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l’ambiance dans la chaire je remercie mes collègues : Nicolas pour son hospitalité
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tié et Daniela pour ses idées brillantes et son sou- rire rayonnant. Ma voca-
tion de mathématicien n’est pas du pur hasard : déjà mon grand-père Rudolf
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Abstract

Graph Coloring is a very active field of research in graph theory as well as in the domain

of the design of efficient heuristics to solve problems which, due to their computational

complexity, cannot be solved exactly (no guarantee that an optimal solution will be re-

ported), see [Cul] for a list of over 450 references. The graph coloring problem involves

coloring the vertices of a given graph in such a way that two adjacent vertices never share

the same color. The goal is to find the smallest number of colors needed to color all ver-

tices in a fashion that satisfies this requirement. This number is called chromatic number

and is denoted by χ.

In the first chapter, we present our research on suboptimal colorings and graphs which

can be colored in such a way that the number of different colors appearing on the closed

neighborhood (a vertex plus its neighbors) of any vertex v is less than χ. We call such

graphs oligomatic. The most interesting result is the following: given a graph and a

coloring using χ+ p colors, there exists a vertex v such that there are at least χ different

colors among all vertices which are at a distance of �p
2
�+ 1 or less from v. We also study

the existence of oligomatic graphs in special classes. Additionally, we present results

of research on universal graphs which are “generic” oligomatic graphs in the sense that

most properties of oligomatic graphs can be analyzed by restricting ourselves to universal

graphs.

Chapters Two to Four deal with the development of heuristics for two types of graph

coloring problems. The tabu search heuristic was a central focus of our research. A

tabu search iteratively modifies a candidate solution (which becomes the new candidate

solution) with the goal of improving it. In such a procedure it is forbidden (tabu) to undo

a modification for a certain number iterations. This mechanism allows to escape from

local minima.

In Chapter Two, we propose general improvements for tabu search based on some new

and simple mechanisms (called reactive tabu schemes) to adapt the tabu tenure (which

corresponds to the number of iterations a modification stays tabu). We also introduce

distance and similarity measures for graph coloring problems which are needed in iterative

procedures such as those of the tabu search.

In the third chapter, we present the Partialcol heuristic for the graph coloring problem.

This method obtains excellent results compared to other similar methods and is able to

color the well known Dimacs [JT96] benchmark graph flat300 28 0 optimally with 28

colors. (The best colorings found to date by other researchers use at least 31 colors.)

Partialcol uses partial solutions in its search space, which is a little explored way of

approaching the graph coloring problem. Most approaches either use colorings and try

to minimize the number of colors, or they use improper colorings (having conflicts, i.e.

adjacent vertices which may have the same color) and try to minimize the number of

conflicts.

In the final chapter, we present a weighted version of the graph coloring problem which
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has applications in batch scheduling and telecommunication problems. We present two

different adaptations of tabu search to the weighted graph coloring problem and test several

of the reactive tabu schemes presented in Chapter Two. Further, we devise an adaptive

memory algorithm Ama inspired by genetic algorithms. A large set of benchmark graphs

with different properties is presented. All benchmark graphs with known optima have

been solved to optimality by Ama. A key element of this algorithm is its capacity to

determine the number k of colors to be used. Most other graph coloring heuristics need

this parameter to be supplied by the user. Considering the results obtained on various

graphs, we are confident that the methods developed are very efficient.
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Version abrégée

La coloration de graphes est un sujet de recherche très actuel, dans la théorie des graphes

ainsi que pour la conception d’heuristiques pour la résolution de problèmes qui ne peuvent

pas être résolus exactement parce que le temps de calcul nécessaire crôıt trop vite avec la

taille du problème. Le problème de la coloration de graphes (Gcp) consiste à colorer les

sommets d’un graphe d’une manière que deux sommets adjacents ne reçoivent jamais la

même couleur. La question est quel est le nombre minimum de couleurs nécessaires pour

colorer un graphe donné ? Ce nombre est appelé nombre chromatique et est noté par χ

(prononcé ki).

Au premier chapitre nous présentons les résultats de nos recherches sur les colorations

suboptimales et des graphes qui peuvent être colorés de sorte que le nombre de couleurs

apparaissant sur chaque sommet et ses voisins soit inférieure à χ. Nous appelons ces

graphes oligomatiques. Le résultat le plus important est le théorème suivant : Pour un

graphe coloré avec χ+ p couleurs, il existe un sommet v tel qu’il y a au moins χ couleurs

différentes sur l’ensemble des sommets qui se trouvent à une distance d’au plus
⌈

p
2

⌉
+1 de

v. Nous avons également étudié l’existence de graphes oligomatiques dans différent classes

de graphes. Nous présentons également des résultats sur les graphes universels qui servent

comme modèle pour les graphes oligomatiques : il suffit souvent, en effet, d’étudier les

graphes universels pour en dériver des propriétés des graphes oligomatiques.

Nous développons des améliorations de l’heuristique tabu search appliquée au Gcp ainsi

qu’à une généralisation pondérée du Gcp. Puis nous introduisons plusieurs méthodes,

appelées reactive tabu schemes, pour ajuster automatiquement la tabu tenure, le paramètre

crucial pour tabu search. Pour ces méthodes, nous introduisons des mesures de distance

et de similarité entre deux colorations d’un graphe.

Au troisième chapitre nous présentons l’heuristique Partialcol pour le Gcp. Cette heu-

ristique obtient des résultats excellents sur des graphes de test Dimacs. En particulier

cette méthode est capable de colorer le graphe flat300 28 0 avec le nombre optimal de 28

couleurs, ce qu’aucune autre méthode connue à ce jour n’a pu obtenir (la meilleure colora-

tion trouvé utilisait 31 couleurs). Partialcol utilise des colorations partielles (certains

sommets ne sont pas colorés), ce qui est une méthode peu explorée dans le cadre du Gcp.

Nous présentons deux adaptations de tabu search à une version pondérée du Gcp. La pre-

mière utilise des colorations avec un nombre variable de couleurs, tandis que la deuxième

utilise des colorations avec conflits (des sommets adjacents peuvent avoir la même cou-

leur) avec un nombre de couleurs fixé par l’utilisateur. Avec les deux approches, plusieurs

reactive tabu schemes ont été testés. Basé sur la première approche, nous avons développé

un algorithme à mémoire adaptative (Ama). Pour tester ces heuristiques, nous avons

généré un jeux d’instances avec différentes caractéristiques. Toutes les instances avec un

optimum connu ont été résolues par Ama. Une propriété importante de cet algorithme est

le fait qu’il détermine automatiquement le nombre de couleurs à utiliser, contrairement à

beaucoup d’autres heuristiques de coloration qui demandent ce paramètre comme entrée.
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Les résultats obtenus avec les heuristiques développées confirment leur efficacité et le bien-

fondé des idées sous-jacentes. Ces techniques vont très certainement permettre d’aborder

d’autres problèmes d’optimisation combinatoire et d’améliorer substantiellement les per-

formances atteintes jusqu’ici.
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Zusammenfassung

Graphenfärbung ist ein aktives Forschungsfeld der Graphentheorie und der angewandten

Mathematik als Testproblem für die Entwicklung von Heuristiken, um Probleme zu lösen,

die nicht exakt gelöst werden können, weil der Rechenzeitbedarf sehr schnell ins Uner-

mässliche steigt. Das Graphenfärbungsproblem (kurz Gcp für graph coloring problem)

besteht darin, die Knoten eines Graphen so einzufärben, dass verbundene Knoten immer

verschiedene Farben haben. Die Frage ist nun, wie viele Farben sind mindestens nötig,

um einen gegebenen Graphen zu färben? Diese minimale Anzahl Farben ist chromati-

sche Zahl genannt und wird mit χ (“chi”) bezeichnet. [Cul] führt über 450 Verweise im

Zusammenhang mit dem Gcp auf.

Im ersten Kapitel präsentieren wir die Forschungsergebnisse bezüglich suboptimaler Fär-

bungen und speziell Graphen, die so eingefärbt werden können, dass die Anzahl verschie-

dener Farben eines Knoten und seiner Nachbarn kleiner ist als χ. Wir nennen solche

Graphen oligomatisch. Das wichtigste Resultat ist das folgende Theorem. Gegeben sei ein

Graph und eine Färbung mit χ+ p Farben. Dann gibt es einen Knoten v, so dass minde-

stens χ verschiedene Farben auf den Knoten vorkommen, die nicht weiter als
⌈

p
2

⌉
+ 1 von

v entfernt sind. Des weiteren haben wir für verschiedene Graphenklassen untersucht, ob

darin oligomatische Graphen enthalten sind. Wir präsentieren ebenfalls unsere Resultate

bezüglich universellen Graphen, welche oligomatische Modellgraphen darstellen. Für viele

Fragen über oligomatische Graphen ist es ausreichend, universelle Graphen zu betrachten.

In den folgenden Kapiteln beschäftigen wir uns mit der Entwicklung und Verbesserung von

Heuristiken für das Gcp und für eine gewichtete Verallgemeinerung des Gcp. Im zweiten

Kapitel stellen wir mehrere Methoden vor, um die tabu search Heuristik zu verbessern,

indem der wichtigste Parameter mittels einer reactive tabu tenure automatisch angepasst

wird. Für diese Methoden führen wir verschiedene Masse ein, um die Ähnlichkeit zweier

Färbungen zu quantifizieren.

Im dritten Kapitel stellen wir Partialcol, eine Heuristik für das Gcp vor. Diese Heuri-

stik erzielt sehr gute Resultate und hat für den Dimacs Testgraphen flat300 28 0 erstmals

eine optimale Färbung mit 28 Farben bestimmen können. Die beste je erreichte Färbung

mit anderen Methoden brauchte 31 Farben. Partialcol verwendet Teilfärbungen im

Suchraum, was eine kaum erforschte Methode für das Gcp darstellt. Einige Methoden

benutzen Färbungen des ganzen Graphen und versuchen die Anzahl verwendeter Farben

zu reduzieren. Viele andere verwenden unechte Färbungen, die Konflikte enthalten kön-

nen (benachbarte Knoten gleicher Farbe) und versuchen die Anzahl Konflikte auf Null zu

reduzieren.

Im letzten Kapitel beschäftigen wir uns mit einer gewichteten Version des Gcp. Wir prä-

sentieren zwei Heuristiken, die auf tabu search beruhen. Die erste verwendet Färbungen

mit einer variablen Anzahl Farben und die zweite verwendet unechte Färbungen mit einer

fixen, vom Benutzer zu definierenden Anzahl Farben k. Basierend auf der ersten Methode

haben wir zudem einen genetischen Suchalgorithmus entwickelt. Um die Heuristiken zu
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testen, haben wir mehrere Testinstanzen mit verschiedenen Eigenschaften generiert. Alle

Testinstanzen mit bekanntem Optimum wurden von unserem genetischen Algorithmus ge-

löst. Eine wichtige Eigenschaft unseres Algorithmus ist, dass er die Anzahl Farben für eine

beste Färbung selbst bestimmt. Im Gegensatz muss bei den meisten anderen Graphen-

färbungsheuristiken dieser Parameter vom Benutzer eingegeben werden. In Anbetracht

der Resultate dieser Heuristiken sind wir überzeugt, dass die entwickelten Methoden sehr

effizient sind.
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Introduction

The graph coloring problem is one of the oldest problems in graph theory and combinatorial
optimization.

Its origins go back to the famous four color theorem, which states that the countries of
any geographical map can be colored with four colors in such a way that two countries
having a common border are never colored with the same color (provided all countries are
contiguous). This question has already been raised in the middle of the 19th century, and
the first published reference dates back to 1879 [Cay79]. The theorem was proved only in
1976 [AH77, AHK77] with the help of a computer to check thousands of configurations.
A short and elegant proof is still not available.

v1

v2 v3

v4

v5
v6

v7

v8 v9

Figure 1 A four-colored map and the graph associated to
the map.

Figure 1 illustrates the four color theorem on a map with 9 countries. The associated
graph is constructed as follows. Every country corresponds to a vertex, and two vertices
are joined by an edge if the two countries associated with the vertices have a common
border.

A coloring of the vertices of a graph, or simply a graph coloring, is defined as an association
of a color with each vertex such that two adjacent vertices never have the same color.

The graph given in Figure 1 cannot be colored with fewer than four colors. To see
that, consider the set of vertices {v2, v3, v6, v7, v5}, which forms a pentagon. To color
a pentagon, three colors are needed. Because the vertex v4 sees all five vertices of the
mentioned pentagon, one necessarily needs to introduce a fourth color for the vertex v4.

1



Figure 2 A coloring of the graph associated with the map
of Figure 1 using four colors.

However, in this thesis we will not be concerned with the four color theorem. Neither will
we restrict ourselves to the study of planar graphs (graphs which can be drawn in a plane
without crossing edges).

The graph coloring problem (Gcp) is a well studied combinatorial optimization problem
with a wide range of applications. There are two versions of the Gcp. In the decision
version, one asks whether, for a given graph and a given k, a coloring with k colors exists.
In the optimization version, one asks what is the smallest number k such that a k-coloring
exists (i.e. a coloring using at most k colors).

The Gcp is very simple to define and understand, but nevertheless, it is impossible to
solve the problem exactly (in either version) as soon as the graph becomes large, because
the execution time required for an exact algorithm (i.e. an algorithm which guarantees a
correct answer) grows exponentially as the size of the instance grows in a linear manner.

Despite the fact that mapmakers never bothered to minimize the number of colors they
used (they rather tried to balance the number of times each color appears), the Gcp has
practical applications. Classic examples are timetabling or frequency assignments.

Timetabling and Graph Coloring

Suppose that there is a set of courses to be scheduled and that it is already known who
will teach each course to which class. There will be some courses which can be scheduled
at the same time; but, for others, this may not be possible because a teacher or a class
cannot be in two places at the same time. The goal is to assign a time period to each
course such that the total number of different time periods used is minimal in order to
obtain the shortest possible timetable.

This translates into a Gcp in the following way. A vertex is associated with each course.
Two vertices are joined by an edge if the two associated courses cannot be held at the
same time. On the defined graph, the Gcp is solved to find a coloring with a minimal
number of different colors. The colors can now be interpreted as different time periods
which results in a timetable using the smallest possible number of time periods.

For some examples of graph coloring formulations of timetabling problems, see [WP67,
NT74, Car86, dW97].
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Frequency Assignments and Graph Coloring

Suppose that a set of antennae is placed over a large area for a mobile phone network.
Our task will be to assign a frequency to each antenna respecting two types of constraints.
First, two antennae which are close to each other cannot transmit on the same frequency
due to interference problems. Second, we would like to minimize the number of frequencies
to be used.

This problem can be translated in the Gcp by associating a vertex with each antenna.
Two vertices are joined if the two corresponding antennae are too close to receive the same
frequency. A coloring of the constructed graph can be interpreted as a valid assignment of
frequencies to the antennae by simply associating a frequency with each color. A coloring
using a minimal number of colors will accomplish our task.

For general formulations of frequency assignment problems, see [Gam86, GR92, Vas02,
Zuf02, AvHK+03].

In the following we will define the objects and notation we will use throughout this thesis.
We will start with some basic notions of graph theory and then give a formal definition of
the Gcp. For all terms related to graphs which are not defined here, the reader is referred
to [Ber76].

Notions of Graph Theory

A graph is an object composed of vertices (sometimes also called nodes), and some of
these vertices are joined by edges. See Figure 3 for an example of a graph.

Figure 3 A graph with eight vertices and 15 edges.

A simple (non-oriented) graph G = (V,E) is defined by its vertex set

V = {v1, . . . , vn}

and its edge set
E =

{{vi, vj} | vi and vj are joined
}
.

Definition 1

If two vertices v and w are joined by an edge, we say that v and w are neighbors or
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are adjacent. The set of vertices adjacent to v is called the neighbors of v. It is usually
denoted by NG(v) or N(v) if the graph is implied.

The complement G of a graph G has the same vertex set as G and two vertices are joined
by an edge in G if and only if they are not joined by an edge in G.

Having defined the notion of a graph, we can now introduce a vertex coloring of a graph.

A vertex coloring, or simply a coloring of a graph G = (V,E) is a function

c : V → C

from the set of vertices V into a set of colors C (typically a set of natural numbers)
such that

c(vi) �= c(vj) whenever {vi, vj} ∈ E
A k-coloring is a coloring which uses at most k different colors.

Definition 2

If not stated otherwise, a k-coloring will be represented as a function

c : V → {1, . . . , k}.

Colorings can also be represented as a partition of the vertex set into color classes, which
are stable sets.

Given a graph G, a stable set is a set of mutually non-adjacent vertices.

Definition 3

The size of the largest stable set in a graph G is called its stability number and is denoted
by α(G) or α if the graph is implied.

Given a graph G, a clique is a set of mutually adjacent vertices.

Definition 4

The size of the largest clique in graph G is denoted by ω(G) or ω if the graph is implied.
Note that the complement of a stable set is a clique and vice versa.

Given a k-coloring c as an integer valued function c : V → {1, . . . , k}, the equivalent
partitioning into color classes C1, . . . , Ck can be defined as follows:

Ci = {v ∈ V | c(v) = i} for i = 1, . . . , k.

The optimization version of the Gcp concerns itself with minimizing the number of colors
used to color a given graph. This number χ is an important invariant of a graph.
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The chromatic number χ of a graph G, also denoted by χ(G), is defined to be the
smallest k such that a k-coloring of G exists.

Definition 5

For the purpose of graph coloring, we can restrict ourselves to connected graphs. In order
to define connectedness we first define a chain.

A chain C in a graph G = (V,E) is a sequence of edges C = (e1, . . . , el) such that
|ei ∩ ei+1| = 1 for all i = 1, . . . l − 1 and ei ∩ ei+1 �= ei+1 ∩ ei+2 for all i = 1, . . . , l − 2.

Definition 6

With the notion of a chain, we can now define connectedness.

A graph G = (V,E) is connected if, for every pair of vertices vi, vj, there exists a chain
C = (e1, . . . , el) such that vi ∈ e1 and vj ∈ el.

Definition 7

If the Gcp has to be solved on a non-connected graph G, one can solve the Gcp indepen-
dently for each connected component of G. Hence, all graphs are assumed to be connected
unless specified otherwise.

Proofs in this thesis will be terminated with the two letters h.x. [Kel66].

Graph Coloring in Theory

There are several research directions in graph theory dealing with coloring problems as, for
instance, studies about the complexity of the graph coloring problem restricted to special
classes of graphs. Our studies focus on properties of neighborhoods in graph colorings.

Suppose there is a graph G with an optimal coloring c (i.e. a coloring using χ different
colors). Then there is a vertex v of G such that every color is present on v and its
neighbors. We say that v sees χ different colors. It is easy to realize why such a vertex v
must exist. (If it were not the case, consider all vertices colored with the largest color χ.
For every such vertex w, there is at least one color i which does not appear on w and its
neighbors. Therefore, one can change the color of w and give it color i (which is necessarily
smaller than χ). Because the vertices of a color class are all mutually non-adjacent, the
recoloring of those vertices can be done independently. One ends up with a coloring using
fewer than χ different colors which contradicts the definition of χ.)

However, it turns out that there are graphs with colorings using more than χ colors such
that every vertex sees fewer than χ colors. We investigate graphs with this property; these
are called oligomatic graphs. We also consider larger neighborhoods and ask how large
the neighborhood must be in order to guarantee that χ different colors appear around
at least one vertex. Our research concludes that, for a (χ + p)-coloring, the distance
�p

2
� + 1 is large enough. The technique for this proof is original and more involved than

the procedure sketched above. Instead of iteratively recoloring the vertices of each color
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class independently (to reach the contradiction that the graph is (χ− 1)-colorable), here,
p+ 1 color classes are simultaneously recolored.

Graph Coloring in Practice

The decision version of the Gcp is an NP-complete problem [GJ79], which means that,
unless P=NP, no polynomial algorithm exists to solve the Gcp. In practice that means
that, for an exact algorithm, the execution time required grows very fast with the size
of the instance. The limit of today’s best exact algorithms [MT96, HH02b, Sch04] lies
somewhere between 80 and 150 vertices, depending on the nature of the instance. Because
solving large instances of the Gcp is not possible (the universe will probably cease to exist
before an exact algorithm has terminated) heuristics must be developed. A heuristic is
an algorithm which uses some strategy to produce a “good” solution in a “short” time.
“Good” means that the solution should, first of all, satisfy the user of the heuristic. He
might compare the heuristic’s results to a known optimum (which is rare), to existing real-
world solutions, or to solutions obtained with other methods, including other heuristics.
“Short” means that the user of the heuristic accepts to wait for the heuristic to terminate
(typically between a few seconds and several hours). Generally, heuristics do not provide
a guarantee on the quality of the solution they produce.

The most straightforward heuristic is called greedy algorithm. This type of algorithm
constructs a solution step by step. At every step, the “best” way (according to some
objective function) of completing the current partial solution is applied. A possible greedy
algorithm for the Gcp consists of visiting each vertex in some order and assigning the
smallest possible color to each vertex. Such an algorithm is very fast but results in
solutions which are generally of a poor quality compared to other, more sophisticated
heuristics.

We will investigate different variations of tabu search, an important and very successful
type of heuristic. Our main contribution consists of different simple mechanisms to adjust
a crucial parameter for the tabu search heuristic in an automated manner. We will apply
the techniques developed to the Gcp and to a weighted version of the Gcp. The results
obtained are very promising, and our method even finds an optimal coloring for a well-
known benchmark graph (called flat300 28 0) for which no other known method (at the
time of publication) is able to find an optimal coloring.

The Gcp is often too simple a model to be applied directly to real, practical problems,
that involve more specific objectives or constraints. In the final chapter, we will introduce
the weighted graph coloring problem (Wcp), which has applications in batch scheduling
and telecommunications. We develop several adaptations of tabu search for the Wcp, as
well as an adaptive memory heuristic, which has proven to be very efficient. To test the
heuristics, we present several ways of generating instances for the Wcp.

We will conclude with some remarks on the procedures developed and on the possibility
of applying the basic concepts to other combinatorial optimization problems.
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Chapter 1

Oligomatic Colorings

1.1 Introduction

In the context of graph coloring, one is generally interested either in colorings that use the
least possible number of colors or in simply determining this number, called the chromatic
number of the graph, denoted by χ(G) or simply χ, if the graph is implied by the context.
We call a coloring using exactly χ different colors an optimal coloring. A coloring using
more than χ different colors will be called a suboptimal coloring.

Properties of optimal vertex colorings of graphs have been widely studied [Bro41]. On the
other hand, structural properties of suboptimal colorings are mostly unknown. However,
those properties do merit attention, as the graph coloring problem is used as a basis for
numerous applications. Often, coloring methods do not provide optimal, but suboptimal
colorings.

In what follows, graphs are always simple (no double edges), loop-free (no edge linking a
vertex to itself), connected (there is a chain between any pair of vertices) and non-trivial
(at least two vertices), unless stated otherwise.

Let us start with a very simple property of optimal colorings:

Let G = (V,E) be a graph and c an optimal coloring of G. Then there exists a vertex
v such that for every i �= c(v) there is a neighbor w of v such that c(w) = i.

Property 8

Proof

By contradiction, suppose that c is an optimal coloring for which the property does not
hold, i.e. for every vertex v there exists a color μ(v) �= c(v) such that there is no neighbor
of v with color μ(v).

We can now recolor every vertex w ∈ Cχ (vertices colored with the color χ) with the color
μ(w) to obtain a coloring c′ using χ− 1 colors. However, this contradicts the optimality

of c.
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Chapter 1

Note that this property holds, in fact, for at least one vertex of every color. For what
follows, we will need to introduce some notation.

Let G = (V,E) be a graph and v, w ∈ V two vertices of G. We define the distance
d(v, w) between v and w to be the number of edges on a shortest chain linking v and
w.

Definition 9

Now that we have defined a distance, we can define closed neighborhoods:

Let G = (V,E) be a graph and v ∈ V a vertex of G. Define the closed neighborhood
of radius r of v as the set of all vertices at a distance r or less from v.

Nr[v] = {w ∈ V | d(v, w) ≤ r}

Definition 10

We will be interested in the number of different colors occurring in the neighborhood of
a vertex.

Let G = (V,E) be a graph and c be a k-coloring of G. We define the colors seen by v
at a distance at most r as

Kr(v) = {c(w) | w ∈ Nr[v]}

We define the colors seen by v as K1(v).

Definition 11

With the above definition, we can reformulate Property 8 as follows: For an optimal
coloring, there exists a vertex v such that |K1(v)| = χ.

Can this statement be generalized to suboptimal colorings? In other words, for a sub-
optimal coloring, is there always a vertex such that |K1(v)| ≥ χ?

In general, the answer is no. Colorings for which there is no vertex that sees χ different
colors, will be called oligomatic.

A coloring c of a graph G = (V,E) is called oligomatic, if |K1(v)| < χ(G) ∀v ∈ V .

Definition 12

The term oligomatic comes from the Greek root oligo, which means few, and the word
chromatic. This is due to the fact that every vertex sees only few colors.

It is clear that there are graphs for which oligomatic colorings do not exist, such as perfect
graphs, because the size of a maximum clique ω equals the chromatic number χ. Clearly,
a vertex in a maximum clique sees at least ω different colors for any coloring of the graph.
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Oligomatic Colorings

This leads us to the definition of oligomatic graphs:

A graph G is called oligomatic if there exists an oligomatic coloring for G.

Definition 13

An oligomatic coloring is characterized by two parameters: The number k of colors for
the coloring, and λ, the maximal number of colors seen by a vertex.

A (k, λ)-coloring of a graph G is a k-coloring such that every vertex sees at most λ
different colors; or, formally, |K1(v)| ≤ λ for all vertices v ∈ V .

Definition 14

With this definition, we can characterize oligomatic graphs in a concise and elegant way:
A graph G is oligomatic if there exists a (k, λ)-coloring of G with λ < χ.

Due to the existence of oligomatic graphs (shown later), the Property 8 cannot be gener-
alized to arbitrary colorings. However, for 3-colorable graphs the generalization holds.

A graph G with χ ≤ 3 is not oligomatic.

Property 15

Or, in other words, for any graph G with χ ≤ 3 and any coloring there exist a vertex
which sees at least χ colors.

Proof

By contradiction, suppose G has an oligomatic coloring.

Case 1 χ = 2

Let c be an oligomatic coloring of G. With this coloring, every vertex sees at most
one color. This implies that G contains only isolated vertices, and this contradicts
the fact that χ = 2.

Case 2 χ = 3

An oligomatic coloring c has the property that every vertex sees at most two colors:
its own and one other color of its neighbors. This implies that G is bipartite (and,
therefore, 2-colorable), which is a contradiction.
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1.2 Literature Overview

A remarkable article with the title “Coloring graphs with locally few colors” has been
published in 1986 by Erdős et al.[EFH+86].

Their research investigates so-called local r-colorings, which are, in our notation, (k, λ)-
colorings with λ = r and k ≥ λ arbitrary.

They also provide an example of a class of oligomatic graphs, so-called shift graphs, which
were introduced in [EH68].

A shift graph S(n, k) is a graph whose vertex set consists of all ordered subsets of size k
of the set {1, . . . , n} and whose edge set consists of all pairs of the form {{x1, x2, . . . , xk},
{x2, x3, . . . , xk+1}} where {x1, x2, . . . , xk+1} is an ordered subset of {1, . . . , n}.
The shift graph S(n, 1) is a complete graph on n vertices. One can show that χ(S(n, 2)) =
�lg n�.
For n large enough, the graphs S(n, 3) are oligomatic. We define a (n−2, 3)-coloring c by
setting c({x1, x2, x3}) = x2. Clearly K1({x1, x2, x3}) ⊆ {x1, x2, x3}. One can show that
χ(S(n, 3)) gets arbitrarily large when n grows:

For each integer n ≥ 4 the chromatic number of the shift graph S(n, 3) is the least t
for which there are at least n anti-chains in the lattice of all subsets of {1, . . . , t}.

Property 16 Theorem 2.2 in [FHRT91]

An anti-chain (also called a Sperner system) is a family of subsets such that, for any
two of them, neither is a subset of the other. Determining the number of anti-chains
on the set {1, . . . , t} (including the empty anti-chain) is known as Dedekind’s problem,
and the numbers in the associated sequence are sometimes called Dedekind numbers. The
following sequence has been obtained from the On-Line Encyclopedia of Integer Sequences
[Slo].

A(0) = 2
A(1) = 3
A(2) = 6
A(3) = 20
A(4) = 168
A(5) = 7′581
A(6) = 7′828′354
A(7) = 2′414′682′040′998
A(8) = 56′130′437′228′687′557′907′788

With these numbers we can compute the chromatic number of some S(n, 3) shift graphs.
For example χ(S(7581, 3) = 5 (since A(5) ≥ 7581) and χ(S(7582, 3) = 6 (since A(6) ≥
7582 but not A(5)).

Therefore, for n ≥ 21, the shift graphs S(n, 3) are oligomatic. Note that the graph S(21, 3)
already has

(
21
3

)
= 1330 vertices and

(
21
4

)
= 5985 edges.

As a corollary in [FHRT91] there is the following estimation:
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Oligomatic Colorings

χ(S(n, 3)) = lg lg n+

(
1

2
o(1)

)
lg lg lg n.

The next definition arises from the following question: “Given a graph G, what is the
smallest λ such that a (k, λ)-coloring exists?”

The local chromatic number ψ of a graph G is the maximum number of different colors
appearing in N [v] of any vertex v, minimized over all colorings of G. More formally

ψ(G) = min
c

(
max
v∈V
|K1(v)|

)

where c runs over all possible colorings of G and K1(v) is the set of colors seen by v
with respect to c.

Definition 17 [KPS04]

An optimal coloring uses χ colors. It follows that χ ≥ ψ.

Clearly, a graph G is oligomatic if and only if

χ(G) > ψ(G).

There is a link between the local chromatic number and the fractional chromatic number.

The fractional chromatic number χ� of a graph G is

χ�(G) = min
w

∑
A∈S(G)

w(A)

where S(G) is the family of independent sets of G and the minimization is over all
nonnegative weightings w : S(G) → R satisfying

∑
A�v w(A) ≥ 1 for every v ∈ V .

Clearly, χ�(G) ≤ χ(G).

Definition 18

ψ(G) ≥ χ�(G)

Property 19 Theorem 3 in [KPS04]

Therefore, the fractional chromatic number χ� is a lower bound for the local chromatic
number ψ. The proof of the Property 19 requires more background and is given in Section
1.4.4.
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1.3 An Oligomatic Graph: pentaK3,3

By Property 15, an oligomatic graph is at least 4-chromatic. Therefore, an oligomatic
coloring uses at least 5 colors. Based on these observations, the graph pentaK3,3 has been
constructed at the very beginning of our research as an attempt to prove that Property 8
can be generalized to suboptimal colorings.

1.3.1 Construction of pentaK3,3

We have constructed pentaK3,3 while we were trying to prove that a (5, 3)-colorable graph
is 3-chromatic. In a (5, 3)-colorable graph, every vertex has neighbors of only two other
colors. We classify the vertices by their color i and the colors {i, j} of their neighbors. For
a (5, 3)-coloring, we obtain 30 different classes of the form Ci,{j,k} with i, j, k ∈ {1, 2, 3, 4, 5}
all distinct.

Vertices in Ci,{j,k} can only be adjacent to vertices in Ci′,{j′,k′} if

i ∈ {j′, k′}

and
i′ ∈ {j, k}.

The vertex set of pentaK3,3 consists of the vertices vi,{j,k}, one for each class Ci,{j,k}. Two
vertices are joined if they verify the above conditions.

This results in a graph with 30 vertices and 90 edges. The name pentaK3,3 comes from
the facts that there are five colors (penta) and that there is a complete bipartite graph
K3,3 between each pair of colors. A representation of pentaK3,3 can be found in Figure
1.1 (at the end of this chapter).

1.3.2 Properties of pentaK3,3

The graph pentaK3,3 has chromatic number 4 and admits an oligomatic (5, 3)-coloring.
A direct proof for χ(pentaK3,3) = 4 can be found in our paper [BdW04]. We will present
an alternative proof of this fact later based on a more powerful theorem.

Any permutation σ of the 5 colors of pentaK3,3 induces an automorphism. This way,
for any pair of vertices u, v we can find an automorphism that maps u onto v. As a
consequence, pentaK3,3 is vertex transitive.

Moreover, pentaK3,3 is vertex-critical (i.e. the removal of any vertex leaves a 3-colorable
graph), as can be seen from Figure 1.1 (at the end of this chapter).

In terms of the number of vertices, pentaK3,3 is also the smallest 4-chromatic graph with
an oligomatic 5-coloring:

The smallest 4-chromatic graph which has an oligomatic 5-coloring contains 30 vertices.

Theorem 20
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Proof

Let G be a 4-chromatic graph and c an oligomatic 5-coloring of G. Suppose G has at
most 29 vertices. We will show that G is 3-colorable.

Define 30 classes Ci,{j,k} to classify the vertices of G according to their color i and the
colors j, k of their neighbors. Note that Ci,{j,k} = Ci,{k,j}. If a vertex has only one color j
in its neighborhood, we place that vertex in the class Ci,{j,k} with the smallest k. For a
fixed color i we have

(
4
2

)
= 6 classes and for five colors, we have a total of 30 classes.

For pentaK3,3 and the 5-coloring defined by c(vi,{j,k}) = i, we have a bijection between
vertices and classes. Because G has fewer than 30 vertices, at least one class C� will
be empty. However, pentaK3,3 is vertex-critical. Let H be the subgraph of pentaK3,3

obtained after removal of the vertex corresponding to C�. H has a 3-coloring c′. We can
now color the vertices of G by giving them the same color as the vertex inH corresponding
to their class.

Let us show that this produces a coloring in G. All edges in G are between vertices in
classes of type Ci,{j,k} and Cj,{i,l}. However, in pentaK3,3, the corresponding vertices are
always joined by an edge; and, therefore, since c′ is a coloring of H, we have a 3-coloring
of G, which gives us the desired contradiction.

1.4 Generalizations of pentaK3,3

The construction of pentaK3,3 can be generalized for more than 5 colors and for larger
neighborhoods than N1. These graphs have very interesting properties. In [EFH+86] they
are called universal graphs. In this paper, we will use a slightly more restrictive definition
which will result in smaller graphs.

The name universal graphs comes from the fact that any (k, λ)-colorable graph can be
mapped by a homomorphism onto some universal graph. Therefore, in order to study
oligomatic graphs, it will be sufficient for most purposes to study the properties of these
universal graphs.

1.4.1 Universal Graphs

Universal graphs are constructed such that they have a natural (k, λ)-coloring.
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The universal graph U(k, λ) is defined by its vertex set

V = {(c, C) | c ∈ {1, . . . , k}, C ⊆ {1, . . . , k}, |C| = λ− 1, c �∈ C} ,

and its edge set
E = {{(c1, C1), (c2, C2)} | c1 ∈ C2, c2 ∈ C1} .

A vertex v = (c, C) is sometimes denoted as vc,C.

Definition 21

By construction, the graphs U(k, λ) have a k-coloring such that every vertex sees λ dif-
ferent colors. This can be demonstrated by simply coloring every vertex v = (c, C) with
color c. This coloring c is called the natural coloring of U(k, λ).

In [EFH+86], the vertex set is defined with |C| ≤ λ− 1 instead of |C| = λ− 1. The use of
this inequality results in larger graphs, which is not necessary (as we will see later).

Note that pentaK3,3 = U(5, 3).

1.4.2 U(k, λ) is Vertex-Transitive

The symmetry of universal graphs is a very useful property. All vertices “are the same,”
in the sense that, for any pair of vertices u, v, there exists an automorphism mapping u
to v. An automorphism of U(k, λ) = (V,E) can easily be constructed in the following
manner:

hσ : V → V
hσ((c, C)) = (σ(c), σ(C))

where σ is a permutation of the set {1, . . . , k}, and σ(C) = {σ(l) | l ∈ C}. From the fact
that σ is a permutation, it follows that hσ is bijective, and it is straight forward to see
that hσ maps edges onto edges.

To construct hσ such that u is mapped onto v, suppose that u = (cu, Cu) and v = (cv, Cv).
Now consider a permutation σ of the set {1, . . . , k} such that σ(cu) = cv and σ(Cu) = Cv.
Clearly, hσ maps u to v.

1.4.3 Size of U(k, λ)

The number of vertices of U(k, λ) = (V,E) is

|V | = k

(
k − 1

λ− 1

)
=

k!

(λ− 1)!(k − λ)!
. (1.1)

This follows directly from the definition of the vertices v = (c, C) of U(k, λ). We have to
choose one color c from k colors, and then choose λ− 1 colors among k − 1 for C.
The graph is regular with degree

Δ = (λ− 1)

(
k − 2

λ− 2

)
=

(k − 2)!

(λ− 2)!(k − λ)!
. (1.2)
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Every vertex v = (cv, Cv) has λ − 1 colors among its neighbors, and every neighbor
u = (cu, Cu) must have cv in its set Cu. To complete the set Cu, we choose λ − 2 colors
among k − 2 colors.

The size of the edge set will be

|E| = |V |
2

Δ =
k(λ− 1)

2

(
k − 1

λ− 1

)(
k − 2

λ− 2

)
. (1.3)

The importance of the graphs U(k, λ) comes from the fact that any graph G with a (k, λ)-
coloring can be mapped by a homomorphism h onto U(k, λ) such that every edge of G is
mapped onto an edge of U(k, λ). As a consequence, we have χ(G) ≤ χ(U(k, λ)) because
any coloring c of U(k, λ) induces a coloring c′ of G by setting c′(v) = c(h(v)).

We now have the ingredients to give a proof of Property 19.

1.4.4 The Fractional Chromatic Number of U(k, λ)

For a definition of the fractional chromatic number χ�, refer to the Definition 18.

For all k ≥ λ ≥ 2 we have
χ�(U(k, λ)) = λ.

Property 22 Lemma 2 in [KPS04]

Proof

In this proof we use the fact that if a graph G = (V,E) is vertex-transitive, then

χ�(G) =
|V |
α(G)

.

For a proof of this fact and for further information about the fractional chromatic number
we refer to the books [SU97, GR01].

It is easy to check that χ�(U(k, λ)) ≥ ω(U(k, λ)) = λ thus we only have to prove that λ
is an upper bound. Consider the vertices vc,C for which c < ci for all ci ∈ C. These form
an independent set S. Thinking about the vertices vc,C as λ-tuples with one distinguished
element and the elements of S as those λ-tuples whose distinguished element is the smallest
one, we immediately get

χ�(U(k, λ)) =
|V (U(k, λ))|
α(U(k, λ))

≤ |V (U(k, λ))|
|S| = λ

proving the statement.

Using Property 22 we can easily prove Property 19.

15



Chapter 1

Proof of Property 19

Let G be a graph with ψ(G) = λ. This means that there is a homomorphism from G
to U(k, λ) for some k. Since a homomorphism cannot decrease the fractional chromatic
number, from Property 22 we obtain

χ�(G) ≤ χ�(U(k, λ)) = λ = ψ(G).

To study oligomatic graphs and to determine whether a graph is oligomatic or not, it
is crucial to know the chromatic number. For that reason, we introduce the following
notation, which links the chromatic number of a graph G with the existence of a (k, λ)-
coloring of G:

P (k, γ, λ) abbreviates the following statement: there exists a graph G with χ(G) > γ
and a (k, λ)-coloring of G.

Definition 23

It is immediately apparent that, if P (k, γ, λ) holds, then P (k′, γ′, λ′) holds as well for
k′ ≥ k, γ′ ≤ γ and λ′ ≥ λ.

Property 24

Proof

Let G be a graph which proves that P (k, γ, λ) is true, i.e. there exists a (k, λ)-coloring c
for G and χ(G) > γ. Now, c can also be considered as a (k′, λ′)-coloring of G with k′ ≥ k
and λ′ ≥ λ (even though some colors may not be used). The fact that χ(G) > γ ≥ γ′

proves that P (k′, γ′, λ′) holds.

We give another immediate result to get a feel for P (k, γ, λ):

For λ ≤ γ, the statement P (γ + 1, γ, λ) is false.

Property 25

Proof

A (γ + 1, λ)-coloring can be transformed into a γ-coloring by simply assigning to every
vertex of color γ + 1 one of the colors that this same vertex does not see. This is possible
because every vertex sees at most λ < γ + 1 colors.

Therefore, χ �> γ and as a consequence P (γ + 1, γ, λ) is false.
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The next property is given as Lemma 1.1 in [EFH+86] for their definition of U(k, λ). The
property still holds for our more restrictive definition of U(k, λ). The proof is similar.

P (k, γ, λ) holds if and only if χ(U(k, λ)) > γ.

Property 26

Proof

Clearly, c((cv, Cv)) = cv is a (k, λ)-coloring, so one direction is clear.

Suppose that χ(U(k, λ)) ≤ γ, and let c be a γ-coloring of U(k, λ). Let G′ = (V ′, E ′)
be an arbitrary graph with a (k, λ)-coloring c′. We need to show that χ(G′) ≤ γ. We
will construct a graph homomorphism h from G′ to U(k, λ) by defining h(v′) = vc′(v′),X
where X is equal to the set K1(v

′) augmented by the λ − |K1(v
′)| smallest elements of

{1, . . . , k} \ K1(v
′). It is necessary to complete the set X such that is has exactly λ

elements to fit our definition of U(k, λ).

Clearly, (v′, w′) ∈ E ′ implies (h(v′), h(w′)) ∈ EU(k,λ). The coloring c′′ of G defined by

c′′(v′) = c(h(v′)) uses γ colors, which shows that χ(G′) ≤ γ.

For every γ, p, P (γ + p+ 1, γ, λ) holds with λ = min
q=1,...,p

(�γ/(q + 1)
+ q + 1).

Theorem 27

The above theorem strengthens Theorem 2.6 in [EFH+86], where the result is shown for
λ = �γ/(p+ 1)
+ p+ 1.

In order to prove Theorem 27, we first need a definition and another property from
[EFH+86].

The system {Aα,β : 1 ≤ α < β ≤ k} ⊆ P({1, . . . , γ}) (where P(X) is the set of all
subsets of the set X) is (k, γ, λ)-independent if and only if the following holds:
for every set B ⊂ {1, . . . , k} with |B| = λ and every α ∈ B, the set⋂

δ<α
δ∈B

Aδ,α \
⋃
δ>α
δ∈B

Aα,δ

is non-empty.

Definition 28

Note that an empty intersection (for α = minB) equals the ground set, in our case,
{1, . . . , γ}.
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P (k, γ, λ) holds if and only if (k, γ, λ)-independent systems do not exist.

Property 29 Lemma 1.2 in [EFH+86]

Proof of Theorem 27

Suppose, on the contrary, that {Aα,β : 1 ≤ α < β ≤ γ + p + 1} is a (γ + p + 1, γ, λ)-
independent system, with λ = min

q=1,...,p
(�γ/(q + 1)
+ q + 1). Recall that Aα,β are subsets

of the set {1, . . . , γ}. Define

Πε =
⋂
φ<ε

Aφ,ε \
⋃
φ>ε

Aε,φ for ε = 1, . . . , γ + p+ 1. (1.4)

For two values ρ, τ such that 1 ≤ ρ < τ ≤ γ+p+1, we have Πρ∩Aρ,τ = ∅ (because Aρ,τ is
in the union to be taken away of (1.4)) and Πτ ⊆ Aρ,τ (because Aρ,τ is in the intersection
of (1.4)). Therefore, Πρ ∩ Πτ = ∅.
Since there are γ+p+1 disjoint subsets Πε of {1, . . . , γ}, there is a set E with |E| ≥ p+1
such that Πε = ∅ for every ε ∈ E.

Let q� = arg min
q=2,...,p+1

(�γ/q
+ q). Since q runs over 2, . . . , p + 1 we have trivially that

q� ≤ p+ 1. Let X be a subset of E such that |X| = q�. Now put

ΠX
ε =

⋂
φ<ε
φ∈X

Aφ,ε \
⋃
φ>ε
φ∈X

Aε,φ for ε ∈ X

Again, for the same argument, the subsets ΠX
ε are disjoint. Therefore, there exists an

x ∈ X with |ΠX
x | ≤ �γ/q�
.

Since x ∈ X, we have Πx = ∅ (by definition of X ⊆ E).

Now, for every a ∈ ΠX
x there exists a ν(a) ∈ {1, . . . , γ + p+ 1} such that we have either

ν(a) < a and a �∈ Aν(a),x

or
ν(a) > a and a ∈ Ax,ν(a).

To see this, recall that Πx = ∅. This means that either one of the following must hold:

1. a is not in the intersection of (1.4) or

2. a is in the intersection of (1.4) and, therefore, a is also in the union of (1.4).

Let Y = X ∪ {ν(a) : a ∈ ΠX
x }. Clearly, |Y | ≤ q� + �γ/q�
 = λ. Now consider the set

ΠY
x =

⋂
φ<x
φ∈Y

Aφ,x \
⋃
φ>x
φ∈Y

Ax,φ ⊆ ΠX
x .

For every a ∈ ΠX
x , by choice of ν(a), a �∈ ΠY

x . Therefore, ΠY
x = ∅. We can now complete

the set Y arbitrarily to obtain a set Y � such that |Y �| = λ to obtain ΠY �

x ⊆ ΠY
x = ∅,
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which shows that our system is not (γ+p+1, γ, λ)-independent, and we reach the desired

contradiction.

The Theorem 27 above settles a conjecture in [BdW04]:

For each integer ν, there exists a graph G with χ = ν admitting a (k, λ)-coloring with
k = χ+ 1 and λ =

⌈
χ
2

⌉
+ 1.

Property 30

Setting p = 1 and γ = χ− 1 in Theorem 27 gives us that

P (χ+ 1, χ− 1,
⌈χ

2

⌉
+ 1) is true.

Further, Theorem 2.7 in [EFH+86] gives a negative result, which is tight where applicable:

For every γ ≥ p(p+ 1),

P

(
γ + p+ 1, γ,

⌊
γ

p+ 1

⌋
+ p

)
is false.

Property 31

This result is tight in the sense that both P (γ + p+ 1, γ, �γ/(p+ 1)
+ p) is false and, by
Theorem 27, P (γ + p+ 1, γ, �γ/(p+ 1)
+ p+ 1) is true.

For the case where γ < p(p+ 1), we formulate the following theorem, which is equivalent
to Theorem 2 in [BdW04]:

For a graph G with χ ≥ 2 and p ≥ 1 and any (χ+ p)-coloring, we have

|K1(v)| ≥
⌈

χ

p+ 1

⌉
+ 1 ∀v ∈ V.

In other words, every vertex sees at least
⌈

χ
p+1

⌉
+ 1 different colors.

Theorem 32

Before proving the above theorem, let us reformulate it:

There is no graph G with admitting a (k, λ)-coloring with k = χ + p and λ =
⌈

χ
p+1

⌉
. In

the P (k, γ, λ) notation, this statement becomes

P

(
χ+ p, χ− 1,

⌈
χ

p+ 1

⌉)
is false for χ ≥ 2, p ≥ 1
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or, equivalently, by setting χ = γ + 1,

P

(
γ + p+ 1, γ,

⌊
γ

p+ 1

⌋
+ 1

)
is false for γ, p ≥ 1.

Proof of Theorem 32

Assume the contrary: there exists a graph G and a (χ+p)-coloring c, such that, for every

vertex v we have |K1(v)| ≤
⌈

χ
p+1

⌉
=

⌊
χ−1
p+1

⌋
+ 1. For graphs G with χ ≤ 2(p + 1), the

restriction on K1(v) implies that the graph G is bipartite and, therefore, the proposition is
true, because it is either trivial (for χ = 2) or we find immediately the desired contradiction
(for χ ≥ 3).

For graphsG with χ > 2(p+1), let P1, . . . , Pp+1 be disjoint subsets of X = {p+2, . . . , p+χ}
with |Pi| ≥

⌊
χ−1
p+1

⌋
for i = 1, . . . , p + 1. (Note that |X | = χ − 1.) Let V ′ be the set of

vertices v with c(v) ≤ p+1 such that there is no neighbor w of v with c(w) ≤ p+1. Then
define the new coloring

c′(v) =

⎧⎪⎨
⎪⎩

maxK1(v) if v ∈ V ′

max
(
K1(v) ∩ Pc(v)

)
if v �∈ V ′ and c(v) ≤ p+ 1

c(v) otherwise (i.e. c(v) ≥ p+ 2)

.

In the first and third case, we create no conflicts in the recoloring procedure. In the second
case (v �∈ V ′ and c(v) ≤ p + 1), we must check that K1(v) ∩ Pc(v) �= ∅. This is the case

since |K1(v) ∩ {1, . . . , p+ 1}| ≥ 2 and, therefore, |K1(v) ∩ X | ≤
⌊

χ−1
p+1

⌋
− 1, which implies

that Pc(v) �⊆ K1(v) and, therefore, K1(v) ∩ Pc(v) �= ∅.
By definition of Pc(v), it is clear that c′(v) ≥ p + 1. All that remains is to ensure that c′

is a feasible coloring. For vertices v ∈ V ′, there are no conflicts because they are not ad-
jacent to vertices that change color and because they are recolored with a color in K1(v).
The remaining vertices are colored with colors chosen in p+ 1 disjoint sets of colors and,
therefore, do not conflict with each other. Hence c′ colors G with χ − 1 colors which is
the desired contradiction.

Property 31 strengthens Theorem 32 for the case χ ≥ p(p + 1) and can be reformulated
as follows.

For any p ≥ 0 and any graph G with χ ≥ p(p+ 1) and any (χ+ p)-coloring, we have

|K1(v)| ≥
⌈

χ

p+ 1

⌉
+ p ∀v ∈ V.

In other words, every vertex sees at least
⌈

χ
p+1

⌉
+ p different colors.

Property 33
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Proof

By contradiction, suppose there is a graph G = (V,E) and a χ+ p coloring such that

|K1(v)| ≤
⌈

χ

p+ 1

⌉
+ p− 1 =

⌊
χ− 1

p+ 1

⌋
+ p.

Expressed in the P (k, γ, λ) notation this affirms that

P (χ+ p, χ− 1,

⌊
χ− 1

p+ 1

⌋
+ p) is true.

Substituting χ by γ + 1 results in

P (γ + p+ 1, γ,

⌊
γ

p+ 1

⌋
+ p) is true,

which contradicts Property 31.

1.5 Chromatic Number and Criticality of U(k, λ)

Using the properties and theorems from the previous sections, we are now able to deter-
mine the chromatic numbers of some of the graphs U(k, λ).

Unfortunately, we do not have a complete classification of all universal graphs to present.
For some cases, we were compelled to use coloring heuristics to get estimates and bounds
for the chromatic number. More precisely:

A graph G is heuristically k-chromatic if a given graph coloring heuristic H finds a
k-coloring, but no k− 1 coloring. We will denote this number by χH(G), or simply χH
if the graph is implied from the context.

Definition 34

Clearly, χ ≤ χH. For our purposes we use the graph coloring heuristic Foo-Partialcol

for H which will be presented in Chapter 3.

Note that χH can sometimes be used to obtain exact results. Consider the following case:
Suppose that, for a given graph G, we have a proof for χ ≥ k and we find χH = k. This
gives a proof that, in fact, χ = k.

We are also interested in the criticality of these graphs. A graph G is critical if the removal
of any vertex v reduces the chromatic number. For some graphs, we will present a formal
proof, for others, we have only the result of a coloring heuristic.
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A graph G is heuristically critical if, for every vertex v, we have χH(G−v) = χH(G)−1.
G− v denotes the graph G with the vertex v removed.

Definition 35

Note that, because universal graphs are vertex-transitive, we only need to determine
χH(G− v) for one single vertex v to study their criticality.

1.5.1 The Chromatic Number of pentaK3,3

χ(pentaK3,3) = 4

Property 36

Proof

Recall that pentaK3,3 is the universal graph U(5, 3). From Theorem 27 with γ = 3 and
p = 1, it follows that P (5, 3, 3) is true. This implies (by Property 26) that χ(U(5, 3)) ≥ 4.
Property 25 with γ = 4 gives us that P (5, 4, 3) is false, which implies that χ(U(5, 3)) ≤ 4.

An alternative proof is given in [BdW04], where it is shown that the maximum stable set
of pentaK3,3 is of size 10. Recall that the graph has 30 vertices. We show that there is no
3-coloring of pentaK3,3, because the maximum stable sets are of a particular form, such
that three stable sets of cardinality 10 necessarily intersect.

1.5.2 Chromatic Number of U(k, 3)

For k ≥ 5, all graphs U(k, 3) contain pentaK3,3 as a subgraph and, therefore,

χ(U(k, 3)) ≥ 4.

For k ≤ 12, the Foo-Partialcol coloring heuristic can easily determine a 4-coloring,
and, therefore, χ(U(k, 3)) = 4 for k = 5, . . . , 12.

For U(13, 3), we have found that χH = 5 and that it is heuristically critical.

1.5.3 More General Results

For any k ≥ 5 and �k
2

+ 1 ≤ λ < k − 1, we have

χ(U(k, λ)) = k − 1

Theorem 37
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Proof

By Property 26, we have an equivalence between P (k, γ, λ) and χ(U(k, λ)) > γ. For λ <
k− 1 every graph U(k, λ) has a (k− 1)-coloring obtained from the natural (k, λ)-coloring
by recoloring every vertex v of color k with a color not seen by v. Theorem 27 with p = 1
affirms that

P (γ + 2, γ, �γ/2
+ 2) is true,

or, equivalently, (setting k = γ + 2)

P (k, k − 2, �(k − 2)/2
+ 2) is true,

which is the same as
P (k, k − 2, �k/2
+ 1) is true,

which proves the theorem.

Suppose
P (k, γ − 1, λ) is true,

which is to say that there exists a graph with χ ≥ γ and a (k, λ)-coloring and, at the
same time,

P (k, γ, λ) is false,

which is to say that there is no graph with χ > γ and a (k, λ)-coloring. It then follows
that

χ(U(k, λ)) = γ.

Property 38

This follows straightforward from the equivalence of P (k, γ, λ) and χ(U(k, λ)) > γ.

The above Property 38 can be used to determine χ of a certain number of graphs U(k, λ).
For this, we generate positive statements P (k, γ, λ) using Theorem 27. If k = γ+2, we con-
clude directly that χ(U(k, λ)) = γ+1 because a (k, λ)-colorable graph is (k − 1)-colorable
for k > λ.

Additionally, we seek to obtain a negative statement ¬P (k, γ + 1, λ) from Property 31 to
conclude that χ(U(k, λ)) = γ + 1 by Property 38.

The results obtained by the method described above have been compiled into Table 1.1.

1.5.4 Critical Oligomatic Graphs

As pentaK3,3 is critical, we have applied a coloring heuristic to U(k, λ) for small values of
k, λ and proposed the following conjecture, which was settled in [BBd05].
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For every n ≥ 2, the graph U(2n+ 1, n+ 1) is critical with χ = 2n.

Theorem 39

Proof

Let G denote U(2n+ 1, n+ 1). By Theorem 37, we get immediately that χ(G) = 2n. We
must now show that the chromatic number of G − v is 2n − 1 for some vertex v, which
we can freely choose, due to the vertex transitivity of G.

Let c be the natural (2n+ 1, n+ 1)-coloring. In other words, c(v) = cv with v = (cv, Cv).
Let [m] denote the set {1, . . . ,m}. Let c′ be the following improper coloring of G

c′(vc,C) =

⎧⎨
⎩

c if 1 ≤ c ≤ 2n− 1
min([2n− 1] \ (C ∪ {c})) if c = 2n
max([2n− 1] \ (C ∪ {c})) if c = 2n+ 1

We will now show that c′ results in only one monochromatic edge. Between vertices
v = (cv, Cv) with cv ≤ 2n− 1, there are no conflicts by construction of G.

Between vertices v = (cv, Cv) and u = (cu, Cu) with cv ≤ 2n− 1 and cu ≥ 2n, there are no
conflicts by construction of c′, since c′(u) �∈ K1(u), but c′(v) = c(v) ∈ K1(u). Note that
K1(u) is with respect to the coloring c.

All that remains is to check for conflicts between vertices v = (2n, Cv) and u = (2n+1, Cu).
Suppose there is an edge {u, v} and, therefore, 2n + 1 ∈ Cv and 2n ∈ Cu. If there is a
conflict between u and v, then we must have

min([2n− 1] \ (Cv ∪ {cv})) = max([2n− 1] \ (Cu ∪ {cu}))

The only possibility for this to happen is

Cv = {1, . . . , n− 1, 2n+ 1} and Cu = {n+ 1, . . . , 2n}

with c′(v) = c′(u) = n (note that |Cv| = |Cu| = n). Now, removing v from G results in a

proper 2n− 1 coloring of G− v.

1.5.5 Properties of U(k, λ) Determined Using a Heuristic

With the help of coloring heuristics, we were able to determine exactly the chromatic
numbers of all U(k, λ) with k ≤ 10. Table 1.2 gives all graphs not covered by Theorem
37 and not yet contained in Table 1.1.

For values of λ between 3 and �k−1
2
�, we can use the fact that U(k, λ) is a subgraph of

U(k′, λ′) for k′ ≥ k and λ′ ≥ λ. Therefore, if we know χ(U(k, λ)) and we find the same
value for χH(U(k′, λ′)), we can conclude that χ = χH for U(k′, λ′).
This argument has been used for all graphs U(k, 3) for k = 6, . . . , 12 which contain U(5, 3)
as a 4-chromatic subgraph. Since χH(U(k, 3)) = 4 for k = 6, . . . , 12, we conclude that
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these graphs are indeed 4-chromatic.

For U(9, 4) we have found χH = 6. As U(8, 4) is provably 6-chromatic (see Table 1.1),
we conclude that U(9, 4) is 6-chromatic as well. The same argument can be applied to
U(10, 4).

For U(11, 4), we have found χH = 7, so the subgraph argument cannot be applied any
more. Because χH = 7 for U(11, 4)− v as well, this graph is not heuristically critical.

For U(12, 4), we can easily find a 7-coloring; and, since U(11, 4) is a subgraph with χH = 7,
we conclude that U(12, 4) is also not heuristically critical.

An intriguing case is U(13, 3), which is heuristically critical with χH = 5.

We will finish the discussion of universal graphs with a final conjecture, which we hope
will inspire new techniques of proof and, possibly, new and better bounds:

The universal graph U(13, 3) is 5-chromatic and critical.

Conjecture 40

1.6 Generalized Oligomatic Graphs and Larger Neigh-

borhoods

Up to this point, we have been concerned uniquely with the number of different colors a
vertex v can see in its immediate neighborhood. What happens if we allow larger neigh-
borhoods? In order to approach this question, we can further generalize the construction
of universal graphs by extending it to larger neighborhoods Nq[v], q ≥ 1.

The q-universal graph U q(k, λ) is defined by all possible vertices of the form

v = (C0, C1, . . . , Cq)

where the Ci ⊆ {1, . . . , k}, i = 0, . . . , q satisfy

1. Ci−1 ⊆ Ci for i = 1, . . . , q

2. |C0| = 1

3. |C1| ≥ 2

4. |Cq| = λ.

Two vertices (C0, C1, . . . , Cq) and (C′0, C′1, . . . , C′q) are joined if C0 �= C′0, and, if for all
i = 1, . . . q, we have Ci−1 ⊆ C′i and C′i−1 ⊆ Ci

Definition 41

Note that the definition of U1(k, λ) results in a graph isomorphic to U(k, λ), but the
vertices are represented slightly differently. A vertex v of U(k, λ) is represented by (c, C),
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where c is its natural color and C is the set of other colors (not containing c) seen by the
vertex v. Note that the set C is of cardinality λ− 1.

In the generalized definition of U1(k, λ), a vertex v is represented by ({c}, C1), where c is
again its natural color but C1 now contains c and corresponds exactly to K1(v).

As for the graphs U(k, λ), the graphs U q(k, λ) have a natural k-coloring such that, for
every vertex v = (C0, C1, . . . , Cq), the number of colors seen at distance q is λ, in other
words, |Kq(v)| = λ for all v ∈ V . More generally, for a given vertex v = (C0, C1, . . . , Cq),
we have Ci = Ki(v) with respect to the natural coloring of U q(k, λ).

In [EFH+86], several properties of infinite q-universal graphs are given. A part from shift
graphs, no results are given for finite q-universal graphs. Below, we will state a theorem
for finite graphs.

We may also generalize Definition 23 for larger neighborhoods:

P q(k, γ, λ) abbreviates the following statement: there exists a graph G with χ > γ
and a k-coloring such |Kq(v)| ≤ λ for every v ∈ V .

Definition 42

Upon commencement of research on the topic of oligomatic graphs, we were first interested
in the following question:

“What is the smallest integer q such that, in any (χ + p)-coloring of any graph G, there
exists a vertex v such that Nq(v) contains at least χ different colors?”

If p = 0, then q = 1 is sufficient, according to Property 8. Furthermore, for q ≥ �χ
2

,

there is a vertex v such that |Kq(v)| ≥ χ. This can be seen easily, if we notice that, in
any coloring, there exists a chain of χ vertices where no two vertices have the same color
[dWH05]. For the central vertex v of such a chain, we clearly have |Kq(v)| ≥ χ.

Let G be a graph with chromatic number χ, and let p be an non-negative integer.
Then, for any (χ+ p)-coloring, there exists a vertex v such that N� p

2�+1[v] contains at

least χ different colors.

Theorem 43

In the P q notation, the theorem is equivalent to the statement

P (� p
2�+1)(γ + p+ 1, γ, γ) is false for p ≥ 0. (1.5)

In other words, there is no graph with chromatic number larger than γ with a (γ + p)-
coloring such that |K� p

2�+1(v)| ≤ γ for every vertex v.

To prove the equivalence of the Theorem 43 and (1.5), let us assume the contrary that
there is a graph G with χ = γ + n for some n ≥ 1, and a (γ + p+ 1)-coloring. This leads
us to γ + p + 1 = χ + p′ with p′ = p− n + 1 ≤ p. Theorem 43 tells us that every vertex
v of G sees at least χ > γ different colors at distance �p′/2� + 1. However, since p′ ≤ p,
also at distance

⌈
p
2

⌉
+ 1, we have reached the desired contradiction.
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Proof of Theorem 43

Let C = {1, . . . , χ + p} be the set of colors, P = {1, . . . , p + 1}; and, for X ⊆ C, let
X := C \ X so that |P| = χ− 1. Additionally, let VP the set of vertices with colors in P.

Let us assume the contrary: there exists a (χ+ p)-coloring c : V → C such that

|K� p
2�+1(v)| ≤ χ− 1 ∀v ∈ V. (1.6)

We will exhibit a coloring c′ : V → P using at most χ− 1 colors by recoloring each vertex
in VP with a color in P, and this will contradict the definition of χ.

To demonstrate this, we will require additional notation. For v ∈ VP and q ≥ 1, let
Qq(v) := Kq(v) ∩ P . Note that, for q ≤ ⌈

p
2

⌉
+ 1, (1.6) gives |Kq(v)| ≤ χ− 1, so that

|Kq(v) ∩ P|+ |Kq(v) ∩ P| = |Kq(v)| ≥ p+ 1

and
|Qq(v)| = |Kq(v) ∩ P| ≥ p+ 1− |Kq(v) ∩ P| = |Kq(v) ∩ P|. (1.7)

Let GP be the subgraph of G induced by the vertices in VP . We form an oriented graph
�GP by orienting each edge of GP from the vertex of smaller color to the vertex of larger
color. For each v ∈ VP , let r(v) (a(v), respectively) be the rank (anti-rank, respectively)

of v in �GP , (in other words, the number of vertices in a longest path ending (starting,
respectively) at v). We set r(v) = 1 (a(v) = 1, respectively) if there is no arc ending

(starting, respectively) at v. Note that there is a path with r(v)+a(v)−1 vertices in �GP ,

but no path in �GP has more than |P| = p+1 vertices. Therefore, if qv = min{r(v), a(v)},
then

qv ≤
⌈
p+ 2

2

⌉
=

⌈
p

2

⌉
+ 1, (1.8)

such that (1.7) holds for q = qv. The existence of the paths of r(v) and a(v) vertices
ensures that |Kqv(v) ∩ P| ≥ 2qv − 1 ≥ qv, so (1.7) gives

|Qqv(v)| ≥ qv. (1.9)

We can now define the coloring c′ : V → P. For v ∈ V , let

c′(v) =

⎧⎨
⎩

min r(v)Qr(v)(v) if v ∈ V r = {v ∈ VP | r(v) ≤ a(v)}
max a(v)Qa(v)(v) if v ∈ V a = {v ∈ VP | a(v) < r(v)}
c(v) if v ∈ V 0 = V \ VP

,

where min qX (respectively max qX ) denotes the qth smallest (qth largest, respectively)
element of X ; note that these are well defined, by (1.9).

It remains to prove that c′ is a coloring. That is, for each edge {u, v} ∈ E, c′(u) �= c′(v).
Without loss of generality, we may assume that c(u) < c(v). Note that, if 0 < s < s′

then, because u, v are adjacent, Ns[u] ⊆ Ns′ [v] and Ns[v] ⊆ Ns′ [u]. It follows that
Ks(u) ⊆ Ks′(v) and Ks(v) ⊆ Ks′(u). As a consequence, if u, v ∈ VP , then

Qs′(v) = Ks′(v) ∩ P ⊆ Ks(u) ∩ P = Qs(u), (1.10)
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and similarly
Qs′(u) ⊆ Qs(v). (1.11)

We now distinguish between three unique cases.

Case 1 v ∈ V 0

If u ∈ V 0, then c′(u) = c(u) �= c(v) = c′(v). If u ∈ VP , then c′(u) ∈ Qq(u) ⊆ Kq(u)
where q = min{r(u), a(u)}, and c(v) ∈ K1(u) ⊆ Kq(u), such that c′(u) �= c′(v) =
c(v).

Case 2 u ∈ V a and v ∈ VP
Since c(u) < c(v), it follows that r(u) < r(v) and a(u) > a(v), so, since u ∈ V a,

a(v) < a(u) < r(u) < r(v).

Thus v ∈ V a, and

c′(v) = max a(v)Qa(v)(v) > max a(u)Qa(v)(v)

because a(v) < a(u), and

max a(u)Qa(v)(v) ≥ max a(u)Qa(u)(u) = c′(u)

because Qa(u)(u) ⊆ Qa(v)(v) by (1.11).

Case 3 u ∈ V r and v ∈ VP
Since c(u) < c(v), it follows that r(u) < r(v) and a(u) > a(v). Suppose first that
v ∈ V r. Then

c′(v) = min r(v)Qr(v)(v) > min r(u)Qr(v)(v)

because r(u) < r(v), and

min r(u)Qr(v)(v) ≥ min r(u)Qr(u)(u) = c′(u)

because Qr(v)(v) ⊆ Qr(u)(u) by (1.10).

We may, therefore, assume from now on that v ∈ V a. We will prove that

|Qa(v)(v) ∩Qr(u)(u)| ≥ a(v) + r(u), (1.12)

from which it will follow immediately that

c′(v) = max a(v)Qa(v)(v) �= min r(u)Qr(u)(u) = c′(u), (1.13)

as required.

Note that, since u ∈ V r and v ∈ V a, it follows from (1.8) that r(u), a(v) ≤ ⌈
p
2

⌉
+ 1.

Note also that there is a path P of a(v) + r(u) vertices in �GP , passing along the arc
(u, v).
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If r(u) < a(v), then |Qa(v)(v)| ≥ |Ka(v)(v) ∩ P| ≥ a(v) + r(u) by (1.7) and the
existence of the path P , and Qa(v)(v) ⊆ Qr(u)(u) by (1.10), and this implies (1.12)
and, therefore, (1.13).

If r(u) > a(v), then |Qr(u)(u)| ≥ |Kr(u)(u) ∩ P| ≥ a(v) + r(u) by (1.7) and the
existence of the path P , and Qr(u)(u) ⊆ Qa(v)(v) by (1.11), and this implies (1.12)
and, therefore, (1.13).

Finally, if r(u) = a(v) then a(v) ≤ p+1
2

because the path P has at most |P| = p+ 1
vertices, so a(v) ≤ ⌈

p
2

⌉
, and a(v) + 1 ≤ ⌈

p
2

⌉
+ 1. |Qa(v)+1(v)| ≥ |Ka(v)+1 ∩ P| ≥

r(u) + a(v) by (1.7) and the existence of the path P , and Qa(v)+1(v) ⊆ Qa(v)(v)
(clearly) and Qa(v)+1(v) ⊆ Qr(u)(u) by (1.10), which implies (1.12) and, finally,
(1.13).

1.7 Special Classes of Graphs

This section will follow the investigations of the existence and properties of oligomatic
graphs among a number of special graph classes.

We have already seen that perfect graphs are not oligomatic.

1.7.1 Planar Graphs

As oligomatic graphs are at least 4-chromatic, planar graphs seem to be an interesting
class because their chromatic number is less than or equal to 4 [AH77, AHK77].

The question of whether or not there exists an oligomatic planar graph is still open.
However, for some special subclasses of planar graphs, the question has been settled as
negative.

A Halin graph is a planar graph consisting of a tree with a cycle connecting the leaves
of the tree and no vertex of degree two.

Definition 44

In [BBd05], an explicit 3-coloring has been given for Halin graphs, except when the graph
is an odd wheel, which is 4-chromatic. It is clear that odd wheels are not oligomatic
because the center vertex always sees at least 4 colors. For the other cases, we have
shown that there are no oligomatic graphs with chromatic number 3 or less.

There is no oligomatic Halin graph.

Property 45
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We will now describe some properties an oligomatic planar graph G should have. First, G
must be 4-chromatic and admit a (k, 3)-coloring. This implies that the open neighborhood
of every vertex induces a bipartite graph because there is a coloring such that every vertex
sees only two other colors apart from his own.

Clearly, pentaK3,3 is not planar, since it contains a K3,3, a complete bipartite graph on 3
and 3 vertices. In [BBd05], it has also been shown that pentaK3,3 contains a K5 minor.
From this, it follows that, for every k, the graph U(k, 3) is not planar either, as it contains
U(5, 3) (pentaK3,3) as a subgraph.

1.7.2 Claw-free Graphs

A claw is the graph K1,3:

Figure 4 A claw.

A graph is called claw-free if it contains no claw as an induced subgraph. Claw-free graphs
have some interesting properties:

Minty [Min80] showed that the maximum independent set problem, which is in general
NP-complete on general graphs, can be solved in polynomial time on a claw-free graph.
His proof used the algorithm of Edmonds [Edm65] to find the maximum weighted match-
ing. However, Nakamura and Tamura [NT01] showed that this algorithm fails in some
special cases and provided modifications to correct this error.

The question about the existence of oligomatic claw-free graphs is open. However, we
have the following negative result:

No claw-free graph admits a (χ+ 1, χ− 1)-coloring.

Theorem 46

In order to prove the above theorem, we need the notion of list-coloring, along with an
important property.

Let G = (V,E) be a graph. Let C be a set of available colors and, for every vertex
v ∈ V , let �v ⊆ C be a set (for historical reasons; also called a list) of possible colors
for v. A list-coloring is a coloring c such that c(v) ∈ �v for every vertex v.

Definition 47
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A connected graph G is list-colorable if the cardinality of every list is at least Δ(G)
unless G is a complete graph or G is an odd cycle.

Property 48 [Viz76, ERT79]

Using Property 48 we can now prove Theorem 46.

Proof of Theorem 46

Let G be a claw-free graph and Δ its maximal degree.

We will suppose the opposite that c is a (χ+ 1, χ− 1)-coloring of the vertices of G.

Consider the induced subgraph H of G formed by all vertices colored with colors χ and
χ + 1. Because every vertex sees at most χ− 1 different colors, at least two other colors
are available (in other words not seen). For isolated vertices of H, we can assign a new
color in {1, . . . , χ−1} without creating conflicts. We may now remove those vertices from
H to obtain H ′. H ′ consists of vertices with colors χ and χ + 1 such that every vertex
of color χ is adjacent to a vertex of color χ+ 1 and vice versa. As the vertices of H ′ are
2-colored, H ′ does not contain odd cycles, and its maximal degree Δ(H ′) is at most 2.
Otherwise, it would contain a claw.

For every vertex v of H ′, we have a list �v of at least two available colors strictly less than
χ because every vertex in H ′ sees both colors χ and χ+ 1.

Consider the list-coloring problem on H ′ with the lists �v. We can apply the Property 48
to every connected component of H ′ to finally obtain a coloring of H ′ with colors smaller
than χ. Moreover, the recolored vertices of H ′ do not conflict with the coloring of the
other vertices of G. Therefore, we have found a coloring of the vertices of G with χ − 1
colors, which is impossible.

1.7.3 Line Graphs

Line graphs are an important subclass of claw-free graphs.

A line graph L(G) = (VL, EL) is obtained from a graph G = (V,E) by setting VL := E
and joining two vertices of L(G) if the corresponding edges in G are adjacent.

Definition 49
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An edge coloring c of a graph G is a function c : E → N such that

c(e) �= c(f) e, f ∈ E, e and f adjacent.

A k-edge coloring is an edge coloring using no more than k different colors.
The smallest k for which a k-edge coloring exists is called the chromatic index and is
denoted by

χ′(G).

Definition 50

It is trivially apparent that the edge coloring problem on G is equivalent to the vertex
coloring problem on L(G). It is clear, as well, that Δ(G) ≤ ω(L(G)), where Δ is the
maximum degree of a vertex and ω is the size of a maximum clique.

By Vizing’s theorem [Viz64], every graph is (Δ + 1)-edge colorable. It is clear that at
least Δ colors are needed. If the edges of a graph can be Δ-colored it is called a class 1
graph; otherwise, it is called a class 2 graph.

The question of whether or not oligomatic line graphs exist is open. However, we provide
two negative results:

No line graph L(G) of a class 1 graph G is oligomatic.

Theorem 51

Proof

Since G is class 1, χ′(G) = Δ(G). Since we have χ(L(G)) = χ′(G) and ω(L(G)) ≥ Δ(G),
we have χ(L(G)) ≤ ω(L(G)), which shows that a vertex of a maximum clique always sees

at least χ(L(G)) colors.

The only candidates left for oligomatic line graphs are those obtained from class 2 graphs.
Recall that line graphs are also claw-free graphs; and, therefore, Theorem 46 applies.

For line graphs in general, we provide a more general result than Theorem 46.

No line graph admits a (k, χ− 2)-coloring.

Theorem 52

Proof

Let G be a graph and H = L(G) its line graph. Now, χ(H) = χ′(G) ≤ Δ(G) + 1 and
ω(H) ≥ Δ(G). Therefore,

ω(H) ≥ χ(H)− 1.

Consider a vertex v of a maximum clique. Clearly, it sees at least ω(H) different colors,
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and, therefore, a (k, χ(H)− 2)-coloring cannot exist.

To conclude this chapter, we suggest investigating the possibility of constructing line
graphs in a way analogous to the construction of universal graphs, to either find an
example of an oligomatic line graph or to stimulate new ideas which may prove their
nonexistence.
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Figure 1.1: The graph pentaK3,3 with a partial 3-coloring with one uncolored vertex (color
0).
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γ′ γ p′ p P (k′, γ′, λ′) upper bound χ(U(k′, λ′))
3 - 1 - P (5, 3, 3) 4-coloring χ(U(5, 3)) = 4
4 - 1 - P (6, 4, 4) 5-coloring χ(U(6, 4)) = 5
5 6 1 2 P (7, 5, 4) ¬P (9, 6, 4) χ(U(7, 4)) = 6
5 6 2 2 P (8, 5, 4) ¬P (9, 6, 4) χ(U(8, 4)) = 6
6 - 1 - P (8, 6, 5) 7-coloring χ(U(8, 5)) = 7
7 - 1 - P (9, 7, 5) 8-coloring χ(U(9, 5)) = 8
8 - 1 - P (10, 8, 6) 9-coloring χ(U(10, 6)) = 9
8 9 2 2 P (11, 8, 5) ¬P (12, 9, 5) χ(U(11, 5)) = 9
9 - 1 - P (11, 9, 6) 10-coloring χ(U(11, 6)) = 10
10 - 1 - P (12, 10, 7) 11-coloring χ(U(12, 7)) = 11
11 - 1 - P (13, 11, 7) 12-coloring χ(U(13, 7)) = 12
11 12 2 2 P (14, 11, 6) ¬P (15, 12, 6) χ(U(14, 6)) = 12
11 12 3 3 P (15, 11, 6) ¬P (16, 12, 6) χ(U(15, 6)) = 12
12 - 1 - P (14, 12, 8) 13-coloring χ(U(14, 8)) = 13
13 - 1 - P (15, 13, 8) 14-coloring χ(U(15, 8)) = 14
14 - 1 - P (16, 14, 9) 15-coloring χ(U(16, 9)) = 15
14 15 2 2 P (17, 14, 7) ¬P (18, 15, 7) χ(U(17, 7)) = 15
15 - 1 - P (17, 15, 9) 16-coloring χ(U(17, 9)) = 16
15 16 3 3 P (19, 15, 7) ¬P (20, 16, 7) χ(U(19, 7)) = 16
16 - 1 - P (18, 16, 10) 17-coloring χ(U(18, 10)) = 17
17 - 1 - P (19, 17, 10) 18-coloring χ(U(19, 10)) = 18
17 18 2 2 P (20, 17, 8) ¬P (21, 18, 8) χ(U(20, 8)) = 18
18 - 1 - P (20, 18, 11) 19-coloring χ(U(20, 11)) = 19
19 - 1 - P (21, 19, 11) 20-coloring χ(U(21, 11)) = 20
19 20 3 3 P (23, 19, 8) ¬P (24, 20, 8) χ(U(23, 8)) = 20
19 20 4 4 P (24, 19, 8) ¬P (25, 20, 8) χ(U(24, 8)) = 20

Table 1.1: Chromatic numbers of some universal graphs, obtained by combining Theorem
27 and Property 31. The values γ′ and p′ are associated with the positive statement
P (k′, γ′, λ′), where k′ = γ′ +p′ +1 and λ′ = �γ′/(p′ +1)
+p′ +1. Where given, the values
γ and p (with γ ≥ p(p+1)) are associated with the negative statement ¬P (k, γ, λ) where
k = γ + p+ 1 and λ = �γ/(p+ 1)
+ p. Every U(k, λ) with k ≥ λ+ 2 has a trivial k − 1
coloring.
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k λ χ(U(k, λ)) critical P (k, γ, λ) contains

6 3 4 no P (6, 3, 3) U(5, 3)
7 3 4 no P (7, 3, 3) U(5, 3)
8 3 4 no P (8, 3, 3) U(5, 3)
9 3 4 no P (9, 3, 3) U(5, 3)
9 4 6 no P (9, 5, 4) U(8, 4)
10 3 4 no P (10, 3, 3) U(5, 3)
10 4 6 no P (10, 5, 4) U(8, 4)
10 5 8 no P (10, 7, 5) U(9, 5)
11 3 4 (no) P (11, 3, 3) U(5, 3)
11 4 (7) (no) (P (11, 5, 4)) not applicable
12 3 4 no P (12, 3, 3) U(5, 3)
12 4 (7) (no) (P (12, 5, 4)) (U(11, 4))
13 3 (5) (yes) (P (13, 4, 3)) not applicable

Table 1.2: Chromatic numbers and criticality, determined using the Foo-Partialcol

coloring heuristic. Bold values are exact (lower theoretical and heuristical upper bounds).
Values in parenthesis are conjectured, based on the same coloring heuristic. The fifth
column shows the equivalent γ-critical statements. For unproven chromatic numbers, the
corresponding conjectured P -statement is given in parenthesis as well.
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Improving Tabu Search

The aim of this chapter is to prepare the field for the next two chapters, where we will
present heuristics for the graph coloring problem and for a weighted version of the graph
coloring problem.

In this chapter, we will present several methods to improve a powerful heuristic called
tabu search. The goal is to provide simple tools to adjust automatically the tabu tenure,
the most important parameter of tabu search.

First, we will give a definition of a generic tabu search. Then, we will give a classification
for methods to adjust the tabu tenure. Next, we will narrow our focus to graph coloring
problems and present ways of measuring similarity and distances between different col-
orings of a graph. Finally, we present several methods to adjust the tabu tenure. These
methods have been applied to different heuristics described in the following chapters.

2.1 Tabu Search

Tabu search is a local search algorithm which was originally proposed by Glover [Glo89,
Glo90] and Hansen [Han86]. Its basic version can be described as follows:

Define the solution space S to be the set of configurations (called solutions) to be con-
sidered for a combinatorial optimization problem. Depending on the problem, the term
solution might be misleading because the search space may contain many configurations
which are not feasible for the initial problem. For example, for the k-coloring problem, the
Tabucol [HdW87] algorithm considers all possible k-partitions of the vertex set (and,
therefore, also improper colorings).

Let f be an objective function which must be minimized over S.

With each solution s ∈ S, a set N(s) is associated and is called the neighborhood of s.
The solutions in N(s), also called neighbors of s, are obtained from s by performing small
changes on s called moves.

The tabu search algorithm needs an initial solution s0 ∈ S as input. Then, the algorithm
generates a sequence of solutions s1, s2, . . . in the search space S such that si+1 ∈ N(si).
When a move is performed from si to si+1, the inverse of that move is stored in a tabu list
L. For the following t iterations, where t is the tabu tenure (also called tabu list length),
a move stays tabu and cannot be used (with some exceptions) to generate a neighbor
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solution. The solution si+1 is computed as

si+1 = arg min
s∈N ′(si)

f(s),

where N ′(s) is a subset of N(s) containing all solutions s′ which can be obtained from s
either by performing a move that is not in L (i.e. not tabu) or such that f(s′) < f(s�),
where s� is the best solution encountered along the search so far. The process is stopped
when a fixed number of iterations without improving s� have been performed.

This generic tabu search is summarized in Algorithm 1, where we suppose that we know
the value of an optimal solution. A move which allows us to generate s′ from s is denoted
by (s ↪→ s′). The algorithm stops as soon as imax iterations without improvement of s�

have been performed or as soon as an optimal solution has been found.

In practice, one rarely implements a real list of tabu moves. One rather stores a vector
which for each possible move contains the iteration number up to which a move stays
tabu. If a move is executed the corresponding entry in the vector is set to the current
number of iterations plus the tabu tenure t. A move is tabu, if the current number of
iterations is smaller than the corresponding entry in the vector. This is not only easier to
implement but is also faster in execution because to test whether or not a move is tabu
takes constant time. Testing the presence of an element in the tabu list takes O(t) time,
where t is the length of the list. Moreover, there will be some additional time required for
adding and deleting elements from the list.

Interpretation of the Tabu List

A tabu search without a tabu list (or with list length zero) is simply a deepest descent
method.

The basic idea behind introducing a tabu list is to enable the search process to escape
local minima.

Moving back is tabu

Initial solution

Search space landscape

Figure 5 A tabu search behaves like a steepest descent,
until a local minimum is reached. The tabu list
then forces the search to choose solutions with
inferior quality, which allows an escape to local
minima.

Ideally, one should store complete solutions in the tabu list and forbid visiting these
solutions again. The problem with this implementation is that a solution may well be

38



Improving Tabu Search

a complex object whose storage may require a large amount of memory. Storing a large
number of solutions may not be possible. Moreover, it can be very time consuming to
check whether a given solution is already in the tabu list or not, especially in the case
that there are several representations for equivalent solutions. This is the case for graph
coloring, where a permutation of the colors results in an equivalent solution.

However, it is possible to approximate an explicit check of repetitions of solutions using
hashing techniques. In [GL97] a hash function is presented which is particularly well
suited for a tabu search algorithm. Suppose a solution s can be represented by a vector
of l integer numbers (s1, . . . , sl). The hash value of the solution s would be

H(s) =
l∑

i=1

zisi mod h

where zi are random numbers to be initialized at the beginning of the search process and
where h is the number of buckets for the hash. This hash functionH may not have the best
hashing properties; however, if a move changes only a constant number of components of
s, the difference between the previous hash value and the new hash value can be computed
in constant time.

2.2 Managing the Tabu Tenure

Many variants and extensions of the basic tabu search can be found in [GL97]. Most of
these extensions deal with the organization of the neighborhood of the search and how to
choose the next solution in the neighborhood.

We will focus on methods to dynamically adjust the tabu tenure (length of the tabu list)
along the search, according to different criteria. We will first define a classification of such
methods and give some known examples.

We will define three groups of methods to adjust the tabu tenure: static, dynamic and
reactive schemes. Each method may be used in either a deterministic or a randomized
way.

After defining two measures of distance between colorings, we will propose several schemes
of automatic adjustment of the tabu tenure. We have implemented these schemes for at
least one of the heuristics presented in the next chapters.

2.2.1 Static Tabu Tenure

We define a static tabu tenure as a tenure which does not change during the search process.

In the original version of tabu search, the tabu tenure is chosen once and for all and is
kept fixed for all instances. This leads to results that compare poorly to other methods
of choosing the tabu tenure.

Letting the user supply the tabu tenure is not desirable, because the user should not be
part of a heuristic.

An improvement can be made by choosing the tabu tenure as a function of the instance
size or, even better, as a function of the mean size of the neighborhood of a solution.
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The idea behind this is that the larger the neighborhood of a solution s is, the more
possibilities there are to reach this solution. Therefore, the tabu tenure should be larger
in order to avoid revisiting s.

2.2.2 Dynamic Tabu Tenure

We define a dynamic tabu tenure as a tenure which depends on the current solution and
on the move which has been executed to obtain the current solution. No information
about previous visited solutions is required.

The Tenure as a Function of the Quality of a Solution

For the graph coloring heuristic Tabucol, which uses improper k-colorings, the tenure
αnc [FF96, GH99] where α is a constant (typically 0.6) and nc is the number of vertices
involved in a conflict in the current improper coloring, has proven to be very efficient over
a wide range of instances.

The above method can be generalized to other problems, provided that the value of the
optimal solution is known. This is the case for feasibility problems where the tenure will
be determined to be proportional to the number of constraint violations.

If the value of an optimum solution is not known, the above approach might not be a good
idea. Consider an instance of an optimization problem where the costs in Swiss francs
have to be minimized. Suppose that there is dynamic tabu scheme which adjust the tabu
tenure using a function of the costs and that it is well tuned to produce good results when
measuring the costs in Swiss francs. But if the costs are measured in English pounds,
the performance might suffer, because value of the objective function is much lower, even
though the underlying problem has not changed.

One could compare the quality of the current solution with the quality of the best solution
found so far, but this does not fit our definition of a dynamic tabu tenure, since it involves
information about previously visited solutions.

The Tenure as a Function of the Last Move

Suppose we have a method to measure the impact of a move. A move with a big impact
will stay tabu for a longer time than a move with little impact. The impact of a move can
be defined in different ways, depending on the problem. It should express how much the
solution is internally changed. A good measure for this would be the number of constraints
or contributions to the objective function involved [VH01]. To illustrate this method,
consider the k-coloring problem where the search space is the set of all k-partitions. A
move consists in changing the color of a vertex v from color i to color j. For such a move,
one can compute the number of resolved conflicts in which the vertex v was involved with
neighbors in color i plus the number of newly created conflicts in color j that involve
vertex v.
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C1 C2

v

Figure 6 A vertex v is moving from color 1 to color 2.
v had four neighbors in C1, so v’s removal from
C1 resolves four conflicts. However, v will have
three neighbors in C2, so three conflicts will be
added. Therefore, the difference in the objective
function is 3-4 = -1, while the impact of the
move is 3+4 = 7.

The difference of the objective function caused by a move is not a good indicator of a
move’s impact, because the difference is most likely to be close to zero once the search
has reached a first local minimum. This is because the algorithm always chooses the most
profitable non-tabu move unless a new best solution is discovered.

However, for the Tabucol algorithm, using a dynamic tenure based on the impact mea-
sure defined as above leads to poor results, because the Tabucol algorithm tends to
isolate monochromatic edges. In other words, once the search has settled, most moves
have an impact of 2 and almost all moves have an impact between 1 and 3 inclusive.

2.2.3 Reactive Tabu Tenure

We define a reactive tabu tenure as a tenure determined on the basis of (possibly) the
entire search history. We use this more general definition for our purposes.

The term reactive tabu search was first introduced by Battiti and Tecchiolli in [BT94].

The Reactive Tabu Scheme by Battiti and Tecchiolli

They propose modifying the size of the tabu tenure when a cycle occurs, i.e. when a
solution is visited twice by the search process. In their algorithm, an explicit check for
the repetition of solutions is added to the basic scheme of tabu search. The appropriate
tabu tenure is learned in an automated fashion by reacting to the occurrence of cycles.
Each time a cycle is detected, the tabu tenure is increased because we must assume that
it was too small to prevent the detected cycle. The tabu tenure is decreased if no cycle is
detected during a given number of iterations.

In addition, if the search appears to be repeating an excessive number of solutions too
often, then the search is diversified by making a number of random moves proportional
to the average of the cycle length in order to escape a local attractor.
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2.2.4 Randomizing the Tabu Tenure

Very often, one can improve the performance of a tabu search by randomizing the tabu
tenure.

Suppose that we use some arbitrary scheme to determine the tabu tenure t. Then, instead
of using t as the tabu tenure, we determine a randomized tenure tr according to some
distribution which normally depends on t.

A typical distribution will be a uniform distribution over an interval [a(t), b(t)]:

tr := uniform(a(t), b(t)).

Typically a and b are chosen more or less proportional to t. For the Tabucol heuristic,
a very good performance has been reported for a(t) = t and b(t) = t+ 10 [FF96, GH99].

2.3 Distances and Similarity for Graph Colorings

To adjust the tabu tenure during the search process, some schemes require that the current
solution is compared to previously visited solutions in order to adjust the tabu tenure and
evaluate the progress of the search process.

These schemes often need to quantify, for two given solutions how similar the two solutions
are to each other or how far apart they are from each other. We will present two measures
which have been used in our heuristics.

2.3.1 Hamming Distance

The easiest and most simple distance of a graph coloring problem is the Hamming distance
[Ham50]. This distance simply counts the number of differences between the components
of two vectors. The Hamming distance between the vectors (1, 1, 3) and (1, 2, 3) would
simply be 1 because they differ only in the second component. The main advantages of
the Hamming distance are that it is very simple to compute and that it can be applied
to any problem which encodes solutions component-wise, which is the case for virtually
any combinatorial problem. If a move (s ↪→ s′) changes only a constant number of
components, the Hamming distance of s′ to a reference solution sref can be recomputed in
constant time, based on the distance of s to sref.

2.3.2 Hamming Distance for Colorings

Given a k-coloring c : V → {1, . . . , k} and a k′-coloring c′ : V → {1, . . . , k′}, we define

d(c, c′) = |{v ∈ V | c(v) �= c′(v)}|.
The disadvantage of this distance comes from the fact that d(c, c′) can be large if c′ is
obtained from c by simply permuting some colors, even if the two colorings are equivalent
and represent the same partition of the vertices into stable sets.
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Despite this obvious disadvantage, we have obtained good results for the weighted coloring
problem.

2.3.3 Topological Distance in a Search Space

For every solution s in the search space S, a neighborhood N(s) is defined. This defines
a topology on S. Using this topology, a distance measure can be defined as follows: The
distance between two solutions is the minimum number of moves required to transform
the first solution into the second. However, depending on the topology of the search
space, actually calculating this number might be very complicated and, in the worst case,
as complicated as the optimization problem to solve.

For the particular neighborhood structure where the neighbors of a solution s are all
solutions which differ in exactly one component of their encodings then the topological
distance is equivalent to the Hamming distance.

2.3.4 Similarity of Colorings

We present another attempt to define a distance between two colorings which does not
suffer from the disadvantage from which the Hamming distance suffers. We consider col-
orings represented as partitions of the vertex set V into k sets. Let c be a k-coloring
represented by the partition {C1, . . . , Ck} and c′ be a k′-coloring represented by the parti-
tion {C′1, . . . , C′k′}. First, we define a measure of the similarity of two color classes Ci and
C′j:

Sim(Ci, C′j) =

{
1 if Ci = C′j = ∅
|Ci∩C′

j |
|Ci∪C′

j | otherwise
.

This measure equals 1 if and only if Ci = C′j and 0 if Ci ∩ C′j = ∅ (with at least one of the
sets non-empty). Moreover, we have Sim(Ci, C′j) = Sim(C′j, Ci), which is natural to expect
from any such measure. This measure of similarity is called Jaccard’s coefficient and is
used in information retrieval. We have chosen this measure because it is intuitive. There
are some other measures with similar properties, such as, for instance, Dice’s coefficient
2|X∩Y |
|X|+|Y | or the overlap coefficient |X∩Y |

min (|X|,|Y |) [Hub82], but we have not investigated them.

We can now, based on the definition of Sim, define a measure of similarity of two colorings:

Sim(c, c′) =
2

k + k′
∑
1≤i≤k
1≤j≤k′

Sim(Ci, C′j).

Here again, if c = c′, then Sim(c, c′) = 1 because all terms Sim(Ci, C′j) will be zero, except
the k terms, where the sets Ci and C′j are equal. Note that Sim(·, ·) > 0. To see this,
consider a vertex v ∈ Ci. It is also contained in C′j for j = c′(v) and, therefore, |Ci∩C′j| ≥ 1.

Note that the definition does not depend on the order of the sets Ci.
Finally we can define a distance d based on the measure of similitude as follows:

d(c, c′) = 1− Sim(c, c′).
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This distance has the properties that if c = c′ then d(c, c′) = 0 and, if c �= c′, then
d(c, c′) > 0.

Average Similarity Between two Colorings

In order to gain a better understanding of this measure of similarity, we will estimate the
similarity between two random k-colorings of a graph without edges. We will perform
both an empirical and an analytical estimation.

Estimation by simulation For different values of n (the number of vertices) and k
(the number of colors), we have generated random assignments of the colors {1, . . . , k}
to every vertex. Then, for two such random colorings, the similarity has been computed.
See Table 2.1 for the results.

The mean is close to k
2k−1

. However, this is not the theoretical value but probably the
asymptotic limit when n grows, as numerical tests suggest.

Theoretical analysis We were not able to provide an exact value for the average
similarity of two random k-colorings but we provide a first order approximation thereof.

Let V be a set of n vertices, and c and c′ two random k-colorings in the sense that the
probability for a vertex v having color i is simply 1

k
.

First, we compute the expectation of the intersection

E
(|Ci ∩ C′j|) =

∑
v∈V

1 · P (c(v) = i, c′(v) = j) =
n

k2

and the expectation of the union

E
(|Ci ∪ C′j|) = E

(|Ci|+ |C′j| − |Ci ∩ C′j|)
= 2

∑
v∈V

1 · P (c(v) = i)− n

k2

=
2n

k
− n

k2
.

Of course, in general for two random variables X and Y , E(X/Y ) �= E(X)/E(Y ). But
E(X)/E(Y ) is a first order approximation for E(X/Y ). Using the above results we obtain

E
(
Sim(Ci, C′j)

)
= E

( |Ci ∩ C′j|
|Ci ∪ C′j|

)
≈ E

(|Ci ∩ C′j|)
E

(|Ci ∪ C′j|) =
n
k2

2n
k
− n

k2

=
1

2k − 1
;

and, using the definition

E(Sim(c, c′)) =
2

k + k

∑
1≤i≤k
1≤j≤k

E
(
Sim(Ci, C′j)

)
=

1

k
k2E (Sim(C1, C′1)) ,
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we can give a first order approximation

E(Sim(c, c′)) ≈ k

2k − 1
,

which corresponds within less than one standard deviation to the numerical values ob-
tained by the simulation.

This analysis shows that two k-colorings with a similarity of 0.5 are in fact “very different”
in the sense that they are less similar than two random colorings in average.

Computational Complexity of the Similarity Measure

The proposed similarity measure has useful properties, but the computation of the double
sum is computationlly intensive.

Suppose we have two k-colorings c and c′ encoded as a function V → {1, . . . , k}. In order
to compute Ci ∩ C′j, we must consider all vertices v ∈ V and test whether c(v) = i and
c′(v) = j. The same is true for Ci ∪ C′j. This indicates a complexity of O(n) for each pair
of colors i, j. There are k2 pairs; and, therefore, the complexity of the computation of
Sim(c, c′) is O(nk2). In the following paragraph, we will see how to reduce the complexity
to O(n).

Note that the set Ci ∩ C′j is non-empty only for pairs of colors i, j for which there exists
a vertex v ∈ V such that i = c(v) and j = c′(v). We can use this fact to reduce the
complexity of the computation.

We begin by computing γi = |Ci| and γ′i = |C′i| for all i = 1 . . . k. This can be done in
O(n) by first initializing all γi to zero and then increasing γc(v) and γ′c′(v) by one for each
vertex v ∈ V .

Then, compute all non-zero Γi,j = |Ci ∩ C′j| as follows. For every v ∈ V , set Γc(v),c′(v) to
zero. Then, for each vertex v ∈ V , increase Γc(v),c′(v) by one.

Note that the Γi,j variables take an amount of memory space of O(k2) if we wish to
ensure that we can access each variable in constant time. For the following, we assume
that enough memory can be allocated.

We use the following equality:

Sim(Ci, C′j) =
Γi,j

γi + γ′j − Γi,j

=
∑

v∈Ci∩C′
j

1

γi + γ′j − Γi,j

.

Initialize σ = 0. For each vertex v ∈ V , let i = c(v) and j = c′(v) and set

σ ← σ + 1/(γi + γj − Γi,j).

Finally, multiply σ by 1
k

to find the similarity between c and c′. See Algorithm 2 for a
pseudocode of this algorithm.
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Similarity of two k-colorings Differing on one Vertex

How similar are two k-colorings that differ only on one vertex? Assume that there is a
graph with n vertices and a balanced k-coloring c, i.e. every color class is of size γ. As a
consequence, we have n = γk. Now, a new coloring c′ is obtained from c by recoloring a
vertex v of color i with color j. What is the value of Sim(c, c′)? Note that Sim(Cr, C′s) = δr,s
for r, s �∈ {i, j}, where δr,s is the Kronecker symbol. It equals 1 if r = s and 0 otherwise.
From this, we obtain

Sim(c, c′) =
1

k

∑
1≤i≤k
1≤j≤k

Sim(Ci, C′j)

=
1

k

(
k − 2 + Sim(Ci, C′i) + Sim(Ci, C′j) + Sim(Cj, C′i) + Sim(Cj, C′j)

)
=

1

k

(
k − 2 +

γ − 1

γ
+

1

2γ
+

0

2γ
+

γ

γ + 1

)

= 1− 1

k
· 1

2γ
− 1

k
· 1

γ + 1
;

and, using the fact that n = γk, we find

Sim(c, c′) = 1− 1

2n
− 1

n+ k

≤ 1− 1

n
.

The last inequality relies on k ≤ n which is obvious.

Computing the Similarity to a Reference Coloring

In a local search algorithm, it can be useful to compare the current solution to a reference
solution at each iteration. Therefore, we need a fast method for computing the similarity
between a new solution and the reference solution, based on the similarity between the
previous solution and the reference solution.

Suppose we have a reference k-coloring cr, a k-coloring cp from the previous iteration, and
a neighbor k-coloring c′ which differs in exactly one vertex from cp. Moreover, suppose
that we are given s = Sim(cr, cp) and the size of all color classes γr

i = |Cr
i | and γp

i = |Cp
i |

for i = 1 . . . k. Further, we suppose that we know Γi,j = |Cr
i ∩ Cp

j | for all i, j = 1 . . . k.
Using these variables we can compute

|Cr
i ∩ Cp

j |
|Cr

i ∪ Cp
j |

=
Γi,j

γr
i + γp

j − Γi,j

.

Let v′ be the vertex that changes color, i.e. the unique v′ ∈ V such that cp(v′) �= c′(v′).
Let α = cp(v′) be its color in the previous coloring and β = c′(v′) its color in the new
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coloring and θ = cr(v′) its color in the reference solution.

We are interested in

k(Sim(cr, c′)− Sim(cr, cp)) =
∑

i=1...k
j=1...k

( |Cr
i ∩ C′j|
|Cr

i ∪ C′j|
− |C

r
i ∩ Cp

j |
|Cr

i ∪ Cp
j |

)
.

If j �∈ {α, β}, then the terms cancel out because the sets Cp
j and C′j are the same. However,

all other terms remain:

k(Sim(cr, c′)− Sim(cr, cp)) =
∑

i=1...k
j=α,β

|Cr
i ∩ C′j|
|Cr

i ∪ C′j|
− |C

r
i ∩ Cp

j |
|Cr

i ∪ Cp
j |
.

This formula gives an O(k) time algorithm to update the similarity measure, provided
that we can update all values γ and Γ in O(k). In fact, it is possible to update these
values in constant time.

The values γr do not change. The values γ′ for the new solution verify that γ′j = γj for
j �= α, β, γ′α = γα − 1 and γ′β = γβ + 1.

The values Γi,j change only for j = α, β and i = θ. For other values of i and j the vertex
changing color v′ is not in one of the intersections Cr

i ∩Cp
j or Cr

i ∩C′j. Therefore, Γθ,α needs
to be decremented by one, and Γθ,β needs to be incremented by one. See Algorithm 3 for
a pseudocode of this algorithm.

2.4 The Foo-scheme

The Foo-scheme provides a reactive tabu tenure based on the fluctuation of the objective
function. The idea behind this scheme is to observe how the objective function evolves
along the search process. If the objective function does not change its value (or changes its
value very little) during a long period, we have reason to believe that the search process is
trapped in an uninteresting region of the search space. As a reaction, we increase the tabu
tenure in an attempt to escape the region where the search process has been trapped.

47



Chapter 2

Number of iterations
O

b
je

c
ti

v
e

fu
n
c
ti

o
n

Figure 7 When the values of the objective function only
cover a small interval over a long period, we
must assume that the search process is trapped
and diversification is needed.

As a counterweight for increasing the tenure, we make the tenure evaporate slowly along
the search process. This makes the search process alternate between intensification (when
the tenure is low) and diversification (when the tenure is high).
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Figure 8 If the objective function fluctuates “enough,” we
slowly decrease the tabu tenure to make the
search process more focused.

2.4.1 Implementation

We define three parameters for the Foo-scheme: ϕ, η and b. Every ϕ iterations, we will
determine Δ, the difference between the maximum and minimum values that the objective
function has taken during the last ϕ iterations. We will refer to ϕ as a frequency, even if
this is technically incorrect. (A frequency is the number of events per time, and not the
time per event.) If Δ is less than the threshold b, we conclude that the search process is
probably trapped and increase the tabu tenure t by the increment η. Otherwise, if Δ is
larger than the threshold b, we decrease t by one. See Algorithm 4 for pseudocode of the
Foo-scheme.
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Figure 9 Illustration of the Foo-scheme with the inter-
val of ϕ iterations to determine the range Δ of
values the objective function has taken over the
last ϕ iterations.

2.4.2 Parameter Tuning

The parameters ϕ, η and b of the Foo-scheme must be tuned for a specific problem. We
will refer to the process of determining good parameter combinations as the tuning phase.
There are two extreme scenarios to avoid. In the first scenario, the tabu tenure grows
beyond all limits. This can happen because the threshold b or the increment η are too
large or because ϕ is too small. In the second scenario, the tabu tenure always stays
close to zero and the search process is quickly blocked in an uninteresting region of the
search space. This can happen because the threshold b or the increment η are too small
or because ϕ is too large.

2.4.3 Randomizing the Foo-scheme

Instead of fixing the values of ϕ, η and b, they can be chosen randomly every ϕ iterations
from a uniform distribution over some intervals to be determined. The intervals should
be chosen such that they include parameter combinations determined in the tuning phase
to be good. Randomizing the parameters can avoid over-training in the tuning phase and
can make the scheme more robust.

2.5 The Acd-scheme

We present another reactive scheme, called the approximated cycle-detection scheme. The
underlying idea is to detect cycles without storing the previously visited solutions. Instead,
one only needs one reference solution and a distance or a similarity measure.

After every iteration of the tabu search, the reference solution is compared to the current
solution. If they are equal (i.e. at distance zero), the tabu tenure is increased. Otherwise,
the tabu tenure slowly evaporates. The main difficulty with this approach is determining
how and when to reset the reference solution.
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Updating the Reference Solution

Suppose the search process is trapped in some region of the search space. Due to the tabu
list, the sequence of visited solutions is erratic. For example, a situation may arise where,
even if a solution s is visited several times along the search process, the solutions visited
right before s and after s may differ every time we pass through s. The challenge is to
find a mechanism that chooses a reference solution which is most likely to be revisited by
the search process.

The first observation is that the search process prioritizes solutions with a small objective
value (assuming that we are minimizing). Under the assumption that the search process
is trapped in a region of the search space, we assume that it is more likely to revisit local
minima than other solutions. Therefore, we reset the reference solution to the current
solution every time the current solution has a better objective value than the reference
solution.

The second observation is that, if a reference solution has not been revisited for a long
time, we assume that the search process will never revisit the reference solution again
because either the search process has moved to another region or it is trapped in a smaller
region that does not contain the reference solution. Therefore, after a number of iterations
to be determined, we set the reference solution to the current solution.

The third observation is that once the current solution is very far (in terms of a distance
function) from the reference solution, we can assume that the search process has definitely
left the region and will not revisit the reference solution again.

2.6 The Etb-scheme

The Etb-scheme’s main goal is to provide a mechanism to enforce diversification by
means of manipulating the tabu tenure. It requires a reference solution sref and a distance
measure. The initial tabu tenure is set to a small value. The following is repeated.

The tabu tenure slowly increases until the current solution s escapes the ball defined by
the set of solutions which are at a distance less than or equal to a radius r to be defined.
The reference solution sref is set to the current solution and the tabu tenure is set back to
the initial value.
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sref

s

Figure 10 An illustration of the Etb-scheme. The tabu
tenure grows until the current solution s escapes
the ball around sref. At that moment, the ref-
erence solution sref is initialized to the current
solution s and the tabu tenure is set back to a
small value.

Preliminary tests with the Etb-scheme for the graph coloring problem have not led to
promising results. Nevertheless, when it is used together with other schemes, it provides
an interesting diversification procedure with a guarantee on the degree of diversification
(measured by the radius r of the ball).
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Algorithm 1 Generic tabu search
Input: Maximum number of iterations imax without improvement, tabu tenure t, objective

function f .
Output: The best solution encountered s�.
1: generate an initial solution s
2: s� ← s, f � ← f(s)
3: L← ∅, i← 0 /* L is the tabu list and i the iteration counter */
4: /* Depending on the problem, the second condition does not make sense */
5: while i ≤ imax and s is not optimal do
6: N ′(s)← {s′ ∈ N(s) | move (s ↪→ s′) �∈ L ∨ f(s′) < f�}
7: s′ ← arg min

s′′∈N ′(s)
f(s′′) /* Ties are broken randomly */

8: if f(s′) < f� then
9: f � ← f(s′), s� ← s′ /* update the current best solution and its value */

10: i← 0
11: end if
12: L← L ∪ (s′ ↪→ s) /* update the tabu list L */
13: remove moves from L which have been added more than t iterations ago
14: s← s′ /* update the current solution s */
15: i← i+ 1
16: end while
17: return s� of value f �

n k mean k
2k−1

std dev. min max

50 5 0.5518 0.5556 0.014 0.51 0.59
50 10 0.5217 0.5263 0.024 0.45 0.57
100 5 0.5552 0.5556 0.007 0.53 0.57
100 10 0.5272 0.5263 0.007 0.50 0.55
100 20 0.5151 0.5128 0.016 0.47 0.55
200 5 0.5554 0.5556 0.004 0.54 0.56
200 10 0.5273 0.5263 0.004 0.51 0.54
200 20 0.5120 0.5128 0.007 0.49 0.53

Table 2.1: Similarities between random colorings. For each set of parameters n (number
of vertices) and k (number of colors), 300 pairs of random colorings have been generated,
and the similarities between the two have been computed. The statistics over the 300 runs
are given. Additionally, we give the first order approximation k

2k−1
for the expectation of

the similarity.
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Algorithm 2 An O(n) algorithm to compute the similarity between a k-coloring c and a

k′-coloring c′. Sim(c, c′) = 2
k+k′

∑
i=1,...

j=1...k′

|Ci∩C′
j |

|Ci∪C′
j |

Input: Vertex set V , k-coloring c : V → {1, . . . , k}, k′-coloring c′ : V → {1, . . . , k′}.
Output: Sim(c, c′).
1: /* Variables to compute |Ci| and |C′j | */
2: γi ← 0 for all i = 1 . . . k
3: γ′j ← 0 for all j = 1 . . . k′

4: /* Compute |Ci| and |C′j | */
5: for all v ∈ V do
6: γc(v) ← γc(v) + 1
7: γ′c′(v) ← γ′c′(v) + 1
8: end for
9: for all v ∈ V do

10: Γc(v),c′(v) ← 0
11: end for
12: /* Compute |Ci ∩ C′j | */
13: for all v ∈ V do
14: Γc(v),c′(v) ← Γc(v),c′(v) + 1
15: end for
16: σ ← 0
17: for all v ∈ V do
18: i← c(v), j ← c′(v)
19: σ ← σ + 1

γi+γj−Γi,j

20: end for
21: σ ← σ 2

k+k′
22: return σ /* return Sim(c, c′) */
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Algorithm 3 An O(k) algorithm to recompute the similarity between a reference coloring
cr and a coloring c to be updated by recoloring a given vertex.

Input: Vertex set V , two k-colorings cr = {Cr
i }i=1,...,k (reference coloring) and c =

{Cj}j=1,...,k (coloring to be updated), a vertex v′ to be recolored with color β, γr
i = |Cr

i |,
i = 1, . . . , k and γj = |Cj|, j = 1, . . . , k, and Γi,j = |Cr

i ∩ Cj|, i, j = 1, . . . , k,
s = Sim(cr, c).

Output: Modified coloring c′, updated values for γj and Γi,j (for colorings cr and c′),
s = Sim(cr, c′).

1: α← c(v′)
2: θ ← cr(v′)
3: for all i = 1, . . . , k do
4: s← s− Γi,α

γr
i +γα−Γi,α

− Γi,β

γr
i +γβ−Γi,β

5: end for
6: Γθ,α ← Γθ,α − 1
7: Γθ,β ← Γθ,β + 1
8: γα ← γα − 1
9: γβ ← γβ + 1

10: c′ ← c
11: c′(v′) = β
12: for all i = 1, . . . , k do
13: s← s+

Γi,α

γr
i +γα−Γi,α

+
Γi,β

γr
i +γβ−Γi,β

14: end for
15: return s /* return Sim(cr, c′) */

Algorithm 4 The Foo-scheme to adjust in a reactive manner the tabu tenure.

Input: Tabu tenure t, parameters η, b, difference Δ of the maximum and the minimum
values of the objective function over the last ϕ iterations.

Output: An adjusted tabu tenure t.
1: if Δ ≤ b then
2: t← t+ η
3: else
4: if t > 0 then
5: t← t− 1
6: end if
7: end if
8: return t
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Algorithm 5 The Acd-scheme to adjust the tabu tenure in a reactive manner.
Input: Real valued tabu tenure t, current solution scur and reference solution sref, objec-

tive function f , maximal allowed age tmax of sref, distance function d on the search
space, distance threshold dmax, rate of evaporation ν.

Output: An adjusted tabu tenure t and an updated sref.
1: if d(scur, sref) = 0 then
2: t← t+ η
3: end if
4: t← νt
5: if f(scur) < f(sref) or sref is older than tmax or d(scur, sref) > dmax then
6: sref ← scur

7: end if
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The Partialcol Heuristic

3.1 Introduction

The graph coloring problem has many practical applications such as the creation of time
tables, frequency assignments, and stock management [Cha82, GR92, Lei79, Zuf02]. As
a result of its importance and simplicity, many methods have been developed to solve
or to approach the graph coloring problem. Elaborated exact methods are able to find
optimal colorings for graphs with up to about 100 vertices [Her03, JAMS91]. This limit
is, of course, a rule of thumb. There are intractable instances that have fewer than 100
vertices and graphs that can be solved optimally that have more than 150 vertices.

For larger graphs, we must use heuristics. Strategies range from very simple greedy
approaches to elaborate hybrid evolutive heuristics. A set of well known benchmark
graphs can be found on the web [dim]. We have tested our approach on a sample of these
benchmark graphs, and we have compared our results to similar methods, as well as to
the two genetic hybrid algorithms Gh [GH99] and Mmt [MMT05], which rank among
the most efficient graph coloring algorithms.

3.2 Various Approaches to Vertex Coloring

There are two widely explored approaches to vertex coloring. The first consists of pro-
ducing k-colorings and attempting to decrease k while maintaining a (valid) coloring.
Most constructive and greedy heuristics make use of this approach. These heuristics are
generally very fast but yield solutions which are far from optimal.

The second approach consists of fixing k and starting with an improper k-coloring. An
improper coloring may contain conflicts. If two adjacent vertices x and y have the same
color, we say that there is a conflict between vertices x and y, respectively vertices x and
y are conflicting vertices, and the edge {x, y} is a conflicting edge. One may try then to
reduce the number of conflicts until, in the best case, a k-coloring is found. If a k-coloring
is found, the method is restarted in order to search for a (k−1)-coloring, and so on. If no
k-coloring is found, we restart the method to search for a (k+1)-coloring, and so on. The
process is stopped as soon as a fixed k is considered twice by the method. The output
solution is a k-coloring with the smallest k. Most state-of-the-art heuristics are derived
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from this approach.

A third and barely explored approach uses partial k-colorings with a fixed k and a strategy
for adapting k derived from the second approach described above. A partial k-coloring
consists of k mutually disjoint stable sets S1, . . . , Sk and a set O of non-colored vertices
such that O = V \ (S1∪ . . .∪Sk). Note that a partial k-coloring has no conflict. The goal
of this third approach is to increase the size of the partial solution, which is equivalent
to reducing the size of O. Our method, Partialcol, is based on this third approach.
Morgenstern proposed a complex algorithm based on partial solutions in [Mor96]. More
details on his algorithm, henceforth called Mor, will be given in Section 3.3.3.

Some practical frequency assignment problems [AvHK+03], for which we know the set of
all the interference constraints, could be formulated as graph coloring problems. In this
case, a frequency (instead of a color) must be assigned to each antenna (instead of a vertex)
while respecting a subset of the set of the interference constraints. For example, there
could be an interference between antennae x and y if they transmit on the same frequency.
In the minimum interference frequency assignment problem, the goal is to minimize the
sum of the interferences. In this case, all the antennae must receive a frequency, and any
interferences are penalized. To solve this, the approach using improper colorings could be
appropriate. However, if the goal is to assign a frequency to as many antennae as possible
while respecting all the interference constraints (and not only a subset), then the partial
solution approach is useful. This problem is known as the maximum service frequency
assignment problem.

3.2.1 Constructive Heuristics

Constructive heuristics build a solution in a step-by-step fashion. In each step, a vertex
is chosen and a color is assigned to it such that no conflict is generated. There exist
numerous strategies for determining the order in which the vertices are chosen. The most
simple approach is the greedy algorithm, which chooses vertices randomly and assigns the
smallest possible color (supposing the colors are numbered) to the examined vertex. A
more successful method called Dsatur [Bré79] consists of always choosing the vertex with
the highest number of differently colored adjacent vertices; the vertex that has the highest
number of incident edges is used in the event of a tie. Other published methods of this
type are Rlf [Lei79], Kp [Zuf02], and the Iterated Greedy coloring algorithm [Cul92].
These methods find solutions quickly, but these solutions are often far from optimal. Note
that the Iterated Greedy algorithm is often combined with local search procedures in
order to obtain better results.

3.2.2 Local Search Heuristics

Local search heuristics operate in a search space S, also called a solution space. The
elements of this space are called solutions even if not all elements are solutions to the
initial problem. For every solution s ∈ S, a neighborhood N(s) ⊂ S is defined. A local
search method starts at an initial solution and then moves from a solution to a neighbor
solution and tries to find“better”solutions, measured by an appropriate objective function.
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The passage from one solution to the next is called a move. Most graph coloring heuristics
use one of the two following search spaces: (1) a space of all colorings, where the heuristic
simply tries to reduce the number of colors used, or (2) a space with improper colorings but
a fixed number of colors, where the heuristic attempts to reduce the number of conflicts
to zero.

The most-studied search strategies are simulated annealing [CHdW87, JAMS91], tabu
search (called Tabucol) [HdW87], and variable neighborhood search
[AHZ03, Zuf02]. Today, one of the most efficient variants of Tabucol can be briefly
described as follows [GH99]: the search space is the set of k-partitions; and the objective
function f , which is to be minimized, is the total number of conflicting edges. A neighbor
solution is obtained by modifying the color of a conflicting vertex. When the color of a
vertex x is modified from i to j, color i is declared tabu for vertex x for a certain number t
of iterations, and all solutions where x has color i are called tabu solutions. The parameter
t is called tabu tenure or, historically, tabu list length.

At each iteration, Tabucol determines the best neighbor s′ of the current solution s (ties
between solutions of equal quality are broken randomly) such that either s′ is a non-tabu
solution or f(s′) < f(s�), where s� is the best solution found so far. The tabu tenure is set
equal to uniform(0, 9) + αnc, where uniform(a, b) returns an integer randomly chosen
in {a, . . . , b}, α = 0.6, and nc represents the number of conflicting vertices in the current
solution s. If the tabu tenure depends on the current solution, we say that it is dynamic.
More details and results on these methods can be found in [GH99, HGZ05, Zuf02]. Note
that Dorne and Hao proposed a comparable tabu search heuristic for graph coloring
in [DH98]. In their method, they use a candidate list strategy, an aspiration criterion,
incremental evaluation, and dynamic tabu tenure as described above, but with α ∈ {2, 4}.
Such a method does not outperform the one proposed by Galinier and Hao in [GH99] and,
consequently, we will not compare our algorithms to this method.

3.2.3 Evolutive Hybrid Heuristics

Evolutive hybrid heuristics work with a population P of several solutions (or pieces of
solutions) at a time and attempt to produce better solutions by recombining solutions
(or pieces of solutions) of P . When new solutions are produced, the algorithm applies
a local search procedure in an effort to improve these solutions. The solutions obtained
are finally used to update P . In such methods, almost all cpu time is consumed by the
local search procedure. The most successful coloring methods are of this type and usually
use a variant of Tabucol as a local search procedure. The choice of Tabucol is often
preferred to other local search methods because it is the most simple, rapid, and efficient
algorithm among the best-known local search coloring procedures.

We would like to draw attention to several genetic hybrid algorithms [DH98, FF96,
GH99, MMT05], a scatter search method [HH02a], and an adaptive memory heuristic
[HGZ05, Zuf02]. The last method is the most simple method among the methods of this
type. It is close to the one proposed in [GH99]. In both of these cases, an appropriate
recombination operator and an efficient and quick local search procedure (Tabucol) are
responsible for the excellent performance exhibited by those methods. The very recent
Mmt algorithm [MMT05] shows an excellent performance and has improved the best
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known coloring on several graphs. It is based on the same neighborhood structure as
the Partialcol algorithm to be presented in this chapter. It is worth noting that the
recombination operator and the variant of local search method used internally must be
adapted specifically to the given problem for optimum results.

3.3 The Partialcol Algorithm

In this section, we describe an alternative tabu search method for the graph coloring
problem. We first describe the solution space, its associated neighborhood structure, and
alternative neighborhood structures. We then present a method of choosing a neighbor
solution. Finally, we propose three ways of managing the tabu tenure.

Partialcol is a local search method as described in Section 3.2.2. The method takes
as input a graph G = (V,E) with vertex set V and edge set E, along with the desired
number k of colors to find a k-coloring.

3.3.1 Definition of the Search Space

The search space consists of partial k-colorings. A partial k-coloring consists of k disjoint
stable sets (mutually non-adjacent vertices) S1, . . . , Sk and a set O = V \ ⋃k

i=1 Si. We
note s = (S1, . . . , Sk;O). Each vertex v ∈ V is in exactly one of the sets S1, . . . , Sk,O. If
v ∈ Si, then v has color i. If v ∈ O, then v is not colored.

We can see that there is a major difference between the structure of a solution in Tabucol

and the one used for Partialcol. In the approach chosen for Partialcol, all the
conflicts are in the set O; however, in Tabucol, the conflicts could be in any of the k
color classes. Consequently, the solution spaces induced by these two solution structures
are very different.

Note that the idea to deal with partial assignment is not new. For example, Morgenstern
proposed a complex method based on partial k-colorings in [Mor96] for the graph coloring
problem (see Section 3.3.3 for more details). In addition, Vasquez proposed in [Vas02]
a tabu search for the frequency assignment problem with polarizations. He worked with
partial assignments too. Because these two algorithms both perform well, one of our
motivations is to propose a method based on partial assignments, but which is much
simpler than the one proposed by Morgenstern.

3.3.2 Strategy and Generation of an Initial Solution

To begin we have to determine the first tested k for which we will try to find a k-coloring.
In our algorithms, we chose k = χ(G) if χ(G) is known, and k = k� otherwise, where
k� is the smallest k for which a k-coloring has been found by a known heuristic. Two
possible cases arise: (1) a k-coloring is found or (2) no k-coloring is found. If a k-coloring
has been found, we decrease k by one, start over, and continue until no k-coloring can be
found. Otherwise, if no k-coloring could be found, we increase k by one and start over,
continuing until a k-coloring has been found.
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In order to generate an initial partial k-coloring s = (S1, . . . , Sk;O), we use the following
greedy algorithm. At each step we randomly choose a non considered vertex v and insert
it to Si with the smallest possible i, such that Si is still a stable set. If no such set Si

exists, we add v to O.

In order to generate an initial k-partition (or improper k-coloring) s = (C1, . . . , Ck), we
also use a greedy algorithm which is very close to the previous one. At each step, we
randomly choose a non-considered vertex v and put it into Ci with the smallest possible
i such that we avoid creating any conflict. If it is impossible to do so without creating a
conflict, we put v in a randomly selected class Cj.
Note that the two above greedy algorithms do not consume more than a fraction of second
to generate an initial solution.

3.3.3 Neighborhood of a Solution

Let A(v) be the subset of V containing all the vertices adjacent to v. A neighbor solution
s′ = (S ′

1, . . . , S
′
k;O′) can be obtained from a solution s = (S1, . . . , Sk;O) by coloring an

uncolored vertex u ∈ O with a color c. We call this a move (u ↪→ Sc). To execute this
move, we first set O′ = O \ {u} and S ′

c = Sc ∪ {u}. It is now possible that S ′
c is no longer

stable, so we remove vertices adjacent to u in order to make S ′
c a stable set. The sets for

the new solution s′ will be

O′ = (O \ {u}) ∪ (A(u) ∩ Sc)
S ′

c = (Sc ∪ {u}) \ (A(u) ∩ Sc)
S ′

j = Sj 1 ≤ j ≤ k, j �= c.

This kind of neighborhood was first proposed by Morgenstern in [Mor96], but his method
is much more complicated than the one proposed here. In Morgenstern’s method, a
neighbor solution is chosen as it is in a simulated annealing search, i.e. a temperature
parameter T is required, but this parameter is difficult to tune. Further, Morgenstern’s
method uses a second neighborhood structure when the first one cannot improve the best
solution found after a fixed number of iterations. This other neighborhood structure is
complex and deals with s-chain interchanges (refer to [Mor96] for a definition). Moreover,
Morgenstern’s method is based on a pool of good partial k-colorings and not only on
a single partial k-coloring. Finally, Morgenstern uses a specific method called XRLF
(presented in [JAMS91]) to generate the initial pool of partial solutions.

Note that, with such a neighborhood and such an evaluation function (the number of
uncolored vertices), many neighbor solutions have the same value. This property makes
the search more random and less guided. It might be interesting to cast a new objec-
tive function which discriminates more effectively between different neighbor solutions.
However, the danger with such an objective function would be that it might constrict the
search and remove too much randomness. As a consequence, the algorithm with this new
objective function may perform very well on some graphs with a special structure but
poorly on others.

An idea to more effectively discriminate between the neighbor solutions is to use another
objective function, as proposed in [Mor96]. Let d(x) be the vertex degree of vertex x and

61



Chapter 3

the objective function be
∑
x∈O

d(x) instead of
∑
x∈O

1 = |O|.
Preliminary tests with this objective function have not been conclusive, except for the
Dimacs benchmark graphs le450 25c and le450 25d [dim], where colorings with 26 colors
were found within seconds. Apparently, the objective function is very well suited for
the structure of these two graphs but not for others. Interestingly, with this objective
function, the algorithm is no longer capable of finding colorings with 15 colors for the
graphs le450 15c and le450 15d but only colorings with 16 colors. With the original
objective function, a coloring with 15 colors is found within seconds.

In order to discriminate between the choices of a neighbor solution, we will propose several
ways to automatically adjust the tabu tenure (see below).

3.3.4 Alternative Neighborhoods

Our research also involved the investigation of more complex neighborhoods. Instead of
simply moving all vertices from A(u)∩Sc to O′, it may be possible to move some vertices
of A(u) ∩ Sc to other color classes without creating conflicts.

Our research went further to determine whether, once the vertices of A(u)∩Sc have been
removed from Sc, other vertices from O could go into Sc without creating conflicts. This
neighborhood has been extensively studied in [BGH01] and has proven to be competitive
with Tabucol for graphs of up to 500 vertices.

Both neighborhoods have been tested in our framework, but they are computationally
much more expensive than the original neighborhood. The cpu time needed to obtain a
neighbor solution grows much faster with the size of the input and graphs with more than
500 vertices become intractable with those neighborhoods.

3.3.5 Choosing the Best Neighbor Solution

Partialcol examines every possible neighbor solution. For each combination of v ∈ O
and c ∈ {1, . . . , k}, our method evaluates the cardinality |O′| and chooses the move
(v ↪→ Sc) that leads to the smallest |O′|, provided either that the move is not tabu or,
if it is tabu, that it leads to a value |O′| which is smaller than the best value already
encountered (denoted |O�|). If several moves lead to the same value of |O′|, then one of
them is randomly chosen.

Due to the amount of time devoted proportionally to the evaluation of the neighborhood
in local search methods, it is imperative that these evaluations can be performed with
maximum efficiency, even at the expense of efficiency in other parts of the method.

In our case, we must evaluate, for every vertex v ∈ O and every color c ∈ {1, . . . , k}, the
number γv,c of vertices adjacent to v with color c. In order to do this efficiently, we store
all values γv,c in a matrix Γ of size n×k (n is the number of vertices). We do this for every
vertex and not only vertices in O. Once Γ is computed, the evaluation of a move takes
constant time. The evaluation of the complete neighborhood takes a time proportional to
k · |O|, where k is the number of colors and |O| the number of uncolored vertices.

After a move (v ↪→ Sc) has been selected and executed, Γ must be updated as follows.
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• For every adjacent vertex u of v, we increase γu,c by one. This update can be done
in a time proportional to the number of adjacent vertices of v by storing a list of
adjacent vertices for each vertex.

• For every vertex w which is moved back from Sc to O, we decrease the value γuw,c by
one for every neighbor uw of w. The complexity of this update is small in practice
and comparable to the complexity of the first update, which is due to the fact that
only very few vertices w will need be removed in general. This characteristic is a
result of the fact that our algorithm precisely chooses moves minimizing the number
of such vertices w.

3.4 Reactive Tabu Tenure Schemes

For our experiments, we have considered three schemes and used them to govern adjust-
ments to the tabu tenure. The first scheme is a dynamic scheme called the Dyn-scheme.
The two other are reactive schemes and are named the Foo-scheme and the Acd-scheme
(described in Chapter 2). In this section, we discuss the details of how these schemes were
adapted to Partialcol and Tabucol.

3.4.1 The Dyn-scheme

We are taking advantage of the fact that finding a k-coloring is really a feasibility problem.
This fact allows us to know the optimal value of the objective function, provided that a
k-coloring exists. The tabu tenure will be set to a value proportional to the objective
function.

Application to Tabucol

For the Tabucol algorithm, we have used the following tabu tenure:

t = 0.6 · nc + uniform(0, 9)

where nc is the number of vertices involved in a conflict and uniform(0, 9) returns a
uniform random integer between 0 and 9 inclusive. This dynamic tenure has been suc-
cessfully applied to graph coloring in [FF96, GH99]. The algorithm using this scheme will
be denoted by Dyn-Tabucol or Dyn-TC.

Application to Partialcol

For the Partialcol algorithm, preliminary tests have shown that the same dynamic
tabu tenure as for Tabucol leads to good results. We have replaced nc (the number of
vertices involved in a conflict) with the number of uncolored nodes |O|:

t = 0.6 · |O|+ uniform(0, 9)
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where uniform(0, 9) returns a uniform random integer between 0 and 9 inclusive. The
algorithm using this scheme will be denoted by Dyn-Partialcol or Dyn-PC.

3.4.2 The Foo-scheme

See Section 2.4 for a detailed description of this reactive scheme. For the Foo-scheme, we
have used the same, randomized parameter set for both the Partialcol and Tabucol

algorithms:

Parameter Range
Frequency φ [500,5000]
Increment η [5,30]
Threshold b [1,2]

Every φ iterations, the three parameters are drawn uniformly from each range. The
algorithms using the Foo-schemes will be denoted by Foo-Partialcol (Foo-PC) and
Foo-Tabucol(Foo-TC).

3.4.3 The Acd-scheme

We have considerably extended the Acd-scheme described in Section 2.5. For both Par-

tialcol and Tabucol, we have applied the same scheme with the same parameter
settings. The corresponding algorithms are denoted by Acd-Partialcol (Acd-PC) and
Acd-Tabucol (Acd-TC).

Implementation

We also use a parameter η, which is the increment used to increase the tabu tenure in case
a cycle is detected. η is initialized to the value of 5 and it changes along the search in the
following way. When a cycle is detected (i.e. the current solution scur has a similarity of 1
with respect to the reference solution sref), η is incremented by 5. Every 15’000 iterations
of the tabu search, η is decremented by 1 if it is larger than 5.

Every time a cycle is detected, the tabu tenure t is incremented by η (after η itself has
been incremented). The evaporation of t is implemented as follows. Every 5000 iterations,
t is decremented by 1 + �t/20
.
In case the tabu tenure is decremented to zero, it is set equal to a positive value. For
Tabucol the tenure is set equal to the number of conflicts. For Partialcol the tenure
is set equal to half the number of uncolored vertices. The motivation behind is this: if
no cycle has been detected despite the fact that the tabu tenure is very small, we assume
that the search is trapped in a large plateau and that the tenure must be increased.

The reference solution is updated every time at least one of the following conditions holds.

• The current solution scur has a lower objective function than sref.

• The similarity Sim(sref, scur) is lower than 0.6 (i.e. the solutions are far apart).
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• The current solution scur has the same objective function as the reference solution
sref and more than 1000 iterations have been performed since the last update of sref.

• The last update of sref has been performed more than 5000 iterations ago.

3.5 Numerical Results

In this section, we present numerical results of six algorithms for comparison. We have
chosen a set of well known, difficult instances, as described below. A first series of exhaus-
tive tests were made with a limit of 10 minutes of cpu-time per run (on a 2ghz Pentium
4 with 512mb of ram).

Compared to other graph coloring experiments by other researchers, a limit of 10 minutes
of cpu-time is very short. However, the imposition of this limit allowed us to run 50
tests for every graph and every tested number of colors k. All tests together resulted in
over 23’000 runs. In order to test so many runs, we had no option but were compelled to
execute the different tests in parallel on 30 identical machines.

Based on the results of the first series of tests, four of the six algorithms were selected to
be run for 60 minutes cpu-time, again with 50 runs for each tested k. We had also slightly
reduced the set of tested instances by removing graphs which were optimally colored by
all six algorithms.

3.5.1 Instances

We have chosen a sample of 23 graphs, of which most of them are well known as they
were given at the Coloring02 workshop [dim]. These graphs encompass all large and
difficult graphs used for the famous Dimacs benchmarks [JT96]. Other graphs in this
collection of benchmark instances are very easy to solve, in the sense that a sophisticated
greedy algorithm or a short application of a very basic tabu search finds a solution in a
very short time. See [HGZ05] for details.

We have added a graph called “U 13 3-v”, which is the universal graph U(13, 3) with
one vertex removed. This graph is involved in Conjecture 40 stating that U(13, 3) is
5-chromatic and critical. The chosen set of instances contains graphs of different types.

• There are random graphs [JAMS91], named “DSJCn.d”, where n is the number of
vertices and d is 10 times the density. They are generated in such a way that the
probability of an edge being present between two given vertices equals the density.

• There are geometric random graphs [JAMS91], named“DSJRn.r” and “Rn.r”. They
are generated by choosing randomly n points in the unit square, which will be the
vertices of the graph, and by joining two vertices by an edge, if the two corresponding
points are at a distance less than r from each other. Instances with a letter “c”
appended to their name are simply the complement of an instance without the “c”.

• There are flat graphs [Cul92] named “flatn k δ” where n is the number of vertices,
k is the chromatic number and δ is a flatness parameter giving the maximal allowed
difference between the degrees of two vertices.

65



Chapter 3

• The Leighton graphs are generated to have a given chromatic number using a sophis-
ticated randomized algorithm [Lei79]. The instances we use have been generated
by C. Morgenstern and they are named “len kx” where n is the number of vertices,
k the chromatic number and x is a lower case letter to distinguish different graphs
with similar parameter settings.

The graphs that we have chosen for our sample are known to be difficult to color, and
most of them have been studied by other researchers [Mor96, FF96, DH98, GH99, HH02a,
Zuf02, HGZ05].

3.5.2 Tests with a cpu Time Limit of 10 Minutes

For the first series, we allotted 10 minutes of cpu-time to each of the following six
algorithms: Dyn-Partialcol, Foo-Partialcol, Acd-Partialcol, Dyn-Tabucol,
Foo-Tabucol and Acd-Tabucol.

For each graph, each algorithm and for each tested k, we executed 50 runs with a different
random seed.

For each instance tested, we report the number |V | of vertices, the chromatic number
χ(G) when known, and the value k� which is the smallest k for which a k-coloring has
been found by an algorithm (at time of publication). Further, we report the number of
colors k for which a k-coloring was found, the number of successful runs out of the 50,
the average number of iterations (in thousands) needed to obtain such k-colorings, and
the average cpu-time in seconds needed to find the k-colorings.

The results can be found in Tables 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6. A summary and a
comparison of the results for all six algorithms is presented in Table 3.7.

If more than one k was tested, we report (at most) the four smallest values of k for which
a k-coloring could be found.

3.5.3 Tests with a cpu Time Limit of one Hour

For the second series of tests, we have selected four out of the original six algorithms to
be run on 21 out of the original 23 graphs. We have set the cpu-time limit to 60 minutes
and, as for the first series, performed 50 runs with different random seeds for every tested
algorithm and graph, and every tested k.

From the results of the first series (see Table 3.7), we can see that, for all graphs, except
the geometric random graph R250.5, the Acd-scheme is dominated by the Foo-scheme
or the Dyn-scheme, in the sense that, for every graph (except R250.5), there is at least
one algorithm which finds a coloring with as many or fewer colors.

Also, for the two flat graphs, flat300 20 0 and flat300 26 0, an optimal coloring could be
found by every algorithm in the first series of tests. Therefore, we elected to remove those
graphs from consideration by the second series of tests.

The detailed results for Dyn-Partialcol, Foo-Partialcol, Dyn-Tabucol and Foo-
Tabucol are reported in Tables 3.8, 3.9, 3.10, and 3.11. A summary for these results is
reported in Table 3.12. Additionally, we report the results of the algorithms Gh, Mor,
and Mmt. However, because the cpu-time required by Gh, Mor, and Mmt has not
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been given, it is not possible to ensure that conditions were equivalent, so any comparison
between these algorithms those presented here must be made with care.

We give results of tests made with Gh, Mor, and Mmt so that the reader may have a
baseline by which he may evaluate Dyn-Partialcol, Foo-Partialcol, Dyn-Tabucol,
and Foo-Tabucol. Gh, Mor, and Mmt are widely considered to be among the most
efficient graph coloring heuristics available.

3.5.4 Interpretation of the Results

Our results permit the comparison primarily of two issues: (1) the different neighborhoods
and (2) the performance characteristics of dynamic and reactive tabu tenures. The tests
demonstrate that it is useful to combine the partial solution approach with a reactive way
of adjusting the tabu tenure, especially on the “flat” graphs.

Partialcol Versus Tabucol

Tabucol uses improper colorings (but all vertices are colored) and tries to eliminate
all conflicts. Its objective function is the number of conflicting edges. Partialcol, on
the other hand, uses partial colorings and a set of uncolored vertices. Its objective is to
minimize the number of uncolored vertices.

On the random graphs (the DSJC’s), Tabucol performs better than Partialcol. On
the“flat”and“Leighton’s”graphs, on the other hand, the results are much less predictable.
While one algorithm finds a k-coloring very quickly, the other algorithm might even be
challenged to find a (k + 1)-coloring.

On the “Leighton’s” graphs le450 25c and le450 25d, Tabucol finds colorings with 26
colors quite easily, while Partialcol is only able to find 27-colorings. Surprisingly, this
situation is reversed for the graphs le450 15c and le450 15d, where Partialcol finds
optimal colorings very quickly, but Tabucol finds optimal colorings only rarely or not
at all. It seems that this is mainly due to the objective function. Preliminary tests have
shown that if we use the sum of the degrees of all vertices in O as the objective function
for Partialcol it easily finds a 26-coloring for the le450 25c/d graphs but no 15-coloring
for the le450 15c/d graphs. However, such a discriminating objective function does not
generally lead to better results on the other graphs. Consequently, it may be an interesting
avenue of research to test intermediate objective functions within our approach, such as∑
x ∈ O

⌈
d(x)
β

⌉
for some β ≥ 1, where d(x) is the degree of the vertex x. The advantage

of this formula is that we can continuously shift β from 1 to the maximal degree Δ of the
graph G to get the two extremes. For β = Δ, we obtain simply |O|; and, for β = 1, we
obtain the sum of the degrees of the vertices in O.

On the “flat” graphs, the partial solution neighborhood seems to be more appropriate.
First, the graphs flat300 20 0 and flat300 26 0 are colored optimally much more quickly
by Partialcol than by Tabucol. For the graph flat300 28 0, we even find an optimal
coloring using 28 colors! At the time of publication, the best coloring ever discovered by
other algorithms required 31 colors.
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Impact of the Foo-scheme in the First Series of Tests

In this section, we discuss the impact of the Foo-scheme in the first series of tests (where
each test was limited to 10 minutes of cpu-time). For almost all graphs, either the Dyn-
scheme or the Foo-scheme outperforms the Acd-scheme. We will, therefore, focus our
attention on comparing the Dyn-scheme with the Foo-scheme.

For Partialcol, the Foo-scheme improves the number of colors over the Dyn-scheme
on three graphs: DSJR500.1c, R1000.1c and U 13 3-v. On 15 graphs1, the number of
colors for the best coloring found is the same; and, on five graphs, Dyn-Partialcol

finds a better coloring, namely on DSJC1000.9, DSJC500.1, DSJR500.5, R1000.5 and
flat1000 76 0. On the graphs where both algorithms found the same minimum number
of colors, Foo-Partialcol had a higher success rate (the number of successful runs out
of the 50 runs) on five graphs2, and a smaller rate on three graphs3.

For Tabucol, we can first observe that the Foo-scheme improves the number of colors on
three graphs: DSJR500.1c, R250.1c and le450 15c. For 14 graphs4, the number of colors is
the same; and Dyn-Tabucol outperformed Foo-Tabucol on the following six graphs:
DSJC1000.1, DSJC1000.9, DSJR500.5, R1000.5, flat1000 50 0 and flat1000 60 0. On the
graphs where both algorithms found the same minimum number of colors, Foo-Tabucol

had a higher success rate on four graphs5, and a lower one on six graphs6. These tests
show that Dyn-Tabucol has a slightly better performance than Foo-Tabucol.

The fact that the results are varied suggests to implement both schemes with a mechanism
to alternate between them.

Our Foo-scheme has two big advantages. First, it can improve the performance of a tabu
search. Second, the implementation of such a reactive tenure is very simple because it
only depends on the value of the objective function (and not on any specific knowledge of
the problem). It should be possible to add it to existing tabu search heuristics that are
applied to different problems without major modification of existing source code.

Results of Tests Run Under 60 Minutes cpu-time Limit

The conclusions for the first series of tests comparing Partialcol and Tabucol with
the Foo-scheme and the Dyn-scheme are more or less confirmed by the second series of
tests:

For Partialcol, the Foo-scheme results in better colorings than the Dyn-scheme for
two graphs (R1000.1c and U 13 3-v) but needs more colors for six graphs (DSJC1000.1,
DSJC500.5, DSJC500.9, DSJR500.5, R1000.5 and R250.5).

For Tabucol, the Foo-scheme leads to better results on four out of 21 test cases (R250.1c,
flat1000 76 0, flat300 28 0 and le450 15c). The results for the graph flat300 28 0 are

1DSJC1000.1, DSJC1000.5, DSJC500.5, DSJC500.9, R250.1c, R250.5, flat1000 50 0, flat1000 60 0,
flat300 20 0, flat300 26 0, flat300 28 0, le450 15c, le450 15d, le450 25c, le450 25d

2DSJC1000.5, R250.1c, R250.5, flat300 28 0, le450 15d
3DSJC500.5, DSJC500.9, flat1000 60 0
4DSJC1000.5, DSJC500.1, DSJC500.5, DSJC500.9, R1000.1c, R250.5, U 13 3-v, flat1000 76 0,

flat300 20 0, flat300 26 0, flat300 28 0, le450 15d, le450 25c, le450 25d
5R1000.1c, flat300 26 0, le450 15d, le450 25c
6DSJC500.1, DSJC500.5, DSJC500.9, R250.5, flat1000 76 0, flat300 28 0
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particularly remarkable as its best known coloring is reduced from 31 to 29 colors. This
coloring is still not optimal, but the improvement clearly shows the impact of the Foo-
scheme.

On the other hand the Foo-scheme is outperformed by the Dyn-scheme on six graphs
(DSJC1000.1, DSJR500.5, R1000.5, U 13 3-v, flat1000 50 0 and flat1000 60 0).

Comparison with Other Algorithms

In Table 3.12, we have included the best colorings found by the Gh, the Mor and the
Mmt algorithm, if available, for comparison.

It is interesting to compare Partialcol with Mor [Mor96], which uses the same so-
lution structure, i.e. partial k-colorings. Note that the Mor-algorithm is a simulated
annealing algorithm with sophisticated management of the temperature and alternative
neighborhoods to escape local minima. Moreover, Mor uses a pool of solutions instead
of only one. Nevertheless, we can observe that the results are similar. While the two
methods find the same results on nine graphs7, Mor is better on seven graphs8 and the
Partialcol algorithms finds better colorings for four graphs9.

It is interesting to compare Partialcol with Gh [GH99] and Mmt [MMT05] which are
arguably among the most efficient coloring methods. Gh is based on Tabucol and Mmt

is based on Partialcol. Unfortunately, not all benchmarks are given given by [GH99]
in their presentation of Gh.

Table 3.12 shows that the only graph on which Partialcol outperforms every other
method is the graph flat300 28 0. Of the 14 graphs for which we have results from Gh,
Partialcol find colorings with the same number of colors in six cases and a smaller
number of colors in seven cases. When we consider the graphs for which we have data
concerning Mor’s performance, we see that the algorithms perform equally in nine cases,
while Partialcol outperforms Mor in four cases, and Mor outperforms Partialcol

in seven cases. Partialcol’s performance equals that of Mmt in ten cases, but Mmt

outperforms Partialcol in nine cases.

However, one should consider that Partialcol is only a simple local search method and
that the three methods Gh, Mor, and Mmt are much more complex. Further, for large
and difficult graphs, Gh, Mor, and Mmt required more cpu-time than the 60 minutes
to which Partialcol was limited for our experiments, so the comparison has to be done
with care. To conclude this section, we put forth that Partialcol should be considered
one of the best local search coloring heuristics developed to date.

7DSJC500.1, DSJC500.5, DSJR500.1c, R1000.1c, R250.1c, flat1000 50 0, flat1000 60 0, le450 15c,
le450 15d

8DSJC1000.5, DSJC1000.9, DSJR500.5, R1000.5, R250.5, le450 25c, le450 25d
9DSJC1000.1, DSJC500.9, flat1000 76 0, flat300 28 0

69



Chapter 3

3.6 Supporting a Conjecture

In practice, tabu-type algorithms have been found extremely efficient when applied to the
problem of coloring graphs with fewer than 200 vertices. We believe that, for such graphs,
an algorithm like Foo-Partialcol very often finds a k-coloring within a few seconds if
it exists. It can, therefore, be used to estimate the chromatic number of a graph very
quickly with high accuracy [HH02b].

This is especially useful if one needs to verify the existence of a k-coloring where k is given
and one strongly believes that it exists.

3.6.1 Problem Definition

The conjecture we will support concerns edge coloring. To discuss this conjecture, we will
use the notion of line graphs and edge colorings, as defined in Definitions 49 and 50 in
Section 1.7.3.

We recall that an edge coloring ce of G translates straight forward into a vertex coloring
of L(G); and, in the same way, a vertex coloring c of L(G) translates into an edge coloring
of G.

Therefore, the edge coloring problem on G is equivalent to the vertex coloring problem
on L(G), and one can use Foo-Partialcol to find an edge coloring of G by applying it
to L(G).

It is clear that, to color the edges of a graph G, one requires at least as many colors
as there are edges incident to any vertex. The number of edges incident to a vertex is
called its degree. The maximum degree of a graph G is denoted by Δ(G). So, clearly,
χ′(G) ≥ Δ(G).

The following property is a special case of Vizing’s theorem formulated in 1964.

The edges of a graph G = (V,E) can be colored with at most Δ(G) + 1 colors.

Property 53

A graph G is regular (or k-regular), if all vertices have the same degree (k).

Definition 54

We now have the ingredients to state the conjecture originally put forth by Chetwynd
and Hilton [CH89]
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Let G be a regular graph of (even) order 2n and degree

Δ(G) ≥ 2

⌊
n+ 1

2

⌋
− 1 =

{
n if n is odd
n− 1 if n is even

then χ′(G) equals Δ(G).

Conjecture 55

This conjecture has been proven for n ≤ 5. For greater values of n, the best theoretical
bounds are larger than that given in the conjecture. See [Car04] for more details.

3.6.2 Verification

In order to generate all k-regular graphs on n vertices, we used the very efficient program
genreg [Mer96, Mer99]. For each generated graph, we computed its line graph and stored
it in a file that the Foo-Partialcol algorithm could read. We attempted to find a
k-coloring of the vertices of the line graph. If successful, we have a proof that the tested
graph is of class 1. Otherwise, we might have found a counterexample to the conjecture
and further investigation is needed, such as either a formal proof or an exact algorithm
confirming the nonexistence of a k-coloring.

As genreg is an enumeration algorithm, we can expect that graphs generated consecutively
share similar structures. We might therefore be able to reuse a coloring obtained as initial
solution for the following graph. Experiments show that fewer iterations are required to
find a solution when reusing the coloring of the previous graph (with conflicting vertices
removed) as opposed to generating a randomized greedy coloring for an initial solution.

It happens often enough to merit mentioning that the partial coloring from the previous
coloring can be greedily completed by the routine generating an initial coloring such that
no local search iterations are necessary.

3.6.3 Results

We verified the Conjecture 55 for n = 6 and n = 7. That is to say that we found a
5-coloring for the line graphs of all 5-regular graphs on 12 vertices and a 7-coloring for all
7-regular graphs on 14 vertices.

In Table 3.13, we report the number of graphs, the total cpu time consumed for the verifi-
cation, the number of graphs tested per second, and the mean and the standard deviation
of the number of iterations needed by the Foo-Partialcol algorithm to determine a
k-coloring.

In Table 3.14, we report the same data again but for the variant of the method whereby
we reuse the previously obtained coloring. There is a notable improvement in performance
of roughly 12%.

The coloring of these graphs is easy for Foo-Partialcol, but it is not trivial, as shown by
the experiments made on the 5-regular graph on 12 vertices using the Dsatur algorithm
[Bré79], one of the most efficient greedy type algorithms. Only 386 of the total 7848
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graphs could be colored with an optimal number of 5 colors, while 4917 graphs required
6 colors, 2506 graphs required 7 colors, and 39 graphs required 8 colors.

3.7 Conclusion and Further Work

In this chapter, we have presented Foo-Partialcol, a local search approach to the
graph coloring problem. We have shown that this heuristic obtains competitive results
(in comparison with other local search coloring methods) on a large sample of benchmark
graphs which are generally agreed to be difficult to color. In contrast to several coloring
algorithms, Partialcol is very simple and efficient.

Contemporary state-of-the-art coloring methods are hybrid evolutive algorithms using
Tabucol as the internal local search procedure. Partialcol now offers a powerful
alternative to Tabucol and its variations. Recent advances [MMT05] show the potential
of this approach.

The Foo-scheme can improve the performances of both Tabucol and Partialcol. The
reactive tabu tenure adjusts itself depending not only on the graph but also on the state of
the search. Moreover, the proposed reactive tabu tenure is very easy to implement and, in
contrast to other methods, is does not need to perform an explicit check for the repetition
of configurations. Determination of the tabu tenure requires only the variation of the
objective function. Hence, in contrast to the dynamic tabu tenure strategies proposed by
Galinier and Hao in [GH99] and Dorne and Hao in [DH98], Foo-scheme’s nature does
not rely on the specificity of the problem. (Recall that we need the number of conflicting
vertices in the above dynamic tabu tenure strategy.) Consequently, the use of this new
and simple way of adjusting the tabu tenure could easily be tested on other combinatorial
problems where a tabu method has been applied. It should improve the results of the
method (especially if the tabu status is static) and simplify its use, once the parameters
have been tuned.

Finally, we would like to mention that the paradigm of partial solutions is applicable to
other combinatorial problems such as timetabling and frequency assignments.
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Algorithm 6 Partialcol: search for a k-coloring for graph G

Input: Graph G, initial solution s = {S1, . . . , Sk;O}, integers k ≥ 1, imax ≥ 0, a scheme
to adjust the tabu tenure.

Output: A k-coloring of G or a message that no k-coloring has been found.
1: i← 0 /* iteration counter */
2: initialize the tabu tenure t according to the chosen scheme
3: s� ← s /* best solution encountered */
4: |O�| ← |O|
5: while i ≤ imax and O �= ∅ do
6: compute all moves M ← {(v ↪→ Sq) | v ∈ O, 1 ≤ q ≤ k}
7: remove tabu moves from M which do not lead to a new best solution
8: choose a move (u ↪→ Sq) ∈M minimizing |O′|, break ties randomly
9: apply move (u ↪→ Sq) to s

10: determine the tenure t according to the chosen scheme
11: set the move (w ↪→ Sq) tabu for the next t iterations
12: i← i+ 1
13: if |O| < |O�| then
14: s� ← s, |O�| ← |O|
15: i = 0
16: end if
17: end while
18: if O = ∅ then
19: return k-coloring s
20: end if
21: return no k-coloring is found
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Results for Dyn-Partialcol with a cpu time limit of 10 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20 21 50 of 50 2 277.7

DSJC1000.5 1000 ?,83
90 13 of 50 396 7284.4
91 49 of 50 211 4253.5

DSJC1000.9 1000 ?,224
229 1 of 50 537 3104.9
230 9 of 50 523 2862.7

DSJC500.1 500 ?,12
12 39 of 50 122 24812.3
13 50 of 50 0 16.3

DSJC500.5 500 ?,48
50 43 of 50 203 15667.5
51 50 of 50 16 1281.8

DSJC500.9 500 ?,126
128 43 of 50 281 7849.9
129 50 of 50 42 1194

DSJR500.1c 500 ?,85
86 10 of 50 158 9377
87 14 of 50 209 13420.1

DSJR500.5 500 ?,122
127 30 of 50 204 10960.2
128 45 of 50 122 6461.9
129 49 of 50 38 1987

R1000.1c 1000 ?,98 99 4 of 50 86 1263.6

R1000.5 1000 ?,234
251 4 of 50 471 5281.8
252 23 of 50 402 4729.3
253 37 of 50 320 3564

R250.1c 250 ?,64
64 3 of 50 10 1560.9
65 9 of 50 26 3452.7
66 15 of 50 39 5414

R250.5 250 ?,65
67 36 of 50 81 10355.4
68 48 of 50 21 2900.2

U 13 3-v 857 4,4 5 50 of 50 0 1.7

flat1000 50 0 1000 50,50

50 50 of 50 27 107.9
51 50 of 50 26 105.2
52 50 of 50 23 102.9
53 50 of 50 22 101.4

flat1000 60 0 1000 60,60

60 50 of 50 98 390.4
61 50 of 50 101 401.4
62 50 of 50 92 410.4
63 50 of 50 93 416.7

flat1000 76 0 1000 76,83
88 1 of 50 574 9525.3
89 14 of 50 395 7611.7
90 48 of 50 187 3833.1

flat300 20 0 300 20,20 20 50 of 50 0 1.4
flat300 26 0 300 26,26 26 50 of 50 0 43.5

flat300 28 0 300 28,31

28 2 of 50 224 19253.8
29 8 of 50 313 29188.1
30 16 of 50 334 35438.8
31 26 of 50 261 31482.9

le450 15c 450 15,15
15 50 of 50 3 615.7
16 50 of 50 7 1617.4

le450 15d 450 15,15
15 49 of 50 13 2793.1
16 50 of 50 7 1713.6

le450 25c 450 25,25 27 50 of 50 10 1583.3
le450 25d 450 25,25 27 50 of 50 7 1151.4

Table 3.1: Results for Dyn-Partialcol with a cpu time limit of 10 minutes. Only
values of k for which at least one k-coloring could be found are reported. If several k were
tested successfully, (at most) the four smallest values are reported. Values of k for which
there was no successful run are not reported. |V | is the number of vertices in the graph,
χ is the chromatic number (where known), k� is the best known coloring achieved (at the
time of publication), k is the number of colors a coloring has been found and 103 iter is
the mean number of iterations required to successfully find a k-coloring (unsuccessful runs
are neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium
4 cpu and 512mb of ram.
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Results for Foo-Partialcol with a cpu time limit of 10 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20 21 50 of 50 4 583.6

DSJC1000.5 1000 ?,83
90 18 of 50 380 6971.4
91 50 of 50 181 3534.6

DSJC1000.9 1000 ?,224 230 5 of 50 529 3034.5
DSJC500.1 500 ?,12 13 50 of 50 0 23.8

DSJC500.5 500 ?,48
50 29 of 50 268 20426.6
51 50 of 50 15 1222.1

DSJC500.9 500 ?,126
128 10 of 50 310 7697.8
129 50 of 50 74 2008.9

DSJR500.1c 500 ?,85
85 35 of 50 194 9522.1
86 50 of 50 57 2880.6
87 50 of 50 16 865.1

DSJR500.5 500 ?,122
128 4 of 50 394 12270
129 49 of 50 174 5758.9

R1000.1c 1000 ?,98
98 1 of 50 97 1354.9
99 6 of 50 337 5035.6

R1000.5 1000 ?,234 253 5 of 50 409 3491

R250.1c 250 ?,64
64 50 of 50 4 453.9
65 50 of 50 0 20.4
66 50 of 50 0 8

R250.5 250 ?,65
67 13 of 50 254 24346.1
68 50 of 50 24 2500.7

U 13 3-v 857 4,4
4 5 of 50 152 62897.4
5 50 of 50 0 4.3

flat1000 50 0 1000 50,50

50 50 of 50 109 528.6
51 50 of 50 118 573.6
52 50 of 50 101 553.4
53 50 of 50 101 604.5

flat1000 60 0 1000 60,60

60 33 of 50 443 2505.6
61 33 of 50 463 2566.3
62 26 of 50 468 2704.7
63 36 of 50 472 2787.7

flat1000 76 0 1000 76,83
89 18 of 50 370 6916.5
90 49 of 50 168 3335.6

flat300 20 0 300 20,20 20 50 of 50 0 5.8
flat300 26 0 300 26,26 26 50 of 50 1 91.4

flat300 28 0 300 28,31

28 11 of 50 355 32865.6
29 4 of 50 302 30955.2
30 3 of 50 350 39054.8
31 8 of 50 211 26003.7

le450 15c 450 15,15
15 50 of 50 1 180.3
16 50 of 50 1 137.5

le450 15d 450 15,15
15 50 of 50 3 509.1
16 50 of 50 1 179.2

le450 25c 450 25,25 27 50 of 50 4 707.5
le450 25d 450 25,25 27 50 of 50 4 583.6

Table 3.2: Results for Foo-Partialcol with a cpu time limit of 10 minutes. Only values
of k for which at least one k-coloring could be found are reported. If several k were tested
successfully, (at most) the four smallest values are reported. Values of k for which there
was no successful run are not reported. |V | is the number of vertices in the graph, χ is
the chromatic number (where known), k� is the best known coloring achieved (at the time
of publication), k is the number of colors a coloring has been found and 103 iter is the
mean number of iterations required to successfully find a k-coloring (unsuccessful runs are
neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Results for Acd-Partialcol with a cpu time limit of 10 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20 21 50 of 50 28 870.1

DSJC1000.5 1000 ?,83
90 1 of 50 454 4283.2
91 21 of 50 404 4095.8

DSJC1000.9 1000 ?,224 232 1 of 50 506 1549.4
DSJC500.1 500 ?,12 13 50 of 50 0 26

DSJC500.5 500 ?,48
50 7 of 50 419 14293.6
51 50 of 50 72 2487.4

DSJC500.9 500 ?,126
128 2 of 50 412 6050.7
129 44 of 50 232 3511

DSJR500.1c 500 ?,85
85 4 of 50 407 9382.9
86 44 of 50 195 4064.3
87 50 of 50 44 858.4

DSJR500.5 500 ?,122
127 2 of 50 282 5946
128 7 of 50 140 2940.3
129 18 of 50 134 2858

R1000.1c 1000 ?,98 99 1 of 50 166 1394.4

R1000.5 1000 ?,234
252 3 of 50 480 3082.5
253 12 of 50 450 2862.6

R250.1c 250 ?,64
64 50 of 50 17 421.5
65 50 of 50 5 128.3
66 50 of 50 1 36.7

R250.5 250 ?,65
66 1 of 50 42 2625.8
67 2 of 50 437 26550.4
68 14 of 50 64 3824.4

U 13 3-v 857 4,4
4 48 of 50 32 1706.1
5 50 of 50 0 1.5

flat1000 50 0 1000 50,50

50 50 of 50 54 258
51 50 of 50 56 240.5
52 50 of 50 58 267.1
53 50 of 50 49 234.1

flat1000 60 0 1000 60,60

60 48 of 50 352 1672.6
61 42 of 50 401 1758.5
62 42 of 50 396 1859.8
63 41 of 50 442 2106

flat1000 76 0 1000 76,83 90 26 of 50 389 4041.8
flat300 20 0 300 20,20 20 50 of 50 0 13.7
flat300 26 0 300 26,26 26 50 of 50 4 204

flat300 28 0 300 28,31

28 2 of 50 306 16313.3
29 4 of 50 221 12044.4
30 7 of 50 382 21162.3
31 4 of 50 350 17321.6

le450 15c 450 15,15
15 50 of 50 3 137.2
16 50 of 50 2 121

le450 15d 450 15,15
15 50 of 50 6 339.4
16 50 of 50 3 172.6

le450 25c 450 25,25 27 50 of 50 58 2837.4
le450 25d 450 25,25 27 50 of 50 42 2240.7

Table 3.3: Results for Acd-Partialcol with a cpu time limit of 10 minutes. Only
values of k for which at least one k-coloring could be found are reported. If several k were
tested successfully, (at most) the four smallest values are reported. Values of k for which
there was no successful run are not reported. |V | is the number of vertices in the graph,
χ is the chromatic number (where known), k� is the best known coloring achieved (at the
time of publication), k is the number of colors a coloring has been found and 103 iter is
the mean number of iterations required to successfully find a k-coloring (unsuccessful runs
are neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium
4 cpu and 512mb of ram.
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Results for Dyn-Tabucol with a cpu time limit of 10 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20
20 1 of 50 264 31798.8
21 50 of 50 1 161.8

DSJC1000.5 1000 ?,83
89 10 of 50 388 5355.9
90 49 of 50 133 2391.6
91 50 of 50 40 761.9

DSJC1000.9 1000 ?,224

227 2 of 50 470 1441.3
228 14 of 50 472 1814.4
229 46 of 50 407 1883.9
230 50 of 50 317 1472.7

DSJC500.1 500 ?,12
12 50 of 50 48 8878.8
13 50 of 50 0 7.7

DSJC500.5 500 ?,48
49 4 of 50 444 17838.6
50 50 of 50 25 1567.4
51 50 of 50 3 195

DSJC500.9 500 ?,126
127 45 of 50 251 5552.8
128 50 of 50 31 718.7
129 50 of 50 11 245.9

DSJR500.1c 500 ?,85 87 4 of 50 247 22126

DSJR500.5 500 ?,122
127 12 of 50 153 10387
128 16 of 50 98 7827
129 29 of 50 36 2573

R1000.1c 1000 ?,98
98 27 of 50 239 7086.4
99 37 of 50 155 5580

R1000.5 1000 ?,234

249 14 of 50 408 8700.1
250 20 of 50 315 6681.3
251 42 of 50 201 4231.4
252 45 of 50 148 3105.5

R250.1c 250 ?,64 66 2 of 50 0 0.1

R250.5 250 ?,65
67 8 of 50 76 10788.4
68 33 of 50 18 2685.7

U 13 3-v 857 4,4 5 50 of 50 0 0.3

flat1000 50 0 1000 50,50

50 46 of 50 399 694.1
51 42 of 50 392 670.1
52 48 of 50 362 631
53 50 of 50 334 598.3

flat1000 60 0 1000 60,60

60 2 of 50 483 702.2
61 3 of 50 497 781.6
62 5 of 50 478 709.2
63 9 of 50 526 780.8

flat1000 76 0 1000 76,83
88 9 of 50 300 4174.4
89 50 of 50 169 3107.7
90 50 of 50 38 755.5

flat300 20 0 300 20,20 20 50 of 50 0 2
flat300 26 0 300 26,26 26 39 of 50 208 5671

flat300 28 0 300 28,31
31 40 of 50 235 20237
32 50 of 50 1 154.2

le450 15c 450 15,15 16 50 of 50 4 847.7

le450 15d 450 15,15
15 1 of 50 12 2246.6
16 48 of 50 9 2222.7

le450 25c 450 25,25
26 49 of 50 9 954.6
27 50 of 50 0 14.4

le450 25d 450 25,25
26 50 of 50 12 1313.3
27 50 of 50 0 15.7

Table 3.4: Results for Dyn-Tabucol with a cpu time limit of 10 minutes. Only values
of k for which at least one k-coloring could be found are reported. If several k were tested
successfully, (at most) the four smallest values are reported. Values of k for which there
was no successful run are not reported. |V | is the number of vertices in the graph, χ is
the chromatic number (where known), k� is the best known coloring achieved (at the time
of publication), k is the number of colors a coloring has been found and 103 iter is the
mean number of iterations required to successfully find a k-coloring (unsuccessful runs are
neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Results for Foo-Tabucol with a cpu time limit of 10 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20 21 50 of 50 2 188.8

DSJC1000.5 1000 ?,83
89 1 of 50 228 2875.8
90 46 of 50 302 5538.4
91 50 of 50 73 1354

DSJC1000.9 1000 ?,224
228 5 of 50 508 2029.9
229 35 of 50 407 1579.9
230 47 of 50 369 1437.5

DSJC500.1 500 ?,12
12 40 of 50 154 25628.4
13 50 of 50 0 16

DSJC500.5 500 ?,48
49 1 of 50 169 10257.2
50 50 of 50 58 3925.4
51 50 of 50 4 299.5

DSJC500.9 500 ?,126
127 19 of 50 345 6642.3
128 50 of 50 58 1249.8
129 50 of 50 15 294

DSJR500.1c 500 ?,85
85 6 of 50 198 10856
86 12 of 50 130 7480.3
87 32 of 50 149 8816

DSJR500.5 500 ?,122
128 5 of 50 196 4779.1
129 35 of 50 194 4762.2

R1000.1c 1000 ?,98
98 32 of 50 302 7248.2
99 49 of 50 118 3230.3

R1000.5 1000 ?,234
254 5 of 50 160 1414.2
255 21 of 50 115 1099.6

R250.1c 250 ?,64
64 45 of 50 42 5424.4
65 50 of 50 6 779.1
66 50 of 50 0 37.1

R250.5 250 ?,65
67 3 of 50 343 20497.5
68 50 of 50 74 4874.7

U 13 3-v 857 4,4 5 50 of 50 0 0.4

flat1000 50 0 1000 50,50
81 3 of 50 505 3165.7
82 12 of 50 443 3397.2

flat1000 60 0 1000 60,60
86 4 of 50 460 6455
87 29 of 50 459 6829

flat1000 76 0 1000 76,83
88 2 of 50 342 4847.6
89 48 of 50 280 5072.9
90 50 of 50 66 1255.9

flat300 20 0 300 20,20 20 50 of 50 0 20.4
flat300 26 0 300 26,26 26 50 of 50 23 870.6

flat300 28 0 300 28,31
31 34 of 50 198 19222.9
32 50 of 50 2 285.2

le450 15c 450 15,15
15 17 of 50 200 28197.5
16 50 of 50 4 193.4

le450 15d 450 15,15
15 2 of 50 233 36927.6
16 50 of 50 3 189.7

le450 25c 450 25,25
26 50 of 50 19 2123.1
27 50 of 50 0 28.2

le450 25d 450 25,25
26 50 of 50 25 2819.7
27 50 of 50 0 27

Table 3.5: Results for Foo-Tabucol with a cpu time limit of 10 minutes. Only values
of k for which at least one k-coloring could be found are reported. If several k were tested
successfully, (at most) the four smallest values are reported. Values of k for which there
was no successful run are not reported. |V | is the number of vertices in the graph, χ is
the chromatic number (where known), k� is the best known coloring achieved (at the time
of publication), k is the number of colors a coloring has been found and 103 iter is the
mean number of iterations required to successfully find a k-coloring (unsuccessful runs are
neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Results for Acd-Tabucol with a cpu time limit of 10 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20 21 50 of 50 9 231.9

DSJC1000.5 1000 ?,83
90 8 of 50 330 3179.6
91 49 of 50 211 2078.2

DSJC1000.9 1000 ?,224
229 1 of 50 458 1035.7
230 11 of 50 485 1264.2

DSJC500.1 500 ?,12
12 17 of 50 323 17175.3
13 50 of 50 0 19

DSJC500.5 500 ?,48
49 1 of 50 56 1714.8
50 45 of 50 227 6866.5
51 50 of 50 18 562.7

DSJC500.9 500 ?,126
127 4 of 50 407 4964.1
128 48 of 50 150 1912.6
129 50 of 50 38 441.7

DSJR500.1c 500 ?,85
85 11 of 50 278 4901.1
86 47 of 50 122 2163.1
87 50 of 50 22 436.2

DSJR500.5 500 ?,122
127 14 of 50 179 4107.9
128 24 of 50 99 2471.6
129 36 of 50 57 1374.2

R1000.1c 1000 ?,98
98 11 of 50 185 1875.4
99 49 of 50 138 1509.5

R1000.5 1000 ?,234

249 1 of 50 563 4612.5
250 8 of 50 438 3531.1
251 29 of 50 365 3139.6
252 45 of 50 260 2188.3

R250.1c 250 ?,64
64 15 of 50 5 317.5
65 22 of 50 18 1123.7
66 29 of 50 30 1814.3

R250.5 250 ?,65
67 13 of 50 76 4900.1
68 37 of 50 50 3192.3

U 13 3-v 857 4,4
4 50 of 50 5 257.1
5 50 of 50 0 0.4

flat1000 50 0 1000 50,50

50 2 of 50 426 724
51 2 of 50 504 959.1
52 3 of 50 479 883.8
53 5 of 50 433 796.4

flat1000 60 0 1000 60,60 87 2 of 50 405 3239.6

flat1000 76 0 1000 76,83
89 9 of 50 285 2790.2
90 50 of 50 203 2069.2

flat300 20 0 300 20,20 20 50 of 50 0 10.9
flat300 26 0 300 26,26 26 50 of 50 24 685

flat300 28 0 300 28,31
31 10 of 50 327 15308
32 50 of 50 7 375.3

le450 15c 450 15,15
15 42 of 50 125 7121.1
16 50 of 50 5 144.6

le450 15d 450 15,15
15 26 of 50 165 9503.3
16 50 of 50 6 164.3

le450 25c 450 25,25
26 49 of 50 162 6840.7
27 50 of 50 0 34.2

le450 25d 450 25,25
26 47 of 50 192 8142.6
27 50 of 50 0 29.9

Table 3.6: Results for Acd-Tabucol with a cpu time limit of 10 minutes. Only values
of k for which at least one k-coloring could be found are reported. If several k were tested
successfully, (at most) the four smallest values are reported. Values of k for which there
was no successful run are not reported. |V | is the number of vertices in the graph, χ is
the chromatic number (where known), k� is the best known coloring achieved (at the time
of publication), k is the number of colors a coloring has been found and 103 iter is the
mean number of iterations required to successfully find a k-coloring (unsuccessful runs are
neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Summary for all six algorithms with a cpu time limit of 10 minutes

Graph |V | χ, k� Partialcol Tabucol

Foo Dyn Acd Foo Dyn Acd

DSJC1000.1 1000 ?,20 21 21 21 21 20 21
DSJC1000.5 1000 ?,83 90 90 90 89 89 90
DSJC1000.9 1000 ?,224 230 229 232 228 227 229
DSJC500.1 500 ?,12 13 12 13 12 12 12
DSJC500.5 500 ?,48 50 50 50 49 49 49
DSJC500.9 500 ?,126 128 128 128 127 127 127
DSJR500.1c 500 ?,85 85 86 85 85 87 85
DSJR500.5 500 ?,122 128 127 127 128 127 127
R1000.1c 1000 ?,98 98 99 99 98 98 98
R1000.5 1000 ?,234 253 251 252 254 249 249
R250.1c 250 ?,64 64 64 64 64 66 64
R250.5 250 ?,65 67 67 66 67 67 67
U 13 3-v 857 4,4 4 5 4 5 5 4
flat1000 50 0 1000 50,50 50 50 50 81 50 50
flat1000 60 0 1000 60,60 60 60 60 86 60 87
flat1000 76 0 1000 76,83 89 88 90 88 88 89
flat300 20 0 300 20,20 20 20 20 20 20 20
flat300 26 0 300 26,26 26 26 26 26 26 26
flat300 28 0 300 28,31 28 28 28 31 31 31
le450 15c 450 15,15 15 15 15 15 16 15
le450 15d 450 15,15 15 15 15 15 15 15
le450 25c 450 25,25 27 27 27 26 26 26
le450 25d 450 25,25 27 27 27 26 26 26

Table 3.7: All six algorithms with a cpu-time limit of 10 minutes compared. Only the
smallest value of k for which a k-coloring has been found is reported for each algorithm.
The lowest values for each graph are in bold face. The tests were executed on Linux
systems equipped with a 2ghz Pentium 4 cpu and 512mb of ram.
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Results for Dyn-Partialcol with a cpu time limit of 60 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20
20 3 of 50 2301 292947.5
21 50 of 50 2 277.7

DSJC1000.5 1000 ?,83 89 6 of 50 2786 45502.6
DSJC1000.9 1000 ?,224 228 30 of 50 2275 14826.7
DSJC500.1 500 ?,12 12 50 of 50 193 38819.9

DSJC500.5 500 ?,48
49 1 of 50 811 55679.3
50 50 of 50 291 22684.8

DSJC500.9 500 ?,126
127 1 of 50 1680 43409.5
128 50 of 50 347 9885.4

DSJR500.1c 500 ?,85 85 3 of 50 989 56980.8

DSJR500.5 500 ?,122
126 28 of 50 1544 79620.2
127 44 of 50 631 34271.7
128 47 of 50 147 7867.2

R1000.1c 1000 ?,98 99 20 of 50 1895 28967.6

R1000.5 1000 ?,234

249 10 of 50 2098 25024.1
250 30 of 50 2020 24472.9
251 47 of 50 1515 18487.7
252 50 of 50 845 10178.7

R250.1c 250 ?,64
64 4 of 50 635 89068.3
65 13 of 50 488 64974.2
66 16 of 50 225 29462

R250.5 250 ?,65
66 6 of 50 2400 296613
67 45 of 50 241 31809.9

U 13 3-v 857 4,4 5 50 of 50 0 1.7
flat1000 50 0 1000 50,50 50 50 of 50 26 107.9
flat1000 60 0 1000 60,60 60 50 of 50 91 390.4
flat1000 76 0 1000 76,83 88 9 of 50 2376 40543.7

flat300 28 0 300 28,31

28 13 of 50 1878 154261.2
29 35 of 50 1398 133092.5
30 46 of 50 1221 131767.5
31 49 of 50 652 79871.8

le450 15c 450 15,15
15 50 of 50 3 615.7
16 50 of 50 7 1617.4

le450 15d 450 15,15
15 50 of 50 22 4682.1
16 50 of 50 7 1713.6

le450 25c 450 25,25 27 50 of 50 10 1583.3
le450 25d 450 25,25 27 50 of 50 7 1151.4

Table 3.8: Results for Dyn-Partialcol with a cpu time limit of 60 minutes. Only
values of k for which at least one k-coloring could be found are reported. If several k were
tested successfully, (at most) the four smallest values are reported. Values of k for which
there was no successful run are not reported. |V | is the number of vertices in the graph,
χ is the chromatic number (where known), k� is the best known coloring achieved (at the
time of publication), k is the number of colors a coloring has been found and 103 iter is
the mean number of iterations required to successfully find a k-coloring (unsuccessful runs
are neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium
4 cpu and 512mb of ram.

81



Chapter 3

Results for Foo-Partialcol with a cpu time limit of 60 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20 21 50 of 50 3 441.9
DSJC1000.5 1000 ?,83 89 5 of 50 1893 32399.6
DSJC1000.9 1000 ?,224 228 20 of 50 2296 13373.1
DSJC500.1 500 ?,12 12 23 of 50 1811 324770.8
DSJC500.5 500 ?,48 50 50 of 50 337 26470.5
DSJC500.9 500 ?,126 128 48 of 50 1260 32862
DSJR500.1c 500 ?,85 85 50 of 50 438 21243.1
DSJR500.5 500 ?,122 128 24 of 50 1808 56146.6

R1000.1c 1000 ?,98
98 2 of 50 604 8070.7
99 30 of 50 1769 26593.4

R1000.5 1000 ?,234
252 2 of 50 1967 15678.4
253 35 of 50 1920 16310.1

R250.1c 250 ?,64
64 50 of 50 4 453.9
65 50 of 50 0 20.4
66 50 of 50 0 8

R250.5 250 ?,65 67 39 of 50 1331 128496.8

U 13 3-v 857 4,4
4 13 of 50 887 307040.7
5 50 of 50 0 4.3

flat1000 50 0 1000 50,50 50 50 of 50 111 581.4
flat1000 60 0 1000 60,60 60 50 of 50 527 2929.9
flat1000 76 0 1000 76,83 88 10 of 50 2332 40546.5

flat300 28 0 300 28,31

28 35 of 50 1905 179148.1
29 24 of 50 1587 162908.3
30 26 of 50 1525 168488.1
31 34 of 50 1464 184134

le450 15c 450 15,15
15 50 of 50 1 230
16 50 of 50 1 137.5

le450 15d 450 15,15
15 50 of 50 3 592.9
16 50 of 50 1 179.2

le450 25c 450 25,25 27 50 of 50 4 707.5
le450 25d 450 25,25 27 50 of 50 3 583.6

Table 3.9: Results for Foo-Partialcol with a cpu time limit of 60 minutes. Only values
of k for which at least one k-coloring could be found are reported. If several k were tested
successfully, (at most) the four smallest values are reported. Values of k for which there
was no successful run are not reported. |V | is the number of vertices in the graph, χ is
the chromatic number (where known), k� is the best known coloring achieved (at the time
of publication), k is the number of colors a coloring has been found and 103 iter is the
mean number of iterations required to successfully find a k-coloring (unsuccessful runs are
neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Results for Dyn-Tabucol with a cpu time limit of 60 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20
20 14 of 50 1855 224021.7
21 50 of 50 1 161.8

DSJC1000.5 1000 ?,83 89 48 of 50 1224 17482.6

DSJC1000.9 1000 ?,224
227 48 of 50 1520 7198.4
228 50 of 50 718 3384.8

DSJC500.1 500 ?,12 12 50 of 50 48 8878.8

DSJC500.5 500 ?,48
49 11 of 50 1550 69803.6
50 50 of 50 25 1567.4

DSJC500.9 500 ?,126
127 50 of 50 328 7198.4
128 50 of 50 32 718.7

DSJR500.1c 500 ?,85 85 1 of 50 685 55458.3

DSJR500.5 500 ?,122
126 5 of 50 746 56818.8
127 12 of 50 154 10387
128 18 of 50 313 19643.7

R1000.1c 1000 ?,98
98 47 of 50 812 28505.3
99 44 of 50 308 12207.7

R1000.5 1000 ?,234

249 41 of 50 1245 29509.4
250 44 of 50 740 17605.1
251 50 of 50 381 8517.2
252 48 of 50 205 4569.9

R250.1c 250 ?,64 66 2 of 50 0 0.1
R250.5 250 ?,65 67 11 of 50 528 64103.3

U 13 3-v 857 4,4
4 3 of 50 1371 656103
5 50 of 50 0 0.3

flat1000 50 0 1000 50,50 50 50 of 50 421 732.8
flat1000 60 0 1000 60,60 60 49 of 50 1415 2099.6
flat1000 76 0 1000 76,83 88 46 of 50 1173 16532.9
flat300 28 0 300 28,31 31 50 of 50 378 32521.3
le450 15c 450 15,15 16 50 of 50 4 847.7

le450 15d 450 15,15
15 1 of 50 12 2246.6
16 49 of 50 14 3572.4

le450 25c 450 25,25
26 49 of 50 9 954.6
27 50 of 50 0 14.4

le450 25d 450 25,25
26 50 of 50 12 1313.3
27 50 of 50 0 15.7

Table 3.10: Results for Dyn-Tabucol with a cpu time limit of 60 minutes. Only values
of k for which at least one k-coloring could be found are reported. If several k were tested
successfully, (at most) the four smallest values are reported. Values of k for which there
was no successful run are not reported. |V | is the number of vertices in the graph, χ is
the chromatic number (where known), k� is the best known coloring achieved (at the time
of publication), k is the number of colors a coloring has been found and 103 iter is the
mean number of iterations required to successfully find a k-coloring (unsuccessful runs are
neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Results for Foo-Tabucol with a cpu time limit of 60 minutes
Graph |V | χ, k� k success cpu sec 103 iter

DSJC1000.1 1000 ?,20 21 50 of 50 2 188.8
DSJC1000.5 1000 ?,83 89 22 of 50 2001 31773.6

DSJC1000.9 1000 ?,224
227 39 of 50 2068 8760
228 50 of 50 1120 5074.6

DSJC500.1 500 ?,12 12 50 of 50 242 40328

DSJC500.5 500 ?,48
49 6 of 50 1776 101117.2
50 50 of 50 59 3925.4

DSJC500.9 500 ?,126
127 47 of 50 1037 20129
128 50 of 50 58 1249.8

DSJR500.1c 500 ?,85 85 13 of 50 1347 68509.1
DSJR500.5 500 ?,122 128 17 of 50 1494 31236.8

R1000.1c 1000 ?,98
98 50 of 50 652 15795.8
99 50 of 50 140 3801.1

R1000.5 1000 ?,234
254 8 of 50 1140 7532.8
255 31 of 50 645 4909.4

R250.1c 250 ?,64
64 49 of 50 144 17726.6
65 50 of 50 6 779.1
66 50 of 50 0 37.1

R250.5 250 ?,65 67 13 of 50 1834 108584.7
U 13 3-v 857 4,4 5 50 of 50 0 0.4

flat1000 50 0 1000 50,50

73 2 of 50 2987 8246.6
74 2 of 50 2570 8120.4
75 6 of 50 2489 8425.5
76 12 of 50 2367 8377.5

flat1000 60 0 1000 60,60

79 1 of 50 3313 16661.2
80 2 of 50 2912 16527.6
81 10 of 50 2943 18253.6
82 19 of 50 2870 20018.5

flat1000 76 0 1000 76,83
87 1 of 50 3060 36751.4
88 14 of 50 1962 31241.9

flat300 28 0 300 28,31
29 1 of 50 1208 77181
30 2 of 50 1007 79914.7
31 50 of 50 515 50391.7

le450 15c 450 15,15
15 32 of 50 1072 193694.3
16 50 of 50 4 193.4

le450 15d 450 15,15
15 11 of 50 995 161652.8
16 50 of 50 3 189.7

le450 25c 450 25,25
26 50 of 50 19 2123.1
27 50 of 50 0 28.2

le450 25d 450 25,25
26 50 of 50 25 2819.7
27 50 of 50 0 27

Table 3.11: Results for Foo-Tabucol with a cpu time limit of 60 minutes. Only values
of k for which at least one k-coloring could be found are reported. If several k were tested
successfully, (at most) the four smallest values are reported. Values of k for which there
was no successful run are not reported. |V | is the number of vertices in the graph, χ is
the chromatic number (where known), k� is the best known coloring achieved (at the time
of publication), k is the number of colors a coloring has been found and 103 iter is the
mean number of iterations required to successfully find a k-coloring (unsuccessful runs are
neglected). The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Graph |V | χ, k� Partialcol Tabucol
Gh Mor Mmt

Foo Dyn Foo Dyn

DSJC1000.1 1000 ?,20 21 20 21 20 20 21 20
DSJC1000.5 1000 ?,83 89 89 89 89 83 88 83
DSJC1000.9 1000 ?,224 228 228 227 227 224 226 226
DSJC500.1 500 ?,12 12 12 12 12 12 12 12
DSJC500.5 500 ?,48 50 49 49 49 48 49 48
DSJC500.9 500 ?,126 128 127 127 127 126 128 127
DSJR500.1c 500 ?,85 85 85 85 85 - 85 85
DSJR500.5 500 ?,122 128 126 128 126 - 123 122
R1000.1c 1000 ?,98 98 99 98 98 - 98 98
R1000.5 1000 ?,234 252 249 254 249 - 241 237
R250.1c 250 ?,64 64 64 64 66 - 64 64
R250.5 250 ?,65 67 66 67 67 - 65 65
U 13 3-v 857 4,4 4 5 5 4 - - -
flat1000 50 0 1000 50,50 50 50 73 50 50 50 50
flat1000 60 0 1000 60,60 60 60 79 60 60 60 60
flat1000 76 0 1000 76,83 88 88 87 88 83 89 82
flat300 28 0 300 28,31 28 28 29 31 31 31 31
le450 15c 450 15,15 15 15 15 16 15 15 15
le450 15d 450 15,15 15 15 15 15 15 15 15
le450 25c 450 25,25 27 27 26 26 26 25 25
le450 25d 450 25,25 27 27 26 26 26 25 25

Table 3.12: Four algorithms with a cpu-time limit of 60 minutes compared. Only the
smallest value of k for which a k-coloring has been found is reported for each algorithm.
The lowest values of k for each graph among the four algorithms Foo-Partialcol, Dyn-
Partialcol, Foo-Tabucol and Dyn-Tabucol are in bold face. The cpu times for
the three algorithms Gh, Mor and Mmt are not reported and are sensibly larger than
60 minutes for some some large and difficult graphs. However, these results are given so
that the reader may qualitatively compare our methods with state-of-the-art methods.

2n degree # graphs time graphs/sec mean iter. std dev.
12 5 7848 1.25 s 6280 62 75
14 7 21’609’301 2h 13 min 2689 129 193

Table 3.13: Results using a greedy initial solution. The cpu times were measured on a
2.6 ghz Pentium with 1gb of ram.

2n degree # graphs time graphs/sec mean iter. std dev.
12 5 7848 1.1 s 7134 48 68
14 7 21’609’301 1h 58 min 3028 100 183

Table 3.14: Results reusing the previous coloring as an initial solution. The cpu times
were measured on a 2.6 ghz Pentium with 1gb of ram.
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Chapter 4

Weighted Vertex Colorings

4.1 Introduction

The graph coloring problem has numerous applications. However, practical problems
often require more complex models than simple vertex coloring. In this chapter, we will
investigate heuristics used to solve problems involving a version of weighted colorings.
The weighted coloring problem (Wcp) can be described as follows: Given a weighted
graph G = (V,E,w) with a weight function w : V → R

+, a coloring c of the vertices of G
with minimal weight must be determined. The weight wc of a coloring c is defined as the
sum of the weights of each color class Ci:

wc =
∑

i

w(Ci).

The weight w(Ci) of a color class Ci is defined to be

w(Ci) = max
v∈Ci

w(v).

The Wcp is NP-hard [GJ79, Kar72]. This can be seen easily: If, for a given graph G, all
weights are set to 1, the problem is equivalent to the problem of finding a coloring using
a minimum number of colors for the underlying unweighted graph.

There are various applications of the Wcp, such as in telecommunications or batch
scheduling [GZ97, FJS04], for instance. As an intuitive example, we describe a batch
scheduling problem.

Suppose that there is a set of tasks to be completed and that there is a completion time
associated with each task. Suppose that, for each pair of tasks, it is known whether or not
the two tasks can be processed simultaneously. Further, suppose that there is a machine
which can process many compatible tasks (a batch) at the same time. The time required
to process a batch is equal to the maximum completion time among all jobs in the batch.
This problem can be modeled with a weighted graph, where the set of tasks corresponds
to the vertices and the completion times correspond to the weights on the vertices. Two
vertices are joined by an edge if the corresponding tasks are incompatible. A weighted
coloring can be interpreted as a schedule, where each color corresponds to a batch of tasks.
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The weight of a color class equals the completion time of the corresponding batch and the
weight of the coloring corresponds to the completion time for all tasks.

In this chapter, we will focus on the development of several heuristics to solve the Wcp.
We will present two adaptations of tabu search: one working with feasible solutions and
another working with infeasible solutions. We test several reactive tabu tenure schemes
with each approach. Further, we devise an adaptive memory approach.

In order to test the developed heuristics, we also study ways of generating benchmark
instances with different properties for the Wcp.

4.2 Known Properties of Weighted Colorings

In this section, we will present some interesting, known results for the Wcp. First, we
introduce some additional notation. For a given weighted graph G = (V,E,w), let w�

denote the minimum weight over all colorings of G. Let χw denote the minimum number
of colors such that a coloring of weight w� exists. One can easily construct examples
where χw > χ:

4 1 1 4

Figure 11 A weighted 2-chromatic graph with a 2-coloring
of weight 4 + 4 = 8.

4 1 1 4

Figure 12 The same weighted graph as in Figure 11 with a
minimum weight coloring using three colors. Its
weight is 4 + 1 + 1 = 6. For this example, we
have χw > χ.

As we will see later in this chapter, for random instances of the Wcp, there is generally a
gap between the values for the best approximations obtained by heuristics for χ and for
χw.

It is also trivial to construct an example which admits several minimum weight colorings
using a different number of colors:
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3 1 2 3

Figure 13 A minimum weight coloring using 2 colors with
weight 3 + 3 = 6 = w�.

3 1 2 3

Figure 14 A minium weight coloring of the same graph as
in Figure 13 using 3 colors (instead of χw = 2)
and weight 3 + 2 + 1 = 6 = w�.

Clearly, χ is a lower bound for χw. The maximum degree of a graph plus one is an upper
bound [DdWMP01].

For any weighted graph G = (V,E,w),

χ ≤ χw ≤ Δ + 1.

Property 56

Several properties of weighted colorings using integer weights and approximation algo-
rithms have been derived in [DdWMP01, DdWMP02, MPdW+04, DdWMP05].

4.2.1 Cases Solvable in Polynomial Time

In [FJS04], the authors present an O(n3) dynamic programming algorithm that solves
the Wcp on complements of interval graphs. (In fact, they solve the weighted clique
partitioning problem, which is equivalent to the Wcp on the complement of the graph.)
An interval graph is defined as follows: The vertices correspond to intervals on the real
line. Two vertices are joined by an edge if the two corresponding intervals intersect.
Interval graphs can be recognized in linear time [BL76].

4.3 Generating Instances

To evaluate a heuristic, it is necessary to have a set of instances to benchmark the heuristic
and to evaluate its solution quality and cpu time requirements.

In the ideal case, one uses instances for which the optimal solution is known. This allows
one to evaluate the quality of the results produced by a heuristic. However, non-trivial
instances of this type are difficult to obtain. Generally, large instances cannot be solved
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exactly due to their size, and instances constructed to have a known optimum are generally
easy to solve with a heuristic.

If the optimum of an instance is not known, the only possibility is to compare the results of
different heuristics with each other. Ideally, one uses instances from other researchers and
compares the obtained results with theirs. Unfortunately, we are not aware of any other
heuristics for the Wcp. Therefore, we have generated a large pool of benchmark instances
of different types. We distinguish at least three categories of generated instances:

• Random instances.

• Constructed instances with special properties.

• Data from real, practical problems.

Random instances are often hard to approach and, except for very small instances, the
optimal solution is not known because it is not possible to solve an NP-hard problem to
optimality. For randomly generated instances, different heuristics are compared with each
other in order to get an idea of both the value of the optimal solution and the performance
of the heuristic.

For other test cases, one may seek to construct instances such that certain properties
are known. Ideally, one knows the value of the optimal solution or, at least, an upper
bound (in the case of a minimization problem). These constructions may be more or
less sophisticated and may attempt to “hide” certain features from the heuristic in order
to make it more difficult to rediscover the (optimal) solution. Often, such constructed
instances are very easy to solve. It is a challenging task in and of itself to devise methods
of constructing “difficult” instances.

Having real-world instances is interesting and motivating. Moreover, most of the time, one
can compare the solutions obtained with the solution that is actually used in practice.
The difficulty of real-world instances is variable and must be analyzed for each case.
Unfortunately, we are not aware of such real-world instances for the Wcp available to the
public.

4.3.1 Random Instances

To generate a random instance G = (V,E,w) for the weighted coloring problem, we use
three parameters:

• n, the number of vertices,

• d, the density of the graph,

• r, a random seed.

First, n vertices v1, . . . , vn are generated. Then, for every pair of vertices vi, vj with i < j,
an edge is inserted with probability d. Finally, a random weight uniformly distributed in
[0, 1] is assigned to every vertex.

One such instance is named “unif01 n.d r.col”. For example, the instance with n = 100,
d = 0.5 and r = 43 will be called “unif01 100.5 43.col”.
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Random graphs have been extensively studied [Bol01] since their introduction [ER59].
The asymptotic behavior of the chromatic number of a random graph (when the number
of vertices n, goes to infinity) has been known since 1988 [Bol88], and it has been shown
[AN04] that the chromatic number is concentrated at two possible values almost certainly
when n grows.

Also, for “small” random graphs, the concentration of the chromatic number is confirmed
by many numerical experiments, and rather precise estimates are available [JM82]. For
instance, for random graphs with n = 100 vertices and density 0.5, almost all graphs are
15-colorable, and a few are 14-colorable. For the weighted coloring problem, however, we
will see that we find that the best solutions require 18 or 19 colors.

4.3.2 Constructed Instances

We will describe two methods to construct instances with a known optimal solution for
the Wcp. The first method is straightforward. The construction results in a graph with
a given chromatic number χ where an optimal solution for the Wcp uses χw = χ colors
and its value w� is known.

The second method is more sophisticated and constructs a graph where the chromatic
number χ and the number χw of colors used in an optimal weight coloring differ. This is
interesting because random instances show the same behavior.

Single Clique Method

The single clique method (Scm) allows one to generate an instance for the Wcp where
the optimal solution uses χw = χ colors.

Required parameters for this methods are: the number n of vertices, the number k of
colors to be used in an optimal coloring, the density d and a random seed r.

First, a clique on k vertices v1, . . . , vk is generated (to ensure that χ ≥ k) and a random
weight w(vi) is assigned to each vertex vi of the clique (according to some distribution).
The first k vertices will be colored with the first k colors such that c(vi) = i.

Then, all the other vertices vj (k < j ≤ n) are colored with a random color c(vj) between
1 and k (to ensure that χ ≤ k). To every vertex vj with k < j ≤ n, a random weight
between 0 and the weight of the vertex vc(vj) (the vertex with the same color in the clique)
is assigned.

Finally, edges between vertices of different colors are inserted with probability d. See
Algorithm 7 for detailed pseudocode for the implementation of the single clique method.

It is obvious that every vertex of the clique {v1, . . . , vk} must be colored with a different
color and, therefore, the weight of any coloring must be at least the sum of the weights
of those vertices. By construction, the heaviest vertex of any color is the vertex in the
clique. Therefore, the weight of the constructed coloring is exactly the sum of the weights
of the vertices in the clique, which proves its optimality.

We will refer to instances of this type as sc-graphs.

91



Chapter 4

Multiple Clique Method

The multiple clique method (Mcm) generates test cases for the Wcp such that the number
of colors in an optimal weighted coloring can be up to almost twice the chromatic number
of the instance.

The Mcm takes the following parameters as input:

• the density d of the graph to be generated,

• the size ω of the maximum clique,

• the number γ < ω of cliques to generate,

• the number n ≥ γω of vertices,

• a random seed r.

We will begin with describing in details how the Mcm works and then prove that the
instances generated with this method have the claimed properties.

First, γ cliques Ki = {vi,1, . . . , vi,ω} of size ω are generated, with i = 1, . . . , γ. Every
clique Ki has a distinguished vertex vi,1 which will be denoted by xi. Then, edges are
added between every pair of distinguished vertices xi, i = 1, . . . , γ such that they form a
clique of size γ.

K1

x1K2
x2

K3

x3

K4

x4

K5x5

Figure 15 The initial cliques of size ω for γ = 5 for the
multiple cliques method.

The weights for all undistinguished vertices are chosen according to some distribution.
One should choose a distribution such that larger values have higher probability.

Let wm be the smallest weight of the undistinguished vertices. Now, choose weights for
the distinguished vertices such that the sum of the weights of the distinguished vertices
is less than wm.

Next, two colorings are defined. An ω-coloring c to ensure that χ ≤ ω (and, therefore,
χ = ω, by the existence of a clique of size ω) and a (ω + γ − 1)-coloring c�, which will be
an optimal coloring for the Wcp.
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To construct c, distinct random colors between 1 and γ are assigned to the distin-
guished vertices xi, i = 1, . . . , γ. Then, for every clique Ki, i = 1, . . . , γ, the colors
{1, . . . , ω} \ {c(xi)} are randomly distributed among the ω − 1 undistinguished vertices
of every Ki.

The construction of c� is done in an iterative manner. To start, no vertex is colored. At
each step, the heaviest uncolored and undistinguished vertex of every clique Ki is selected
and the smallest possible color is assigned to them. This results in a (ω−1)-coloring (using
colors 1 to ω − 1) for the undistinguished vertices. Finally, c� is completed by coloring
the γ distinguished vertices (ordered by decreasing weights) with colors ω, . . . , ω + γ − 1.

Finally, we add n − ωγ vertices, which will be named uj, with j = 1, . . . , n − ωγ. For
every new vertex uj, a random color c(uj) in {1, . . . , ω} and a random color c�(uj) in
{1, . . . , ω + γ − 1} is assigned to uj.

A random weight w(uj), which is smaller than the maximal weight among the vertices
with color c�(uj), is assigned to uj.

To complete the instance, edges are added with probability d between vertices u, v with
c(u) �= c(v) and c�(u) �= c�(v). To complete the generation of the graph, the weight w� of
the coloring c� is computed, which is the weight of the optimal solution. See Algorithm 8
for a pseudocode implementation of the Mcm.

Let G = (V,E,w) be an instance generated by the Mcm with parameters n, ω and γ.
The chromatic number of G then equals ω and an optimal weight coloring uses exactly
ω + γ − 1 colors and has weight w�, given by the coloring c� in the Mcm.

Theorem 57

Proof

It is immediately clear that χ(G) = ω because, by construction, we have an ω-coloring
and a clique of size ω.

We can restrict ourselves to the case where n = ωγ, i.e. the case where there are no
additional vertices. Once we have proved the property for this case, it follows immediately
for n ≥ ωγ, by the method of choosing the weights for the additional vertices, since the
coloring will have the same weight. The optimal weight coloring of a graph cannot be
smaller than an optimal weight coloring of one of its subgraphs.

From now on, fix n = ωγ. Suppose we have a k-coloring c of G with k ≥ ω. We will show
that we can construct a (ω+ γ− 1)-coloring c� with a smaller weight. Let {C1, . . . , Ck} be
the color classes of the coloring c, ordered by decreasing weights. Construct the coloring
c� as done by the Mcm. Let {C�

1 , . . . , C�
k} be the color classes of the coloring c� (which are

ordered by decreasing weights by construction). Let further denote ui (u�
i respectively) the

heaviest vertex in Ci (C�
i respectively), such that we have w(Ci) = w(ui) (w(C�

i ) = w(u�
i )

respectively).

Now, clearly, w(C1) = w(C�
1) (they each contain the heaviest vertex). Then, for any

i = 2, . . . , ω − 1 we claim that w(C�
i ) ≤ w(Ci).

By contradiction, suppose that the claim is false and let j ≤ ω − 1 be the smallest index
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such that w(C�
j ) > w(Cj). This implies w(u�

j) > w(uj). Let α be the index of the clique
with u�

j ∈ Kα. By construction of c�, the vertex u�
j is the jth heaviest vertex in Kα.

Therefore, in the clique Kα, there are j vertices y1, . . . , yj = u�
i with a weight greater than

or equal to w(u�
i ). As a consequence, any coloring contains at least j color classes with

a weight greater than or equal to w(u�), which contradicts the fact that w(Cj) < w(u�),
since the classes are ordered by decreasing weights. We conclude that w(Ci) ≥ w(C�

i ) for
i = 1, . . . , ω − 1.

The color classes C�
i with ω ≤ i ≤ ω+ γ− 1 all consist of only one (distinguished) vertex.

The sum of the weights of all those color classes is simply w =
∑γ

i=1w(xi), which is, by
construction, smaller than the weight of any non-distinguished vertex.

So, if Cω contains any non-distinguished vertex, we can conclude that w(Cω) ≥ w and
we are done. Otherwise, we conclude that all γ · (ω − 1) non-distinguished vertices are
contained in the sets Ci where i = 1, . . . , ω − 1. As the graph is covered by γ cliques, the
maximum size of a stable set (and, therefore, of a color class) is γ. So, we conclude that
no distinguished vertex is among the first ω − 1 color classes. This implies that every
distinguished vertex has neighbors of colors 1 to ω − 1 and must, therefore, take a color
greater than ω − 1. As the distinguished vertices also form a clique, we conclude that, in
fact, k = ω + γ − 1 and that every distinguished vertex forms a color class of its own, as
well. So, the total weight of the last γ classes of c and c� is the same.

4.3.3 Generated Instances for the Numerical Tests

We have generated three types of instances:

• Random graphs

• Graphs generated with the single clique method

• Graphs generated with the multiple clique method

The generated instances are available for download at http://rose.epfl.ch/ under
“Publications”.

Random Graphs

We have chosen the number of vertices n ∈ {100, 200, 300, 500} and for the density we have
chosen d ∈ {0.2, 0.5, 0.8}. For every possible combination of n and d, we have generated
three random graphs with random uniform weights between 0 and 1. The graphs are
called “unif01 n.d r” where r ∈ {41, 42, 43} [Ada79] is the random seed used.

Single Clique Graphs

We have generated graphs of density 0.5 with a known chromatic number, which is also
equal to the number of colors used in a minimum weight coloring. We have chosen the

94



Weighted Vertex Colorings

number of vertices n ∈ {100, 200, 300, 500} and the number of colors close to the number
of colors found for random graphs with the same number of vertices and density 0.5. The
graphs are named “scn k”, where k is the number of colors used in a minimum weight
coloring. See Table 4.7 for the list of generated instances.

Multiple Clique Graphs

These instances are called “mcmn ω γ”, where n is the number of vertices, ω is the size of
a maximum clique, and γ is the number of cliques of size ω. These graphs are ω-chromatic,
and an optimum weight coloring uses ω + γ − 1 colors. ω has been chosen to be close
to the expected chromatic number [JM82] of a random graph with n vertices, and γ has
been chosen such that n/2 ≤ γω < n. See Table 4.7 for the list of generated instances.

In the following sections, we will present our heuristics for the Wcp.

4.4 A Tabu Search Using Feasible Solutions

In this section, we present an adaptation of the tabu search algorithm to the Wcp.
The main characteristic of this adaptation is the fact that it deals only with (feasible)
colorings (no conflict is allowed) but with a variable number of colors. This algorithm will
be referred to as the feasible solution search (Fss).

This approach has the advantage that the number of colors k is not an input parameter,
so the Fss algorithm can be applied directly to unknown instances.

In what follows, we specify, for each element of a tabu search, how that element was
adapted to the Fss.

Search Space

The search space consists of all possible colorings. The possible colors are in the set
{1, . . . , n}, where n is the number of vertices of the graph.

To evaluate the quality of a solution c, we simply use its weight.

w(c) =
∑
Cj �=∅

(
max
v∈Cj

w(v)

)
,

where Cj is the set of vertices with color j.

Neighborhood

Two colorings are neighbors if they differ in exactly one vertex. A move consists of
changing the color of a vertex. Note that two adjacent solutions might use different
numbers of colors.

95



Chapter 4

Tabu Status

The tabu status is assigned to couples of colors and vertices. If a vertex v is colored with
color j and changes it to j′, then it will be tabu to reassign color j to v for t iterations,
where t is the current tabu tenure.

Choice of a Neighbor Solution

The neighborhood of the current solution is entirely explored and the weight of every
neighbor solution is computed. This can be done efficiently using auxiliary data structures.
For each vertex v and for each color j, we store the number of neighbors of v colored with
color j. This allows to test whether or not vertex v can be colored with color j in constant
time. Moreover, for each color j, we store the weights of the heaviest and second heaviest
vertex. This allows to compute the difference of the objective function for a move in
constant time.

Among all possible moves, the best (according to the objective function) non-tabu move is
chosen. However, if there is a neighbor solution better than the best solution encountered
so far, it is chosen even if it is tabu. This mechanism is called aspiration.

Stopping Criteria

The search is stopped if the best solution encountered has not been improved during imax

iterations, or if a given amount of cpu time has elapsed.

4.4.1 Implemented Schemes for the Tabu Tenure

We have implemented three reactive schemes to adapt the tabu tenure. The Foo-scheme
and two Etb-schemes. See Sections 2.4 and 2.6 for a general definition and motivation of
those schemes.

We have implemented an Etb-scheme using the Hamming distance (called Etb-H) and
another using the similarity between colorings (called Etb-S).

Etb-H Scheme

After multiple tests on different instances, we have implemented the Etb-H scheme as
follows: at the beginning of the algorithm, the reference solution sref is initialized to the
current solution scur. Every 500 iterations, the Hamming distance between the reference
solution sref and the current solution scur is computed. If this distance is less than 0.65 · n
(where n is the number of vertices of the graph), the tenure is incremented by 20. Other-
wise, the reference solution sref is set to the current solution scur, and the tabu tenure is
multiplied by 0.7. Each time a new best solution is encountered, the reference solution
sref is reinitialized to the current solution scur, and the tabu tenure is multiplied by 0.7.
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Etb-S Scheme

For the Etb-S scheme, which makes use of the measure of similarity between colorings,
numerous tests were performed in order to determine a good (leading to high quality
solutions) set of parameters determining the behavior of the scheme. Based on those
tests, the we have implemented the Etb-S scheme as follows: at the beginning of the
algorithm, the reference solution sref is initialized to the current solution scur. Every 500
iterations, the similarity between the reference solution sref and the current solution scur

is computed. If the similarity is larger than 0.68 (meaning that the solution is still inside
the ball around the reference solution), the tenure is incremented by 20. Otherwise, or
when a new best solution has been found, the tabu tenure is multiplied by 0.7 and the
reference solution sref is set to the current solution scur.

Foo-scheme

For the Foo-scheme, we have three parameters to adjust: the frequency ϕ, the increment
η and the threshold b. After preliminary tests we have fixed ϕ = 500 and have adapted
the adjustment of the tabu tenure as follows: if t is to be increased, η + �t/20
 is added.
If t is to be decreased, 1 + �t/20
 is subtracted. To tune the parameters η and b, we
have conducted extensive tests on 4 random graphs. (See Table 4.1 for details.) The
Foo-scheme shows the best performance for i = 10 and i = 20 and for b = 0.4 and
b = 0.5. Based on these experiments, we have chosen the following parameter setting as
a compromise:

Parameter Value
Frequency ϕ 500
Increment η 15
Threshold b 0.45 .

4.5 A Tabu Search Using Infeasible Solutions

For this approach, we will consider any k-partition of the vertices as a solution in the
solution space where k is given as an input to the algorithm. The algorithm will then try
to render the coloring feasible while minimizing the weight of the coloring. We will refer
to this algorithm as infeasible solution search (Iss).

The drawback of this approach is that the user of the method must supply the number
of colors k, so he must have some forehand knowledge of the instance. Alternatively, one
can apply the method repeatedly for a range of values for k and then retain the best
solution. The most trivial range would be [1, n] where n is the number of vertices. A
more appropriate lower bound for the range would be the chromatic number χ, if known.
As an upper bound Δ + 1 is sufficient (by Property 56), where Δ is the maximal degree
of the graph.

In practice, it is more efficient in terms of cpu time to start with the largest k in the
range. The reason for this is that the algorithm often finds colorings using fewer than k
colors if the value of k is considerably larger than the optimal value χw. This permits
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the search process to skip one or several values of k while scanning the range from top to
bottom.

Search Space

The search space is the set of all k-partitions of the set of vertices V .

A k-partition {C1, . . . , Ck} of V can be represented as a function

c : V → {1, . . . , k}

such that
v ∈ Cc(v) ∀v ∈ V.

Note that if the algorithm finds a coloring with fewer than k colors, some of the sets Ci
will be empty. Nevertheless, we will consider such configurations to be k-partitions as
well.

A k-partition of the vertices of a graph G = (V,E) can also be viewed as an improper
k-coloring of the vertices of G or as a coloring of the graph G′ = (V, ∅).
The weight of a partition c is defined as an extension of the weight of a coloring.

w(c) =
k∑

j=1

(
max
v∈Cj

w(v)

)
+ α · |{(u, v) ∈ E | c(u) = c(v)}| ·max

v∈V
w(v) with α ≥ 1. (4.1)

The sum in equation (4.1) is simply the same weight function as for colorings. The second
part of the function deals with the conflicts where for each conflict α times the maximum
weight is added to the weight of the partition. This ensures that we are able to find a
coloring with the same weight (for α = 1) or less by introducing a new color for each
conflict. The weight of each newly created color class is, of course, less than or equal to
the maximum weight.

The weight of a partition in equation (4.1) is a generalization of the objective function
of the Tabucol algorithm [HdW87] for plain vertex coloring. To see this, consider the
weights of all vertices set to one. We then obtain up to the additive constant k (first
part of (4.1)), α times the objective function of Tabucol, which counts the number of
conflicting edges.

To tune α, several tests have shown that, with α = 1, the algorithm often fails to find
a feasible coloring for large graphs and a value of k close to the optimum χw. Based on
preliminary tests, we use α = 2 in our implementation.

Neighborhood and Moves

Given a partition c, we define the set of neighbors of a partition c to be the set of all
partitions c′ for which c(v) �= c′(v) for exactly one vertex v. A move consists of changing
the color of exactly one vertex or, equivalently, moving a vertex from one color class to
another.

The tabu status, the choice of a neighbor solutions, and the stopping criteria are the same
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as for the Fss algorithm (see Section 4.4).

We have implemented the same reactive tabu schemes as we did for the Fss algorithm.
Preliminary tests have shown that the same parameter settings lead to good results. Refer
to Section 4.4.1 for details on the implementation and parameter settings.

4.6 An Adaptive Memory Search Algorithm

Tabu search is very well suited to find local minima quickly. However, it explores only a
small region of the search space. It has been shown for several combinatorial problems
that the performance of a tabu search can be improved using an adaptive memory scheme
[RT95], also called a genetic hybrid scheme [Dav91].

An adaptive memory scheme uses a pool of solutions or pieces thereof. At every step (also
called generation), a new solution is generated by a recombination operator which takes
two or more solutions from the pool. This new solution is used as the initial solution
for a tabu search. The solution returned by the tabu search is inserted into to the pool
of solutions or discarded, according to rules that we will define later. To keep the size
of the pool constant when a new solution is inserted, one solution is discarded according
to carefully defined criteria. Possible criteria (to choose the solutions to be discarded)
are the quality (measured by the objective function) where low quality solutions will be
discarded [GH99], the age (the solutions which has been in the pool for the longest time
will be discarded), a criterion related to the diversity of the pool [HGZ05] (for example,
the solution in the pool which is most similar to the new solution is discarded) or a random
choice [DH98]. In our implementation, we combined a diversity preserving criterion with
a selection based on the quality of the solution.

The main advantage of an adaptive memory scheme is the fact that the tabu search visits
very different regions of the search space. Because of this fact, it is crucial to maintain
diversity among the solutions in the pool. There are two mechanisms to maintain diversity.
First, the recombination operator generates solutions that lie in a potentially new region,
provided the solutions used as input for the recombination operator are varied enough.
Second, when inserting a new solution into the pool, the solution to be discarded must
be chosen carefully. On the one hand, one should discard low quality solutions from the
pool in order to make the search progress. On the other hand, one must make sure that
diversity is maintained.

In the next section, we present how to design an adaptive memory algorithm for the
weighted coloring problem.

4.6.1 Implementation

As we will see later in the Results Section, the Fss and Iss algorithms perform approx-
imately equally. This is rather surprising because, for plain vertex coloring, the Fss

approach does not lead to good results (in the sense of finding colorings using few colors)
[Kob99, Cul92] compared to the Iss or partial solution approach. Moreover, the number
of colors k to be used in our tests for the Iss algorithm has been determined using the
Fss algorithm.
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Because the Fss is simpler to use, we have chosen to implement an adaptive memory
scheme using the Fss algorithm. We refer to our adaptive memory algorithm as Ama.

Pool of Solutions

The pool of solutions contains colorings that use a variable number of colors. The size
p of the pool is constant along the search process. A size leading to good results (i.e.
colorings with a low weight) has to be determined by running experiments. Useful values
for p range from 10 to 50.

If the pool is too small, the diversity among the solutions is lost before very good solutions
are discovered. As a consequence, the search is confined to a limited region of the search
space, and the advantage of an adaptive memory algorithm is lost.

If the pool is too large, it takes a very long time to find good solutions because the average
quality of the solutions in the pool is improved very slowly.

Initializing the Pool

The pool of solutions is initialized using a simple greedy algorithm to color the vertices. For
every generated solution, the order in which the greedy algorithm considers the vertices is
changed. For the first solution, the vertices are colored in the order of decreasing weights.
The first half of the pool (except the first solution, which is already generated) is initialized
with a greedy algorithm using a slightly perturbed order of decreasing weight. By “slightly
perturbed order”, we mean an ordering of the vertices such that, for most vertices, their
position is close to the position they would have if ordered by decreasing weights. (See
Algorithm 9 for more details.) We have chosen ρ = 4 in the perturbation algorithm. The
second half of the solutions is initialized with greedy colorings on a completely random
order. Finally, we apply a short tabu search to improve each initial solution individually.

Recombination of Colorings

At every generation, two colorings c1 and c2 are chosen randomly from the pool of so-
lutions. The two colorings are combined into a new coloring c using a recombination
operator inspired by the Gpx operator [GH99]. The main difference between the two
operators is the fact that ours combines two colorings to a new coloring while the Gpx

operator combines two k-partitions into a new k-partition. (See Algorithm 10 for details.)
The basic idea is to build a new coloring c stepwise from the color classes of two colorings
c1 and c2. First, the coloring c is empty, or, in other words, no vertex is colored by c. At
each step, one of the two colorings c1 and c2 is chosen randomly. In the chosen coloring,
the color class which contains the most uncolored vertices (with respect to c) is chosen, c
is completed with this class, and, if possible, other uncolored vertices (with respect to c)
are added greedily to complete the class.

Improving the Recombined Coloring

The coloring c that results from the recombination is used as an initial solution for a
short tabu search, which returns a improved coloring c′ (hopefully). “Short” means that
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the number of iterations without improvement is typically set to a number between 500
and 10,000 [GH99, MMT05, HGZ05]. To compare, when applying tabu search alone
to this problem, the number of iterations without improvement is typically set between
100,000 and several millions of iterations.

Updating the Pool

Two principles are applied when considering replacing a solution in the pool with a new
solution. The first principle is to replace a solution in the pool which is similar to the new
solution. This principle helps to keep a high diversity among the solutions in the pool.
The second principle is to replace a solution which is of inferior quality (according to the
objective function). This principle helps to increase the mean quality of the solutions in
the pool.

Let s′ be the new solution to be introduced into the pool. Let i be the number of solutions
in the pool with an inferior or equal quality compared to s′. If i is smaller than a fraction
b of the pool size p, i is set equal to bp. Then, among the i worst solutions in the pool, we
choose the solution which is most similar to s′ and replace it with s′. This approach has
the nice feature that the best solution in the pool can only be replaced by a new solution
which is at least as good, provided that i < p, which is the case for fractions b < 1.

Experiments have shown that a value of b close to 0.5 leads to best results in terms of
the quality of the solutions found. For larger values of b, the solutions in the pool have
a tendency to become more and more similar to each other, and the search process gets
blocked in a region of the search space. This is due to the fact that the main criterion to
eliminate a solution from the pool is the quality of the solution.

On the other hand, if b is small, the mean quality of the solutions in the pool improves
only slowly.

4.6.2 Tuning of the Parameters for the Ama Algorithm

There are mainly three parameters to tune: the size of the pool p, the number of iterations
without improvements in the stopping criterion of the tabu search, and the tabu tenure.

Over a large range of instances, we have tested values of p ranging from 10 to 50 and have
obtained the best results (in terms of the weight of the colorings found) for p = 20. A
small value of p leads to faster convergence, but the risk of loosing diversity is considerably
larger. For a large value of p the convergence is slow, but the diversity of the pool is
preserved much better. If a large amount of cpu time is available, a larger value of p is
preferred as it leads to better solutions.

Tuning of the Tabu Tenure

A reactive scheme is not well suited for an adaptive memory method because the number
of iterations for the tabu search procedure is small, which leaves too little time for reactive
schemes to adjust the tabu tenure properly. Instead, we have chosen to use a static tenure,
which depends on the number of vertices. To determine the best value, we have tested the
algorithm on random graphs with 100, 200, 300, and 500 vertices. With preliminary tests,
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we have selected ranges of tabu tenures leading to colorings with the lowest weight. For
five values of the tabu tenure t within the determined range, we have conducted systematic
tests.

For graphs with 100 vertices, the best solutions found are all identical, but the distribution
of the values found (represented as histograms) are different. The histograms give an
indication of the robustness of each algorithm. A narrow histogram indicates that the
algorithm is robust because it has found similar values for all runs. A flat histogram
indicates that the algorithm is not robust and that good results have been found by
chance after several runs. Choosing t = 50 for n = 100 vertices seems to be the best
choice because for this value of t the histograms are all very narrow. (See Table 4.2 for
details.)

For n = 200 vertices, we have selected t = 90 as the ideal tenure because, for this value of
t, the largest number (four out of 9 graphs) of best solutions has been found. (See Table
4.3 for details.)

For n = 300, we have selected t = 120 as the best tenure due to the low mean of the
solutions found and the high number (three out of nine) of best solutions among different
tabu tenures. (See Table 4.4 for more details.)

Finally, for n = 500, we have found t = 170 to be the best tenure. For this value, we
obtain the highest number (four out of nine) of best solutions and the lowest mean of best
solutions. (See Table 4.5 for details.)

Based on these results, we have chosen to set the tenure to

t = �10
√
n− 50
.

Note that this formula makes no sense for n smaller than 25 and should not be applied
for n ≤ 50. This formula produces values very similar to those we obtained from our
experiments.

n experimental t �10
√
n− 50


100 50 50
200 90 91
300 120 123
500 170 173

4.7 Numerical Results

Various tests have been performed in order to tune and compare various methods that we
have proposed.

In a first series of tests, the Fss approach was tested with four algorithms: Foo-Fss,
Etb-H-Fss, Etb-S-Fss and Ama. For the first series, for each graph, and for each
algorithm, 50 runs were made, and each one was limited to 5 minutes of cpu time.

In a second series of tests, we allowed each run to use more cpu time. The infeasible
solution approach (Iss) has been tested with the number of colors found in the first
series. We also tested the Fss approach with more cpu time allowed (between 10 and 50
minutes).
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In general, we report the name of the graph, the optimum value of a weighted coloring
when known, and the best value obtained among all tests combined. Then, for each
algorithm, we report the value of the best solution found (over several runs), the number
of colors used in the best solution, and a histogram that shows the distribution of the
weights of all obtained colorings. This gives a good indication of the robustness of the
algorithm.

In a last series of tests, we tested the Ama algorithm with a large cpu time limit. Again,
we used the results obtained (i.e. the number of colors used in the best coloring for each
graph) to test the Iss approach with a large cpu time limit.

4.7.1 Preliminary Tests with Fss

To start our series of tests, we have performed 50 runs limited to 5 minutes cpu time
on each random instance for the four algorithms Foo-Fss, Etb-H-Fss, Etb-S-Fss and
Ama. The results are reported in Table 4.6.

For each graph, k� was determined to be the number of colors for which the best coloring
among all four algorithms was found. This k� was used for the next series of tests as input
parameter k for the Iss algorithms.

Note also that the number of colors used in the best coloring found (which is an estimation
for χw) is considerably larger than the estimation for χ. In the following table, the values
are given for random graphs of density 0.5.

number of vertices χ (estimated) χw (estimated)
100 15 18 - 19
200 23 - 24 29 - 30
500 48 - 49 62 - 65

Estimations of χ and χw for random graphs with density 0.5 and
uniformly distributed real weights in the interval [0, 1].

4.7.2 Short Tests With all Algorithms

The preliminary results with the Fss algorithms found a best coloring using k� colors.
(Note that this k� may be different for each graph.) This k� was used as the input
parameter for the Iss algorithms. The cpu time limit depends on the size of each graph
and is given here:

number of vertices cpu time limit in minutes
100 5
200 10
300 30
500 50

For the Fss approach, each run has been repeated 30 times with various random seeds.
For the Iss approach, we have chosen to test three values of k: k�, k� + 2 and k� + 5. For
each value of k, 10 runs with different random seeds have been executed. Note that the
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number of colors actually used by a coloring obtained by an Iss-algorithm can be lower
than the supplied parameter k.

Results for Constructed Graphs

As expected, the instances constructed with the single clique method (called scn k) were
easy to solve in the sense that each algorithm was able to solve almost all test cases to
optimality. Moreover, the value of the random seed has little bearing on the algorithm’s
ability to find the optimum solution.

The multiple clique methods provides test cases which require more cpu time to be solved,
if they can be solved at all. All instances but one were solved to optimality by at least
one algorithm.

Results for the Fss Algorithms on Constructed Graphs

All single clique instances were solved to optimality by each Fss algorithm. Moreover,
the optimum was discovered for all random seeds except for some random seeds on the
graph sc500 60 which the Foo-Fss algorithm failed.

The multiple clique graphs were considerably harder to solve (in the sense that the op-
timum was found less often), and only the adaptive memory algorithm Ama was able
to find the optimum for most instances (all but the graph mcm500 49 5). The graphs
with 100 vertices were solved to optimality by all algorithms. Among the four algorithms,
Foo-Fss obtains the worst solutions in terms of the weight of the colorings found. No
mcm-graph with 200 vertices or more has been solved to optimality. The Etb-H-Fss al-
gorithm performs rather poorly as well, but it still outperforms the Foo-scheme in 5 out
of 6 instances with 200 vertices or more. The Etb-S scheme, which uses the similarity
measure (introduced in Section 2.3.4) instead of the Hamming distance, performs very
well and finds the optimum on 4 out of 6 mcm-graphs and finds the best solution among
the four algorithms 5 out of 6 times. Nevertheless, the Etb-S-Fss algorithm is less robust
than the Ama algorithm, which finds the optimum for any random seed on 4 out of 6
mcm-graphs and an optimal solution for 5 out of 6 mcm-graphs. The Ama algorithm is
outperformed only on the graph mcm500 49 5. The detailed results of these tests can be
found in Table 4.7, where we report the best coloring found for each algorithm, as well as
the number of colors used in this best coloring.

Results for the Iss Algorithms on Constructed Graphs

Again, each algorithm solved to optimality the sc-graphs (instances generated with the
single clique method) except sc500 60, where the Foo-Iss algorithm was not able to
find the optimum solution. On the Mcm-instances (generated with the multiple clique
method), Foo-Iss outperforms the other algorithms and finds the best coloring for this
tests series for the graph mcm500 49 5. However, as the flat histograms show, these results
should be interpreted with care, because it is clear that the Iss algorithms lack robustness.
Additionally, for the Iss algorithms, the Etb-S scheme (which uses the similarity between
colorings) outperforms the Etb-H scheme (using the Hamming distance) except on 2 out
of 8 graphs. For detailed results, see Table 4.8.
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Comparing Fss and Iss

The histograms for the Iss algorithms on the mcm-graphs are much more flat than the
histograms for the Fss algorithms. This indicates that the Fss algorithms are more
robust. However, the lack of robustness of the Iss algorithms is also due to the three
different parameters k supplied to the Iss algorithms for each graph.

Even though the performance of the Iss algorithms is slightly better than the performance
of the Fss algorithms, the Iss algorithms require the knowledge of a good parameter k
(the number of colors to use). If an automated scheme were used to determine k, a large
amount of cpu time would be consumed on values of k which lead to colorings which are
too heavy.

Results for Random Graphs

Random graphs seem to be difficult instances. Already for 200 vertices, the results become
much more varied: for each algorithm and for each graph, the results for the different runs
are varied, as are the differences between the best results of different algorithms.

Results for the Fss Algorithms on Random Graphs

For graphs with 100 vertices, the Ama algorithm outperforms all others and is very
robust. It finds the best known solution for all 9 tested graphs. Still, for graphs with
100 vertices, Etb-S-Fss and Foo-Fss perform approximately equally, where the former
shows best performance on graphs with density 0.2, and the latter performs best on graphs
with density 0.5. Etb-H-Fss performs rather poorly in comparison with the other three
algorithms.

For graphs with 200 vertices, Ama and Etb-S-Fss outperform Foo-Fss and Etb-H-Fss.
Again, the Ama algorithm is more robust.

For graphs with 300 and 500 vertices, the best results were obtained with Etb-S-Fss

(for densities of 0.2 and 0.5) and Etb-H-Fss, which performed very well on high density
graphs. Surprisingly, Ama did not perform well. This is probably due to a rather short
cpu time limit which does not allow the pool of 20 solutions to reach a very good solution.

The excellent performance of Etb-S-Fss suggests that using the Etb-S scheme inside the
Ama algorithm (instead of the static tenure, which depends on the number of vertices
only) may yield interesting results. For detailed results see Table 4.9.

Results for the Iss Algorithms on Random Graphs

Overall, the Iss algorithms performed very well on random graphs. Etb-H-Iss performs
worse than the other and finds the best known solutions only for graphs with 100 vertices.
For larger graphs, Etb-S-Iss finds the very best solutions if the density is low, and Foo-
Iss finds the very best solutions for high density graphs. For graphs with density 0.5, both
algorithms perform approximately equally. For detailed results, see Table 4.10. There
are at least two possible explanations for this behavior: 1) the Foo-scheme performs
generally better on high density graphs than on low density graphs; 2) the parameters for
the method are tuned in such a way as to induce the observed performance. However, it

105



Chapter 4

is difficult to fine-tune a method on large test cases, due to the large amount of cpu time
required (several weeks) to obtain statistically significant data.

4.7.3 Tests with a Large cpu Time Limit

The previous tests did not show a significantly better performance of the Ama algorithm.
Further, Ama was outperformed on most large graphs, even by other Fss algorithms.
The reason for this is the relatively short cpu time, which did not allow the pool of 20
solutions to reach very good solutions.

We have, therefore, repeated the tests on the graphs with 200 or more vertices, except
the sc-graphs, which were solved to optimality by almost all algorithms. The allowed cpu

time was the following.

number of vertices cpu time limit in hours
200 1
300 2
500 5

We have tested the Ama algorithm and one of its variants, Etb-S-Ama. This adaptive
memory algorithm uses the Etb-S scheme in each improvement step. The number of
iterations without improvement for each step has been set to 10,000 in order to allow
the Etb-scheme some time to adapt. Further, we tested the two best Iss algorithms:
Foo-Iss and the Etb-S-Iss.

Results for Ama and Etb-S-Ama

With the extended cpu time limit, the Ama algorithm solved all mcm-graphs to optimal-
ity. The Etb-S-Ama algorithm, however, was not able to find the optimal solution for
the graph mcm500 49 5. For detailed results, see Table 4.11.

For random graphs with 200 vertices, Etb-S-Ama performs slightly better than Ama,
especially on graphs with a high density. For larger graphs, Ama almost always outper-
forms Etb-S-Ama and obtains excellent results. See Table 4.12 for detailed results. This
confirms that the tuning of the static tabu tenure was successful and that, for an adaptive
memory algorithm, a reactive tabu scheme does not have the time to take effect during
the short application of each improvement step.

Results for Foo-Iss and Etb-S-Iss

On the mcm-graphs, the Foo-Iss algorithm clearly outperforms Etb-S-Iss. See Table
4.13. The solutions found by Foo-Iss are better than or equal to the solutions found
by Etb-S-Iss. In case of equality, the Foo-Iss algorithm seems to be more robust.
The very poor performance on the graph mcm500 49 5 comes from the fact that the
number of colors imposed is exactly the optimum or close to it. Due to this fact it the
Iss-algorithms have troubles finding a feasible solution (i.e. a coloring without conflicts).
With a larger number of colors, both algorithms perform considerably better. (See Table
4.8 to compare.)
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For random graphs, the division between the two algorithms is very clear. For graphs
with a density of 0.2, Etb-S-Iss always outperforms Foo-Iss, whereas, for densities 0.5
and 0.8, Foo-Iss very clearly outperforms Etb-S-Iss and obtains the very best results
on all high density graphs with 500 vertices. One should keep in mind that the parameter
k is essential for the Iss methods and that it is difficult to determine using only the Iss

methods because numerous executions would be necessary to find a good k. The good
performance of the Iss algorithms is partly due to the excellent performance of the Fss

algorithms that supply the parameter k.

4.7.4 Summary and Interpretation of the Results

We have tested two types of tabu search algorithms, Fss and Iss. The performance of
neither of those two approaches dominates the other. The main difference between them
is that the Fss approach is easier to use.

Different reactive tabu schemes have been tested. The Foo-scheme is most effective for
the Iss algorithm on graphs with high density. For the Etb-schemes, the algorithm using
the similarity measure almost always achieves better performance than the algorithm
using the Hamming distance. This is true for both the Fss and the Iss approaches.

Provided enough cpu time is available, the adaptive memory algorithm Ama achieves
excellent results and was able to solve all constructed instances to optimality. Using the
information on the number of colors k� obtained by the Ama algorithm, the Iss algorithms
achieve the best results on random graphs.

We were able to solve each constructed instance that was tested to optimality. The
obtained data suggests that, for random graphs with 100 vertices, the instances have been
solved to optimality as well, as most algorithms find the same minimal weight for different
random seeds. We are confident that the algorithms presented herein are competitive, but
further research be necessary in order to confirm this.

The results indicate that further investigation of adaptive memory algorithms using the
Iss approach would be appropriate. Additionally, further testing with a static tabu tenure
would show the impact of reactive tabu schemes.
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Algorithm 7 The single clique method for the generation of an instance with known
optimum for the Wcp. Note that U(a, b) returns a continuous random value between
a and b, and uniform(n,m) returns an integer uniformly distributed between n and m
inclusive.
Input: The number of vertices n, the number of colors k, the density d, and an initial

random seed r.
Output: An instance G = (V,E,w) and w�, the weight of an optimal coloring.
1: initialize the random number generator with seed r
2: initialize the edge set E ← ∅
3: generate the vertex set V ← {v1, . . . , vn}
4: initialize the weights w(vi) = 0 ∀i
5: w� ← 0
6: /* Generate the optimal coloring and the weights */
7: for all i = 1, . . . , n do
8: if i ≤ k then
9: /* The k vertices in the clique */

10: c(vi)← i
11: w(vi)← 1− (U(0, 1))2 /* favor larger weights */
12: w� ← w� + w(vi)
13: else
14: c(vi)← uniform(1, k) /* assign a random color */
15: /* smaller weight than the weight of the corresponding vertex in the clique */
16: w(vi)← U

(
0, w(vc(vi))

)
17: end if
18: end for
19: /* Add the edges */
20: for all i = 1, . . . , n− 1 do
21: for all j = i+ 1, . . . , n do
22: /* Either it is a clique-edge, or an allowed random edge */
23: if j ≤ k or

(
uniform(0, 1) ≤ d and c(i) �= c(j)

)
then

24: E ← E ∪ {{i, j}}
25: end if
26: end for
27: end for
28: return G = (V,E,w), w�
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Algorithm 8 The multiple cliques method for the generation of an instance with a known
optimum for the Wcp. Note that U(a, b) returns a continuous random value between
a and b, and uniform(n,m) returns an integer uniformly distributed between n and m
inclusive.
Input: The size of the cliques ω, the number of cliques γ < ω, the number of vertices

n ≥ ωγ, the density d, and an initial random seed r.
Output: An instance G = (V,E,w) with χ(G) = ω and χw(G) = ω+ γ− 1, and w�, the

weight of an optimal coloring.
1: initialize the random number generator with seed r
2: V ← {vi,j} for i ∈ {1, . . . , γ} and j ∈ {1, . . . , ω}
3: V ← V ∪ {uk} for k ∈ {1, . . . , n− γω}.
4: E ← {{vi,j, vi,j′} | i ∈ {1, . . . , γ}, 1 ≤ j < j′ ≤ ω} /* γ cliques of size ω */
5: E ← E ∪ {{vi,1, vi′,1} | 1 ≤ i < i′ ≤ γ} /* clique on the distinguished vertices */
6: w(vi,j)← U(1/ω, 1) for i ∈ {1, . . . , γ} and j ∈ {2, . . . , ω}
7: w(vi,1)← U(0, 1) for i ∈ {1, . . . , γ}
8: /* render the sum of the weight of the distinguished vertices smaller than 1/ω */
9: s← ω

∑γ
i=1w(vi,1)

10: w(vi,1)← w(vi,1)/s for i ∈ {1, . . . , γ}
11: c(vi,j)← (j + i) mod ω + 1 for i ∈ {1, . . . , γ} and j ∈ {1, . . . , ω}
12: c�(vi,j)← 0 for i ∈ {1, . . . , γ} and j ∈ {0, . . . , ω}
13: for all k ∈ {1, . . . , ω − 1} do
14: for all j ∈ {1, . . . , γ} do
15: vi′,j ← arg max

{vi,j |i=2,...,ω, c(vi,j)=0}
w(vi,j)

16: mk ← w(vi′,j) /* weight of color k */
17: c�(vi′,j)← k
18: end for
19: end for
20: c�(vi,1)← (i+ ω − 1), mi ← w(vi,1) for i ∈ {1, . . . , γ}
21: for all k ∈ {1, . . . , n− ωγ} do
22: c(uk)← uniform(1, ω)
23: c�(uk)← uniform(1, ω + γ − 1)
24: w(uk)← U

(
0,mc�(uk)

)
25: end for
26: for all {x, y} ⊆ V do
27: if c(x) �= c(y) and c�(x) �= c�(y) and U(0, 1) < d then
28: E ← E ∪ {{x, y}}
29: end if
30: end for
31: w� ← w(c�)
32: return G = (V,E,w), w�
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unif01 100.5.43
�

�
�b
i i =1 i =5 i =10 i =20

best mean best mean best mean best mean
b =0.2 11.546 12.094 11.729 12.038 11.621 11.869 11.514 11.982
b =0.3 11.514 11.837 11.549 11.852 11.468 11.867 11.393 11.757
b =0.4 11.316 11.656 11.321 11.541 11.128 11.514 11.170 11.430
b =0.5 11.271 11.429 11.138 11.387 11.128 11.365 11.128 11.174

unif01 200.5.43
�

�
�b
i i =1 i =5 i =10 i =20

best mean best mean best mean best mean
b =0.2 18.873 19.343 19.033 19.389 19.084 19.387 18.762 19.008
b =0.3 18.434 18.858 18.419 18.807 18.347 18.691 17.998 18.451
b =0.4 17.919 18.288 17.767 18.297 17.757 18.119 17.628 18.030
b =0.5 17.819 18.048 17.799 18.022 17.538 17.943 17.732 17.997

unif01 300.5.43
�

�
�b
i i =1 i =5 i =10 i =20

best mean best mean best mean best mean
b =0.2 24.581 24.866 24.524 24.735 24.495 24.734 24.481 24.661
b =0.3 24.189 24.439 24.275 24.520 24.299 24.581 24.232 24.477
b =0.4 24.028 24.387 24.046 24.306 23.956 24.289 24.148 24.382
b =0.5 23.978 24.386 24.093 24.366 24.213 24.493 24.124 24.346

unif01 500.5.43
�

�
�b
i i =1 i =5 i =10 i =20

best mean best mean best mean best mean
b =0.2 39.098 39.879 39.402 40.020 39.297 39.846 39.250 39.750
b =0.3 39.101 39.453 38.794 39.223 38.687 39.269 38.658 39.125
b =0.4 38.557 38.920 38.482 38.779 38.443 38.947 38.486 38.893
b =0.5 38.620 38.988 38.637 39.169 38.550 39.043 38.591 39.159

Table 4.1: Tests to tune the Foo-Fss algorithm. The frequency ϕ has been fixed to
500, and the increment i and the threshold b have been varied. For every parameter
combination, 10 runs with different random seeds were executed. The cpu time limit was
set to 10 minutes for all four graphs. For each parameter combination, the best solution
found and the mean over the 10 runs is reported. The tests were executed on Linux
systems equipped with a 2ghz Pentium 4 cpu and 512mb of ram.
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Algorithm 9 An algorithm to produce a slightly perturbed order
Input: The number of elements n, the order of perturbation ρ.
Output: A permutation which moves most elements not farther than ρ positions.
1: /* Initialization to the identity permutation */
2: for i = 1, . . . , n do
3: π(i)← i
4: end for
5: for i = n, . . . , ρ do
6: j ← i− uniform(0, ρ)
7: exchange π(i) and π(j)
8: end for
9: return π

graph wbest t =30 t =40 t =50 t =60 t =70

unif01 100.2 41 5.402 5.402(8) 5.402(8) 5.402(8) 5.402(8) 5.402(8)

unif01 100.2 42 5.557 5.557(8) 5.557(8) 5.557(8) 5.557(8) 5.557(8)

unif01 100.2 43 5.657 5.657(9) 5.657(9) 5.657(9) 5.657(9) 5.657(9)

unif01 100.5 41 10.670 10.670(18) 10.670(18) 10.670(18) 10.670(18) 10.670(18)

unif01 100.5 42 10.398 10.398(19) 10.398(19) 10.398(19) 10.398(19) 10.398(19)

unif01 100.5 43 11.128 11.128(19) 11.128(19) 11.128(19) 11.128(19) 11.128(19)

unif01 100.8 41 18.579 18.579(33) 18.584(32) 18.579(33) 18.579(33) 18.579(33)

unif01 100.8 42 18.628 18.628(32) 18.628(32) 18.628(32) 18.628(32) 18.628(32)

unif01 100.8 43 19.039 19.039(33) 19.039(33) 19.039(33) 19.039(33) 19.039(33)
mean 11.673 11.674 11.673 11.673 11.673

Table 4.2: Tests for tuning the tabu tenure of the Ama algorithm for random graphs with
100 vertices. The cpu time limit was set to 5 minutes. The best tenure is t = 50, which
results in the most robust results. Each test was repeated 20 times for different random
seeds. wbest is best weight ever found for each instance. For each graph and each tenure,
the value of the best solution and the number of colors used is reported. The best values
of each line are in boldface. The tests were executed on Linux systems equipped with a
2ghz Pentium 4 cpu and 512mb of ram.

graph wbest t =80 t =90 t =100 t =110 t =120

unif01 200.2 41 8.714 8.883(14) 8.882(15) 8.909(14) 8.894(15) 8.999(15)

unif01 200.2 42 8.417 8.622(14) 8.502(14) 8.583(14) 8.590(15) 8.644(14)

unif01 200.2 43 8.537 8.678(14) 8.685(14) 8.699(14) 8.758(14) 8.771(14)

unif01 200.5 41 17.922 18.120(29) 18.360(29) 18.053(28) 18.090(28) 18.136(30)

unif01 200.5 42 17.119 17.638(31) 17.310(30) 17.695(31) 17.318(31) 17.481(31)

unif01 200.5 43 17.409 17.724(29) 17.559(30) 17.610(31) 17.593(30) 17.569(29)

unif01 200.8 41 32.033 32.237(53) 32.340(53) 32.165(53) 32.273(53) 32.352(55)

unif01 200.8 42 31.469 32.167(57) 32.173(54) 32.258(56) 32.208(55) 32.041(56)

unif01 200.8 43 31.152 31.467(51) 31.559(52) 31.454(53) 31.294(54) 31.195(53)
mean 19.504 19.486 19.492 19.446 19.465

Table 4.3: Tests for tuning the tabu tenure of the Ama algorithm for random graphs with
200 vertices. The cpu time limit was set to 10 minutes. As the best tenure, t = 90 has
been selected. Each test was repeated 15 times for different random seeds. wbest is best
weight found for each instance. For each graph and each tenure, the value of the best
solution and the number of colors used is reported. The best values of each line are in
boldface. The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.

111



Chapter 4

graph wbest t =100 t =110 t =120 t =130 t =140

unif01 300.2 41 10.951 11.281(19) 11.221(19) 11.146(19) 11.196(18) 11.282(21)

unif01 300.2 42 11.041 11.496(19) 11.443(20) 11.256(20) 11.412(19) 11.537(20)

unif01 300.2 43 10.761 11.211(19) 11.132(19) 11.164(20) 11.130(19) 10.997(19)

unif01 300.5 41 22.938 23.733(41) 23.850(41) 23.989(42) 23.956(41) 23.991(42)

unif01 300.5 42 23.579 24.411(42) 24.507(42) 24.376(41) 24.437(42) 24.407(43)

unif01 300.5 43 23.384 23.861(44) 24.080(42) 24.093(43) 24.228(42) 24.223(41)

unif01 300.8 41 41.557 42.641(73) 42.352(75) 42.611(74) 42.536(77) 42.621(74)

unif01 300.8 42 42.742 44.463(73) 44.287(76) 44.181(75) 44.298(75) 44.030(76)

unif01 300.8 43 42.440 44.151(76) 44.233(76) 44.324(76) 44.182(77) 44.073(77)
mean 26.361 26.345 26.349 26.375 26.351

Table 4.4: Tests for tuning the tabu tenure of the Ama algorithm for random graphs with
300 vertices. The cpu time limit was set to 20 minutes. As the best tenure, t = 120 has
been selected. Each test was repeated 15 times for different random seeds. wbest is best
weight ever found for each instance. For each graph and each tenure, the value of the
best solution and the number of colors used is reported. The best values of each line are
in boldface. The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.

graph wbest t =140 t =150 t =160 t =170 t =180

unif01 500.2 41 16.427 17.354(28) 17.243(28) 17.253(28) 17.132(28) 17.249(27)

unif01 500.2 42 16.214 17.181(27) 17.125(28) 17.160(28) 16.991(30) 17.172(29)

unif01 500.2 43 16.650 17.483(27) 17.455(28) 17.488(29) 17.575(27) 17.507(28)

unif01 500.5 41 35.917 38.271(66) 38.582(63) 38.366(62) 38.116(63) 38.382(64)

unif01 500.5 42 35.333 38.274(67) 38.277(62) 38.234(63) 38.363(64) 38.032(64)

unif01 500.5 43 36.730 39.104(64) 39.529(63) 39.340(64) 39.367(63) 39.084(64)

unif01 500.8 41 65.438 69.928(115) 70.848(117) 70.636(117) 70.054(117) 70.140(116)

unif01 500.8 42 64.534 70.639(116) 70.638(118) 69.753(116) 70.409(119) 70.050(117)

unif01 500.8 43 67.428 71.666(116) 72.133(116) 71.630(116) 71.471(115) 71.875(119)
mean 42.211 42.426 42.207 42.164 42.166

Table 4.5: Tests for tuning the tabu tenure of the Ama algorithm for random graphs with
500 vertices. The cpu time limit was set to 30 minutes. As the best tenure, t = 170 has
been selected. Each test was repeated 15 times for different random seeds. wbest is best
weight ever found for each instance. For each graph and each tenure, the value of the
best solution and the number of colors used is reported. The best values of each line are
in boldface. The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.
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Algorithm 10 The recombination operator for the Ama algorithm

Input: Two colorings c1 and c2, graph G = (V,E).
Output: A coloring c obtained by recombining c1 and c2.
1: c(v)← 0 for all v ∈ V
2: k ← 0 /* Number of colors used for c */
3: while ∃v ∈ V such that c(v) = 0 do
4: i← uniform(1, 2)
5: Let j be such that Sj = {v ∈ V | c(v) = 0 ∧ ci(v) = j} has maximal cardinality.

Break ties such that w(Sj) = max
v∈Sj

w(v) is maximal.

6: k ← k + 1
7: for v ∈ V do
8: if ci(v) = j and c(v) = 0 then
9: c(v)← k

10: end if
11: end for
12: /* Greedily complete color k */
13: for v ∈ V such that c(v) = 0 do
14: if v has no neighbor of color k with respect to the coloring c then
15: c(v)← k
16: end if
17: end for
18: end while
19: return c
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graph wbest Foo-Fss Etb-H-Fss Etb-S-Fss Ama

unif01 100.2 41 5.402 5.591 (9) 5.503 (9) 5.402 (8) 5.402 (8)

unif01 100.2 42 5.557 5.635 (8) 5.593 (9) 5.624 (9) 5.557 (8)

unif01 100.2 43 5.657 5.753 (10) 5.735 (9) 5.657 (9) 5.657 (9)

unif01 100.5 41 10.670 10.670 (18) 10.681 (19) 10.675 (17) 10.670 (18)

unif01 100.5 42 10.398 10.585 (20) 10.398 (19) 10.398 (19) 10.398 (19)

unif01 100.5 43 11.128 11.128 (19) 11.154 (18) 11.128 (19) 11.128 (19)

unif01 100.8 41 18.579 18.594 (33) 18.584 (32) 18.584 (32) 18.579 (33)

unif01 100.8 42 18.628 18.732 (34) 18.679 (33) 18.679 (33) 18.628 (32)

unif01 100.8 43 19.039 19.157 (33) 19.082 (33) 19.118 (32) 19.039 (33)

unif01 200.2 41 8.714 9.536 (16) 9.094 (15) 8.898 (14) 8.891 (15)

unif01 200.2 42 8.417 9.387 (16) 8.759 (15) 8.738 (14) 8.547 (13)

unif01 200.2 43 8.537 9.207 (14) 8.773 (14) 8.583 (14) 8.755 (14)

unif01 200.5 41 17.922 18.352 (30) 18.606 (30) 18.371 (30) 18.324 (31)

unif01 200.5 42 17.119 17.565 (32) 17.617 (31) 17.492 (31) 17.374 (30)

unif01 200.5 43 17.409 17.740 (32) 17.812 (31) 17.698 (31) 17.622 (31)

unif01 200.8 41 32.033 32.033 (56) 32.431 (56) 32.376 (57) 32.132 (53)

unif01 200.8 42 31.469 32.292 (59) 31.991 (60) 32.091 (60) 31.596 (57)

unif01 200.8 43 31.152 31.598 (55) 31.542 (55) 31.633 (57) 31.190 (53)

unif01 300.2 41 10.951 11.897 (20) 11.274 (19) 11.186 (19) 11.596 (20)

unif01 300.2 42 11.041 12.048 (19) 11.492 (19) 11.489 (20) 11.750 (20)

unif01 300.2 43 10.761 12.034 (18) 11.243 (19) 11.352 (19) 11.588 (20)

unif01 300.5 41 22.938 23.515 (45) 23.662 (42) 23.520 (42) 24.808 (44)

unif01 300.5 42 23.579 24.604 (46) 24.451 (43) 24.157 (44) 25.506 (44)

unif01 300.5 43 23.384 23.944 (45) 24.000 (45) 23.744 (43) 25.060 (43)

unif01 300.8 41 41.557 42.778 (81) 42.411 (79) 42.583 (81) 42.298 (78)

unif01 300.8 42 42.742 44.577 (80) 43.750 (78) 43.894 (81) 44.010 (75)

unif01 300.8 43 42.440 43.873 (84) 43.611 (80) 43.541 (78) 44.254 (77)

unif01 500.2 41 16.427 18.116 (28) 17.008 (27) 17.014 (27) 17.675 (26)

unif01 500.2 42 16.214 17.723 (29) 16.890 (27) 16.702 (28) 17.411 (28)

unif01 500.2 43 16.650 18.108 (29) 17.452 (29) 17.169 (28) 17.937 (29)

unif01 500.5 41 35.917 37.953 (68) 37.818 (65) 37.485 (63) 38.831 (67)

unif01 500.5 42 35.333 37.427 (68) 37.171 (64) 36.867 (64) 38.054 (65)

unif01 500.5 43 36.730 38.520 (67) 38.438 (65) 38.256 (64) 39.880 (67)

unif01 500.8 41 65.438 70.001 (122) 69.700 (124) 69.576 (122) 71.453 (127)

unif01 500.8 42 64.534 70.200 (127) 68.667 (121) 69.140 (126) 72.048 (128)

unif01 500.8 43 67.428 71.260 (125) 69.788 (121) 69.933 (123) 72.670 (126)

Table 4.6: First series of tests with the Ama and Fss algorithms. The cpu time limit was
5 minutes. For each graph, the best value wbest found is reported. The histograms are 1
unit wide and report the distribution of the obtained values over 50 runs. The weight and
the number of colors used for the best coloring found is reported for each graph and for
each algorithm. The tests were executed on Linux systems equipped with a 2ghz Pentium
4 cpu and 512mb of ram.
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Weighted Vertex Colorings

graph w� wbest Foo-Fss Etb-H-Fss Etb-S-Fss Ama

mcm100 15 5 8.889 8.889 8.889 (19) 8.889 (19) 8.889 (19) 8.889 (19)

mcm100 19 3 9.353 9.353 9.353 (21) 9.353 (21) 9.353 (21) 9.353 (21)

mcm200 25 5 13.751 13.751 13.976 (32) 13.751 (29) 13.751 (29) 13.751 (29)

mcm200 30 4 16.041 16.041 16.465 (34) 16.445 (35) 16.046 (33) 16.041 (33)

mcm300 30 5 16.048 16.048 17.193 (43) 16.187 (35) 16.048 (34) 16.048 (34)

mcm300 36 6 19.262 19.262 20.191 (46) 19.368 (43) 19.262 (41) 19.262 (41)

mcm500 20 19 12.673 12.673 12.961 (38) 12.673 (38) 12.673 (38) 12.673 (38)

mcm500 49 5 25.771 25.771 29.864 (71) 29.303 (63) 29.345 (66) 28.856 (61)

sc100 17 10.711 10.711 10.711 (17) 10.711 (17) 10.711 (17) 10.711 (17)

sc100 18 11.263 11.263 11.263 (18) 11.263 (18) 11.263 (18) 11.263 (18)

sc200 29 19.039 19.039 19.039 (29) 19.039 (29) 19.039 (29) 19.039 (29)

sc200 30 19.318 19.318 19.318 (30) 19.318 (30) 19.318 (30) 19.318 (30)

sc200 31 19.585 19.585 19.585 (31) 19.585 (31) 19.585 (31) 19.585 (31)

sc300 41 25.963 25.963 25.963 (41) 25.963 (41) 25.963 (41) 25.963 (41)

sc300 42 26.400 26.400 26.400 (42) 26.400 (42) 26.400 (42) 26.400 (42)

sc300 43 26.543 26.543 26.543 (43) 26.543 (43) 26.543 (43) 26.543 (43)

sc500 60 36.694 36.694 36.694 (60) 36.694 (60) 36.694 (60) 36.694 (60)

sc500 65 40.543 40.543 40.543 (65) 40.543 (65) 40.543 (65) 40.543 (65)

sc500 70 43.900 43.900 43.900 (70) 43.900 (70) 43.900 (70) 43.900 (70)

Table 4.7: Tests with the Fss algorithms and a short cpu time limit. For each graph, the
optimum w� and the best value found wbest is reported. For each algorithm, a histogram,
the value of the best solution found and, in parentheses, the number of colors used in
the best solution are reported. The histogram is one unit wide, and each bucket is 0.05
units wide. The cpu time allowed was 5 minutes for graphs with 100 vertices, 10 minutes
for graphs with 200 vertices, 30 minutes for graphs with 300 vertices and 50 minutes for
graphs with 500 vertices. The tests were executed on Linux systems equipped with a
2ghz Pentium 4 cpu and 512mb of ram.
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graph w� wbest Foo-Iss Etb-H-Iss Etb-S-Iss

mcm100 15 5 8.889 8.889 8.889 (19) 8.889 (19) 8.889 (19)

mcm100 19 3 9.353 9.353 9.353 (21) 9.353 (21) 9.353 (21)

mcm200 25 5 13.751 13.751 13.751 (29) 13.957 (30) 13.751 (29)

mcm200 30 4 16.041 16.041 16.264 (35) 16.145 (33) 16.157 (33)

mcm300 30 5 16.048 16.048 16.048 (34) 18.780 (38) 16.057 (34)

mcm300 36 6 19.262 19.262 19.262 (41) 21.169 (44) 19.262 (41)

mcm500 20 19 12.673 12.673 12.673 (38) 12.673 (38) 12.673 (38)

mcm500 49 5 25.771 25.771 26.753 (60) 28.525 (61) 28.611 (61)

sc100 17 10.711 10.711 10.711 (17) 10.711 (17) 10.711 (17)

sc100 18 11.263 11.263 11.263 (18) 11.263 (18) 11.263 (18)

sc200 29 19.039 19.039 19.039 (29) 19.039 (29) 19.039 (29)

sc200 30 19.318 19.318 19.318 (30) 19.318 (30) 19.318 (30)

sc200 31 19.585 19.585 19.585 (31) 19.585 (31) 19.585 (31)

sc300 41 25.963 25.963 25.963 (41) 25.963 (41) 25.963 (41)

sc300 42 26.400 26.400 26.400 (42) 26.400 (42) 26.400 (42)

sc300 43 26.543 26.543 26.543 (43) 26.543 (43) 26.543 (43)

sc500 60 36.694 36.694 36.698 (61) 36.694 (60) 36.694 (60)

sc500 65 40.543 40.543 40.543 (65) 40.543 (65) 40.543 (65)

sc500 70 43.900 43.900 43.900 (70) 43.900 (70) 43.900 (70)

Table 4.8: Tests with the Iss algorithms. For each graph, the optimum w� and the best
value ever found wbest is reported. For every graph and for every algorithm, three times
ten runs were executed with ten different random seeds and three different values for
k, namely k�, k� + 2 and k� + 5, where k� is the number of colors for which the best
solution with the Fss algorithms was found in the first series of tests (see Table 4.6). For
each algorithm, a histogram, the value of the best solution found and, in parentheses,
the number of colors used in the best solution are reported. The histograms are one unit
wide, and each bucket is 0.05 units wide. The cpu time allowed was 5 minutes for graphs
with 100 vertices, 10 minutes for graphs with 200 vertices, 30 minutes for graphs with 300
vertices and 50 minutes for graphs with 500 vertices. The tests were executed on Linux
systems equipped with a 2ghz Pentium 4 cpu and 512mb of ram.
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Weighted Vertex Colorings

graph wbest Foo-Fss Etb-H-Fss Etb-S-Fss Ama

unif01 100.2 41 5.402 5.667 (10) 5.402 (8) 5.402 (8) 5.402 (8)

unif01 100.2 42 5.557 5.673 (9) 5.593 (9) 5.557 (8) 5.557 (8)

unif01 100.2 43 5.657 5.844 (10) 5.657 (9) 5.657 (9) 5.657 (9)

unif01 100.5 41 10.670 10.670 (18) 10.681 (19) 10.670 (18) 10.670 (18)

unif01 100.5 42 10.398 10.398 (19) 10.398 (19) 10.398 (19) 10.398 (19)

unif01 100.5 43 11.128 11.128 (19) 11.138 (20) 11.128 (19) 11.128 (19)

unif01 100.8 41 18.579 18.584 (32) 18.584 (32) 18.600 (33) 18.584 (32)

unif01 100.8 42 18.628 18.628 (32) 18.669 (34) 18.679 (33) 18.628 (32)

unif01 100.8 43 19.039 19.039 (33) 19.050 (32) 19.071 (33) 19.039 (33)

unif01 200.2 41 8.714 9.517 (15) 9.094 (15) 8.716 (14) 8.864 (14)

unif01 200.2 42 8.417 9.482 (16) 8.759 (15) 8.591 (14) 8.554 (14)

unif01 200.2 43 8.537 9.137 (14) 8.828 (14) 8.583 (14) 8.629 (14)

unif01 200.5 41 17.922 17.972 (30) 18.470 (31) 18.140 (30) 18.070 (29)

unif01 200.5 42 17.119 17.459 (32) 17.591 (31) 17.417 (30) 17.421 (31)

unif01 200.5 43 17.409 17.548 (31) 17.812 (31) 17.642 (31) 17.471 (30)

unif01 200.8 41 32.033 32.036 (56) 32.431 (56) 32.376 (57) 32.066 (53)

unif01 200.8 42 31.469 32.185 (59) 31.726 (60) 31.840 (59) 32.062 (56)

unif01 200.8 43 31.152 31.219 (55) 31.542 (55) 31.633 (57) 31.353 (53)

unif01 300.2 41 10.951 11.928 (20) 11.274 (19) 11.152 (20) 11.241 (19)

unif01 300.2 42 11.041 12.168 (22) 11.388 (20) 11.408 (19) 11.464 (19)

unif01 300.2 43 10.761 11.992 (22) 11.241 (19) 11.207 (19) 11.107 (20)

unif01 300.5 41 22.938 23.518 (44) 23.420 (42) 23.218 (42) 23.785 (40)

unif01 300.5 42 23.579 24.459 (46) 24.342 (42) 24.000 (42) 24.113 (41)

unif01 300.5 43 23.384 23.841 (45) 24.026 (43) 23.602 (43) 23.878 (42)

unif01 300.8 41 41.557 42.225 (80) 42.411 (79) 42.404 (78) 42.330 (74)

unif01 300.8 42 42.742 44.694 (81) 43.105 (78) 43.656 (79) 43.892 (75)

unif01 300.8 43 42.440 43.575 (82) 43.443 (79) 43.541 (78) 44.025 (75)

unif01 500.2 41 16.427 18.016 (29) 17.010 (27) 16.695 (27) 17.163 (28)

unif01 500.2 42 16.214 17.707 (28) 16.788 (26) 16.377 (27) 16.899 (29)

unif01 500.2 43 16.650 18.167 (30) 17.353 (29) 16.774 (28) 17.303 (28)

unif01 500.5 41 35.917 37.321 (66) 37.306 (64) 36.829 (63) 38.198 (63)

unif01 500.5 42 35.333 36.921 (66) 36.826 (65) 36.161 (62) 37.993 (62)

unif01 500.5 43 36.730 37.776 (69) 38.086 (65) 37.562 (64) 38.955 (63)

unif01 500.8 41 65.438 68.112 (123) 67.355 (118) 66.949 (119) 68.646 (111)

unif01 500.8 42 64.534 67.994 (127) 67.401 (121) 67.386 (122) 68.437 (115)

unif01 500.8 43 67.428 69.701 (125) 69.556 (120) 69.606 (121) 70.727 (113)

Table 4.9: Tests with the Fss algorithms on random graphs. For each graph the best
value ever found wbest is reported. For each algorithm, a histogram, the value of the best
solution found; and, in parentheses, the number of colors used in the best solution are
reported. For each graph and each algorithm 10 runs with different random seed were
made. The histogram is one unit wide, and each bucket is 0.05 units wide. The best
value found for each line is in bold face. The cpu time allowed was 5 minutes for graphs
with 100 vertices, 10 minutes for graphs with 200 vertices, 30 minutes for graphs with 300
vertices and 50 minutes for graphs with 500 vertices. The tests were executed on Linux
systems equipped with a 2ghz Pentium 4 cpu and 512mb of ram.
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graph wbest Foo-Iss Etb-H-Iss Etb-S-Iss

unif01 100.2 41 5.402 5.530 (8) 5.503 (9) 5.402 (8)

unif01 100.2 42 5.557 5.621 (9) 5.557 (8) 5.557 (8)

unif01 100.2 43 5.657 5.735 (9) 5.716 (10) 5.657 (9)

unif01 100.5 41 10.670 10.670 (18) 10.715 (18) 10.670 (18)

unif01 100.5 42 10.398 10.398 (19) 10.398 (19) 10.398 (19)

unif01 100.5 43 11.128 11.128 (19) 11.138 (20) 11.128 (19)

unif01 100.8 41 18.579 18.584 (32) 18.584 (32) 18.584 (32)

unif01 100.8 42 18.628 18.628 (32) 18.628 (32) 18.628 (32)

unif01 100.8 43 19.039 19.039 (33) 19.050 (32) 19.050 (32)

unif01 200.2 41 8.714 9.602 (15) 9.098 (14) 8.901 (13)

unif01 200.2 42 8.417 9.279 (14) 8.880 (14) 8.552 (14)

unif01 200.2 43 8.537 9.319 (14) 8.996 (14) 8.540 (14)

unif01 200.5 41 17.922 18.179 (29) 18.682 (29) 18.387 (30)

unif01 200.5 42 17.119 17.422 (30) 17.448 (30) 17.429 (30)

unif01 200.5 43 17.409 17.417 (30) 17.876 (30) 17.458 (29)

unif01 200.8 41 32.033 32.268 (53) 32.384 (54) 32.546 (56)

unif01 200.8 42 31.469 31.629 (59) 32.195 (60) 32.040 (57)

unif01 200.8 43 31.152 31.305 (53) 32.027 (54) 31.972 (54)

unif01 300.2 41 10.951 12.068 (20) 11.421 (19) 10.987 (19)

unif01 300.2 42 11.041 12.308 (21) 11.504 (19) 11.104 (18)

unif01 300.2 43 10.761 12.147 (20) 11.308 (18) 10.993 (19)

unif01 300.5 41 22.938 23.037 (43) 24.051 (41) 23.197 (41)

unif01 300.5 42 23.579 23.815 (42) 24.660 (42) 24.184 (41)

unif01 300.5 43 23.384 23.715 (42) 23.956 (44) 23.624 (42)

unif01 300.8 41 41.557 41.697 (76) 42.424 (77) 42.832 (76)

unif01 300.8 42 42.742 42.742 (77) 44.022 (78) 43.957 (79)

unif01 300.8 43 42.440 42.995 (74) 44.319 (77) 44.203 (76)

unif01 500.2 41 16.427 18.303 (26) 17.282 (27) 16.642 (27)

unif01 500.2 42 16.214 18.049 (28) 16.952 (27) 16.435 (26)

unif01 500.2 43 16.650 18.678 (28) 17.329 (26) 16.796 (27)

unif01 500.5 41 35.917 36.367 (63) 37.776 (62) 36.515 (62)

unif01 500.5 42 35.333 36.349 (65) 36.958 (63) 36.112 (64)

unif01 500.5 43 36.730 37.378 (63) 38.866 (62) 37.495 (64)

unif01 500.8 41 65.438 66.231 (115) 68.526 (119) 68.037 (116)

unif01 500.8 42 64.534 65.940 (116) 67.473 (117) 66.995 (120)

unif01 500.8 43 67.428 68.252 (119) 69.948 (121) 69.614 (119)

Table 4.10: Tests with the Iss algorithms on random graphs. For each graph the best
value ever found wbest is reported. For each algorithm, a histogram, the value of the best
solution found; and, in parentheses, the number of colors used in the best solution are
reported. For every graph and for every algorithm, three times ten runs were executed
with ten different random seeds and three different values for k, namely k�, k� + 2 and
k�+5, where k� is the number of colors for which the best solution with the Fss algorithms
was found in the first series of tests (see Table 4.6). The histograms are one unit wide,
and each bucket is 0.05 units wide. The best value found for each line is in bold face.
The cpu time allowed was 5 minutes for graphs with 100 vertices, 10 minutes for graphs
with 200 vertices, 30 minutes for graphs with 300 vertices and 50 minutes for graphs with
500 vertices. The tests were executed on Linux systems equipped with a 2ghz Pentium 4
cpu and 512mb of ram.

118



Weighted Vertex Colorings

graph w� wbest Etb-S-Ama Ama

mcm200 25 5 13.751 13.751 13.751 (29) 13.751 (29)
mcm200 30 4 16.041 16.041 16.041 (33) 16.041 (33)
mcm300 30 5 16.048 16.048 16.048 (34) 16.048 (34)
mcm300 36 6 19.262 19.262 19.262 (41) 19.262 (41)
mcm500 20 19 12.673 12.673 12.673 (38) 12.673 (38)
mcm500 49 5 25.771 25.771 28.209 (57) 25.771 (53)

Table 4.11: Tests with a large cpu time limit for the Ama and the Etb-S-Ama algorithms
on mcm-graphs with 200 vertices or more. For each graph, the optimum w� and the best
value ever found wbest is reported. For each algorithm and for each graph, a histogram,
the value of the best solution found; and, in parentheses, the number of colors used in
the best solution are reported. For every graph and for every algorithm, 5 runs with five
different random seeds were executed. The histograms are one unit wide, and each bucket
is 0.05 units wide. The best value found for each line is in bold face. The cpu time
allowed was 1 hour for graphs with 200 vertices, 2 hours for graphs with 300 vertices and
5 hours for graphs with 500 vertices. The tests were executed on Linux systems equipped
with a 2ghz Pentium 4 cpu and 512mb of ram.
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graph wbest Etb-S-Ama Ama

unif01 200.2 41 8.714 8.767 (14) 8.749 (14)
unif01 200.2 42 8.417 8.417 (15) 8.506 (13)
unif01 200.2 43 8.537 8.571 (13) 8.568 (14)
unif01 200.5 41 17.922 17.922 (30) 17.922 (30)
unif01 200.5 42 17.119 17.206 (30) 17.267 (30)
unif01 200.5 43 17.409 17.531 (29) 17.432 (29)
unif01 200.8 41 32.033 32.078 (53) 32.333 (52)
unif01 200.8 42 31.469 31.827 (57) 32.077 (57)
unif01 200.8 43 31.152 31.198 (53) 31.246 (53)
unif01 300.2 41 10.951 11.164 (19) 10.989 (18)
unif01 300.2 42 11.041 11.270 (19) 11.138 (20)
unif01 300.2 43 10.761 10.981 (19) 10.865 (19)
unif01 300.5 41 22.938 23.532 (41) 22.944 (41)
unif01 300.5 42 23.579 24.187 (42) 23.579 (41)
unif01 300.5 43 23.384 23.815 (41) 23.384 (40)
unif01 300.8 41 41.557 41.557 (77) 41.726 (75)
unif01 300.8 42 42.742 43.369 (76) 43.262 (75)
unif01 300.8 43 42.440 43.249 (73) 43.197 (74)
unif01 500.2 41 16.427 17.223 (27) 16.697 (28)
unif01 500.2 42 16.214 17.152 (27) 16.872 (28)
unif01 500.2 43 16.650 17.485 (28) 17.271 (28)
unif01 500.5 41 35.917 38.243 (62) 37.037 (64)
unif01 500.5 42 35.333 37.700 (63) 36.880 (61)
unif01 500.5 43 36.730 38.766 (62) 37.379 (62)
unif01 500.8 41 65.438 68.238 (109) 65.992 (110)
unif01 500.8 42 64.534 68.985 (112) 65.557 (110)
unif01 500.8 43 67.428 70.104 (113) 67.446 (110)

Table 4.12: Tests with a large cpu time limit for the Ama and the Etb-S-Ama algorithms
on random graphs with 200 vertices or more. For each graph, the best value ever found
wbest is reported. For each algorithm, a histogram, the value of the best solution found;
and, in parentheses, the number of colors used in the best solution are reported. For every
graph and for every algorithm, 5 runs with five different random seeds were executed. The
histograms are one unit wide, and each bucket is 0.05 units wide. The best value found for
each line is in bold face. The cpu time allowed was 1 hour for graphs with 200 vertices,
2 hours for graphs with 300 vertices and 5 hours for graphs with 500 vertices. The tests
were executed on Linux systems equipped with a 2ghz Pentium 4 cpu and 512mb of ram.
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Weighted Vertex Colorings

graph w� wbest Foo-Iss Etb-S-Iss
mcm200 25 5 13.751 13.751 13.751 (29) 13.751 (29)
mcm200 30 4 16.041 16.041 16.083 (33) 16.112 (33)
mcm300 30 5 16.048 16.048 16.048 (34) 18.888 (36)
mcm300 36 6 19.262 19.262 19.262 (41) 22.089 (43)
mcm500 20 19 12.673 12.673 12.673 (38) 12.673 (38)
mcm500 49 5 25.771 25.771 33.916 (53) 39.669 (55)

Table 4.13: Tests with a large cpu time limit for the Foo-Iss and the Etb-S-Iss algo-
rithms on mcm-graphs with 200 vertices or more. For each graph, the optimum w� and
the best value ever found wbest is reported. For each algorithm and for each graph, a
histogram, the value of the best solution found; and, in parentheses, the number of colors
used in the best solution are reported. For every graph and for every algorithm, two times
five runs with different random seeds have been executed: five runs with k = k� and five
runs with k = k� + 2, where k� is the number of colors used in the best coloring in Table
4.11. The histograms are one unit wide, and each bucket is 0.05 units wide. The best
value found for each line is in bold face. The cpu time allowed was 1 hour for graphs
with 200 vertices, 2 hours for graphs with 300 vertices and 5 hours for graphs with 500
vertices. The tests were executed on Linux systems equipped with a 2ghz Pentium 4 cpu

and 512mb of ram.
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graph wbest Foo-Iss Etb-S-Iss
unif01 200.2 41 8.714 9.618 (14) 8.714 (14)
unif01 200.2 42 8.417 9.069 (15) 8.483 (14)
unif01 200.2 43 8.537 9.400 (15) 8.537 (14)
unif01 200.5 41 17.922 17.947 (28) 18.242 (30)
unif01 200.5 42 17.119 17.119 (29) 17.620 (30)
unif01 200.5 43 17.409 17.409 (30) 17.627 (29)
unif01 200.8 41 32.033 32.205 (54) 32.624 (55)
unif01 200.8 42 31.469 31.469 (57) 32.038 (58)
unif01 200.8 43 31.152 31.445 (53) 32.046 (52)
unif01 300.2 41 10.951 11.755 (19) 10.951 (19)
unif01 300.2 42 11.041 12.689 (18) 11.041 (19)
unif01 300.2 43 10.761 12.359 (19) 10.761 (19)
unif01 300.5 41 22.938 22.938 (42) 23.493 (41)
unif01 300.5 42 23.579 23.647 (40) 24.198 (42)
unif01 300.5 43 23.384 23.454 (41) 24.211 (41)
unif01 300.8 41 41.557 41.680 (75) 42.763 (77)
unif01 300.8 42 42.742 42.804 (76) 43.890 (77)
unif01 300.8 43 42.440 42.728 (75) 44.539 (75)
unif01 500.2 41 16.427 18.352 (27) 16.427 (27)
unif01 500.2 42 16.214 18.408 (28) 16.214 (27)
unif01 500.2 43 16.650 18.762 (28) 16.650 (28)
unif01 500.5 41 35.917 35.917 (62) 36.732 (62)
unif01 500.5 42 35.333 35.333 (64) 35.829 (61)
unif01 500.5 43 36.730 36.730 (64) 37.863 (61)
unif01 500.8 41 65.438 65.438 (112) 70.406 (112)
unif01 500.8 42 64.534 64.534 (111) 71.610 (111)
unif01 500.8 43 67.428 67.428 (112) 72.551 (111)

Table 4.14: Tests with a large cpu time limit for the Foo-Iss and the Etb-S-Iss algo-
rithms on random graphs with 200 vertices and more. For each graph, the optimum w�

and the best value ever found wbest is reported. For each algorithm and for each graph, a
histogram, the value of the best solution found; and, in parentheses, the number of colors
used in the best solution are reported. For every graph and for every algorithm, two times
five runs with different random seeds have been executed: five runs with k = k� and five
runs with k = k� + 2, where k� is the number of colors used in the best coloring in Table
4.11. The histograms are one unit wide, and each bucket is 0.05 units wide. The best
value found for each line is in bold face. The cpu time allowed was 1 hour for graphs
with 200 vertices, 2 hours for graphs with 300 vertices and 5 hours for graphs with 500
vertices. The tests were executed on Linux systems equipped with a 2ghz Pentium 4 cpu

and 512mb of ram.
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Conclusion

In the first chapter, we presented our work on oligomatic colorings. We first introduced
pentaK3,3, an oligomatic graph which was discovered during our attempts to prove that
oligomatic graphs do not exist. From this discovery, we generalized the construction
of pentaK3,3 to universal graphs. We have improved known bounds for the chromatic
number of universal graphs and have determined the chromatic number and criticality
of all graphs U(k, λ) with k ≤ 10 using theoretical arguments and the result of the
Partialcol heuristic. The chromatic number and criticality of some larger universal
graphs are still unknown.

Since there are graphs and colorings such that every vertex sees fewer than χ different
colors in its neighborhood, we investigated the question of finding how large the neigh-
borhood must be to ensure that there is a vertex which sees χ different colors. The main
result states that, if a graph is colored with χ+ p colors, then there exists a vertex v such
that v sees χ different colors within a distance

⌈
p
2

⌉
+ 1. The question of whether this

bound is tight or not is still open.

At the end of the chapter, we investigated the existence of oligomatic graphs in special
classes of graphs, such as Halin graphs, claw-free graphs, and line graphs. Except for Halin
graphs, the question (of whether oligomatic graphs exist in these classes) is only partially
answered. The most intriguing open question concerns the existence or non-existence of
planar oligomatic graphs. Note that oligomatic graphs are at least four-chromatic and
that planar graphs are at most four-chromatic.

In Chapter Two, we have presented a technique to improve the performance of a tabu
search by introducing several reactive schemes to automatically adjust the tabu tenure,
a crucial parameter for tabu search. The techniques developed are simple and flexible
enough such that they can be added easily to any existing implementation of tabu search.
We have applied these techniques to various implementations of tabu search for solving the
graph coloring problem (Gcp) and the weighted graph coloring problem (Wcp). We have
further introduced a similarity measure to compare two graph colorings. This measure has
been tested successfully for a reactive scheme and as a selection criterion in an adaptive
memory algorithm for the Wcp.

In Chapter Three, we presented the Partialcol heuristic to solve the Gcp. It is a local
search heuristic based on tabu search. It uses partial solutions, which is a barely explored
approach for the Gcp as well as for general combinatorial optimization problems. This
approach has much potential, indicated by the performance of Partialcol, as well as by
recent work of other researchers. Partialcol is the first graph coloring heuristic which
finds an optimal coloring for the Dimacs benchmark graph flat300 28 0. For further
research, we suggest integrating both the Partialcol and Tabucol algorithms into an

123



adaptive memory algorithm to take advantage of the benefits of both approaches.

In the final chapter, we have presented a weighted version of the graph coloring problem.
We have developed two heuristics based on tabu search. The first uses feasible solutions,
and the second uses infeasible solutions. The advantage of the first approach is that,
despite the very convenient fact that the number of colors to be used is determined by the
algorithm (and not by the user), the performance of each approach is approximately equal
to that of the other. We have also implemented several reactive schemes to adapt the tabu
tenure. Based on the feasible solution approach, we have devised an adaptive memory
algorithm. Further, we have presented several ways of generating instances for the Wcp.
Tests have shown that instances which have been generated to have a known optimum
are generally easy to solve for most of the developed algorithms. Our adaptive memory
algorithm was also capable of solving all these instances to optimality. Experiments with
the developed algorithms have shown that a reactive scheme is not suited for use with an
adaptive memory algorithm because the application of the local search is much too short
and the reactive scheme does not have enough time to adjust the tabu tenure properly.
We suggest investigation of ways to adjust the tabu tenure over several applications of the
local search procedure in order to avoid the need of tuning the static tenure. Further, we
suggest building an adaptive memory algorithm using both, the feasible solution approach
and the infeasible solution approach.

Graph coloring is an exciting field where intriguing questions and beautiful conjectures
come up faster than they can be answered or proven. We hope that the questions raised
in the first chapter will stimulate further research. Graph coloring is also a wonderful
playground to motivate the development of cutting-edge heuristics. We are confident
that the basic ideas developed in this work for improving the efficiency of graph coloring
procedures will also lead to substantial improvements in the solution methods of more
general combinatorial optimization procedures. We are looking forward to seeing these
ideas and procedures exploited and extended to other areas.
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[Bré79] D. Brélaz. New Methods to Color Vertices of a Graph. Communications of
the Association for Computing Machinery, 22:251–256, 1979.

[Bro41] R.L. Brooks. On Colouring the Nodes of a Network. Proc. Cambridge Phil.
Soc., 37:194–197, 1941.

[BT94] R. Battiti and G. Tecchiolli. The Reactive Tabu Search. ORSA Journal on
Computing, 6:126–140, 1994.

[Car86] Michael W Carter. A Survey of Practical Applications of Examination
Timetabling Algorithms. Oper. Res., 34(2):193–202, 1986.

[Car04] D. Cariolaro. The 1-Factorization Problem and Some Related Conjectures.
PhD thesis, The University of Reading, Reading, 2004.

[Cay79] A. Cayley. On the Colourings of Maps. Proc. Royal Geography Society,
1:259–261, 1879.

[CH89] A.G. Chetwynd and A.J.W. Hilton. 1-factorizing Regular Graphs of High
Degree – an Improved Bound. Discrete Math, 75:103–112, 1989.

[Cha82] G.J. Chaitin. Register Allocation and Spilling via Graph Coloring. Proceed-
ings of ACM SIGPLAN 82 Symposium on Compiler Construction, pages
98–105, 1982.

[CHdW87] M. Chams, A. Hertz, and D. de Werra. Some Experiments with Simulated
Annealing for Coloring Graphs. European Journal of Operational Research,
32:260–266, 1987.

[Cul] J. Culberson. Graph Coloring Resources. http://www.cs.ualberta.ca/

~joe/Coloring/. Webpage.

[Cul92] J. C. Culberson. Iterated Greedy Graph Coloring and the Difficulty Land-
scape. Technical report, Department of Computer Sciences, University of
Alberta, 1992.

[Dav91] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, 1991.

[DdWMP01] M. Demange, D. de Werra, J. Monnot, and V. Th. Paschos. Time Slot
Scheduling of Compatible Jobs. Technical Report 182, Université Paris IX
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[Mer96] M. Meringer. Erzeugung Regulärer Graphen. Master’s thesis, Universität
Bayreuth, 1996.

[Mer99] M. Meringer. Fast Generation of Regular Graphs and Construction of Cages.
Journal of Graph Theory, 30:137–146, 1999.

[Min80] G. J. Minty. On Maximal Independent Sets of Vertices in Claw Free Graphs.
J. Combin. Th. B, 28:284–304, 1980.

[MMT05] E. Malaguti, M. Monaci, and P. Toth. A Metaheuristic Approach for the
Vertex Coloring Problem. Technical Report OR/05/3, DEIS – University of
Bologna, Italy, 2005.

[Mor96] C. Morgenstern. Distributed Coloration Neighborhood Search. Discrete
Mathematics and Theoretical Computer Science, 26:335–358, 1996. Ameri-
can Mathematical Society.

[MPdW+04] J. Monnot, V. Th. Paschos, D. de Werra, M. Demange, and B. Escoffier.
Weighted Coloring on Planar, Bipartite and Split Graphs: Complexity and
Improved Approximation. In ISAAC, pages 896–907, 2004.

[MT96] A. Mehrotra and M. Trick. A Column Generation Approach for Graph
Coloring. INFORMS Journal On Computing, 8(4):344–354, 1996.

[NT74] G. A. Neufeld and J. Tartar. Graph Coloring Conditions for the Existence of
Solutions to the Timetable Problem. Commun. ACM, 17(8):450–453, 1974.

[NT01] D. Nakamura and A. Tamura. A Revision of minty’s Algorithm for Finding
a Maximum Weight Stable set of a Claw-free Graph. J. Oper. Res. Soc.
Japan, 44:194–204, 2001.

[RT95] Y. Rochat and E. Taillard. Probabilistic Diversification and Intensification
in Local Search for Vehicle Routing. Journal of Heuristics, 1:147–167, 1995.

129



[Sch04] D. Schindl. Some Combinatorial Optimization Problems in Graphs with
Applications in Telecommunications and Tomography. PhD thesis, École
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