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Integrated System Technology Issues
 Extremely small size

 Thinner interconnect -> more chance of EM failure
 Thinner dielectric ->  more chance of TDDB failure
 Narrower design margins

 Extremely large scale
 High transistor density

• Causes more failures
• Enables redundancy

 Energy consumption
 Increased energy consumption is a hurdle to modular redundancy
 Power and thermal management are critical

• Reliability exponentially related to temperature

Designing reliable integrated systems requires techniques 
that integrate with power management 

and tie to the underlying technology

Courtesy of Fred Pollack, Intel
Keynote speech,  MICRO-32
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Reliability
 Reliability is the the probability function R(t) that a system

works correctly in [0, t] without repairs
 The mean time to failure MTTF is  E[t] = ∫ R(t)dt
 Assuming a unit works correctly in [0, t], the failure rate

is the conditional probability λ(t) that a unit fails in [t,
t+Δt]
 It depends on temperature, environmental exposure, mechanical

and thermal stress
 The component failure rate is often assumed to be constant

during useful lifetime of device:
• R(t) = exp (– λt) and MTTF = 1/ λ

 Two types of failures can be defined in integrated systems:
 Soft failures – transient malfunctions
 Hard failures - permanent malfunctions

t
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Related Work – Reliability for SoCs

 Reliability at the architecture level
 Integrated simulation of power and reliability at microarchitecture level

RAMP [Srinivasan’03]
 Redundancy tradeoffs [Shivakumar’03]

 Dynamic Thermal Management (DTM)
 HotSpot [Skadron’03], ThermaHeard [Shang’04]

• Simulate and reduce thermal hotspots
 Thermal management for multimedia [Srinivasan’03]

 Dynamic Voltage Scaling (DVS) as related to reliability
 Routing and DVS for reduction of hotspots [Shang’04]

 Dynamic Power Management (DPM)
 Primarily focused on lowering energy consumption

 Soft errors studied by many, e.g.:
 Ultra-low power systems [Maheshwari’02]
 Sensing systems [Marculescu’03]

 Hard failure mechanisms studied at length in the past, e.g.:
 Temperature cycling [Huang’00]
 TDDB [Degraeve’98]
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Reliable low-power design

 Simulate system-level reliability
 Model three sources of hard errors:

• Electromigration (EM), Time-dependent dielectric breakdown (TDDB), and
Temperature Cycling (TC)

     as a function of a power management policy
 Design and optimize a system management policy

 Maximize reliability and minimize energy consumption
 Combined dynamic reliability management (DRM) with dynamic

power management (DPM) optimization
• Markov, semi-Markov and TISM models
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Hard failures

 Defects in silicon or package, permanent once present

 Expected lifetime decreases with hard error rate
 Extrinsic

• Caused by process and manufacturing defects
• Usually screened out before shipping a product

 Intrinsic
• Occur during operation
• Depends on materials, process parameters, system design and

operating conditions
• Should occur after device passes its useful lifetime
• Examples: electromigration, time dependent dielectric

breakdown, thermal cycling
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Electromigration (EM)
 Result of momentum transfer from electrons to the ions which

make interconnect lattice
 Leads to opening of metal lines/contacts, shortening between

adjacent metal lines, shortening between metal levels,
increased resistance of metal lines/contacts or junction
shortening

 Described by Black's model where Ao is an empirically
determined constant, J is the current density in the
interconnect, Jcrit is the threshold current density, k is the
Boltzmann's constant, Ea and n  are 0.7 and 2
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Time Dependent Dielectric Breakdown (TDDB)
 Wear out mechanism of dielectric due electric field and

temperature; causes formation of conductive paths
through dielectrics

 MTTF is a function of the empirically determined constant
Ao, the field acceleration parameter γ, the electric field
across the dielectric Eox, the activation energy Ea  and T
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Temperature Cycling (TC)

 Caused by thermal cycles that occur during power state changes
 Slow and fast thermal cycles

 Induces plastic deformations in materials - leads to cracks, short circuits
and other failures of metal films and interlayer dielectrics

 Depends on temperature range and average temperature:
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Reliability of complex systems

 A system is a connection of components

 System reliability depends on the topology
 Series/parallel configurations
 N out of K configurations
 General topologies

 Examples:
 CPU, memory and interconnect form a series reliability network as all

three are necessary for the correct functioning of the system
 Dual CPU system could be viewed as a parallel reliability combination

as only one CPU is needed in order for the system to function
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Basic Reliability Configurations

 Active parallel configuration has all redundant components working
concurrently
 Energy consumption is high
 Time to transition on failure is very low
 Failure rate is higher than standby parallel
 E.g. identical controllers for aircraft guidance

 Standby parallel configuration has redundant components in low-power
mode until failure of the active component
 Energy consumption lower
 Time to transition on failure higher
 Low failure rate
 E.g. dual CPU platform

 Series combination has the highest failure rate
 E.g. CPU, memory, interconnect
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DPM&DRM - Dependability modeling
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DPM&DRM - Power management modeling
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DPM&DRM System Model Details
 Combine:

 Power-state machine model - TISMDP
 Reliability model - Markov process

 Represent overall system as combination of components’  PSMs where failure
rates depend on system state

 System control aims to increase energy efficiency and enhance reliability
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DPM&DRM Policy Optimization
Minimize average energy consumed under reliability and
performance constraints – get randomized policy

Obtain globally optimal policy using linear programming
 Policy is obtained from state-action frequencies f(s,a) as a table

of probabilities of issuing command a when system is in state s
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Variable definitions:
cost (s,a) average cost incurred while in

state s given action a
f( s,a ) frequency of executing action a

while in state s
M( s’| t,s,a ) probability of arriving to state s’

given action a taken in state s
T( s,a ) expected time spent in state s

given action a
Tpl(λc) reliability constraint as a

function of network topology Tpl
 λc core reliability
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DPM Constraint Formulation
 Energy and performance cost:

 k(si, ai) - lump sum cost
 c(si+1,si,ai) - cost rate (e.g. power or performance penalty)
 F(ti | si, ai) - probability distribution of next event occurrence
 p(si+1| ti, si, ai) – probability of transition into next state si+1

 Expected time spent in each state:

 Probability of arrival into each state:
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Reliability Constraint Formulation
 Failure rate of each state is a sum of the failure rates due to

all mechanisms (EM, TDDB, TC) acting in that state
 Expected temperature in a state needs to be calculated
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 Total failure rate of a core is a weighted sum of state failure
rates, for example: 
 Core has three power states: active, idle and sleep

 Two actions:  “go to sleep” (S) and “continue” (C)

 System failure rate is calculated based on system topology
as a function of series and parallel combinations
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Optimization example
 95nm technology
 Five cores; standard workloads (audio, video, www, email)
 MTTF constraint set to 10 years; minimized power consumption

t ts t ta 

[s] [s]

DSP (TMS6211) [22] 1.1 0.5 0.01 250u 100n
Video (SAF7113H) [23] 0.44 N/A 0.07 110m 0.9

Audio (SST-Melody-DAA) [24] 0.11 0.03 3.00E-03 6u 0.13
I/O (MSP43011x2) [25] 1.00E-03 N/A 6.00E-06 100n 6u

DRAM (Rambus 512M) [26] 1.58 0.37 1.00E-02 16n 16n

IP block Pactive [W] Pidle [W] Psleep [W]
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Single Core Design

 Maximum power savings
achievable given MTTF of
10 years are at 90% for
all cores and temperature
ranges except for DSP,
Video and Audio at 90 C
due to TC mechanism
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Design with redundancy
 Standby-off and standby-sleep redundancy model

 Power savings with MTTF set to 10 years

0%

20%

40%

60%

80%

100%

P
o

w
e
r 

sa
v

in
g

s 
%

DSP VIDEO AUDIO I/O RAM

50C

90C

0%

20%

40%

60%

80%

100%

P
o

w
er

 s
av

in
g

s 
%

DSP VIDEO AUDIO I/O RAM

50C

90C

 System meets MTTF of 10 years when one more redundant
core in standby off mode is added to DSP, Audio and I/O;
power savings of 40% are achieved
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Redundancy
 Using redundancy helps improving reliability but at the cost of

increased area and power consumption
 Instead of spare cores use functional redundancy & dynamic

reconfiguration

1.45

1.5

1.55

1.6

1.65

1.7

1.871.821.771.711.661.611.561.221.171.111.061.010.960.91

MTTF (factor)

P
o

w
e

r(
W

)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Tr=80C

Tr=100C

Tr=120C

T=80C

T=100C

T=120C

No Redundancy With Redundancy



Tajana Simunic Rosing & Giovanni De Micheli

DVS, DPM and Reliability
 Simulate using a “typical day”

workload, consisting of video,
audio, www and telnet traffic
interspersed throughout the day

 95nm technology,
power/performance properties of
XScale PXA270

 Aggressive DPM:
 Large power savings, but reliability

loss due to TC

 DVS only:
 Smaller power savings, but longer

MTTF due to EM/TDDB

 Both DVS/DPM give best tradeoff

State Active (mW) Idle (mW) Freq (MHz)

P1 925 260 624

P2 747 222 520

P3 279 129 208

P4 116 64 104

Psleep 0.163 0.163 0
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Power and MTTF with DVS/DPM

 DVS/DPM improves MTTF by 45%, with 61% power savings

Policy Power MTTF
None 0% 0%
DVS 35% 42%
DPM (Rmax) 16% 6%
DPM (ave) 47% -12%
DPM (Pmax) 99% -34%
both (Rmax) 46% 47%
both (ave) 61% 45%
both (Pmax) 99% 34%
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Summary

 Reliability is strongly affected by both DVS and DPM

 Integrated methodology for analysis, optimization and
management of reliability and power consumption:
 Simulator gives fast feedback on topology design and system

characteristics for a wide range of operating conditions
 Optimizer provides a policy capable of giving an optimal

implementation of reliability and power management control

 Results obtained for a number of integrated systems
implemented in 95nm technology show:
 Large dependence between power management policy and

reliability due to tradeoff between EM, TDDB and TC effects
 40% power savings on top of meeting MTTF of 10 years for an

integrated system consisting of five cores with redundancy


