performance:
  - Under varying environmental conditions
  - Under changes of design assumptions
- Designing correct and performing circuits becomes increasingly harder
  - Too many factors to take into account
- Paradigm shift needed
  - Design error-tolerant and adaptive circuits

#### Issues

- Extremely small size
  - Coping with deep submicron (DSM) technologies
    - Spreading of parameters
- Extremely large scale
  - System complexity
    - Changing environmental conditions
- New fabrication materials
  - Novel technologies
    - How to make the leap

### Extremely small size



Intel's 50nm transister Source: IEEE Spectrum]

### Silicon technology roadmap

| Year | Gate<br>length<br>( <i>nm</i> ) | Transistor<br>density<br>( <i>million/cm</i> <sup>2</sup> ) | Clock<br>rate<br>( <i>GHz</i> ) | Supply voltage (V) |
|------|---------------------------------|-------------------------------------------------------------|---------------------------------|--------------------|
| 2002 | 75                              | 48                                                          | 2.3                             |                    |
| 2007 | 35                              | 154                                                         | 6.7                             | 0.7                |
| 2013 | 13                              | 617                                                         | 19.3                            | 0.5                |

#### Qualitative trends

- Continued gate downscaling
- Increased transistor density and frequency
  - Power and thermal management
- Lower supply voltage
  - Reduced noise immunity
- Increased spread of physical parameters
  - Inaccurate modeling of physical behavior

#### Critical design issue

- Achieve desired performance levels with limited energy consumption
- Dynamic power management (DPM)
  - Component shut off
  - Frequency and voltage downscaling
- Éxplore (at run time) the voltage/delay trade off curve

## Design space exploration worst case analysis



ASPDAC 2003

De Micheli





#### Self-calibrating circuits

- The operating points of a circuit should be determined on-line
  - Variation from chip to chip
  - Operation at the edge of failure
- Analogy
  - Sailing boat tacking against the wind
  - Max gain when sailing close to wind
    - When angle is too close, large loss of speed



#### How to calibrate?

- General paradigm
  - A circuit may be in correct or faulty operational state, depending on a parameter (e.g., voltage)
  - Computed/transmitted data need checks
    - If data is faulty, data is recomputed and/or retransmitted
  - Error rate is monitored on line
  - Feedback loop to control operational state parameter based on error rate
- Circuits can generate errors:
  - Errors must be detected and corrected
  - Correction rate is used for calibration





- Globally asynchronous, locally synchronous (GALS)
- FIFO for decoupling
- Variable transmission frequency



#### Self-calibration

- Self-calibration makes circuit robust against:
  - Design process variations
  - External disturbances
    - E.g., soft errors, EM interference, environment
- Self-calibration may take different embodyments
  - May be applied during normal operation
    - To compensate for environmental changes
  - May be used at circuit boot time
    - To compensate for manufacturing variations
- General paradigm to cope with DSM problems

### Extremely large scale

- Engineers will always attempt to design chips at the edge of human capacity
- Challenges:
  - Large scale: billion transistor chips
  - Heterogeneity: digital, analog, RF, optical, MEMS, sensors, micro-fluidics
- Many desiderata: high performance, low power, low cost, fast design, small team, ...

#### Component-based design

- SoCs are designed (re)-using large macrocells
  - Processors, controllers, memories...
  - Plug and play methodology is very desirable
  - Components are qualified before use
- Design goal:
  - Provide a functionally-correct, reliable operation of the interconnected components
- Critical issues:
  - Properties of the physical interconnect
  - Achieving robust system-level assembly

#### Physical interconnection

- Electrical-level information transfer is unreliable
  - Timing errors
    - Delay on global wires and delay uncertainty
    - Synchronization failure across different islands
    - Crosstalk-induced timing errors
  - Data errors:
    - Data upsets due to EM interference and soft errors
- Noise is the abstraction of the error sources
- The problem will get more and more acute as geometries and voltages scale down

## Systems on chips: a communication-centric view

- Design component interconnection under:
  - Uncertain knowledge of physical medium
  - Incomplete knowledge of environment
    - Workload, data traffic, ...
- Design interconnection as a micro-network
  - Leverage network design technology
  - Manage information flow
    - To provide for performance
  - Power-manage components based on activity
    - To reduce energy consumption

#### Micro-network characteristics

- Micro-networks require:
  - Low communication latency
  - Low communication energy consumption
  - Limited adherence to standards
- SoCs have some physical parameters that:
  - Can be predicted accurately
  - Can be described by stochastic distributions

#### Micro-network stack

#### **Software**

- application
- •system

### Architecture and control

- •transport
- network
- data link

### Physical •wiring

#### Design choices at each stack level affect:

- Communication speed
- Reliability
- Energy

#### Control Protocols:

- Layered
- Implemented in Hw or Sw
- Providing error correction

## Achieving robustness in micro-networks

- Error detection and correction is applied at various layers in micro-networks
- Paradigm shift:
  - Present design methods reduce noise
    - Physical design (e.g., sizing, routing)
  - Future methods must cope with noise
    - Push solution to higher abstraction levels

## Data-link protocol example: error-resilient coding



- Compare original AMBA bus to extended bus with error detection and correction or retransmission
  - SEC coding
  - SEC-DED coding
  - ED coding
- Explore energy efficiency



28

## Advanced bus techniques: CDMA on bus

- Motivation: many data sources
  - Support multiple concurrent write on bus
  - Discriminate against background noise
- Spread spectrum of information
  - Driver/receiver multiply data by random sequence generated by LFSR
    - LFSR signature is key for de-spreading



#### Going beyond buses

- Buses:
  - Pro: simple, existing standards
  - Contra: performance, energy-efficiency, arbitration
- Other network topologies:
  - Pro: higher performance, experience with MP
  - Contra: physical routing, need for network and transport layers
- Challenge: exploit appropriate network architecture and corresponding protocols

### Network and transport layers

- Information is in packets
- Network issues:
  - Network switching
    - Circuit, packet, cut-through, wormhole
  - Network routing
    - Deterministic and adaptive routing
- Transport issues:
  - Decompose and reconstruct information
  - Packet granularity
  - Admission/congestion control

#### SPIN micro-network

- Applied to SoCs
- 36-bit packets
  - Header: destination
  - -Trailer: checksum



- Fat-tree network architecture
- Cut-through switching
- Deterministic tree routing

Address

#### SPIN micro-network



#### Benefits of packets

- Reliable error-control mechanism
  - With small overhead
- Exploit different routing paths
  - Spread information to avoid congestion
- Several user-controllable parameters
  - Size, retransmission schemes, ...
- Use retransmission rate for calibrating parameters

## System assembly around micro-network

- Network architecture provides backbone
- Component plug and play:
  - Programmable network interface
  - Reconfigurable protocols
  - Recognize network and self configure
- Self-assembly of SoCs addresses the issue of component reuse and heterogeneity

#### Extremely large scale design

- Heterogeneous components with malleable interfaces
- Macroscopic self-assembly
  - Exploit degrees of freedom in component/interface specifications
  - Self-configuration realizes interfacing details abstracted by designers
  - Self-configuration, together with redundancy, addresses selfcorrection of some possible design errors

#### Self-healing

- Correcting for run-time failures
- Method to increase availability and robustness

### Example: Biowall



- Embryonics project at EPFL, Switzerland
- Cellular design with redundancy
  - Each cell programmed by a string (gene)
  - FPGA technology
- Self-healing property:
  - Upon cell failure, neighbors reconfigure to take over function

37







#### Autonomic computing

- Broad R&D project launched by IBM
- Self-healing
  - Design computer and software that perform self-diagnostic functions and can fix themselves without human intervention
  - Strong analogies to biological systems
- Reduced cost of design and maintenance

#### Autonomics principles

- An autonomic system:
  - must know itself
  - reconfigures itself under varying condition
  - optimizes its operations at run time
  - must support self-healing
  - must defend itself against attacks
  - must know the environment
  - manages and optimizes internal resources without human intervention

#### Evolving computing materials

- When will current semiconductor technologies run out of steam?
- What factor will provide a radical change in technology?
  - Performance, power density, cost?
- Several emerging technologies:
  - Carbon nanotubes, nanowires, quantum devices, molecular electronics, biological computing, ...
- Are these technologies compatible with silicon?
  - What is the transition path?
- What are the common characteristics, from a design technology standpoint?

#### Rosette nanotubes



## Common characteristics of nano-devices

- Self-assembly used to create structures
  - Manufacturing paradigm is bottom-up
- Significant presence of physical defects
  - Design style must be massively fault-tolerant
- Competitive advantage stems from extreme high density of computing elements
  - 10<sup>11</sup>-10<sup>12</sup> dev/cm<sup>2</sup> vs. 3x10<sup>9</sup> dev/cm<sup>2</sup> for CMOS in 2016
- Some nano-array technologies are compatible with silicon technology and can be embedded in CMOS

#### Robust nano-design

- Key ingredients:
  - Massive parallelism and redundancy
  - Exploit properties of crosspoint architectures
    - É.g., Programmable Logic Arrays (PLAs)
  - Local and global reconfiguration
- Some design technologies for robust DSM CMOS design can be applied to nanotechnology

#### Summary problem analysis

- The electronic market is driven by embedded applications where reliability and robustness are key figures of merit
- System design has to cope with uncertainty
  - Lack of knowledge of details, due to abstraction
  - Physical properties of the material
- As design size scales up, the design challenge is related to interconnecting high-level components
- As technology scales down, and as nanotechnologies are introduced, electrical-level information becomes unreliable

#### Summary design strategies

- Robust and reliable design is achieved by:
  - Self-calibrating system components
  - Networking components on chip with adaptive interfaces
    - Encoding, packet switching and routing provide a new view of logic and interconnect design
  - Self-healing components that can diagnose failures and reconfigure themselves
- New emerging technologies will require massive use of error correction and redundancy

