
THÈSE NO 3362 (2005)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE À LA FACULTÉ SCIENCES DE LA VIE

Institut de biosciences intégratives

PROGRAMME DOCTORAL EN BIOTECHNOLOGIE ET GÉNIE BIOLOGIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

diplôme d'ingénieur chimique, Université de Patras, Grèce
de nationalité hellénique et canadienne

acceptée sur proposition du jury:

Lausanne, EPFL
2005

Prof. J. Hubbell, directeur de thèse
Prof. R. Gurny, rapporteur
Prof. H. Merkle, rapporteur
Prof. N. Tirelli, rapporteur

DEVELOPMENT OF A NOVEL DRUG DELIVERY 
SYSTEM BASED ON POLYMERIC, THERMORESPONSIVE, 

HYDROGEL NANOPARTICLES

Dimitrios MISIRLIS



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii

Table of Contents 

 

Summary  v 

Sommario  vii 

Chapter 1 General Introduction 1 

Chapter 2 Amphiphilic Hydrogel Nanoparticles. Preparation, 
Characterization and Preliminary Assesment as New 
Colloidal Drug Carriers 

27 

Chapter 3 Doxorubicin Encapsulation and Diffusional Release 
from Stable, Polymeric, Hydrogel Nanoparticles 

51 

Chapter 4 An Alternative Initiation Scheme for Inverse 
Emulsion Polymerization and Addition of 
Functionality to Nanoparticles 

71 

Chapter 5 Thermally-Induced Responses in Nanoparticle 
Assemblies: Possible Formation of a Colloidal Glass 
and its Perspective Applications 

83 

Chapter 6 In Vitro Cell–Nanoparticle Interaction Studies   107 

Chapter 7 Outlook 125 

Acknowledgements  138 

Curriculum Vitae  140 

 

 

 

 

 

 

 

 

 

 

 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

Summary 

 

Carrier-mediated drug delivery has emerged as a powerful methodology for the 

treatment of various pathologies. The therapeutic index of traditional and novel drugs is 

enhanced via the increase of specificity due to targeting of drugs to a particular tissue, cell or 

intracellular compartment, the control over release kinetics, the protection of the active agent 

or a combination of the above. Nanoparticles (NPs) were proposed as drug carriers over 30 

years ago and have received growing attention since, mainly due to their stability, enhanced 

loading capabilities and control over physicochemical properties. The unique pathophysiology 

of solid tumors allows passive accumulation of NPs at these sites upon intravenous injection. 

Furthermore, stealth NPs with long circulation times are more efficient in reaching tumor 

tissue.  

In addition to systemic administration, localized drug release may be achieved using 

macroscopic drug depots close to the target site. Among various systems considered for this 

approach, in situ-forming biomaterials in response to environmental stimuli have gained 

considerable attention, due to the non-invasive character, reduction of side effects associated 

with systemic administration and better control over biodistribution. 

This thesis focuses on the design, preparation and in vitro characterization of 

polymeric, hydrogel nanoparticles with thermoresponsive properties. Inverse emulsion 

polymerization was selected for their fabrication via cross-linking of acrylate derivatives of 

poly(ethylene glycol) (PEG) and poly(ethylene glycol)-bl-poly(propylene glycol)-bl-

poly(ethylene glycol) (PEG-PPG-PEG) copolymers, also known as Pluronics®. This 

polymerization technique allows for control over size, is versatile in respect to initiation and 

composition, and proceeds to full double-bond conversion in relatively short times. 

Incorporation of functional comonomers in the polymeric network additionally offers the 

possibility of further modifications, as is demonstrated by fluorescent labeling of the colloids. 

Moreover, hydrogel NPs of 100-500 nm are stable against aggregation as aqueous dispersions 

and as freeze-dried solid powders.  

The particles we discuss here, may be visualized as nanoscale, three-dimensional, 

polymeric networks consisting of PPG-rich, hydrophobic domains surrounded by a 

hydrophilic, PEG-rich matrix. The permanence of domains similar in hydrophobicity to 

Pluronic micellar cores, but insensitive to dilution under the critical micellar concentration, 

allows the accomodation of poorly water-soluble drugs through hydrophobic interactions, as 
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was experimentally shown using the anticancer agent doxorubicin. A fast and efficient solvent 

evaporation technique was developed in order to physically encapsulate the drug. 

Doxorubicin is thus partially protected from degradation and diffuses out of the NPs without a 

burst, over one week under sink conditions in vitro.  

Thermosensitivity of nanoparticles is manifested as a size reduction of non-interacting 

colloids in dilute dispersions and as a macroscopic, fluid-to-solid, physical transition of 

concentrated samples. The driving force of these phenomena is an entropically-driven 

deswelling of the hydrogel NPs with increasing temperature, which leads to their hardening. 

At concentrations above which there is physical contact of neighboring particles, this intra-

particulate event results in the dynamic arrest of particles within a ‘cage’ formed by their 

neighbors. This mild and reversible transition occurs at a clinically-relevant temperature range 

(25-30°C), with no syneresis or by-product formation, and is compatible with living cells. 

Upon dissolution in body fluids, the colloidal macroscopic drug depot will give rise to a 

colloidal dispersion; however, it is notable that the processes of encapsulated drug release and 

dissolution are independent and may be tailored on a case-to-case basis.  

In vitro cell culture studies revealed that nanoparticle cytotoxicity was negligible even 

at high concentrations. Interactions with macrophage-like cells, intended to model cells of the 

mononuclear phagocyte system, showed limited colloidal uptake which is not influenced by 

the presence of serum, but is energy dependent to a considerable extent (approx. 30%). We 

believe this low association stems from the hydrophilic, protein-repellent nature of the 

materials employed and suggests a stealth character. 

In conclusion, the nanoparticles presented here are well suited for certain drug delivery 

applications, including cancer therapy and in the prevention of post-operative adhesions, both 

in the form of injectable dilute dispersions or as in situ gelling thermoresponsive biomaterials. 
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Sommario 

 

Il trasporto mediato di farmaci è risultato una metodologia molto valida nel 

trattamento di varie patologie. L’indice terapeutico di farmaci tradizionali e moderni è 

migliorato grazie all’ incremento di specificità dovuto al raggiungimento preciso di un 

particolare tessuto, cellula o compartimento intracellulare,  al controllo della cinetica di 

rilascio, alla protezione del principio attivo o alla combinazione di queste. Le nanoparticelle 

(NP) sono state proposte come trasportatori di farmaci da ormai 30 anni e ricevono sempre 

più attenzione dal mondo scientifico, principalmente dovuto alla loro stabilità, a un efficiente 

inglobamento del farmaco e al controllo delle proprietà psico-chimiche. Unicamente la 

patologia fisica di tumori solidi permette l’accumulazione passiva delle NP per mezzo di un 

iniezione intravenosa.  Inoltre alcune NP che possiedono lunghi tempi di circolazione sono 

più efficienti nel raggiungere il tessuto tumorale. 

Oltre alla somministrazione sistemica, il rilascio localizzato del farmaco potrebbe 

essere conseguito depositando il farmaco nelle vicinanze del sito target. Tra i vari sistemi 

considerati in tale contesto, i biomateriali originati in sito, in risposta a stimoli ambientali 

sono i più accreditati, in quanto la somministrazione non è invasiva, gli effetti secondari 

associati alla somministrazione sistemica, sono ridotti e c’è un maggiore controllo della 

biodistribuzione. 

Tale progetto di tesi è focalizzato alla progettazione, alla preparazione e alla 

caratterizzazione in vitro nanoparticelle polimeriche (hydrogel), con proprietà termo-sensibili. 

Per la fabbricazione via cross-linking di derivati acrilati di poly(ethylene glicol) (PEG) e 

copolimeri a base di poly(ethylene glycol)-bl-poly(propylene glycol)-bl-poly(ethylene glycol) 

(PEG-PPG-PEG), conosciuto anche come Pluronics, è stata utilizzata la polimerizzazione in 

emulsione inversa. Tale tecnica permette il controllo delle dimensioni delle NP, è versatile 

rispetto alla composizione di tali  e all’iniziazione della polimerizzazione, e raggiunge la 

conversione totale relativamente in breve tempo. Tra l’ altro la possibilità di incorporare  

comonomeri funzionali nella rete polimerica offre la possibilità di ulteriori modifiche, come è 

dimostrato dalla marcatura fluorescente dei colloidi. In aggiunta le nanoparticelle di hydrogel, 

di 100-500 nm, come le sospensioni acquose e le polveri solide liofilizzate, sono stabili contro 

l’aggregazione. 

Le particelle discusse fina ad ora possono essere considerate come reti polimeriche 

tridimensionali, costituite da domini idrofobici ricchi in PPG circondati da una matrice 



 viii 

idrofilia ricca in PEG. La permanenza dei domini, con idrofobicità simile al cuore pluronico 

della micella, ma insensibile alla diluizione al di sotto della CMC, permette la collocazione di 

farmaci poco idrosolubili via interazioni idrofobiche. Questo è stato sperimentalmente 

dimostrato con la Doxorubicina, l’agente antitumorale. Una tecnica di evaporazione del 

solvente veloce ed efficiente è stata sviluppata con lo scopo di incapsulare il farmaco. 

Doxoru... è quindi parzialmente protetta dalla degradazione e diffonde dalla NP in modo 

graduale e controllato per più di una settimana in vitro. 

La termosensibilità delle NP è espressa come riduzione delle dimensioni dei colloidi 

non-interattivi in sospensioni diluite e come una transizione macroscopica liquida-solida in un 

mezzo concentrato. La forza motore di tali fenomeni è il rilascio di acqua dalle NP indotto 

dall’aumento dell’entropia associato all’aumento di temperatura, che porta alla loro 

solidificazione.  Inoltre tale evento intra-particellare,  in presenza di contatto fra le particelle 

adiacenti dovuto a concentrazioni abbastanza elevate, porta ad un dinamico arresto delle 

particelle in una “gabbia” formata dalle stesse particelle vicine. Questa transizione reversibile 

e non brusca avviene in un intervallo di temperatura (25-30°C) di applicabilità in campo 

clinico, senza degradazione del biomateriale e formazione di sottoprodotti, ed è compatibile 

con cellule viventi. Dopo la  diluizione nei fluidi corporali, il deposito colloidale solido del 

farmaco si trasformerà in sospensione colloidale. Quindi è evidente che i processi di 

dissoluzione del farmaco incapsulato e di dissoluzione sono indipendenti e possono essere 

ingegnerizzati caso per caso. 

Studi in vitro hanno rivelato che la citotossicità delle nanoparticelle è trascurabile 

anche ad alte concentrazioni. Le interazioni con cellule di tipo macrofago, intese come 

modello cellulare del sistema mononucleare fagocitico, mostrano limitata fagocitosi, la quale 

non viene influenzata dalla presenza del siero, ma risulta notevolmente dipendente 

dall’energia (appros. 30%). Noi crediamo che questa debole associazione sia dovuta alla 

natura idrofilica, protein-repellente del materiale utilizzato e suggerisce un carattere di auto-

occultamento. 

In conclusione, le nanoparticelle presentate in tale progetto sono un efficiente 

strumento nel campo del trasporto di farmaci, soprattutto nelle terapie tumorali e nella 

prevenzione delle adesioni post-operatorie,  utilizzandole in forma di sospensione iniettabile 

diluita o  di biomateriali creati in situ. 
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1.1  Drug delivery 

 

Humankind’s efforts to confront disease dates back to early civilization. Substances 

taken from nature were tested and used to treat dysfunctions of physiological life processes, 

pain and discomfort. With the advancement of science, the active ingredients of these 

materials, the drugs, were identified, isolated and in many cases their mechanism of action 

elucidated. New drug candidates are tested even today in the quest to add increasingly 

effective tools against diseases. 

Drug characteristics differ dramatically, even those aimed to treat the same symptoms; 

chemical composition, size, hydrophilicity and potency identify molecules whose function 

may be specific or highly complex. An increasing understanding of cellular biology at the 

molecular level, combined with the (decoding) of the human genome, and a technological 

breakthrough in the field of proteomics and DNA micro-arrays, has introduced even more 

applicants, like peptides and nucleic acids (gene delivery). 

Drug activity is a result of molecular interaction(s) in certain cells; it is therefore easily 

deduced that it is necessary for the drug to reach somehow the site of action following 

administation (oral, intravenous, local, transdermal, etc.) at sufficient concentrations. The 

scientific field dealing with this issue is known as drug delivery and has essentially the 

following aim: to deliver the drug at the right place, at the right concentration for the right 

period of time. When this is impossible by simply selecting an appropriate administration 

route, or if such administration causes patient discomfort, strategies based on the association 

of the drug with a carrier (a drug delivery system – DDS) are an alternative1, 2. Additional 

motivations for such approaches include the reduction of required resources for therapy, 

accomplished by an increase of the drug’s therapeutic index and the prevention of frequent, 

unpleasant or expensive treatments. 

Drug delivery systems, ranging from implantable electronic devices to single polymer 

chains, are required to be compatible with processes in the body (biocompatibility) as well as 

with the drug to be delivered. DDS alter the biodistribution and pharmacokinetics of the 

assosciated drug: that is the time-dependent percentage of the administered dose in the 

different organs of the body. Furthermore, obstacles arising from low drug solubility, 

degradation (environmental or enzymatic), fast clearance rates, non-specific toxicity, inability 

to cross biological barriers, just to mention a few, may be addressed by DDS2.  
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Overall, the challenge of increasing the therapeutic effect of drugs, with a concurrent 

minimization of side effects, can be tackled through proper design and engineering of the 

DDS, in a case-to-case manner1, 3.  

 

1.2  Long-circulating colloidal drug carriers 

 

Nano-sized colloids are a major class of DDS1, 4. Administration (oral, intravascular) 

generally involves the residence and travel of the colloids in the bloodstream and their 

confrontation with the body’s defense mechanisms. In order to allow a therapeutically 

relevant amount of carrier (and therefore drug) to reach its target and release its payload, long 

circulation times are crucial5, 6. The carrier leaves blood circulation by slow processes; long 

circulating vectors possess therefore a distinct advantage because of repeated passage through 

the target site. 

Firstly, dimensions and structure of vessels establish size limitations on carrier design. 

Colloids larger than a few micrometers accumulate in the lung capillaries, while sufficiently 

small structures could escape from circulation through intercellular junctions of healthy 

endothelium (e.g. lymph nodes endothelium7), or may be removed by the sinus endothelium 

of the bone marrow8. A large amount of in vivo data have established an optimal size range of 

20-200nm for prolonged blood residence6.   

Circumventing the mononuclear phagocyte system (MPS), consisting mainly of 

monocytes and macrophages (e.g. Kuppfer liver cells, Sleen red pulp macrophages), is an 

additional step towards succesful targeted delivery.  

Recognition as foreign object and removal from circulation is mediated by surface 

interactions between cell and carrier. Blood proteins adsorb readily on colloids, in a pattern 

and kinetics which depend on its surface physicochemical properties (size, shape, charge 

density, hydrophobicity etc.)9-11. Opsonins are proteins that promote the activation of the 

complement system and/or assist in phagocytic uptake by macrophages. Prevention or delay 

of opsonin adsorption, by surface modification, has proven to be a succesful strategy for 

enhancement of circulation life times5, 6. Among the surface modifiers examined, 

poly(ethylene glycol) (PEG) is certainly the most famous12-14. Hydrated, non-ionic and highly 

flexible, PEG chains form a protein-repellent layer around the carrier. The density, 

homogeneity, thickness and method of attachment (covalent, adsorbed, entrapped) of the layer 

are key issues for efficient shielding of hydrophobic and/or charged domains13, 15. 
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Dysopsonins on the other hand, are proteins that suppress recognition by macrophages; 

favoring their adsorption at the expense of opsonins is also a promising approach towards 

higher blood retention5, 6.  

Furthermore, some molecules have been identified as markers of self: for example, the 

integrin associated protein CD47 is essential for red blood cell longevity16. Display of this 

biomimetic marker on the surface emulsions reduced uptake by macrophages in vitro17, 

although in vivo studies are still lacking.  

As a final remark we would like to note that perhaps the most powerful strategy to 

prolong circulation life-times might be the appropriate choice of chemical and material 

properties of the carrier, rather that its coating. 

 

1.3  Cancer as a target of DDS 

 

Progress in fundamental cancer biology has not yet been met by a comparable 

advancement in its clinical treatment. Fundamental reason for this discrepancy is the inability 

to selectively reach and eliminate tumor tissue with marginal damage to healthy organs rather 

than the availability of potent chemotherapeutics1, 18. Cancer cell targeting by DDS aims at 

increasing selectivity and overcoming biological barriers, while transporting higher drug 

amounts1.  

 Generally, targeting may be a result of (i) the unique tissue physiology of the target 

(passive targeting) (ii) a specific recognition of target cells by carrier-conjugated molecules 

(active targeting) (iii) a localized external energy activation or (iv) a synergistic combination 

of the above strategies. In tumor targeting all the above mentioned strategies are being 

investigated. 

 

1.3.1 Enhanced Permeation and Retention (EPR) effect  

Tumor angiogenesis is dysregulated as a consequence of rapid cancer growth and 

leads to a physiologically and structurally defective formation of vasculature19. The 

architectural anarchy, combined with an overproduction of permeability enhancers and 

impairement of lymphatic drainage, results in the preferential extravasation and retention of 

high molecular weight (MW) macromolecules and colloids in developing tumors, a feature 

which has been termed ‘enhanced permeation and retention effect’20. Although a complete 

understanding of this phenomenon remains elusive (including a debate on whether 
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extravasation occurs via intracellular gaps21 or the vesicular-vacuolar organelles22), the EPR 

effect is the most widely used targeting method, with clinical products based on it. 

 

 

Figure 1.1 A schematic representation of the EPR effect; healthy endothelium prevents 
extravasation of high MW molecules and colloids, whereas low MW agents are drained by the 
lymphatics (left). Dysfunctional lymphatics and highly permeable vascular endothelium allow 
the preferential accumulation and retention of macromolecules and colloids, in solid tumors 
(right). 
 

Accumulation is size dependent: low MW drugs also permeate into tumor interstitium, but 

rapidly diffuse out into the bloodstream. Moreover, a ‘pore size’ cut-off, which is dependent 

on tumor type, progression and site has been established in animal models23; qualitative 

correlation is assumed for human cancers.  

It should be kept in mind that this unique microphysiology, which may be exploited for 

targeting, is a source of obstacles as well: high interstitial pressure and appearance of necrotic 

zones, distant from angiogenic areas introduce an additional challenge for delivery vectors24: 

their spatial intratumoral distribution. 

 

1.3.2 Active targeting 

Active targeting is accomplished by attachment of specific molecules on the carrier’s 

surface, which enhance the binding and interactions with antigens or receptors expressed on 

specific cell populations25. Targeting ligands explored for cancer therapy include, but are not 

limited to, antibodies and antibody fragments26, vitamins27, peptides28, folate29 and 

transferrin30. The choice of appropriate ligand is based on its specificity, stability, availability 

and selective display of its corresponding pair on the target cells, as well as its cost. In 

addition to the above considerations, conjugation chemistry31, density and accessibility of the 

ligand32, need to be properly designed for efficient vector targeting.  
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Active targeting complements passive accumulation into tumors; selectivity and retention are 

improved as a result of specific interactions with target cells, at the expense of increased 

complexity, cost and risks (e.g. adverse biological reactions to ligand).  

 

1.3.3 Intracellular trafficking 

Once the drug delivery vehicle has reached the tumor tissue, subsequent drug release 

may occur in the extracellular space, or following internalization of the carrier. Drugs with 

intracellular action, incapable of crossing cell membranes, need to be assisted in reaching 

their target. Cellular uptake mechanisms vary according to cell type (e.g. phagocytic vs non-

phagocytic cells), physicochemical properties of the internalized entity and mode of activation 

(e.g. receptor mediated endocytosis)33. 

 

 

Figure 1.2 Once the colloidal DDS reaches the extracellular space of the target cell, drug 
release may occur by different mechanisms (or their combination). Ligand-targeted colloids 
(A) bind to epitopes on the cell surface (i, iii). Endocytosis might occur non-specifically (ii) or 
following binding to receptors which promote internalization (iii). Upon internalization, the 
carrier either escapes into the cytoplasm (v) or releases the cargo in vesicular organelles in 
response to environmental stimuli (enzymes, pH, reductive conditions).  
Non-targeted colloids (B) which have reached their target through passive targeting, release 
the drug in the proximity of the cell (vii) or in contact with the cell membrane (vi). 

 

Various strategies have been developed and succesfully applied to attain desirable sub-

cellular localization: lysosome degradable linkers34, nuclear localization signals34, 35 and acid- 

or reduction-responsive carriers exploiting the endosomal maturation transformations24, 36, 37, 

are some examples. Moreover, intracellular targeting is feasible through the use of ligands 
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that trigger receptor-mediated endocytosis. The last few years, the identification of cell-

penetrating peptides, like the TAT protein transduction domain (PTD) derived from HIV-1 

TAT protein, has added new tools for efficient carrier design38, 39; TAT-PTD has been used to 

deliver in the cytoplasm a wide, size-independent variety of cargo32.  

Active targeting still faces challenges, but it also holds immense potential; 

discrepancies are frequently observed between in vitro and in vivo situations. The use of 

diverse targeting moieties per carrier, the development of even more selective and efficient 

ligands (e.g. via phage display) and a better understaing of the complex trafficking pathways 

in the cell40, may allow more precise control over the biological fate of colloidal drug delivery 

systems. 

 

1.4 Anthracycline delivery in cancer 

 

A major class of chemotherapeutics currently used in clinical practice, are the 

anthracycline molecules (Figure 1.3). Doxorubicin (also known as adriamycin) is probably 

the most known member of the anthracycline family. It was introduced in 1969 by Arcamone 

et al. who isolated it from Streptomyces peucetius var. caesius41.  

 

 

Figure 1.3 The molecular structure of anthracyclines consists of a hydrophobic aglycone ring 
and a sugar containing a primary amine (pKa= 7.2-8.4 for doxorubicin). The aglycone is 
responsible for the fluorescent properties of the molecule, whereas solubility is determined by 
pH.   
 

These potent anti-proliferative agents are a typical example of drugs whose efficacy is 

constrained by non-specific toxicities and would therefore benefit by targeted drug delivery 

approaches. Indeed, the most studied DDS in oncology are the anthracycline-based ones42. 

The aim of preserving (or enhancing) efficacy against tumors, while avoiding exposure to 

critical sites like the heart and bone marrow, linked with conventional administration, was 
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first addressed using liposomes. Liposomes are hollow structures, composed of a lipid bilayer 

(or multiple bilayers) and an internal aqueous pool; they are efficiently loaded with 

doxorubicin by ion-trapping methods. At present, a few liposomal formulations are available 

in the market for the treatment of AIDS related Kaposi’s sarcoma, breast, ovarian and other 

tumor types42: Myocet® (Elan Pharmaceuticals) is provided in a dry powder form, whereas 

Doxil® and Caexyl® (Alza Pharmaceuticals), two pegylated liposomal formulations are 

supplied as dispersions for intravenous infusion43. These liposomes employ the EPR effect to 

reach tumors where they act as drug depots. Release in the interstitium occurs mainly via 

disruption of the liposomal bilayer and through macrophage uptake and subsequent drug 

release; uptake by tumor cells is minimal, a drawback which may be overcome by active 

liposome targeting. 

It is noteworthy to mention that the existing carrier-mediated delivery approaches have 

not attained increased drug potency in the tumors; their success is rather a consequence of a 

decrease in undesired side toxicities44. The improvement and development of new carriers is 

an ongoing task, with anthracycline drugs in the front line.  

 

1.5 Nanoparticles as colloidal drug carriers 

 

Nanoparticles (NPs) occupy an increasingly prominent place in the armory of 

injectable, colloidal drug delivery systems6, 45-48. Alternative carriers including polymer-drug 

conjugates49, dendrimers50, micelles51, lipid and polymeric vesicles52, nanocapsules53, 54, are 

also the subject of research and clinical evaluation.  

Nanoparticles are solid colloidal drug carriers ranging from 10 to 1000nm in diameter, 

typically made of a single material, in which a drug is entrapped, encapsulated  or adsorbed 

onto the surface55. NPs were introduced almost 3 decades ago56; since then poly(lactic acid) 

(PLA), poly(lactic-co-glycolic acid) (PLGA)45 and poly(cyanoacrylate)57 particles have been 

the ‘pioneers’.  

Whether of synthetic (polymers) or natural (sugar, protein, lipid) origin, nanoparticles 

are inherently stable structures, in contrast to self-assembled systems. This advantegeous 

stability must however be coupled to a long-term degradation under physiological conditions, 

in order to prevent undesired body accumulation. Ideally, nanoparticles would deteriorate in 

products which are naturally excreted, or absorbed by the body.  
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Nanoparticle formation generally involves the use of organic solvents and/or some 

chemical reaction stabilizing the colloid structure. Stability and control over size from a single 

material are counterbalanced by the need of extensive purification. 

The majority of microparticle preparation techniques have been tailored for the 

fabrication of nano-sized particles. Formation occurs either by polymerization of monomers 

(dispersion, emulsion polymerization) or by shaping/condensation of macromolecules 

(coacervation, spray drying, solvent evaporatrion). The former techniques require a size-

dependent termination (e.g. polymer is insoluble in a solvent for monomer) or confined, 

isolated, nano-sized reactors (e.g. emulsion polymerization). 

The selection of materials usually determines the choice of fabrication method. As this 

thesis deals with hydrophilic materials, the focus is placed on corresponding techniques and in 

particular, inverse emulsion polymerization. 

 

1.6 Inverse emulsion polymerization 

 

The term emulsion refers to a dispersion of one phase into another continuous phase 

(immiscible to the dispersed) with the help of an emulsifier (usually an amphipathic 

molecule). Emulsions are classified according to the nature of dispersed and continuous phase 

(oil-in-water or direct, water-in-oil or inverse, water-in-oil-in-water or double) and their 

size/stability (nanoemulsions58, miniemulsions59,  microemulsions60). Control over structure, 

bulk and surface composition and favorable heat transport through the continuous phase make 

emulsions ideal as heterophase polymerization reactors59.  

 

 

 

Figure 1.4. A schematic representation of an inverse emulsion polymerization system, with 
water-soluble radical initiators and vinyl-containing (macro)monomers. The loci of 
polymerization are the emulsifier-stabilized aqueous droplets. 
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Table 1.1 Nanoparticles prepared via inverse emulsion polymerization for drug delivery 
applications. 

 

Material Emulsifier(s) Emulsion 
type§  

Remarks Ref. 

Aerosol OT 
(AOT) 

IM Size modulation through 
controlled dynamics 

61 Poly(acrylamide) 

various IE  62, 63 

IE Size-dependence on initiator 
type (oil vs water soluble) 

64 Poly(acrylic acid) 
 

 

Span®80 & 
Tween®80 

IM Bimodal size distribution 
suggests multiple nucleation 
sites 

65 

Poly(N-
isopropylacrylamide) & 
polyelectrolytes or 
polyampholytes 

Polyoxyethylene 
sorbitan 
hexaolate & 
sorbitan 
sesquioleate 

IM Optimization of surfactant 
concentrations for different 
monomer mixtures 

66 

Poly(methyl 
methacrylate) 

IE Formation of particles via 
gluteraldehyde cross-linking 

67 Gelatin 

AOT IM  68 

Poly(vinyl pyrrolidone) AOT IM Cross-linkining polymerization 69 

Poly(ethylene glycol) & 2-
hydroxyethylacrylate & 2-
acryloxythyl 
trimethylammonium 

Laureth-3 IM Cationic hydrogel nanoparticles 
for DNA delivery 

70 

Poly(dimethylacrylamide-
co-2-acrylamido-2-methyl-
1-propanesulfonic acid) 

Polyoxyethylene 
olyelethers 

IM Interesting effect of cross-linker 
on final hydrodynamic size 

71 

Poly(aspartamide) Span®85 IM Photo-initiated cross-linking of 
functionalized macromonomers 

72 

Poly(acrylamide) Span®80 & 
Tween®80 

IE Cross-linking with acid-
degradable linker 

36 

 

§ IE : Inverse Emulsion, IM : Inverse Microemulsion 

 

Inverse (water-in-oil) emulsions (IE) were initially developed as an alternative to 

acrylamide polymerization in solution, but soon found their way in the field of hydrophilic 

nanoparticle formation73. Emulsification of the aqueous phase in the oil (commonly consisting 

of hydrocarbons) is achieved by amphiphiles with low ‘hydrophilic lipophilic balance’ (HLB) 

values; the lower the HLB, the more hydrophobic the emulsifier. Stabilization occurs 
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exclusively through steric effects since dielectric constant of oils is very low. IE are generally 

thermodynamically unstable and tend to phase separate with time. Thermodynamic stability is 

achievable (for low aqueous volume fractions) at the expense of high emulsifier 

concentrations; stable inverse microemulsions usually contain >8% wt. emulsifier, less than 

15% v/v aqueous phase and necessitate the presence of co-emulsifiers60. 

The mechanism of polymerization depends strongly on the type of initiator (oil soluble 

or water soluble) as well as the oil-solubility of monomer(s). For hydrophilic initiators and 

monomers (homogeneous reaction mixture) the loci of initiation and propagation are the 

dispersed aqueous droplets, rather than the continuous phase or micellar structures. The 

obtained particle size distribution is therefore mainly determined by the nanodroplet size 

distribution of the IE, provided that reaction kinetics are faster than emulsion break-up. For 

this reason, typically radical polymerization has been selected as the reaction scheme. 

Inverse emulsion polymerization is a multi-parameter system, whose potential and 

versatility in fabricating aqueous-based nanomaterials is already established, and whose 

optimization may provide better defined colloids for drug delivery applications.  

 

1.7 In situ forming biomaterials 

 

In addition to systemic targeted administration, localized drug delivery may be 

accomplished by introducing a drug depot directly at the target site. A major class of 

biomaterials, which among other applications (regenerative medicine) have been considered 

as implantable drug delivery systems, are hydrogels. These hydophilic polymer networks are 

capable of absorbing great amounts of water while keeping their structural integrity74. Their 

structural similarity to natural extracellular matrix prompted research towards biomedical 

applications. While use of natural materials containing innate biological signals remains an 

attractive option, certain drawbacks spurring their development have shifted interest towards 

biomimetic, synthetic analogues75.  

Implantation of preformed hydrogels necessitates creation of an opening with 

dimensions at least their size, a source of potential risks and patient discomfort. To overcome 

this limitation, design focus is being placed on injectable materials with the ability to form in 

a mild manner 3-dimensional elastic matrices under physiological conditions76-78. In situ 

formation may be achieved through specific chemical cross-linking reactions, following 
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mixing of precursor solutions. Alternatively, gel structuring is triggered by environmental or 

external stimuli (pH, light, temperature, solvent exchange etc.). 

 

Table 1.2 Overview of temperature-responsive gelation systems, proposed for biomedical 
applications 

 

 

Material Concentration; 
Temperature  
range 

Remarks Ref. 

PNIPAM 3-5% ; ~32°C  Transition temperature may be 
modulated by copolymerization of 
hydrophilic/hydrophobic monomers 

79 

PNIPAM-co-AA >3% ; 30-40°C  Copolymerization of acrylic acid (AA) 
prevents syneresis 

80 

P
N

IP
A

M
 

NPs of PNIPAM and PAAc >2.5% ; 32-35°C Physically bonded nanoparticle network 
based on interpenetrating networks 

48, 81 

Poloxamer 407 20-30% ; ~25°C Transparent gels without syneresis, 
biocompatible material, easy loading; 
quick dissolution 

82-84 

Poloxamer-co-PAAc 0.5-5% ; ~25°C Bioadhesive because of AA 85-87 

P
ol

ox
am

er
s 

Oligo(poloxamers) 20-30%; 20-30°C Larger aggregates, improved 
mechanical properties and delayed drug 
release 

88 

Methylcellulose 1-5% ; 25-50°C Large pore structures 89 

Hydroxylpropyl 
methylcellulose 

1-5% ; 75-90°C Transition temperature is lowered by 
reducing the hydroxypropyl molar 
substitution 

90 

C
el

lu
lo

se
s 

Ethyl hydroxyethylcellulose 
with surfactants 

1-5% ; 30-40°C Assosciation is enhanced by micelle 
formation and clustering 

90, 91 

PEG-PLGA-PEG 15-30% ; ~30°C Biodegradable polymers; delayed 
release kinetics 

92-94 

P
L

G
A

-P
E

G
 

PEG-g-PLGA &  
PLGA-g-PEG 

15-30% ; ~30°C Grafted copolymers offer better control 
of degradation 

95, 96 

Chitosan 2% ; ~40°C Addition of polyol salts transforms pH-
dependent gelation to temperature-
dependent 

97-100 

Peptide 2% ; 25-65°C Gelation temperature controlled by 
peptide sequence; folding of peptide 
and self-assembly into fibers. 

101 

M
is

ce
lla

ne
ou

s 

Poly(organophosphazenes) 5-10% ; ~37°C Modulation of side chains determines 
gelation temperature 

102 
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Besides the advantageous fact that the minimally invasive character of application 

circumvents surgical operation risks, the liquid nature of the precursors allows enhanced 

contact and shape-matching with surrounding tissue, thus avoiding the need of a case-to-case 

tailoring of the implant. Therapeutic agents can be incorporated by simple mixing, covalent 

attachment to the network through labile bonds, or by encapsulation in carriers (e.g. liposome) 

entrapped in the final implant. 

 

1.7.1 Thermally responsive materials 

Among in situ-forming systems, temperature-induced phase transitions from free-

flowing liquids at ambient temperature, to gels at body temperature, have gained considerable 

attention76, 77. They belong to a category of physical transitions which do not require use of 

organic solvents, chemical cross-linking reactions or externally operated devices (e.g. photo-

polymerization), and thus are less likely to induce toxicities to the surrounding tissues and 

denaturation of the active therapeutic agents to be delivered. 

A number of polymers exhibit abrupt changes in their aqueous solubility with 

increases in temperature; the resulting sol-gel transition occuring at the lower critical 

solubility temperature (LCST) is characterized by minimal heat production and absence of 

byproducts. Let us consider the free energy of association ( G) between the polymer chains:  

G = H-T S (1) 

where H is the enthalpy term, S the entropy term and T temperature. 

Increase over a critical temperature results in a larger value of T S than the positive 

enthalpy term ( H), and thus a negative G favoring polymer association: chain-chain 

interactions (hydrophobic effects, hydrogen bonding) dominate over chain-water hydrogen 

bonding. 

Block copolymers containing one block with a LCST at a temperature range where the 

other block is soluble, self assemble in response to temperature increase. Morphology of the 

self-assembled structure depends on copolymer architecture and MW; micelles or networks of 

infinite MW (gels) can be obtained by appropriate design. A recently reported, alternative 

approach was based on interpenetrating networks of poly(N-isopropylacrylamide) (PNIPAM) 

and poly(acrylic acid) (PAAc), formulated in nanoparticles48, 81. The collapse of PNIPAM 

above its LCST triggered the bonding of the NPs into a network while the repulsion between 

the charged PAAc chains prevented agglomeration.  

A list of developed materials exhibiting thermally-driven phase transitions is given in 

Table 1.2 One of the oldest and most widely studied materials from this constantly expanding 
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list, and one which was selected as a primary material in this thesis, is the non-ionic, 

amphiphilic poly(ethylene glycol)-bl-poly(propylene glycol)-bl-poly(ethylene glycol) (PEG-

PPG-PEG) block copolymer, also refered to as poloxamer or Pluronic®. 

 

1.7.2 Poloxamers - Pluronics® 

The poloxamer family consists of more than 30 non-ionic, amphiphilic ABA-type 

block copolymers, where A is poly(ethylene glycol) (PEG) and B poly(propylene glycol) 

(PPG) (Figure 1.5). Their physical state (liquid, paste, solid), is governed by their MW and 

block ratio. Poloxamers are well tolerated (non-toxic), although at high concentrations some 

side-effects including hypercholesterolemia and hypertrglyceridemia103,104 suggest that 

polymer concentration should be kept to a minimum. 

Poloxamer temperature-induced aqueous gelation mechanism and gel structure has 

been elucidated using probe techniques82,105, light scattering82, rheometry83,84,106 and small-

angle neutron scattering106,107 measurements. Micelle formation occurs as a result of PPG 

dehydration and hydrophobically-driven self-assembly with increasing temperature (at a 

critical micellar temperature (CMT) and at concentrations above the critical micellar 

concentration (CMC)). At high enough concentrations, the high density of micelles leads to 

locking in crystalline structures of hard spheres, a process which is usually, but not 

accurately, refered to as ‘gelation’. 

 

 

Figure 1.5 Poloxamer structure (A) and self-assembly (B). The copolymer is in unimer form at 
low temperature or concentration. With increasing temperature (at concentrations exceeding 
the CMC) self-assembly into micelles occurs. Close-packing of micelles in crystalline 
structures, above a concentration threshold, leads to its gel-like behavior. 
 

Poloxamer 407 (Pluronic® F127) has an LCST at biologically relevent temperature 

(25°C at 20% wt.), a feature which made it the most popular candidate of the series for 

biomedical applications. Drug loading is readily achieved by simple mixing; however, an 

incovenience is the rapid dissolution and release, limiting the use for delivery periods of 

maximum a few days108, 109. Poloxamer 407 gels have been considered for cancer treatment110, 



 16

prevention of postoperative adhesions111, 112, pain treatment113, transdermal delivery of 

insulin114, peptide delivery115 among other applications. Their transparency makes them ideal 

for opthalmic applications116-119. 

 

1.8 Outline of this thesis  

 

The aim of this thesis was to develop a novel colloidal system for drug delivery 

applications. We were particularly interested in the production of well-defined, stable 

nanoparticles via a reproducible and versatile technique, which would allow the accomodation 

of a variety of therapeutic agents. The emergence of a wide variety of new hydrophilic drugs, 

combined with the moderate attention of aqueous-based nanoparticles compared to their 

hydrophobic counterparts, prompted us to design nano-sized hydrogels. Moreover we 

anticipated a stealth character, given the demonstrated, beneficial properties of hydrophilic 

surface coatings. 

To achieve our goal we selected poly(ethylene glycol) and poloxamer as building 

blocks. Their established biocompatible, inert and protein repellent character make them ideal 

for biomedical applications. Both polymers have been used in drug delivery, the former in 

polymer-drug conjugates and as surface modifier and the latter as injectable in situ-forming 

gels as well as in the form of micellar carriers120-122. Moreover, these polymers are available 

in a range of MW and block ratios (in the case of poloxamer), offering the potential of fine-

tuning the material properties.  

Here we tackled the task of preparing stable nanostructures based on these polymers, 

with control over size and architecture. In order to accomplish this, we developed an inverse 

emulsion polymerization technique where acrylate-functionalized macromonomers were 

cross-linked through a photo-initiated radical polymerization. Probing the structure of the 

obtained nanospheres revealed stable hydrophobic nano-domains in the otherwise hydrophilic 

NPs (Chapter 2). 

The need of highly efficient DDS for cancer treatment led us to consider this system 

for tumor delivery of doxorubicin. The small size (100-300nm in diameter) of the colloids is 

expected to promote passive targeting through permeable vasculature in tumors (EPR effect), 

while the hydrophobic pockets allowed drug loading. An a posteriori encapsulation protocol 

was established and in vitro release of DOX occurred by diffusion, without burst release, at 

therapeutically-relevant time scales. In combination with a demonstrated drug protective 
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effect of the carrier, these NPs proved to be promising candidates for cancer chemotherapy 

(Chapter 3).  

  We further explored an alternative initiation scheme, more suitable for scale-up NP 

fabrication. In order to introduce functionality or reactive groups for a posteriori 

modifications we investigated the copolymerization of low MW, vinyl-containing monomers. 

Fluorescent labeling served both as a proof of concept of the latter approach and as a tool for 

subsequent cell studies (Chapter 4). 

Incorporation of poloxamer 407 in the cross-linked hydrogel network imparted 

temperature-responsiveness to the NPs; concentrated aqueous colloidal dispersions (>4% wt.) 

underwent a physical transition from free-flowing liquids to solid-like materials upon increase 

in temperature. In chapter 5, the mechanism and implications of this transition are discussed. 

In vitro cell-nanoparticle interactions is the subject of chapter 6: having in mind in 

vivo drug delivery applications, such studies are an essential first step to assess the 

biomaterial’s potential. Cytotoxicity of NPs in the form of dilute dispersions or colloidal 

glasses was found to be negligible. A setup for in vitro internalization studies was established; 

NP interactions with  J774 murine macrophages, used as a model for phagocytic cells of the 

MPS were here investigated.   

Finally, the major characteristics and shortcomings of these hydrogel NPs are 

summarized. Studies in progress and others envisioned are briefly discussed and clinical 

applications suitable for our system are suggested (Chapter 7). 
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Abstract 

Inverse emulsion photopolymerization of acrylated poly(ethylene glycol)-bl-

poly(propylene glycol)-bl-poly(ethylene glycol) and poly(ethylene glycol) was successfully 

employed to prepare stable, cross-linked, amphiphilic nanoparticles. Even at low emulsifier 

concentrations (2%) and high water-to-hexane to weight ratios (35/65), the stability of the 

inverse emulsion allowed for the formation of well-defined colloidal material. Inverse 

emulsion characteristics and polymerization conditions could be controlled to vary the size of 

the nanoparticles between 50 and 500 nm. The presence of hydrophobic nanodomains within 

these otherwise hydrophilic nanoparticles was verified by using pyrene as a 

microenvironmentally sensitive probe. We believe that the complex nano-architecture of these 

materials makes them a potentially interesting colloidal drug delivery carrier system and that 

the method should be useful for a number of amphiphilic macromolecular precursors. 
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2.1 Introduction 

 

The amphiphilic poly(ethylene glycol)-bl-poly(propylene glycol)-bl-poly(ethylene 

glycol) polymers, known as Poloxamers or Pluronics, have attracted significant attention for 

controlled drug delivery applications in the form of micellar nanocontainers1,2 and physical 

gels3,4. Hydrophobic self-assembly between the central PPG blocks induces polymer assembly 

into 5-20 nm spherical structures, consisting of a hydrophobic PPG-rich core stabilized by a 

hydrophilic PEG-rich corona.  The core may solubilize lipophilic molecules, and the hydrated 

PEG corona prevents aggregation, protein adsorption, and recognition of the micelles as 

foreign bodies by the immune system5,6. Low toxicity and weak immunogenic properties have 

allowed for the use of Pluronic in topical and systemic administration7,8, including 

intravenously administered micellar formulations that have reached the level of clinical trials9. 

More general use of Pluronic micellar carriers in the blood stream has been hampered 

by several factors that may reduce their circulation time: the small dimension of the 

aggregates and the limited MW of the polymer may allow premature renal excretion of the 

carrier and penetration through the tight junctions of healthy endothelium. Somewhat larger 

dimensions would be required for selective penetration only through permeable endothelia 

(known as the enhanced permeation and retention, EPR, effect10), such as those found in most 

solid tumors11,12. Furthermore, higher stability upon dilution in the blood stream, would also 

be required for prolonged circulation; micellar forms being thermodynamically unstable when 

overall polymer concentration falls below the critical micellar concentration (CMC). 

In an effort to overcome the drawbacks described above, we have considered 

increasing the size and stability of the nanoscale Pluronic-based carriers while preserving the 

solubilization and biophysical properties of Pluronic. In work by others, hydrophilic colloidal 

particles of sub-micron size have been obtained by cross-linking reactions of monomers or 

functionalized macromonomers in non-interacting compartments or under conditions that 

ensure size-dependent termination13-17. An attractive method, which we have employed, is 

offered by inverse emulsion polymerization, where a water solution of precursors is dispersed 

in an oil phase by the use of an appropriate emulsifier, the nature and concentration of which 

determine the size of the nanoparticle18, 19. In a general case, inverse emulsions are less stable 

than regular emulsions (O/W: oil-in-water), since the low dielectric constant of oils makes 

electrostatic stabilization ineffective and only steric effects prevent aggregation and drop 

coalescence. Thermodynamically stable inverse microemulsions are nevertheless possible to 

obtain by using very high levels of emulsifier and lower aqueous phase volumes20. 
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In this study we have employed photo-initiated polymerization of acrylates21 as a mean 

to cross-link aqueous solutions of multifunctional macromonomers. This reaction has been 

successfully used for preparing protein repellent hydrogels in contact with cells and tissues, 

demonstrating negligible toxicity and fast kinetics22, 23. We have applied this approach to 

Pluronic derivatives in inverse emulsion, monitoring the reaction kinetics and conversion and 

studying the physical properties of the resulting nanoparticles. We showed the existence of 

hydrophobic nanophases using pyrene as an environmentally-sensitive probe. Finally, the 

particles demonstrated colloidal stability even upon freeze drying, a prerequisite for a 

practical drug delivery formulation. 

 

2.2 Materials & Methods 

 

2.2.1 Materials & Spectroscopy Characterization 

Dichloromethane and n-hexane (99%) were purchased from LabScan (Oensingen, 

Switzerland). Tetrahydrofuran, toluene, acryloyl chloride, triethylamine, triethanolamine, 

pyrene, doxorubicin hydrochloride, Span®65 (sorbitan tristearate, HLB=2.1±1.0) were 

purchased from Fluka (Buchs, Switzerland). Pluronic® F127, a symmetric triblock copolymer 

with MW=12700, 70% wt. poly(ethylene glycol) and a central poly(propylene glycol) block, 

was purchased from Sigma (Buchs, Switzerland). Eosin Y and poly(ethylene glycol) 

diacrylate M n =575 (PEG575 diacrylate) were purchased from Aldrich (Buchs, 

Switzerland). All solvents and reagents were used as received unless otherwise mentioned.  
1H-NMR spectra were recorded on a 300MHz Bruker spectrometer. FTIR spectra 

were recorded in ATR mode on a Spectrum One Perkin Elmer Spectrometer. Fluorescence 

spectra were obtained using a Perkin Elmer LS50b Luminescence spectrometer equipped with 

a four-position thermostated automatic cell changer with stirrer. UV-Vis spectra were 

recorded on a Perkin Elmer Lambda 20. 

Abbreviations: HLB = Hydrophilic Lipophilic Balance, MWCO = Molecular Weight Cut-Off 

 

2.2.2 Macromonomers 

Pluronic® F127 diacrylate (F127 diacrylate) was synthesized as described elsewhere24, 

providing a 100% conversion of alcohols to acrylates, with a typical yield of about 80%. 

Copolymer composition was confirmed by 1H-NMR spectroscopy PEG575 diacrylate was 
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washed several times (5-7) with n-hexane prior to use in order to remove inhibitors. 

Composition was confirmed by 1H-NMR spectroscopy and M n by GPC.  

The expression “Total Macromonomer” will refer to the sum of the weight % 

concentrations of all the macromonomers used in the polymerization mixtures. 

 

2.2.3 Inverse emulsion stability 

Span®65 was dissolved in 5ml n-hexane in 20ml glass vials by sonication (4 min). An 

aqueous solution of Pluronic F127 was added to the oil phase and sonicated with a tip 

sonicator (Bandelin Sonoplus) for 1 min. The inverse emulsions were kept at room 

temperature and were photographed at 5, 15, 30 and 60 min after sonication. The photographs 

were analyzed to obtain the volume fraction of hexane that phase separated.  

Fraction of hexane phase separated = (y/x) / (y0/x0)    (2.1) 

where x and y are the total and phase separated hexane phase heights, respectively, and y0/x0 

the n-hexane-to-total volume ratio (e.g. 0.74 for 65/35 weight ratio). Several emulsifier 

concentrations (1, 2, 3, 4 % w/wtotal), Pluronic F127 concentrations (0, 1, 5 and 10% 

w/waqueous) and oil-to-water weight ratios (95/5, 80/20, 65/35, 50/50) were investigated. 

 

2.2.4 Formation of nanoparticles via inverse emulsion polymerization 

In a typical experiment, 100 mg Span65 (2.0% w/wtotal) was dissolved in 5ml n-hexane 

by sonication (4 min.). 1.7ml of aqueous precursor solution of F127 diacrylate, PEG575 

diacrylate, triethanolamine and eosin Y (6.75%, 6.75%, 2.0%, 0.02% w/waqueous respectively) 

were added to the oil phase (oil-to-water weight ratio = 65/35) and an inverse emulsion was 

formed by sonication for 1 min with a tip-sonicator (Bandelin Sonoplus). The inverse 

emulsion was illuminated with an Ar ion laser (480-520 nm) for 1 hr, at room temperature, at 

a flux of around 75mW/s, under magnetic stirring (400 rpm). After illumination, the inverse 

emulsion was poured into centrifuge tubes containing 35 ml n-hexane and 4 ml water. The 

aqueous phase was extracted with n-hexane to remove Span65 and then dialyzed against water 

(MWCO= 25,000, Spectrum Laboratories) to remove initiator and non-reacted 

macromonomers. 

 

2.2.5 Preparation of hydrogel discs 

Macromonomer precursor solutions were prepared in water with 2.7 mM 

triethanolamine and 10 µM eosin Y (2.0% and 0.035% w/waqueous respectively). After addition 



 

32 

of the reagents, the solutions were sonicated for a better mixing (5 min), aliquots of 50 µl 

were placed between two glass slides, precoated with Sigmacote, and irradiated for 30 min 

with an Ar ion laser (480-520 nm) at a flux of 75 mW/cm2. The hydrogel discs were exposed 

to water for at least 24 hr until equilibrium swelling was reached. The swelling index was 

calculated as the ratio of the weight of the swollen gel to the weight of the formed gel, for 3 

different temperatures: 37ºC, 25ºC and 4ºC. All experiments were performed in triplicate. 

 

2.2.6 Photopolymerization kinetics and conversion measurements 

FTIR spectroscopy was used to determine photopolymerization kinetics by monitoring 

the shift of the ν C=O peak of the acrylate double bond upon reaction (1724→1734 cm-1). 

The reaction was quenched at different times by the addition of 0.2% wt. hydroquinone 

aqueous solution. 
1H-NMR spectroscopy was used to determine the final double bond conversion at the 

end of the polymerization by comparing the peaks at δ=5.8, 6.2, 6.4 (double bond protons) 

and δ=3.5-3.7 (C-CH2-O protons). Samples were prepared by dispersing freeze dried 

nanoparticles in CDCl3. 

 

2.2.7 Dynamic light scattering (DLS) 

Values of hydrodynamic diameter were obtained by dynamic light scattering (DLS) 

measurements using a Brookhaven instrument (model BI-DSI) equipped with a Lexel 95 laser 

source (514 nm at room temperature) at a fixed angle of 90o. Prior to analysis, solutions were 

filtered through a Millex AP 0.4 m filter to remove dust. The digital correlator was operated 

with 200 channels, a minimum duration of 5 min and an average number of counts per second 

between 100x103 and 700x103. Temperature was set at 37ºC unless otherwise noted.  

 

2.2.8 Nanoparticle stability and freeze drying 

Purified aqueous suspensions were kept at 4°C and were periodically inspected by 

DLS. Lyophilized dry nanoparticles were obtained with or without the use of cryoprotectants - 

glucose (20% wt.) and trehalose (5% & 20% wt.). Samples prepared without cryoprotectants 

were sonicated with a tip-sonicator (Bandelin Sonoplus); all samples were filtered before 

DLS. 

 

2.2.9 Pyrene partitioning in nanoparticle aqueous suspensions 
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Pluronic® F127 or freeze dried nanoparticles were dissolved in aqueous pyrene stock 

solution (6x10-7 M) and left to equilibrate for 2hr. Emission spectra from 351 nm to 450 nm 

were recorded (excitation: 339 nm) at 37ºC.  

 

2.3 Results & Discussion 

 

2.3.1 Inverse emulsion preparation 

Control of ultimate nanoparticle size distribution requires control over the initial 

inverse emulsion and its stability during polymerization.  The formation of inverse emulsions 

is generally favored by the presence of strongly hydrophobic emulsifiers or mixtures of 

emulsifiers, which are characterized by low hydrophilic-to-lipophilic balance (HLB) numbers. 

With an appropriate choice of the emulsifier, the dispersed domains can be sufficiently stable 

to allow monomers in water to polymerize before macroscopic phase separation takes place. 

Despite Pluronic® F127 being an amphiphilic structure, its high HLB value (22) requires the 

presence of a much more hydrophobic surfactant for the formation of an inverse emulsion; we 

have selected Span 65, HLB=2.1, to give an appropriately low HLB. 

Inverse emulsion stability in the time scale of the cross-linking reaction is crucial for 

good control of the size dispersity of nanoparticles. We have assessed the stability of the 

inverse emulsions by visual inspection over a period of 1 hr without stirring. Phase separation 

occurred in all cases in a time frame variable from a few min to 1 hr, producing a pure hexane 

phase on the top of a second, opaque phase. The kinetics of formation and the relative amount 

of the excess oil phase were used for a semi-quantitative evaluation  of inverse emulsion 

stability (Figure 2.1).  

It should be noted that simple visual inspection in principle does not allow one to 

distinguish between sedimentation, which can be reversed by stirring, and coagulation, which 

results in changes of the droplet distribution from their initial states and is to be avoided. 

However, in all our experiments, redispersion of the droplets could be achieved by gentle 

shaking or stirring, thus suggesting the phase separation to be mainly caused by 

sedimentation.  
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Figure 2.1 A-C: Volume fraction of n-hexane phase separated from inverse emulsion as a 
function of time and hexane-to-water weight ratio for 2% Span 65 and 5% Pluronic F127 
(A), of % emulsifier for 65/35 hexane-to water weight ratio and 5% Pluronic F127 (B) and of 
the concentration of Pluronic F127 for 65/35 hexane-to water weight ratio and 2% Span 65 
(C). (D): interstitial hexane-to-water volume ratio at complete phase separation (60 min) for 
the formulations displayed in (A). Mean and S.D. are shown (n=3). 
 

If coagulation is negligible, phase separation is due to sedimentation of emulsified 

droplets, which reversibly produce a condensed phase containing hexane in the interstitial 

space; if this phase is stable, the interstitial hexane/water volume ratio (k) should be constant 

and should not depend on the overall hexane/water ratio. Under this assumption, when the 

process of phase separation is complete one should observe the formation of pure hexane in a 

volume fraction xxxx OHOHihph
k

22
)1(11 +−=−= − , where the indexes ph and ih stand, 

respectively, for pure and interstitial hexane. At a critical water volume fraction 

kx
cr

OH +
=

1

1
2

, phase separation should no longer occur, all the hexane being present in the 

interstitial form; finally, at higher water contents coagulation or formation of different phases 

should take place. 

From experiments conducted in excess hexane (65 to 95% in weight), we have indeed 

observed a roughly constant value of k ~ 1.8 (Figure 2.1D), which suggests xph
 to possibly 
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be linearly related to x OH 2
 (however, a more complex dependence cannot be excluded); the k 

value should correspond to a critical water volume fraction =x
cr

OH 2
0.35, that is to an hexane-

to-water weight ratio of 55/45 (for 5% Pluronic® F127 and 2% Span® 65). At the highest 

water content examined (50% wt.), the phase separated system is characterized by a markedly 

different value of k and by a much higher viscosity. 

According to the above considerations and findings, we selected a hexane-to-water 

weight ratio of 65/35 for further experiments; this ratio is characterized by a high volume of 

the dispersed water phase (~26% in volume), but still ensures the stability of the aqueous 

droplets. Increasing levels of emulsifier resulted in increased phase separation (Figure 2.1B). 

This may arise from a higher content in smaller droplets (connected to a slight change in size 

distribution), which can pack more densely in the sedimented phase, which will then contain 

less hexane.  

The effect of Pluronic concentration upon inverse emulsion stability was negligible. 

This suggests that the Pluronic does not participate to the steric stabilization of the droplets, 

despite its amphiphilic nature. Pluronic molecules are therefore to be found in the bulk of the 

aqueous droplet solution, most likely in micellar aggregates, since the concentration is always 

above the CMC at room temperature. 

 

2.3.2 Nanoparticle formation 

The aqueous macromonomer nano-droplets in the inverse emulsion are stabilized by 

subsequent polymerization.  Photopolymerization of acrylic derivatives was chosen as a 

curing reaction, due to its mild character and to the possibility to control the initiation of the 

reaction, which allows for a good mixing of the reagents in the unreacted state.  The aqueous 

phase, containing eosin Y (sensitizer), triethanolamine (initiator) and Pluronic F127 diacrylate 

alone or in mixture with the co-macromonomer PEG575 diacrylate, was dispersed in hexane 

by sonication with the help of Span 65 in the oil-to-water conditions described above. After 

the photopolymerization, the nanoparticles were purified by removal of the hydrophobic 

emulsifier through extensive washing with n-hexane (Scheme 2.1). The concentrations of 

triethanolamine and eosin Y were determined from preliminary experiments to obtain 

maximum conversion and were set at 2% and 0.02% (w/waqueous) respectively for all 

experiments.  
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Scheme 2.1 Nanoparticle preparation via inverse emulsion photopolymerization 

 

 

 

The photopolymerization of PEG diacrylates in bulk and in solution (with the use of 

N-vinyl pyrrolidone as a co-monomer) is known to proceed very fast (seconds to few 

minutes)22, 25. The wavenumber of the IR carbonyl stretching resonance (ν C=O) shifts from 

1724 cm-1 to 1734 cm-1 upon reaction; by monitoring this peak, it was possible to follow the 

conversion of double bonds, which showed a plateau in around 30 min (Figure 2.2). 1H-NMR 

spectroscopy on lyophilized dry nanoparticles resuspended in CDCl3 showed this to 

correspond to a conversion always greater than 98%. We believe that the necessity for a long 

irradiation time results from the low effective light intensity, due to the high scattering within 

the inverse emulsions. For all experiments irradiation time was fixed to 1 hr to ensure 

complete conversion. 
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Figure 2.2 (A) Absorption of ν C=O peak at different reaction times, normalized using the νas 
(C-O-C) peak as a reference (1100cm-1) (B) Estimated double bond conversion by (vt-v0)/(vf-
v0), where v0, vt, vf are the wavenumbers of ν(C=O) absorbance maximum at time=0, t, ∞. 
Mean and S.D. are shown. 
 

The polymerization of F127 diacrylate without comonomers always produced 

colloidal objects able to diffuse through dialysis membranes with MWCO of 300,000, despite 

presenting an apparent hydrodynamic radius of 30-70 nm. We believe that, due to the micellar 

state of F127, the polymerization produced connected and cross-linked micellar aggregates 

rather than ‘full’ hydrogel nanoparticles. Similar objects have already been reported26; in our 

case, however, their size is not controlled, and it is independent of the inverse emulsion 

characteristics. We have therefore decided to use a water-soluble comonomer (PEG575 

diacrylate) to provide polymerization throughout all the water phase of the emulsion droplet 

and thus generate nanoparticles with controlled size. The copolymerization process provided 

typical yields of about 80% (measured after emulsifier extraction as weight of dry particles/ 

initial weight of macromonomers). In principle, also other comonomers can be used in inverse 

emulsion photopolymerization, provided they contain polymerizable groups and they are 

soluble in water. The comonomers may differ in distances between polymerizable groups, 

and/or contain hydrolytically labile moieties, in order to vary mesh size and thus mass 

transport properties of the nanoparticle hydrogel and to provide degradability to the 

constructs, respectively. 

 

2.3.3 Particle size 
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A key feature of the inverse emulsion polymerization process is its ability to control 

nanoparticle size distribution.  The size of the macromonomer inverse emulsion droplets 

decreased with increasing emulsifier concentration and, assuming a template effect of the 

emulsions on nanoparticles, we expect the size of the polymerized nanoparticles to reflect this 

dependence. The nanoparticles indeed showed decreasing diameters with increasing 

concentrations of Span65 (2-4%), as shown in Figure 2.3 for two different sets of conditions. 

One can observe that the size of the nanoparticles, as for the nano-droplets in the inverse 

emulsion, was dramatically influenced by the composition of the polymerizing mixture. For 

subsequent experimentation, we selected an emulsifier concentration of 2% w/w. 
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Figure 2.3 Diameter as a function of emulsifier concentration for nanoparticles prepared 
with 12.5% wt. total macromonomer concentration. Mean and S.D. are shown (n=3). 
 

We studied a series of samples with 3 different ratios of Pluronic F127 diacrylate/total 

macromonomer and at 3 different total macromonomer concentrations (Figure 2.4). A 

significant increase in diameter was observed upon increasing the relative amount of PEG575 

diacrylate, with a more pronounced effect at high total macromonomer concentration. This 

effect could be ascribed to a pre-polymerization event (on liquid drops), to a post-

polymerization one (on gel particles), or it may be a consequence of the polymerization itself. 

In the last case, the differential size should be related to the different densities of 

polymerizable groups: however, the polymerization could hardly affect the density of the 

aqueous droplets, therefore we assume their size to remain unchanged in the transformation to 

nanoparticles. Two other possible composition-dependant phenomena are A) the swelling of 

the nanoparticles when exposed to pure water (post-polymerization): when exposed to water, 
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the nanoparticles may swell, due to the different osmotic pressure developed during 

photopolymerization. By replacing Pluronic with PEG, both increased hydrophilicity and 

cross-linking density (PEG575 is more than 20 times smaller than F127) can indeed produce 

higher osmotic pressure, resulting in ultimately larger, more swollen nanoparticles. B) The 

combined action of mechanical shear forces and chemical reactivity on droplet collisions in 

the early stages of photopolymerization (pre-polymerization): the macromonomer solutions 

have different viscosities and likely different gelation kinetics.  
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Figure 2.4 Diameter of nanoparticles at 37°C as a function of the total macromonomer 
concentration. The nanoparticles were prepared with 2.0% emulsifier. Mean and S.D. are 
shown (n=3). 
 

In order to gather more information about the swelling phenomena of the polymer 

network in the nanoparticles, we have prepared and characterized macroscopic hydrogels with 

compositions analogous to those of the nanoparticles.  Macroscopic hydrogels swelled by 

decreasing temperature, with a swelling extent proportional to the Pluronic concentration 

(Figure 2.5A); this has already been seen in other examples of Pluronic-based hydrogels 

presented in recent literature24. DLS experiments on nanoparticles at two different 

temperatures showed the same trend, with a decrease in diameter resulting from increasing 

temperature (Table 2.1).  

 

 

Table 2.1 Nanoparticle diameters in nanometers (12.5% wt. total macromonomer conc.) at 
two different temperatures (n=3) 

 

Pluronic/total macromonomer 0.75 0.50 0.25 
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37ºC  170.4±3.2 169.0±3.0 203.4±9.1 
25ºC  181.4±6.0 185.3±2.2 203.6±8.0 

 

The qualitative agreement between nanoparticle and macroscopic hydrogel 

temperature-induced swelling indicates that hydrogels can acceptably model the behavior of 

the amphiphilic nanoparticles However, differently from nanoparticles, in macroscopic 

hydrogels higher levels of Pluronic resulted in greater swelling, with a steeper dependence 

with increasing total concentration of macromonomers (Figure 2.5B). This phenomenon may 

be rationalized by considering that, at constant total macromonomer concentration, the cross-

linking density increases with increasing PEG575 diacrylate content, due to its smaller chain 

length; thus, swelling should be decreased at higher PEG 575 diacrylate content. 
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Figure 2.5 Swelling behavior of hydrogel discs prepared by solution photopolymerization: 
(A) dependence on temperature, (B) dependence on macromonomer total weight and ratio at 
37oC. Mean and S.D. are shown (n=3). 

 

The modulation of swelling extent with composition, as observed in the macroscopic 

hydrogels, cannot explain the much bigger and opposite changes observed in nanoparticle 

dimensions. For example, one may consider two particles with overall macromonomer 

contents of 15% and Pluronic fractions of 0.75 or 0.25; applying the swelling ratios recorded 

on macroscopic hydrogels (0.5 and 0, respectively), the nanoparticles should increase their 

diameter by a factor 1.15 and 1, respectively. On the contrary, such nanoparticle diameters 

were observed to increase by a factor 1.19 and 4.95, respectively, demonstrating both an 

unexpected trend and different magnitude of the phenomenon. 
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If the dependence of nanoparticle dimensions on comonomer composition cannot be 

explained on the basis of a post-curing event, such as a differential swelling, it may be due to 

phenomena happening during photopolymerization that modulate the average size of the 

polymerizing droplets. It is well known that collisions between droplets are a destabilizing 

factor for inverse emulsions, and the frequency of collisions can be changed by varying the 

stirring speed.  Indeed we have observed that, in the absence of stirring, the dependence of the 

particle size on composition completely disappeared and particles always presented an 

average diameter of 158.5±15.9 (Figure 2.6). 
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Figure 2.6 Effect of stirring of inverse emulsion during the cross-linking reaction on 
nanoparticle diameter (2.0% w/wtotal emulsifier and 12.5% wt. total macromonomer 
concentration). Mean and S.D. are shown (n=3). 
 

It is logical to assume that, in a collision, the probability of having an inter-particle 

chemical reaction, and thus irreversible coalescence, increases with increasing number of 

reactive groups (acrylates). Our results (Figure 2.7) qualitatively confirmed such an increase. 

Nevertheless, the higher diameter of high Pluronic content samples observed in the absence of 

stirring cannot be easily explained and this suggests that processes other than coalescence 

take place during polymerization under stirring. 
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Figure 2.7 Diameter vs. amount of reactive double bonds (concentration in the water phase) 
at 400 rpm stirring speed. The line is a guide to the eye. Mean and S.D. are shown. 
 

Finally, we examined the colloidal stability of our nanoparticle system, as it is 

essential for intravenous administration considering the dependence of size on biodistribution 

and cellular uptake and the risk of embolization upon aggregation. Aqueous nanoparticle 

suspensions were stored at 4ºC in pure water; although further experiments using biological 

fluids are required to simulate conditions in vivo, DLS measurements provided promising 

results and showed no agglomeration for periods of at least one month.  

 

2.3.4 Pyrene partitioning 

Photopolymerization of the precursor aqueous solutions can preserve the micellar 

aggregates of Pluronic F127 in a nanoparticle structure that is insensitive to dilution below 

Pluronic F127’s CMC. Having in mind the incorporation of hydrophobic drugs in the 

nanoparticles, the amount of loaded ‘guest’ molecules should depend on the permanence of 

these micellar structures after photopolymerization and on their number. To prove the above, 

we have investigated the internal architecture of the nanoparticles using a non-destructive 

probe technique based on pyrene. Pyrene is a fluorescent probe widely exploited to obtain 

information on the presence of supramolecular aggregates of amphiphiles27, 28, the partition 

coefficients of a probe between solution and aggregate5, 28, and its release from them29.  

We monitored changes in the intensity ratio of the first to the third vibrational band in 

the emission spectra of pyrene (I1/I3) with increasing aqueous concentrations of nanoparticles. 

It is known that the I1/I3 ratio decreases with decreasing polarity of the microenvironment in 

which the probe is located. As a control experiment, pyrene emission was examined upon 

exposure to different concentrations of unreacted Pluronic F127.  The measured I1/I3 ratios 
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were plotted against Pluronic concentration (Figure 2.8), since only Pluronic could provide 

the hydrophobic domains necessary to change the I1/I3 ratio. The transition between two 

plateau I1/I3 values (from aqueous solution to the hydrophobic nanoenvironment) with 

increasing concentrations of nanoparticles confirmed the presence of hydrophobic domains in 

their structure.  Experimental data were fitted with a sigmoidal fit and the inflection points of 

these fits were used for comparisons (Table 2.2).  
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Figure 2.8 Semilogarithmic plots of the I1/I3 fluorescence intensity ratio as a function of 
Pluronic concentration for various nanoparticles. Symbols represent nanoparticles with 
12.5% total macromonomer and Pluronic/total macromonomer ratio of a. 0.75 ( ) b. 0.5 
( ) c. 0.25 ( ). Unreacted Pluronic ( ) is also plotted as well as the value of I1/I3 in water 
(dashed horizontal line).  
 

In the control experiment, the transition from I1/I3= 1.10 to 0.97 is due to the self 

assembly of the Pluronic unimers into micelles, which takes place in a concentration range 

between 0.1 and 1 mg/ml. In the case of the nanoparticle suspensions, the increase in the 

value of I1/I3, occurs at lower concentration, confirming that dilution does not destabilize the 

hydrophobic domains within the cross-linked nanoparticle that composes the nanoparticles. 

However, a transition eventually does occur, due to the depletion of available sites for 

solubilization at fixed pyrene concentration. The similar I1/I3 values at high concentrations for 

both Pluronic micelles and nanoparticles confirm our hypothesis that pyrene is solubilized in 

an environment similar to that of the cores of Pluronic micelles. No dependence of the 

transition characteristics (I1/I3 plateau values, inflection points) upon the Pluronic content of 

the nanoparticles was observed, demonstrating that the PEG incorporated into the network 

does not disturb the hydrophobic nanodomains that form from the Pluronic incorporated 

within the nanoparticle.  
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We therefore suppose the nanoparticles to contain multiple hydrophobic nano-domains 

constituted by interacting PPG domains of neighboring Pluronic chains. The hydrophobic 

domains are ‘caged’ in a protein-repellent hydrogel, which, contrary to micelles and nano-

aggregates, provides stability upon dilution. Similar approaches were recently used to prepare 

micelle-coated surfaces30 and self-aggregates with multiple hydrophobic domains for 

controlled drug delivery applications31, 32. 

 

 

Table 2.2 High-concentration plateau I1/I3 intensity ratios and transition concentrationsa for 
nanoparticle aqueous solutions and control (free Pluronic) 

 

Samplesb I1/I3 intensity 
ratio 

Transition concentration 
(mg Pluronic/ml) 

Transition concentration 
(mg nanoparticles/ml) 

Control 0.97 0.26 - 
12.5% / 0.25 0.97 0.08 0.30 
12.5% / 0.50 0.94 0.09 0.19 
12.5% / 0.75 0.95 0.06 0.09 

a measured as the inflection points of the sigmoidal fits in Figure 2.8 

b (% total macromonomer wt. / Pluronic-to-total macromonomer weight ratio) 
 

 

2.3.6 Freeze drying 

The high stability of the nano-droplets in the inverse emulsion and of the nanoparticles 

in aqueous suspension after purification suggests studies of stability after removal of the 

aqueous phase and resuspension. Freeze drying indeed offers the possibility to store and even 

sterilize nanoparticles in the form of a dry powder, which can eventually return to the 

colloidal state upon rehydration33. We freeze dried and rehydrated nanoparticles without using 

cryoprotectants and monitored the size, in order to determine whether aggregation takes place 

during this process (Figure 2.9A). 

In order to redisperse the nanoparticles, we employed a short sonication step (5-10 

min).  Interestingly, using 2% emulsifier, the diameter after rehydration decreased, suggesting 

a break up of the nanoparticles during this sonication step. This effect was not observed 

however when smaller nanoparticles were prepared with 3% emulsifier, when rehydrated 

samples showed unchanged dimensions before and after freeze drying. We further 

investigated the effect of cryoprotectants; trehalose and glucose were selected since both have 

been previsouly used succesfully in PLGA formulations. In this case dispersion of rehydrated 
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NPs was achieved by mild shaking only. Between the two cryoprotectants, glucose proved to 

be effective in preventing aggregation whereas trehalose showed an incomplete concentration-

dependent protective effect (Figure 2.9B) 

Thus, the nanoparticles appear stable to freeze drying and resuspension in water, 

allowing long-term storage in a freeze-dried state. 
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Figure 2.9 Diameter of nanoparticles before and after freeze drying. Effect of emulsifier 
concentration in the absence of cryoprotectants (A) and effect of cryoprotectants (B) mean 
and S.D. are shown (A: n=4, B: n=2). 
 

 

2.4 Conclusions 

 

The amphiphilic and biocompatible structure of Pluronic F127 offers an ideal starting 

point for the design of colloidal carriers for hydrophobic drugs with a prolonged circulation 

time. In particular, we have tackled the development of Pluronic-based chemically cross-

linked nanoparticles, a class of materials characterized by high stability towards dilution and 

drying and therefore ideal for prolonged storage and use.  Such systems, although requiring 

additional processing in fabrication, offer numerous advantages in use vis-à-vis their parent 

micellar structures. 

We have demonstrated that well-defined Pluronic-based nanoparticles can be obtained 

via inverse emulsion photopolymerization.  Bridging between micelles in the precursor 

solution, to form macromolecular nanogels with size being determined by processing rather 

than micelle size, is ensured by copolymerization with a PEG diacrylate.  Nanoparticle size 
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could be controlled through manipulation of polymerization conditions, most notably 

emulsifier concentration, and the resulting materials were stable upon dilution and 

resuspension after freeze drying.  Hydrophobic nanodomains within the particles remain after 

polymerization and are potentially capable of absorbing large amounts of hydrophobic drugs.   
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Abstract 

 
We have described the preparation of stable, polymeric nanoparticles, composed of 

poly(ethylene glycol) and Pluronic®, prepared via inverse emulsion photopolymerization 

(Chapter 2). In the present chapter we report on the performance of this novel colloidal 

system as a controlled delivery device for small hydrophobic drugs. Successful encapsulation 

of doxorubicin occurred through hydrophobic interactions, taking advantage of particle nano-

architecture. Loadings of up to 8.7% wt. were achieved using a reproducible, fast procedure. 

In vitro drug release, monitored by fluorescence spectrometry and HPLC, revealed a minor 

burst (approx. 10% at 37°C) and sustained, diffusional release for over one week; furthermore, 

drug encapsulation significantly delayed doxorubicin degradation kinetics.  
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3.1 Introduction 

 

In the field of carrier-mediated drug delivery the optimization of the therapeutic index 

of each active agent generally requires an ad hoc designed system, according to the disease 

and treatment 1, 2. The carrier functions can therefore be very diverse, each with application-

varying importance, including transport to the targeted tissue, increase of cargo solubilization, 

protection against degradation or elimination by the mononuclear phagocytic system (MPS) 3. 

More sophisticated tasks may be promoted, such as active targeting to specific cells and 

tissues4 and control of intracellular distribution5.  

In the development of new colloidal structures as circulating carriers, the assessment 

of their performance as drug carriers necessarily comprises the knowledge of the loaded 

amount of drug, its physical state and distribution inside of the carrier, as well as its release 

kinetics and the influence of environmental factors on it. Although the in vivo carrier 

performance may often differ appreciably, these data provide the first useful information on 

the mechanism and kinetics can be derived.  

In chapter 2, we have reported on the preparation of copolymeric, cross-linked 

nanoparticles of poly(ethylene glycol)-bl-poly(propylene glycol)-bl-poly(ethylene glycol) 

(PEG-PPG-PEG) block copolymers, known as Poloxamers or Pluronics® and poly(ethylene 

glycol) (PEG), via inverse emulsion photopolymerization6. Stable sites for encapsulation of 

poorly-water soluble agents are present in the formed nanoparticles, due to the hydrophobic 

domains of PPG. On the other hand, the presence of PEG imparts hydrophilicity and possibly 

protein repellent character, suggesting long circulation times in body fluids; the sub-micron 

size, surely contributes to this, while it is also supposed to favor the nanoparticle passive 

accumulation in regions of impaired vasculature (as in the case of most solid tumors)7-9. All 

these features prompted us to investigate the possibility of developing these nanoparticles as a 

contolled release drug formulation. 

Furthermore, concentrated dispersions of this novel particulate system may produce 

physical gels (specifically colloidal glasses) upon heating in a biologically relevant 

temperature range (25-35°C). The ease of application, slow dissolution kinetics (compared to 

Pluronic micellar gels) and expected low toxicity of the formulation are advantageous features 

of this system in view of its application as a macroscopic drug depot10. 

In the present chapter we have characterized the encapsulation and release properties 

of Pluronic nanoparticles using doxorubicin (DOX). The benefits of carrier-mediated DOX 
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delivery are related to its non-negligible side effects, above all its high  cardiotoxicity, which 

have fuelled research on DOX carriers, e.g. liposomal11, micellar12-15 and polymer-DOX 

conjugates16. Despite enhanced therapeutic effects that have led to commercialization of some 

of these approaches, there is still room for improvement: physically self-assembled structures 

(liposomes, micelles), where DOX is incorporated due to  hydrophobic interactions, face 

problems deriving from low stability and drug leakiness, whereas polymer-drug conjugates 

generally require high molecular weight backbones (difficult renal excretion) and suffer from 

high cost and low drug-to-polymer loading ratios.  

Nanoparticles, on the other hand, may circumvent some of the above drawbacks17. 

Micellar structures are present in the bulk of our Pluronic nanoparticles6, and this nano-

architecture allows for a physical encapsulation of the drug in its deprotonated (hydrophobic) 

state. On the other hand, the chemically cross-linked nature of the carrier provides an 

enhanced stability in a variety of environmental conditions.  

We here present the development of an a posteriori drug loading protocol, which 

avoids the exposure of the drug to the harsh conditions of radical polymerization. We then 

report on the release behaviour at high dilution, and particularly on kinetics, mechanism and 

physical state of released drug molecules. 

 

3.2 Materials & Methods 

 

3.2.1 Materials & Spectroscopy Characterization 

Acetonitrile and n-hexane (99%) were purchased from LabScan (Oensingen, 

Switzerland). Triethylamine, triethanolamine, potassium iodide, sodium chloride, doxorubicin 

hydrochloride, Span®65 (sorbitan tristearate, Hydrophilic Lipophilic Balance, HLB=2.1±1.0) 

were purchased from Fluka (Buchs, Switzerland). Pluronic® F127, a symmetric triblock 

copolymer with MW=12700, 70% wt. poly(ethylene glycol) and a central poly(propylene 

glycol) block, was purchased from Sigma (Buchs, Switzerland). Pluronic F127 diacrylate 

(F127 diacrylate) was synthesized as described elsewhere18. Eosin Y, trifluoroacetic acid, 

sodium dithionite and poly(ethylene glycol) diacrylate M n =575 (PEG575 diacrylate) were 

purchased from Aldrich (Buchs, Switzerland). Sephadex G25 fine was purchased from 
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Amersham Biosciences. All solvents and reagents were used as received unless otherwise 

mentioned.  

1H-NMR spectra were recorded on a 300MHz Bruker spectrometer. Fluorescence 

spectra were obtained using a Perkin Elmer LS50b Luminescence spectrometer equipped with 

a four-position thermostated automatic cell changer with stirrer or a Tecan Safire2 microplate 

reader. UV-Vis spectra were recorded on a Perkin Elmer Lambda 20 or a Tecan Safire2 

microplate reader. 

 

3.2.2 Nanoparticle formation  

Nanoparticles were prepared via inverse emulsion photopolymerization as previously 

described6. Briefly, Span65 (2.0% w/wtotal) was dissolved in 2.4 ml n-hexane by sonication (4 

min). 0.6 ml of aqueous precursor solution of F127 diacrylate, PEG575 diacrylate, 

triethanolamine and eosin Y (6.3%, 6.3%, 2.0%, 0.02% w/waqueous respectively) were added to 

the oil phase (oil-to-water weight ratio = 72/28) and an inverse emulsion was formed by 

sonication for 30 sec with a tip-sonicator (Bandelin Sonoplus). The inverse emulsion was 

illuminated with an Ar ion laser (480-520 nm) for 1 hr, at room temperature, with an intensity 

of approximately 75 mW/s, under magnetic stirring (200 rpm). After illumination, the inverse 

emulsion was extracted with n-hexane to remove the emulsifier. The aqueous phase was then 

dialyzed against water (MWCO: Molecular Weight Cut-Off = 25,000, Spectrum Laboratories) 

to remove initiator and non-reacted macromonomers. 

 

3.2.3 Dynamic Light Scattering 

Values of effective hydrodynamic diameter in dilute dispersions were obtained by 

dynamic light scattering measurements using a Brookhaven instrument (model BI-DSI) 

equipped with a Lexel 95 laser source (514 nm at room temperature) at a fixed angle of 90o. 

Prior to analysis, solutions were filtered through a Millex AP filter (pore size ≈2µm) to 

remove dust. The digital correlator was operated with 200 channels, a minimum duration of 5 

min and an average amount of counts per second between 100x103 and 700x103. Temperature 

was set at 37ºC. The determination of diffusion coefficient was calculated by fitting the date 

with the cumulants method (quartic fit) and diameters were estimated by the Stokes-Einstein 

equation, assuming a population of non-interactive spherical particles19.  
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3.2.4 Evaluation of doxorubicin loading 

Doxorubicin-HCl was solubilized in chloroform (CHCl3) (1mg/ml) containing 

triethylamine (3 or 5 equivalents in respect to DOX), by sonication (10 min) and subsequently 

added to an aqueous suspension of nanoparticles (2.5mg/ml). Two different methods for 

CHCl3 evaporation were investigated: a) the mixture  was kept under magnetic stirring 

overnight in the dark at 40ºC in an open atmosphere or b) the  mixture was placed in a rotary 

evaporator at 40°C, under slow rotation (35rpm) and reduced pressure (500mmHg for 40min 

and 200mmHg for 5min). The aqueous suspension was then eluted through a Sephadex G25 

fine column to separate DOX-encapsulated nanoparticles from non-encapsulated DOX. 

Loaded DOX was quantified by measurements of its UV absorbance at 490 nm (extinction 

coefficient, ε:  23.0 cm2/mg). Loading was expressed as the weight ratio between loaded DOX 

and nanoparticles and encapsulation efficiency (E.E.) as the weight ratio of encapsulated 

DOX to total DOX used for encapsulation.  

 

3.2.5 Doxorubicin fluorescence-quenching experiment 

The quenching of doxorubicin fluorescence by I- (KI) was monitored in 0.15M NaCl 

solutions containing a 10-5M  antioxidant (Na2S2O4). DOX solutions or separated DOX-

loaded nanoparticle dispersions were investigated. All experiments were performed at 27°C.  

Collisional quenching of fluorescence is described by the Stern-Volmer equation: 

[ ]QK
I

I
SV

Q

+= 10 , 0τkK SV =      (3.1) 

where [Q] is the quencher concentration, SVK  the Stern-Volmer constant, k the bimolecular 

collisional rate, 0τ  the excited-state lifetime of DOX and I0 and IQ the fluorescence intensities 

in the absence and presence of quencher, respectively20. 

 

3.2.6 In vitro release experiments 

The drug (free or encapsulated in nanoparticles) was placed inside a dialysis 

membrane (MWCO: 25,000) immersed in an aqueous buffer 21 times larger in volume (PBS 

10mM, pH 7.4). At predetermined time points the dialysate was sampled and the amount of 

DOX determined by fluorescence measurements or High Pressure Liquid Chromatography 

(HPLC). The whole dialysate was replaced every 24 hours.  
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Experimental data were fitted using a semi-empirical power law equation: 

nbt kt
M

M

M

M
+=

∞∞

  (3.2) 

where Mt, M∞ are the amount of drug released at time t and infinite time, Mb the amount of 

burst released drug,  k is the release constant and n is the release exponent. The value of n 

depends on the geometry of the release device and the mechanism of release. For spheres, n 

ranges between 0.43 (diffusion-based release) and 0.85 (degradation-based release)21. 

 

3.2.7 HPLC method for quantification of DOX 

The amount and degree of degradation of DOX were measured with HPLC using a 

reversed phase C18 column (Nova-Pak®C18, 3.9×150mm, Waters Associates) operated at 

room temperature, a Waters 2690 Separation Module (Waters Associates) and a Waters 474 

Scanning Fluorescence Detector (Waters Associates). As eluent, 0.1% TFA in 

water/acetonitrile 25:75 v/v, was used at a flow rate of 1 ml/min and chromatograms were 

analyzed with Waters Millenium 32 software. A calibration curve was constructed using the 

Area Under the Curve (AUC) and the total amount of DOX was calculated by summing up all 

AUC, attributed to DOX and its degradation products. 

 

3.3 Results & Discussion 

 

3.1 Nanoparticle formation 

Inverse emulsion photopolymerization is a controllable method for preparing well-

defined nanoparticles. The aqueous macromonomer nano-droplets are stabilized by a cross-

linking polymerization of acrylic derivatives, which preserves the structure of the previously 

self-assembled Pluronic micelles (Scheme 3.1). The presence of the segregated hydrophobic 

nanodomains was confirmed using pyrene as a probe, an experiment that also showed the 

capacity of incorporating hydrophobic drugs6. 
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Scheme 3.1 Pluronic-containing nanoparticles are prepared through the photopolymerization 
of water-soluble monomers (PEG and Pluronic diacrlyates) dispersed in inverse emulsion. 

 

 

 
In the present study, we have kept constant composition of the nanoparticles 

(Pluronic-to-total macromonomer weight ratio: 0.50) and total macromonomer weight content 

(12.5% wt.). The photopolymerization conversion and the Pluronic content in the 

nanoparticles were assessed via 1H-NMR on nanoparticle dispersions in D2O.  

The complete disappearance of the peaks at 5.8, 6.1 and 6.4 ppm (3 protons of the 

acrylate moiety (-O(O)CCH=CH2) confirmed a quantitative conversion of the double bonds 

within the nanoparticles.  

By comparing the resonance at 1.2 ppm (3H of PPG block methyl groups) with that at 

3.6 ppm (4H of PEG macromonomer & of PEG blocks in Pluronic), we have recorded a slight 

enrichment in Pluronic compared to the pre-polymerization mixture (Pluronic macromonomer 

weight fraction=0.57). A possible interpretation is that Pluronic acrylates may polymerize 

faster than PEG acrylates, due to their higher local concentration as a result of the micellar 

organization, and may also provide regions of higher cross-linking density. Another, not 

necessarily alternative explanation is that PEG acrylate may partially cyclopolymerize 

(=behaving as a linear monomer instead as a cross-linker) and oligomerize, giving rise to 

extractable products. 

The effect of size on the biological performance of nanoparticles is well documented; 

an optimal diameter range between 100-200nm is believed to favour prolonged circulation 

times and passive targeting of carriers thanks to the Enhanced Permeation and Retention 

(EPR) effect7-9. We appropriately selected inverse emulsion conditions to obtain nanoparticles 

with hydrodynamic diameter of 171 ± 5 nm (mean ± standard deviation), although 

characterized by a fairly broad dispersion in size (Figure 3.1) 
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Figure 3.1 Particle size distribution of nanoparticles prepared by inverse emulsion photo-
polymerization and used in this study. 

 

3.3.2 Physical entrapment of DOX 

Physical entrapment, successfully described in a number of cases for Pluronic® 

micellar systems14, is a mild method, applicable to drugs in a vast range of hydrophobicity22.  

We have adopted a literature procedure23, 24, which, by the use of a base 

(triethylamine) that deprotonates the DOX primary ammonium salt, induces the solubilization 

of DOX in chloroform; loading by simply equilibrating DOX and supramolecular structures 

with hydrophobic domains in water has proven to be ineffective. The organic DOX solution, 

mixed with the aqueous nanoparticle dispersion, forms initially a two phase system: a bottom, 

clear, organic phase and an opaque aqueous phase, containing chloroform swollen 

nanoparticles. Gradually, by chloroform evaporation, the organic phase disappears and the 

aqueous phase becomes transparent, and can be later purified via elution on a Sephadex 

column to remove non-encapsulated drug (Scheme 3.2). Preliminary experiments showed 

higher loading at 40ºC compared to room temperature, most likely due to the increased 

hydrophobic character of Pluronics® at higher temperatures.  
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Scheme 2. Loading method of DOX in hydrogel nanoparticles. 

 

 

The visible absorption spectrum of encapsulated DOX shows only slight differences 

from that of the free, protonated DOX in solution, since the protonation site is far from the 

chromophore; however, the presence of a distinct red-shift of the absorption peak is a clear 

sign of increased local concentration and thus also of DOX-DOX interactions, likely due to π-

π stacking25. Much more dramatic is the effect on the fluorescence spectrum, where a clear 

quenching is recorded; we are fairly sure to ascribe this effect to the increased DOX 

concentration in the hydrophobic domains of the nanoparticles26, 27 (Figure 3.2). 
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Figure 3.2 Visible absorption spectra and fluorescence spectra of doxorubicin, encapsulated 
(39 µg/ml) and free (41µg/ml).  
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For a quantitative evaluation of DOX loading, we have used its extinction coefficient 

at 490 nm in a buffered solution of non-reacted PEG575 diacrylate and Pluronic F127 (in 1:1 

weight ratio). 

By increasing the relative amount of DOX in the feed, incorporation in the 

nanoparticles always increased, an indication that nanoparticle saturation was not yet reached 

(Table 3.1 & Figure 3.2). Encapsulation efficiency seemed to depend on DOX concentration 

too, with surpisingly low levels at low DOX concentrations, while leveling at higher 

concentrations. It can be easily shown that pH increases with DOX concentration, since also 

the amount of base is proportional to that of DOX, and so does also the ratio between 

deprotonated/hydrophobic and protonated/hdyrophilic DOX. It is also easy to demonstrate 

that this effect is significant at markedly low concentrations, while it levels off very soon, 

hence the Indeed, superior loading was obtained when DOX was solubilized with 5 

equivalents of triethylamine instead of the  3 equivalents (Table 3.1). 

Initial experiments were conducted by slowly evaporating chloroform at atmospheric 

pressure; this method showed a strong dependence on the vial geometry and on the volume of 

water phase, thus later we opted for a quicker evaporation with a rotatory evaporator. This 

second approach resulted in more reproducible loadings of larger volumes in much shorter 

times (Table 3.1). 

 

Table 3.1 Doxorubicin loading characteristics as a function of feed loading, amount of based 
used and evaporation conditions 

 
Feed loading a (%) Volume of water 

phase (ml) 
Nanoparticle loading b 

(%) 
Encapsulation 
efficiencyc (%) 

5 d,f 0.4 0.6±0.1 11.7±1.0 
10 d,f 0.4 2.3±0.2 22.5±2.2 
15 d,f 0.4 4.4±0.4 29.2±2.5 
20 d,f 0.4 5.4±0.4 27.0±1.8 
10e,f 1.0 1.1±0.1 11.4±1.1 
10e,g 1.0 2.1±0.2 20.3±2.0 
20e,g 1.0 8.6±2.0 43.2±9.9 
20e,g 2.0 8.7±1.2 43.6±5.9 

a Weight ratio between total DOX and nanoparticles 
b Weight ratio between encapsulated DOX and nanoparticles, mean ± standard deviation 
c Ratio between feed and experimental loading, mean ± standard deviation 
d evaporation at atmospheric pressure  
e evaporation at reduced pressure  
f 3 equivalents of triethylamine in respect to DOX 
g 5 equivalents of triethylamine in respect to DOX 
 



   

 62 

5 10 15 20
0

10

20

30

40

0

2

4

6

8

10

Lo
ad

in
g 

ef
fic

ie
nc

y 
(%

)

E
nc

ap
su

la
tio

n 
ef

fic
ie

nc
y 

(%
)

Theoretical loading (%)

 

 

Figure 3.2 Encapulation and loading efficiency at different theoretical loadings, following the 
first loading protocol (overnight evaporation of CHCl3). Mean and standard deviations are 
shown (n=3). 
 

Evidence of the hydrophobic character of the encapsulation was achieved using 

fluorescent quenching studies. Large, hydrated, I- ions, used as quenching agents, are not able 

to penetrate into hydrophobic regions, limiting their quenching activity to DOX molecules in 

the hydrophilic region and the interface28, 29.  
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Figure 3.3 Stern-Volmer plots of free and encapsulated doxorubicin at 27°C. Mean and 
standard deviations are shown (n=3). 
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The slopes of the Stern-Volmer plots for DOX and encapsulated DOX (Figure 3.3) 

reflect the degree of exposure to the quenching iodide ions. The lower value for encapsulated 

DOX shows the drugs to be present in hydrophobic, difficultly accessible regions, although 

partial quenching suggests either an incomplete insertion or some degree of accessibility of I- 

in the poly(propylene glycol) domains. Rapoport and Pitina, noticed that although ruboxyl, a 

paramagnetic analogue of doxorubicin, was entirely inserted in the lipid bilayer of liposomes, 

a fraction of DOX appeared to reside at the lipid-water interface29. Moreover, poly(propylene 

glycol) is not fully dehydrated in this temperature range30, 31 and I- may diffuse through this 

phase.   

 

3.3.3 Release from nanoparticles 

In this study we have simulated ‘sink’ conditions, placing the loaded nanoparticles in 

dialysis bag (MWCO: 25,000) and regularly replacing the dialysate every 24 hours. This time 

is largely in excess for reaching the complete equilibration of DOX solutions on the two sites 

of the dialysis membrane, as shown in control experiments (Figure 3.4). 

0 10 20 30 40 50
0

20

40

60

80

100

[D
O

X
] di

al
ys

at
e / 

[D
O

X
] eq

ui
lib

riu
m
 

x1
00

 (
%

)

time (h)

 

Figure 3.4 Control equilibration experiment of free doxorubicin through the dialysis 
membrane (MWCO: 25,000) used in further release studies. The equilibration is complete 
after 10 hours, then DOX concentration decreases, due to DOX adsorption on glass and other 
surfaces (dialysis clips, stirrer bars etc.) and DOX degradation and consequent 
precipitation32, 33. Mean and standard deviations are shown (n=3). 
 

The in vitro doxorubicin release profiles at two different temperatures (room 

temperature and 37°C) are presented in Figure 3.5. Matching results were obtained by both 

detection methods (HPLC and fluorescence spectroscopy, Figure 3.5A), revealing prolonged 

drug release over a time scale (7 days) of clinical importance: slower drug release would 
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require a higher concentration of the delivery system and possibly elevate the risk of drug 

resistance development, while a more rapid liberation of drug would require more frequent 

administration. 

When dealing with physical encapsulation, small carrier size and in the absence of a 

switchable barrier, a burst effect is frequently observed, although generally undesired. For our 

system burst release was evident only at 37°C and accounted for approximately 10% of 

encapsulated DOX. We suspect that the temperature jump between purification (performed at 

room temperature) and release (37°C) causes an intraparticle transition leading to drug 

expulsion; higher Pluronic® content nanoparticles have been shown to exhibit a temperature 

dependent shrinkage at this temperature range10, a finding which we believe is also valid in 

this case. 
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Figure 3.5 Doxorubicin release profiles from nanoparticles in PBS (10mM, pH=7.4), at room 
temperature and 37°C. (A) Comparison between the 2 different detection techniques; (B) Fit 

to the semi-empirical power law equation nbt kt
M

M
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M
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. Mean and S.D. are shown (n=3). 

 

A power law (Equation 3.2) fitted our experimental data well despite its simplicity and 

assumptions (Figure 3.5B). In the case of release at room temperature no burst effect was 

included ( 0=
∞M

M b ); at 37°C an estimate of 1.0=
∞M

M b  was taken into account. The values of 

n (Table 3.2) determined for two different temperatures are close to 0.43. The small deviation 

may be attributed to invalid assumptions like sink condition maintenance, constant drug 

diffusivity and high difference between loaded drug concentration and drug solubility21. 
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Nevertheless, these results confirm that the main release mechanism is diffusion, an expected 

finding considering the non-covalent nature of interaction between DOX and nanoparticles. 

 

Table 3.2 Calculated values for parameters k and n from fitting  equation (3.2) to the 
experimental data. 

 
Temperature k n 
Room Temp. 2.99±0.26 0.50±0.02 

37°C 5.14±0.07 0.47±0.03 
 

In case of diffusional release, plotting the released amount of drug against the square 

root of time should yield a linear correlation according to the Higuchi model21, 34. Excluding 

the burst effect by omitting the early time data points (t<24h) good fits were obtained (Figure 

3.6). The slopes, which are proportional to an apparent diffusion coefficient, were found to be 

3.01±0.71 and 3.98±0.57, for room temperature and 37°C, respectively. Diffusion seems to be 

faster at 37°C, although the difference is not statistically significant. 
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Figure 3.6 Release of doxorubicin plotted against the square root of time. The early data 
points corresponding to the burst release are excluded. Linear fits indicate diffusional release. 
Mean and S.D. are shown (n=3). 

 

It is well established that PPG hydrophobicity in Pluronic micelles increases with 

temperature, while water content decreases even if it does not completely disappear30, 31. 

There are therefore two possible effects governing the DOX diffusion out of nanoparticles as 

a function of increasing temperature: increasing hydrophobicity of the matrix, which should 

slow down diffusion, and increasing mobility of the molecule, with the opposite effect. Our 

data apparently support the second effect to overwhelm the first one.  
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3.3.4 Doxorubicin degradation 

In order to investigate the ability of the carrier to perform a protective action, we have 

used an HPLC method that, in addition to the quantification of the drug release, can also be 

used to monitor DOX degradation 32, 33, 35. . Fresh, non-degraded DOX eluted as a single sharp 

peak after 7.7 min. sharp peak after 7.7 min. Examining DOX released from nanoparticle 

suspensions, new peaks attributed to DOX degradation products appeared at 6.1 min, 6.4 min 

and 8.3 min (Figure 3.7A), and increased in intensity with time. The percentage of non-

degraded DOX was calculated from the ratio of the AUC of the peak at 7.7 min to the sum of 

AUC of all peaks (Figure 3.7B).   
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Figure 3.7 (A) HPLC chromatographs showing peaks attributed to DOX and its degradation 
products at 37°C. (B) Degradation kinetics of DOX encapsulated in nanoparticles for both 
temperatures studied. Solid lines are linear fits of the calculated values whereas the dashed 
line corresponds to degradation of non-encapsulated DOX in PBS at 37°C as obtained from 
literature (ref. 32).  
 

  Neglecting degradation occuring after release from the carrier in the dialyzate and 

assuming similar release rates for all species, we were able to estimate the degradation rate of 

doxorubicin inside the nanoparticles.  We have run experiments at room temperature and 

37°C, which revealed significant degradation for both temperatures, although more 

pronounced at 37°C. Comparing however with the degradation rate of DOX at 37°C in PBS 

(10mM, pH=7.4)32, we observe that, although encapsulation does not fully protect the drug - 

most likely because of the presence of water in the hydrophobic domains - it nevertheless 

delays degradation. The estimated half-life t½ for encapsulated DOX was 173h, which is much 

higher than the reported half-life of 50h for DOX in PBS, indicating a protective effect of the 
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carrier32. A detailed study on degradation was not the subject of this study and is currently in 

progress, using HPLC with a mass spectoscopy detector, capable of identifying the structure 

of the different metabolites. Concluding, we have also to bear in mind that a quantitative 

interpretation of these release profiles is also complicated by the fact that different 

degradation products may have different diffusion properties, in addition to the changes in 

carrier hydrophobicity and general increase of diffusivity with temperature. 

 

3.3.5 Stability against aggregation 

Doxorubicin molecules are known to self-associate through stacking interactions; if 

the molecules are found on the surface of polymers they may promote aggregation as was 

shown for polymer-adsorbed DOX27, 36. One of our concerns was the possibility of 

nanoparticle aggregation during the loading and/or release procedure. We confirmed, using 

DLS, that the diameter of the carrier following loading and release (168 ± 11 nm) is not 

affected by the experimental protocols used.  

 

3.4 Conclusions 

 
In this chapter we explored the loading and release capabilities of a novel 

nanoparticulate system, using DOX as an example of a hydrophobic drug. By selecting 

appropriate macromonomers and inverse emulsion conditions, we were able to prepare 

colloids with an average size of 170 nm, with internal PPG-rich hydrophobic regions. The 

successful physical encapsulation of DOX in these domains was confirmed, and it was 

demonstrated to dramatically alter the in vitro pharmacokinetics of the drug. In particular, the 

use of these systems is attractive since, upon dilution, as would be the case for in vivo 

applications, the hydrophobic regions are stable and are not subject to possible disaggregation 

as can be the case with micellar systems.  Moreover, the hydrophilic nature of the particles 

can be expected to provide some level of biocompatibility and ‘stealth’ characteristics. 

Encapsulation provided sustained release for up to 1 week in vitro. Finally, encapsulation of 

DOX within the hydrophobic core provided substantial protection of the drug against 

hydrolytic degradation.  
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4.1 Introduction 

 

In chapter 2 we have described the use of inverse emulsion cross-linking radical 

polymerization for the preparation of hydrogel nanoparticles. Initiation occured through light 

activation of a photo sensitizer (a xanthene dye: eosin Y) followed by electron transfer to a 

co-initiator (triethanolamine)1 (Figure 4.1A). Photopolymerization allows easy handling and 

good mixing of the precursor as well as temporal and spatial control over the reaction2; 

however, it necessitates an external light source and irradiation may damage components of 

the reaction mixture (e.g. photo-bleaching of fluorescent dyes). Moreover, in heterophase 

systems, as is the case of inverse emulsions, scattering of irradiated light results in spatially 

inhomogeneous light intensity. 

Therefore, we explored an alternative intiation scheme, namely the redox initiation 

system consisting of ammonium persulfate (APS) and N,N,N´,N´-tetramethylethylenediamine 

(TEMED), routinely used for preparation of acrylamide gels in gel electrophoresis. Recently 

it was also succesfully applied for the preparation of acrylamide-based nanogels via inverse 

emulsion cross-linking polymerization3. In this case, initiation is believed to occur via 

formation of a contact charge transfer complex (CCT) and a cyclic transition state (CTS), 

yielding three active radical species4 (I, II & III in Figure 4.1B). 
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Figure 4.1 Schematic representation of radical formation through photoinitiation by eosin Y 
and triethanolamine (A) and redox initiation by APS-TEMED (B).  
 

Interactions of NPs with drugs on one hand and the biological environment on the 

other, depend highly on the material’s chemical identity and structure. Functionality and 

environmental sensitivity may be further tailored through suitable chemical modifications on 
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an inert background. Incorporation of functional sites (e.g. reactive or charged groups) in the 

carrier provides them with additional drug loading and labeling capabilities.  

Drugs covalently bound via specific, cleavable linkers are released in response to 

environmental changes5, whereas ionizable groups are able to interact with opposite charged 

molecules and may allow pH-responsive release. Furthermore, introduction of labels via 

stable linkages, allows detection and visualization of the colloids; for instance, fluorescent 

tags may be used to track the intracellular location and environment of NPs6, 7, and even 

provide information on cell biomechanics8.  

The reaction scheme we have used in this thesis to prepare non-ionic, hydrogel NPs is 

based on the solution, cross-linking polymerization of diacrylate macromonomers. The nature 

of the vinyl-containing group is known to influence the monomer’s reaction kinetics9. 

Nevertheless, incorporation of various comonomers, of different MW and charge, has been 

verified in similar reaction conditions, for the preparation of graft copolymers10, as well as 

hydrogels11-13, microgels14 and nanogels15, 16. We used this strategy to copolymerize 

monomers containing a double bond (an acrylamide or a methacrylamide group) linked to a 

functional group. Following NP formation, pendant groups were present in the three-

dimensional (3D) nanogel matrix, which could be used for subsequent reactions. Having in 

mind the need to accurately quantify NPs at very low concentrations, as well as the ability to 

image through fluorescence spectroscopy the otherwise invisible NPs, we fluorescently 

labeled the colloids.  

 

4.2 Materials & Methods 

 

4.2.1 Materials 

Poly(ethylene glycol) diacrylate M n =575 (PEG575 DA), di(ethylene glycol 

diacrylate), triethylamine, dimethyl sulfoxide (DMSO), Sephadex G25 (fine), agarose, 

ammonium persulfate (APS) and fluorescein isothiocyanate (FITC) were purchased from 

Sigma-Aldrich (Buchs, Switzerland). Span®65 (sorbitan tristearate, Hydrophilic Lipophilic 

Balance=2.1±1.0), N,N,N',N'-Tetramethylethylenediamine (TEMED), triethanolamine and 

eosin Y were purchased from Fluka (Buchs, Switzerland). N-hexane (99%) was purchased 

from LabScan (Oensingen, Switzerland). N-(3-aminopropyl) methacrylamide hydrochloride 

(APMA) was purchased from Polysciences Inc. Fluorescamine was purchased from 

Applichem. 
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Pluronic® F127, a symmetric triblock copolymer with MW=12700, 70% wt. poly(ethylene 

glycol) and a central poly(propylene glycol) block, was purchased from Sigma (Buchs, 

Switzerland). Pluronic® F127 was functionalized with acrylate groups (F127 DA) as 

described elsewhere17. 

Phosphate Buffer Saline (PBS, 10mM, pH 7.4) was prepared by dissolving 0.2g KCl, 0.2g 

KH2PO4, 1.15g Na2HPO4 and 8g NaCl in 1L of milliQ grade water. Carbonate buffer (0.5M, 

pH 9.5) was prepared by dissolving 17g Na2CO3 and 28g NaHCO3 in 1L of milliQ grade 

water. 

 

4.2.2 Spectoscopic characterization 
1H-NMR spectra were recorded on a 300MHz Bruker spectrometer. FTIR spectra were 

recorded in ATR mode on a Spectrum One Perkin Elmer Spectrometer. Fluorescence and 

UV-Vis spectra were obtained using a Safire 2 well plate reader.  

 

4.2.3 Nanoparticle formation  

Nanoparticles were prepared via inverse emulsion radical polymerization using two 

different initiation mechanisms.  

Photo-initiation was employed as previously described in detail (Chapter 2).  Briefly, 

Span®65 (44mg, 2.0% w/wtotal) was dissolved in 2.4 ml n-hexane by sonication (4 min). 0.6 

ml of aqueous precursor solution of F127 DA, PEG575 DA, triethanolamine and eosin Y 

(6.3%, 6.3%, 2.0%, 0.02% w/waqueous respectively) were added to the oil phase (oil-to-water 

weight ratio = 72/28) and an inverse emulsion was formed by sonication for 30 s with a tip-

sonicator (Bandelin Sonoplus). The inverse emulsion was illuminated with an Ar ion laser 

(480-520 nm) for 1 hr, at room temperature, with an intensity of approximately 75 mW/s, 

under magnetic stirring. 

Alternatively, APS was used as initiator and TEMED as accelerator. In this case, the 

aqueous precursor solution, containing F127 DA and PEG575 DA (0.28ml, 6.3% and 6.3% 

w/waqueous respectively), was added to the oil phase containing the emulsifier. TEMED (100µl, 

3.7% wt.) was then added and an inverse emulsion formed by sonication for 30s. To initiate 

the reaction, APS solution (0.22ml, 5.5% wt. aqueous solution for a final aqueous 

concentration of 2% w/waqueous) was added, and immediately the inverse emulsion was 

sonicated for another 30s in order to disperse the initiator. The polymerization was left to 

proceed for 2h, at room temperature and under magnetic stirring. In order to test the 
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possibility of scaling up the procedure, samples were additionally prepared with  5 times 

larger quantities. 

Nanoparticles containing co-monomers were formed by dissolving appropriate 

amounts in the aqueous macromonomer precursor solution. Photopolymerization was 

employed for preparation of AMPS-containing NPs, whereas APMA-containing NPs were 

prepared using both initiation mechanisms. 

After reaction completion, the emulsifier was extracted with n-hexane and the aqueous 

phase was dialyzed against water (molecular weight cut-off: 25,000, Spectrum Laboratories) 

for 2-3 days to remove initiator and non-reacted macromonomers. 

 

4.2.4 Quantification of amine groups in nanoparticles and FITC conjugation 

The concentration of primary amines was determined using fluorescamine, which 

upon reaction with the amine group yields a fluorophor18. Fluorescamine (20µl of 3 mg/ml 

acetone solution) was added in a 96-well plate containing dispersions of functionalized 

nanoparticles (200µl) in PBS (10mM, pH=7.4) and left 15min at room temperature to react. 

Emission intensity was read at 475nm (excitation at 390nm, 30°C) and NH2 concentration 

was calculated using a calibration curve constructed with unreacted APMA solutions. 

The amine groups present in the nanoparticles were then used for fluorescent labeling. 

40 equiv FITC (1 mg/ml in DMSO) was added in 1.5ml eppendorf tubes containing 0.5ml 

nanoparticle dispersions (2-4mg/ml in 0.25M carbonate buffer). The reaction was left to 

proceed overnight at 4°C, under dark and conjugated nanoparticles were separated from 

unreacted FITC by size exclusion chromatography (Sephadex G25) followed by dialysis for at 

least 2 days (Spectrum Laboratories, MWCO: 25,000). Conjugation efficiency was 

determined using fluorescence spectroscopy (excitation wavelength: 488nm, emission 

wavelength: 525nm) and a calibration curve constructed with unreacted FITC in PBS.  

Particles were imaged with a confocal microscope after embedding in an agarose gel. 

Briefly, an aqueous fluorescent NP dispersion (5µl) was mixed with 200µl agarose solution 

(1% w/v) in a microscope chamber slide (Lab-Tek, Nalge Nunc International) at 45°C; upon 

cooling to room temperature a gel was formed, entrapping NPs and inhibiting their rapid 

thermal motion. 
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4.3 Results & Discussion  

 

4.3.2 Redox initiation 

We initially selected eosin Y and triethanolamine as photo-sensitizer and initiator 

respectively, because of their low toxicity and fast reaction kinetics9, 19. However, scattering 

of light by the opaque inverse emulsion, a high dependance on reactor geometry and the need 

for specialized light sources led us to develop an alternative polymerization protocol based on 

a different initiation scheme, namely the redox system of ammonium persulfate (APS) and 

N,N,N',N'-tetramethylethylenediamine (TEMED).  

In view of the fact that radical formation in presence of both APS and TEMED is rapid 

and polymerization occurs in the confined space determined by the dimensions of the aqueous 

droplets, we decided to disperse one initiator in a pre-formed inverse emulsion already 

containing the other one; addition of both initiators simultaneously prior to sonication, 

resulted in extremely fast macroscopic gel formation at the concentrations used here. From 

preliminary experiments we observed that the addition sequence was critical for controlled 

and reproducible formation of NPs with low polydispersity, with initial addition of TEMED 

providing better results. We also noticed that TEMED affected inverse emulsion 

characteristics: at high concentrations (3.7% wt.), sonication resulted in the formation of a 

semi-transparent inverse emulsion, an indication of reduced aqueous droplet size, suggesting 

a role of TEMED as co-emulsifier. Indeed, the average hydrodynamic diameter of particles 

prepared using this initiation scheme was lower compared with those prepared by photo-

initiated polymerization, having the same macromonomer ratio and composition (Table 4.1). 

The initiator concentrations were selected in order to ensure the formation of 

monodisperse NPs as well as the complete double bond conversion: an increase in initiating 

species results in an increase of cross-linking kinetics which help stabilize faster the NPs and 

reduce the possibility of interparticle reactions during aqueous droplet coalescence. 

Completion of the reaction was verified by 1H-NMR spectroscopy on lyophilized NPs 

redispersed in CDCl3: the characteristic proton peaks of the acrylate group (δ=5.8, 6.2 and 

6.4) were absent.  

An additional advantage of this initiation scheme was the possibility of preparing 

larger NP quantities (scale up). Typically 3ml of inverse emulsion were polymerized; sample 

TH-NH-B was prepared in 15ml and exhibited the same average diameter.  
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Table 4.1 Hydrodynamic diameter and polydispersity index of NPs prepared by 
photoinitiation or redox initiation, determined by DLS. 

 
Sample APMA concentration 

(% w/wNP) 
Inverse emulsion 

volume (ml) 
Hydrodynamic 
diameter (nm) 

Polydispersity index 

PH-ST-1a - 3.0 144.7±11.7 0.12 

PH-NH-1a 0.08 3.0 153.0±4.9 0.27 

PH-NH-2a 0.40 3.0 161.3±13.2 0.23 

TH-ST-1b - 3.0 102.4±16.7 0.22 

TH-NH-1b 0.40 3.0 137.1±3.5 0.18 

TH-NH-Bb 0.40 15.0 132.9±2.0 0.30 
     a Photo-initiation 
     b Redox initiation 
 

The above results show that it was indeed feasible to prepare NPs using the redox 

initiation system APS-TEMED in a reproducible manner, with full double bond conversion 

and independently of batch volume. However handling of the precursor mixture in this case 

requires more attention: dispersion of APS in the aqueous droplets of the inverse emulsion 

needs to be rapid and uniform over its whole volume.  

 

4.3.3 Bulk functionalization of NPs 

The three-dimensional network of the hydrogel NPs accomodates large amounts of 

water and has a characteristic mesh-size which can be controlled by the length of the 

macromonomers and the cross-linking density (determined mainly by the macromonomer 

concentration)20. Studies have not yet been undertaken to determine the mesh-size of the NPs 

presented in this thesis; however, similar polymerization conditions resulted in hydrogels 

which permitted diffusion of low MW molecules within their structure13, 20, 21. Moreover, it 

was shown in chapter 3 that doxorubicin (MW=580) was able to diffuse through the NP 

matrix. Therefore, we assumed that small drugs or labels could readily diffuse and interact 

with elements present in the bulk of the NPs.  

Aiming to incorporate such functional elements, we introduced in the polymerization 

scheme two different, low MW, vinyl-containing comonomers: 2-acrylamido-2 methyl 

propan-sulfonic acid (AMPS) and N-(3-aminopropyl) methacrylamide hydrochloride 

(APMA) (Figure 4.2).  
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Figure 4.2 Chemical structure of functional co-monomers containing reactive vinyl groups 
used in this study. 
 

AMPS is known to spontaneously polymerize in acidic environment22; for this reason, it was 

neutralized before its addition to the precursor solution. Its incorporation at three different 

concentrations in the NPs was confirmed by FTIR spectroscopy (Figure 4.3). Although there 

was no attempt to retrieve quantitative results, it is evident that increased amounts of AMPS 

were co-polymerized with increasing feed amounts.  
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Figure 4.3 FTIR spectra of NPs prepared with various AMPS precursor concentrations 
(region between 700 and 1800cm-1 normalized to the C=O stretching resonance is shown). 
Increase of comonomer characteristic peaks with increasing concentration, verifies 
proportional incorporation in the NPs.  
 

At physiological pH, the presence of AMPS in the NPs renders them negatively 

charged; electrostatic interactions between the sulfate groups and positively charged 

molecules could be used for loading purposes. 

The second comonomer selected was APMA (Figure 4.2); its structure consists of a 

methacrylamide group on one side and a primary amine on the other side of a small (C3) 
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alkane chain. The concentration of primary amines and therefore the degree of incorporation 

of this comonomer was quantified using a fluorescamine assay: APMA was succesfully co-

polymerized and the final amine concentration in the nanoparticles was in good agreement 

with that of the feed composition (Table 4.2).   

 

Table 4.2 Incorporation of APMA comonomer in NPs and conjugation efficiency of FITC 
coupling to the amines present in NPs. 

 
Sample Theoretical APMA 

concentration (% w/wNP) 
Calculated AMPA 

concentration (% w/wNP) 
FITC conjugation 

efficiency (%) 
PH-NH-1 0.08 0.13±0.04 15±1 

PH-NH-2 0.40 0.45±0.03 11±1 

TH-NH-1 0.40 0.42±0.01 11±3 

 

The a posteriori covalent attachment of a low MW, amine reactive molecule to the 

nanoparticles was demonstrated using fluorescein isothiocyanate (FITC). Conjugation 

efficiencies were in the range of 10-15% (Table 4.2); we believe these low values are mainly 

due to FITC instability in aqueous media. The limited diffusion in the interior of the highly 

cross-linked networks of the nanoparticles may constitute an additional obstacle. 

Nevertheless, fluorescent NPs were succesfully isolated and imaged using a confocal 

microscope (Figure 4.4), confirming the feasibility of the functionalization strategy proposed.     

 

 

Figure 4.4 Fluorescently labeled NPs (fluorescein) embedded in agarose gel and visualized 
by confocal microscopy. 
  

4.4 Conclusions 

We have here presented an alternative initiation scheme for the radical cross-linking 

polymerization of PEG and Pluronics in inverse emulsion. Redox initiation by APS-TEMED 
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resulted in complete double bond conversion and formation of sub-micron particles, in a 

similar manner as photo-initiation. Therefore it can replace the former method in cases when 

substances that are incompatible with laser irradiation are used.  

In order to functionalize the bulk of the NPs, comonomers were introduced in the 

reaction scheme; their efficient co-polymerization provided reactive groups for further 

modification, as was demonstrated by the covalent attachment of fluorescein. We believe 

these results may be extended for various functional, water-soluble molecules possessing at 

least one vinyl group in their structure. 
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Abstract 

 
We here discuss a temperature-induced sol-gel phenomenon observed for concentrated 

water dispersions of amphiphilic hydrogel nanoparticles, which are composed of covalently 

cross-linked Pluronic F127 and PEG. We interpret this transition as related to a change in the 

state of individual nanoparticles, turning from soft, deformable objects into hard spheres. The 

change in nanoparticles’ mechanical properties determines a structural arrest of the 

dispersion, which turns into a glassy state. We also discuss the implications of this 

phenomenon for applications in biomaterials and controlled release. 
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5.1 Introduction 
 

We here discuss a new kind of colloidal hydrogel, prepared through the thermo-

switchable assembly (vitrification) of nanoparticles. 

Hydrogels are almost ubiquitous biomedical materials, with applications ranging from 

topical controlled drug delivery to permanent or provisional tissue substitution and 

regeneration. The attention of researchers and clinicians is increasingly focusing on hydrogels 

formed in situ from liquid precursors; these materials are advantageous because of the 

minimally invasive formation and the optimal contact and shape-matching with the 

surrounding tissues. A variety of systems have been developed for these applications1-3, with 

fluid-to-solid (sol-gel) transition resulting from the formation of chemical cross-links 

(chemical gelation) or from a change in physico-chemical interactions (physical gelation).  

Materials that exhibit a lower critical solution temperature (LCST) near physiological 

temperature are very attractive candidates for in situ sol-gel applications, because of the mild 

character of the transition (negligible heat production, no byproducts), and indeed a number of 

them have been investigated, for example poly(N-isopropylacrylamide)4 (pNIPAm), the 

amphiphilic poly(ethylene glycol)-bl-poly(propylene glycol)-bl-poly(ethylene glycol) (PEG-

PPG-PEG) block copolymers, known as Poloxamers or Pluronics5-7 and PEG-PLGA block 

copolymers3, 8. In a recent report, a natural polymer formulation based on chitosan showed 

promising results in vitro as well as in vivo9, 10. 

We are specifically interested in Pluronics-containing materials. Pluronics show 

excellent biocompatibility, can be easily functionalized and loaded with drugs; in most cases, 

they can be excreted, thus avoiding long-term accumulation. A non-negligible inconvenience 

is, however, the rapid kinetics of dissolution of their physical gels; furthermore, this process 

determines a simultaneous release of any encapsulated payload11, hindering the use of these 

materials for applications that require a long-term sustained release. Several approaches have 

been pursued to overcome this problem, including the use of different polymer additives 

(PEG, PVP, different cellulose and others)12, 13, the incorporation of preformed loaded 

nanoparticles14 or liposomes15, 16 and the preparation of higher molecular weight polymers 

containing segments of PEG and PPG17. The chemical cross-linking of physical gels with 

hydrolytically-sensitive groups can also be used to prolong the stability of Pluronic gels18. 

However, all these systems lack of the simplicity of a system based on purely physical 

gelation of only one component. 
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It is important to recall that Pluronic sol-gel transition is a phenomenon of colloidal 

self-assembly: an increase in temperature, concentration, or both, make Pluronic unimers 

associate into micelles, which then crystallize into a cubic phase5, 19, 20. It is therefore more 

appropriate to describe these systems as ‘micellar crystals’ rather than gels, and the process is 

better termed a reverse thermal hardening (or gelation) rather than a simple LCST transition. 

Having in mind that also other colloidal systems can undergo sol-gel transitions and 

that the kinetics of dissolution processes is related to the diffusion coefficients of the colloids, 

and thus inversely proportional to their size, we focused our attention on larger objects 

(nanoparticles), whose gels should therefore show slower solubilization than micellar 

systems. The sol-gel processes of concentrated nanoparticles dispersions have indeed attracted 

considerable attention 21-23: if these dispersions can behave as liquids at low volume fractions 

(φ), upon concentration the particles’ motion starts to correlate with that of their neighbors; 

finally, at a specific volume fraction a structural arrest takes place, limiting the diffusion of 

the individual nanoparticles. In a model of elastic hard spheres, at φ=0.49 a fluid becomes a 

two-phase system composed of the fluid with a face-centered-cubic crystal. At φ∼0.58 a glass 

transition takes place, before reaching the random close-packed volume fraction of φ=0.67. It 

is generally assumed that the individual particles are dynamically arrested within a cage 

formed by their neighbours (“cage effect”), conferring an elastic character to the material.  

This picture is valid under the assumption of hard, non-interacting spheres. The 

presence of attractive forces may on the contrary cause a glass-like gelation at lower volume 

fractions24, while soft, swellable, interpenetratable and/or deformable particles may flow even 

at higher volume fractions25-27. In an attempt to rationalize these colloidal fluid-to-solid 

transitions, different methodologies have been introduced, including the ‘jamming’ phase 

diagram concept24, 28 and the glass paradigm approach29.   

Although colloidal sol-gel transitions have been studied from a physicochemical 

perspective, such systems have not been explored extensively for biomedical applications. 

Studies have been performed mostly on non-aqueous solvents and on colloids that are well-

characterized but of limited biological interest.   

We have here tackled the task of producing a thermoreversible colloidal gel-like solid, 

by providing thermal sensitivity (through a Pluronic structure) to nanoparticles and studying 

the influence of temperature on their self-assembly. In terms of biomedical goals, we wished 

to prepare a system that would (1) form an elastic material with enhanced mechanical 

properties from injectable, fluid precursors through a temperature gradient; (2) exhibit slow 
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dissolution kinetics, because of the slower dynamics of nanoparticles compared to micelles, 

and in this way (3) decouple the release kinetics of a payload from that of the gel dissolution. 

Specifically, we have employed materials composed of copolymeric cross-linked gels 

of Pluronics and PEG, which were produced in form of nanoparticles via inverse emulsion 

photopolymerization30. The nanoparticles preserve the amphiphilic (micellar) structure of 

Pluronic, even rendering it more stable towards dilution, and thus feature hydrophobic sites 

for encapsulation of poorly-water soluble drugs. 

  

5.2 Materials & Methods 

 

5.2.1 Materials 

Dichloromethane and n-hexane (99%) were purchased from LabScan (Oensingen, 

Switzerland). Toluene, acryloyl chloride, triethylamine, triethanolamine, span65 (sorbitan 

tristearate, HLB=2.1±1.0) were purchased from Fluka (Buchs, Switzerland). Pluronic F127, a 

symmetric triblock copolymer with MW=12700, 70% wt. poly(ethylene glycol) and a central 

poly(propylene glycol) block, was purchased from Sigma (Buchs, Switzerland). Pluronic 

F127 was functionalized with acrylate moieties (F127 diacrylate) as described elsewhere31. 

Eosin Y and poly(ethylene glycol) diacrylate M n =575 (PEG575 diacrylate) were purchased 

from Aldrich (Buchs, Switzerland). All solvents and reagents were used as received unless 

otherwise mentioned. 

  

5.2.2 Nanoparticle preparation 

Nanoparticles were prepared via inverse emulsion photopolymerization as described in 

chapter 2. Briefly, Span65 (2.0% w/wtotal) was dissolved in 2.4 ml n-hexane by sonication (4 

min). 0.6 ml of aqueous precursor solution of F127 diacrylate, PEG575 diacrylate, 

triethanolamine and eosin Y (9.4%, 3.1%, 2.0%, 0.02% w/waqueous respectively) were added to 

the oil phase (oil-to-water weight ratio = 72/28) and an inverse emulsion was formed by 

sonication for 30 sec with a tip-sonicator (Bandelin Sonoplus). The inverse emulsion was 

illuminated with an Ar ion laser (480-520 nm) for 1 hr, at room temperature, with an intensity 

of around 75 mW/s, under magnetic stirring (200 rpm). After illumination, the inverse 

emulsion was extracted with n-hexane to remove the emulsifier. The aqueous phase was then 
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dialyzed against water (MWCO= 300,000, Spectrum Laboratories) to remove initiator and 

non-reacted macromonomers. 

 

5.2.3 Preparation of hydrogel discs 

Macromonomer precursor solutions were prepared in water with 2.7 mM 

triethanolamine and 10 µM eosin Y (2% and 0.035% w/waqueous respectively). Aliquots of 50 

µl were placed between two glass slides, precoated with Sigmacote, and irradiated for 5 min 

with an Ar ion laser (480-520 nm) at a flux of 75 mW/s. The formed hydrogel discs were 

weighed in air and ethanol after cross-linking and after swelling to equilibrium for 48 hr in 

water. The swelling index was calculated as the ratio weight of the swollen gel to the dry 

weight, for different temperatures (n=4) and density was calculated using the formula:  
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gel d

ww

w
d

−
= ,  with dethanol=0.79 g/ml. 

 

5.2.4 Spectroscopic characterization 

1H-NMR spectra were recorded on a 300 MHz Bruker spectrometer. FTIR spectra 

were recorded in ATR mode on a Spectrum One Perkin Elmer Spectrometer. Fluorescence 

spectra were obtained using a Perkin Elmer LS50b Luminescence spectrometer equipped with 

a four-position thermostated automatic cell changer with stirrer. UV-Vis spectra were 

recorded on a Perkin Elmer Lambda 20. 

5.2.5 Dynamic light scattering (DLS) 

Values of effective hydrodynamic diameter in dilute dispersions were obtained by 

dynamic light scattering measurements using a Brookhaven instrument (model BI-DSI) 

equipped with a Lexel 95 laser source (514 nm at room temperature) at a fixed angle of 90o. 

Prior to analysis, solutions were filtered through a Millex AP filter (pore size ≈2µm) to 

remove dust. The digital correlator was operated with 200 channels, a minimum duration of 5 

min and an average amount of counts per second between 100x103 and 700x103. Temperature 

was set at 37ºC unless otherwise noted. Different analysis types were used to fit the 

autocorrelation function: a cumulant quartic fit for calculation of mean diameter and an 

inverse Laplace transform algorithm (CONTIN) for determination of size distributions. In 
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order to minimize any variation in data due to batch-to-batch differences in nanoparticle size 

distribution, all production batches were pooled for further experimentation. 

 

5.2.6 Rheometry 

All rheometry measurements were performed on a Bohlin 120 HR rheometer with 

parallel plate geometry (gap size 500-800 µm). Samples were placed on the lower plate in 

liquid form and silicon oil was applied on the surface to prevent evaporation. Temperature 

was controlled in the range 5-50°C with an accuracy of ± 0.1°C. Steady shear viscometry was 

performed at 37°C. From oscillatory measurements, the storage modulus G’ (elastic modulus) 

and loss modulus G’’ (viscous modulus) were determined in the linear viscoelastic region 

(with the 3-dimensional network of the material intact). Temperature scans at a rate of 

1°C/min were performed using a frequency of 1 Hz and an applied stress of 10 Pa. The fluid-

to-solid transition point was defined as the crossing point of the G’ and G’’ curves. Angular 

frequency was varied between 0.01 and 100 rad/s and stress sweeps were performed at 1 Hz 

(37°C). All experiments were performed in triplicate and the nanoparticle concentration 

values were expressed as weight % of solid material. 

 

5.2.7 Dissolution studies 

The dissolution rates of concentrated polymer gels and nanoparticle glasses, were 

compared by determining their interface eroding velocities in water as described elsewhere32. 

Briefly, dyed aqueous solutions of Pluronic F127 or dispersions of nanoparticles (0.5 ml) 

were poured into 5 × 40 mm tubes at 4°C and left for 30 min at 4°C to solubilize gel possibly 

formed on the tube walls as well as to obtain a smooth flat surface. Samples were then 

equilibrated at 37°C before being inverted and placed in a 37°C water bath (0.5 l). The height 

of the gel/glass in the tubes was measured using a digital micrometer (±0.01 µm). 

 

5.3 Results & Discussion 
 

5.3.1 Nanoparticle preparation 

We have previously reported the preparation and characterization of Pluronic-based 

nanoparticles via inverse emulsion photopolymerization30. When acrylated Pluronics were 
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copolymerized with PEG diacrylates in inverse emulsions, it was possible to form colloidal 

nanoparticles in which the PPG-rich hydrophobic nanodomains of Pluronic micelles could be 

permanently stabilized in the form of a nanogel (Scheme 5.1).  In the present study, we 

focused our attention on high Pluronic content nanoparticles (Pluronic-to-total 

macromonomer weight ratio: 0.75). In order to determine the degree of conversion of the 

cross-linking reaction and the actual Pluronic content in the nanoparticles, we performed 1H-

NMR analysis on the nanoparticle dispersions in D2O. The disappearance of the peaks at 5.8, 

6.1 and 6.4 ppm (3 protons of the acrylate moiety -CH=CH2) confirmed the complete 

conversion of the double bonds. The Pluronic-to-total copolymer ratio was calculated by 

comparing the peak at 1.2 ppm (3H of the PPG block methyl group -CH3) with the main peak 

at 3.6 ppm (PEG backbone). The determined value of 0.79 is in good agreement with the 

theoretical value of 0.75 of the precursor mixture.  

 

 
 
 
 
 
 
 
 
 
 

Scheme 5.1  A schematic representation of how the inverse emulsion photopolymerization of 
acrylated macromonomers stabilizes the aqueous nanodroplets into hydrogel nanoparticles. 
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5.3.2 Temperature-dependent swelling; nanoparticles vs. macroscopic gels 

As mentioned above, our previous studies demonstrated that the PPG chains of the 

Pluronic macromonomer formed stable hydrophobic domains in the cross-linked 

nanoparticles. This chain segregation, apart from offering loading sites for poorly-water 

soluble drugs through hydrophobic interactions (with the PPG domains), can have an 

interesting effect on the mechanical properties (i.e. size and elasticity) of the nanoparticles 

with temperature. 

As for any LCST-related phenomenon, at the basis of Pluronic reverse gelation there 

is entropy-driven release of bound water. It is expected that Pluronic-containing materials (not 

only these nanoparticles) shrink with increasing temperature. 

Through the same photopolymerization process, we have prepared macroscopic 

hydrogels with composition identical to the nanoparticles and studied their water-uptake at 

different temperatures. The gel swelling showed a clear transition in the 15-40°C temperature 

range (Figure 5.1). Similar results were obtained for composite hydrogels of hyaluronic acid 

and Pluronic33 and for microgels of Pluronic-modified poly(acrylic acid)34. Thus, as much as 

the self-association of PPG chains in micelles is retained in the cross-linked nanoparticle, the 

thermal properties are still present too.  The correlation between swelling of cross-linked 

hydrogels and their mechanical properties is well described in literature; decreased swelling 

corresponds to higher elasticity31.  

We expected the above results to relate to nanoparticles’ behaviour as well. Indeed 

dynamic light scattering analysis showed a distinct reduction in size upon heating (Table 5.1). 

This corresponds to a real temperature-induced shrinkage, since there is no significant 

changes in the width of the broad size distributions (Figure 5.2). Qualitatively, the degree of 

temperature-induced de-swelling on nanoparticles, calculated as a reduction in volume, is 

analogous to that measured on macrogels. 

 

Table 5.1 Mean nanoparticle hydrodynamic diameter before and after freeze drying based on 
a cumulant quartic fit (n=3) 

 

Temperature (°C) Before freeze drying After freeze drying 

15 217.2±3.7 - 

25 149.4±9.9 - 

37 101.5±7.4 97.9±15.1 
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Figure 5.1 Swelling of macroscopic hydrogels prepared with a Pluronic-to-total 
macromonomer weight ratio of 0.75 and with 12.5% total polymer weight (w/waqueous). The 
data are well fitted with a sigmoidal function (r2=0.997, n=4), showing an inflection point 
indicative of the temperature sensitivity of the material. Mean and S.D. are shown. 
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Figure 5.2 Size distribution of nanoparticles as a function of temperature (dynamic light 
scattering with CONTIN analysis).  
 

On the basis of the above findings and due to the absence of specific interparticle 

interactions (these are dilute colloidal dispersions and the surface does not present ionic or 

strongly H-bonding groups), we therefore assume the temperature increase to mainly cause 
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size reduction due to water expulsion  which, by analogy to the macroscopic hydrogels, 

should be accompanied by an increase in elastic modulus. 

 

5.3.3 Concentration-dependent solidification at 37°C 

Semi-dilute and concentrated colloidal dispersions are generally characterized by non-

linearities in their macroscopic physical properties, e.g. in viscosity. In the specific case of 

colloidal dispersions, above a critical volume fraction, which depends on nanoparticle 

interactions, temperature and solvent characteristics, a dispersion can turn from a free-flowing 

liquid into a visco-elastic solid. 

Our hydrogel nanoparticles indeed show a rapid increase in viscosity and in storage 

modulus (Figure 5.3) above a critical concentration, which at 37°C corresponds to roughly 

4% wt in dry material.  Also the shear rate dependence of viscosity shows dramatic changes 

around this concentration, with a Newtonian behaviour below 4% wt. and shear-thinning 

above (Figure 5.4). A similar behavior has been reported for other semi-solid systems, 

including Pluronic aqueous (micellar) solutions20 and dispersions of polysaccharide 

nanoparticles chemically derivatized to render them hydrophobic35. 
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Figure 5.3 Concentration dependence of reduced zero-shear viscosity η/η0 and elastic 
modulus G’ at 37°C for hydrogel nanoparticles. The shaded area identifies the supposedly 
‘solid’ region. 
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Figure 5.4 Shear rate dependence of steady shear viscosity for fluid nanoparticle dispersions 
of different concentration (left). The mechanical integrity of the more concentrated samples 
was compromised at high shear rates, thus their shear-thinning behaviour was proofed for a 
different rate range (right).  
 

In order to better understand this phenomenon, it is of the essence to convert the 

critical concentration of 4% wt. to a volume fraction. Assuming that macroscopic hydrogels 

and nanoparticles prepared with the same initial polymer concentration would swell in a 

comparable manner, we have employed the values of swelling index and density measured for 

the hydrogels. With a swelling index of roughly 15:1 and a density at 37°C of 1.01 g/ml, the 

resulting conversion factor of 15 ml/g provides estimated volume fractions of φ3%=0.45 and 

φ4%=0.60, respectively for 3 and 4% wt. dispersions.  

These values fall in the same range of concentrations that the hard sphere model 

would predict to be on the edge of a glass transition (see introduction); in our case we have 

non-covalently linked nanoparticles with little or no interparticle attraction, but, in order 

interpret our transition as a structural arrest at high volume fractions, we need to clarify 

whether they can be considered elastic and “hard”. Interestingly, we know (see above) that 

Pluronic materials change their swelling degree and therefore also their mechanical properties 

with temperature; in particular, they become harder with increasing temperature31. If a hard 

sphere model can rationalize the solidification, the conditions of the structural arrest should 

depend on the elastic modulus of the colloids and thus, in this case, on their swelling degree. 

It is noteworthy that nanoparticle volume fractions for higher weight concentrations, 

would quickly exceed unity. These are clearly unrealistic values obtained assuming the 

nanoparticles to have the same value of equilibrium swelling as in dilute conditions; on the 
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contrary, they are likely forced into sub-equilibrium swelling and thus smaller dimensions 

than those recorded via DLS on dilute dispersions. 

5.3.4 Temperature-dependence of the sol-gel transition 

At low temperature (e.g. 4°C) all the dispersions in the concentration range studied (1-

15%) could flow freely and be easily loaded into a syringe, suggesting therefore the 

occurrence of a thermally induced transition, at least for the more concentrated samples. 

Temperature-induced gel points, defined as the point where G’ = G’’ in oscillatory 

rheological measurements (Figure 5.5), were indeed recorded for these systems, with a 

monotonical decrease in the gel temperature with increasing concentration (Figure 5.6). 

Correspondingly, G’ increased in a gradual but marked fashion over almost 4 orders of 

magnitude. 
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Figure 5.5 Dependence of transition temperature on weight concentration of nanoparticle 
dispersion.  
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Figure 5.6 Temperature-dependent gelation of Pluronic nanoparticle dispersions at (a) 10% 
wt. and (b) 15% wt. concentration. 1°C/min scans were performed at a fixed frequency of 1 
Hz and 10 Pa applied stress. A 20% wt. aqueous Pluronic F127 solution is compared in (b) to 
the 15% wt. nanoparticle dispersions, which shows similar final values for both moduli. 
 

In the comparison to micellar Pluronic F127 solutions (Figure 5.6b), it is apparent that 

the transition is not as sharp and the temperature range is wider; in addition, also the 

dependence on concentration is clearly less steep: 14°C difference between 15 and 25% wt. 

Pluronic F127 solutions31, vs. 6°C between 5 and 15% wt. nanoparticles suspensions. We 

believe these differences to stem from the polydispersity of our samples, but also from the 

markedly different transition mechanisms between these two systems, as discussed below.  

  

5.3.5 Thixotropy at 37°C 

The evaluation of the mechanical properties at the target temperature (37°C) revealed 

a clear thixotropic character of the colloidal dispersions, which always presented a flow 

region (G’’>G’) at low frequencies, followed by a crossover point and a plateau with a 

predominant elastic behavior (up tot 20 kPa for the most concentrated samples) at higher 

frequencies (Figure 5.7). Both the location of the cross-over point and the plateau G’ values 

depended on concentration, with a monotonic decrease and increase, respectively, with 

increasing concentration (Table 5.2). These results are analogous to those obtained by Habas 

et al. for PEO-PPO-PEO block copolymers19: these authors examined the frequency 

dependence of micellar copolymer solutions in the organized phase at increasing temperatures 

and observed a decrease in the angular frequency ωC, at which the G’ and G’’ curves intersect. 

This frequency delimits two domains in the behavior of the material, namely the viscoelastic 
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solid region and the viscous fluid. From their results the authors argued that their structured 

system is not a gel but a fluid with a long relaxation time19, a definition  we believe to be 

applicable for Pluronic nanoparticles too.   

 

Table 5.2 Dependence of the G’, critical frequencies and terminal relaxation times plateau 
values on the concentration of nanoparticles dispersions at 37°C 

 
Concentration (wt. %) Storage modulus (Pa) ωC (rad/s) τ (s) 

4.0 n.a.a 4.13 0.04 
5.0 71 0.49 0.33 
7.5 997 0.16 1.02 
10.0 5960 0.17 0.95 
12.5 13.0x103 0.10 1.60 
15.0 20.1x103 0.02 10.0 

a value affected by excessive variability 

 

Alternatively, the relaxation kinetics of these materials can be expressed by the 

‘terminal relaxation time’, which is defined as τ = 1/ωC and is physically related to the time 

the system needs to reach the flow zone. Pluronic nanoparticles show an increase of τ 

(decrease in ωC) with increasing concentration, indicating the increased elasticity of the 

nanoparticle dispersions (Table 5.2). 

 

10-2 10-1 100 101 102

101

102

103

104

G
', 

G
'' 

(P
a)

Radial frequency (rad/s)

15%

10%

5%

 

Figure 5.7 Frequency dependence of the storage (G’, open circles) and loss (G’’, closed 
circles) moduli for aqueous nanoparticle dispersions of different concentrations at 37°C.  
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The thixotropic character of these dispersions was further confirmed by the shear-

thinning behavior (Figure 5.4) and by the presence of a flow-zone at low stress. The ‘soft’ 

nature of the interactions between nanoparticles (no chemical bond formation, no 

electrostatic, strong dipolar or H-bond interaction) suggests that when the applied stress 

exceeds a critical value, the three-dimensional network will cease to respond in an elastic 

manner and will deform plastically. Oscillatory measurements at 1 Hz with increasing stress 

values indeed confirmed G’ to be independent on the applied stress only up to a critical and 

concentration-dependent value, above which G’ decreases quite abruptly (Figure 5.8).  
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Figure 5.8 Dependence of applied shear stress on storage modulus during dynamical 
(oscillation) measurements at a fixed frequency of 1 Hz and 37°C. 
 

It is important to state that all previous rheological measurements presented here were 

performed in the linear viscoelastic region, where the dynamic moduli are not a function of 

the applied stress. 

 

5.3.6 Proposed mechanism: colloidal glass formation 

We would like here to summarize a number of issues:  

 (1) The nanoparticle surface does not present dangling or charged polymer chains, which 

would give rise to interparticle attractive forces as a result of an increase in temperature, thus 

it is unlikely that the transition results from the development of attractive interparticle 

interactions, as would be the case in a classical colloidal gelation36.  

(2) At high volume fractions, the nanoparticles are in mechanical ‘contact’ with their 

neighbours (independently of temperature); at super-critical concentrations, we even suppose 
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the nanoparticles to be in a less-than-equilibrium swelling state, due to constraints of limited 

space availability.  

(3) Macroscopic hydrogels and diluted nanoparticles exhibit a de-swelling phenomenon in the 

same temperature range where the fluid-to-solid transition takes place in concentrated 

nanoparticle dispersions. It is noteworthy that, as an effect of this phenomenon, macroscopic 

hydrogels become harder and the same is likely to happen for nanoparticles. 

(4) The nanoparticle population is polydisperse, which excludes the possibility that the bulk 

transition induces the formation of a crystalline phase37, as has been seen in other 

(monodisperse) colloidal systems, including Pluronic micellar solutions.  

(5) The colloidal sol-gel transition cannot be caused by an arrest (vitrification) due to increase 

in the nanoparticle size and thus volume fraction, because, on the contrary, their size 

decreases, rather than increases, upon warming. It is noteworthy that this decrease in 

dimensions is not such to dramatically change the particle volume fraction, due also to the 

polydisperse nature of the samples (Figure 5.2: the size distribution substantially overlap 

below and above the transition). 

(6) The solidification is mechanically reversible and the material flows plastically if the 

applied stress exceeds a critical value, indicating the lack of long relaxation time interactions 

between the colloidal particles.  

Based upon preceding observations, we are inclined to believe that the macroscopic 

sol-gel transition is primarily a result of an intra-particle event, namely a transition from soft 

and deformable hydrogel nanoparticles to more elastic spheres. The limited possibilities of 

motion of a collection of concentrated and non-deformable colloidal objects would then 

induce a structural arrest, giving rise to the solid-like behavior of the material. In these 

concentrated colloidal dispersions and at temperatures above the transition temperature (25-

30ºC), any particle would be trapped in the ‘cage’ formed by its non-deformable neighbors, 

while at low temperatures the particles could escape by deformation (Scheme 5.2). By 

applying a sub-critical stress, the network will be (elastically) distorted, while at higher 

stresses, sufficient to exploit the residual deformability of the nanoparticles, the material will 

flow.  

 

Scheme 5.2 Schematic representation of the thermally-induced fluid-to-solid transition 
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We would also expect (but we have not yet recorded) a solid-to-fluid transition to 

happen at higher temperatures, that is in the presence of a high enough thermal agitation. 

We would finally like to point out an only apparent incongruence: the application of 

the MCT (Mode-Coupling-Theory) approach to hard sphere colloid glasses does predict an 

exponential divergence of the elastic modulus by increasing the colloid volume fraction above 

critical values38. Figure 5.3 seems on the contrary to suggest our system to show a much 

slower increase, with a final asymptotic value. We have however, to bear in mind that our 

empiric calculations set the transition concentration range (where the exponential regime 

should take place, φc=0.5-0.7) in the range 3-5% wt., where an exponential increase may 

indeed take place. 

We would like thus to summarize that such a colloidal glass transition is therefore 

qualitatively different from the Pluronic sol-gel transition, where an increase in temperature 

induces firstly micellization and then crystallization of the micelles.  Additionally, we prefer 

not to strictly define our system as a “colloidal gel”, because we assume our particles to lack 

of short-range inter-particle attractive forces; we fully recognize, however, that this 

assumption should be proved by using much less polydisperse samples and studying their 

non-ergodicity possibly via dynamic light scattering. 

 

5.3.7 Colloidal glasses exhibit slower dissolution than Pluronic gels  

One of the targets of this research was to obtain materials that are similar to Pluronic 

in terms of advantageous characteristics, but feature a slower dissolution kinetics in excess 

water.  By comparing a 25% wt. Pluronic F127 gel to a 12.5% wt. colloidal glass (based on 

75% Pluronic F127 and 25% PEG575 diacrylate), it was apparent that this target was 

achieved. The micellar gel was already approx. 50% dissolved after 6 hr of exposure to excess 
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water; on the contrary, after a lag time of 24 hr, was recorded, the colloidal glass followed an 

apparent zero order kinetics with 50% of the gel being dissolved after around 180 hr (n=2).  

We ascribe the slower dissolution kinetics of the nanoparticle glass primarily to the 

slower diffusive mobility of the nanoparticles, which are 1-2 orders of magnitude larger than 

Pluronic F127 micelles (10-20nm) and unimers.   

It is noteworthy that, based upon data presented above, the 12.5% wt. nanoparticle 

glass is far below its equilibrium swelling.  Thus, it might be expected that the material first 

swell and subsequently dissolve, due to diffusion of nanoparticles in the medium. The 

apparent absence of any swelling in these measurements, however, can be due to the 

contemporary incipient dissolution; this can thus also explain the occurrence of a lag time at 

the beginning of the experiments. 
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Figure 5.9 Dissolution rate for PluronicF127 gel (25 % w/w) and two identical nanoparticle 
dispersions (12.5% w/w).  
 

5.4 Conclusions 

 

In this chapter we present a new water-based thermally hardening system. This system 

consists of cross-linked hydrogel nanoparticles based on polymeric precursors of well-known 

biocompatibility (PEG and Pluronic). The biomedical use of one of them (Pluronic) is often 

related to its temperature-induced fluid-to-solid transition. 
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Pluronic-based nanoparticles undergo a temperature-induced solidification too, in a 

temperature range suitable for in vivo hydrogel formation. We suggest this transition to 

generate a gel in form of a colloidal glass (rather than a crystal or a gel), due to the 

modification of the nanoparticles mechanical properties from soft to hard spheres, which 

reach a state of arrested mobility. 

The absence of strongly attractive interparticle forces determines the solubilization of 

the glass upon dilution; this process, however, is much slower than for Pluronic gels, likely 

due to the much retarded dynamics of the nanoparticles compared to the smaller micelles.  

It is noteworthy that this feature in principle allows to extend the use of Pluronic-

based systems for drug sustained release applications; indeed, due to the slower process, the 

release kinetics of a loaded drug would be decoupled from that of the material dissolution, 

and would therefore depend solely on molecular properties (e.g. partition between Pluronic 

hydrophobic domains and water). 
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6.1 Introduction 

 

The use of nanoparticles (NPs) to increase the therapeutic effect of chemotherapeutic 

agents after intravenous injection, through passive or active cancer targeting has shown 

promising results1-3. Essential for the success of carrier-mediated, tumor-targeted delivery  is 

the prevention of colloid capture by the mononuclear phagocyte system (MPS), particularly 

the hepatic Kuppfer cells and spleen macrophages; long circulation times help increase the 

amount of delivered drug4, 5. Moreover, the release of cytotoxic drugs in the host’s defense 

cells may lead to their hazardous depletion.  

The exact mechanisms of recognition of foreign particulate matter by cells of the MPS 

remain elusive. In vitro and in vivo observations have shown that the fate of the carrier 

depends largely on its physicochemical properties6, and more specific size7,8, hydrophobicity9-

11 and surface charge10, 12, 13. These characteristics affect adsorption of serum components on 

the colloids (opsonization) and thus influence phagocytosis. Hydrophobic surfaces and 

particles with large zeta potential absolute values are typically more susceptible to recognition 

and capture by phagocytic cells. Deviations from this trend may arise by the presence of 

chemical groups or molecules displayed on the carrier exterior and which are responsible for 

altering the adsorbed protein pattern9: favoring adsorption of molecules that reduce the 

phagocytic response known as dysopsonins (e.g. albumin), while preventing or delaying 

adsorption of certain opsonizing factors (e.g. immunoglobin G, fibronectin etc.), enhances the 

stealth character of the carriers.  

Most nanoparticulate systems studied in respect to their MPS-evading capacities and 

circulation life-time are based on hydrophobic materials, like poly(lactic acid) (PLA) and 

poly(lactic-co-glycolic acid) (PLGA)11,12,14,15, poly(ε-caprolactone), poly(cyanoacrylate)16, 

poly(styrene)13 and poly(methyl methacrylate)7,17. Consequently, surface modification 

strategies have been explored in order to mask the hydrophobic and/or charged particle core. 

A hydrophilic corona is formed, which results in decreased protein adsorption and/or 

interaction with macrophages, and increases the in in vivo circulation times of the carrier.  

Poly(ethylene glycol) remains the most popular choice for surface modification due to 

its higly hydrated, flexible, non-ionic chains that efficiently shield the carrier interior18. 

However, complete, uniform coverage of colloids with small size and high curvature has 

proven to be challenging; incomplete shielding may be responsible for removal from 

circulation of a substantial percentage of dose19. Another promising biomimetic approach 



 110 

recently reported was the attachment of CD47 on the carrier surface, which is believed to 

function as a marker of self, inhibiting in this way phagocytosis20.  

We have previously presented (in chapters 2 and 4) the preparation of polymeric 

nanoparticles based on poly(ethylene glycol) and poly(ethylene glycol)-bl-poly(propylene 

glycol)-bl-poly(ethylene glycol) copolymers. Considering their hydrophilic and non-ionic 

character, we anticipated a protein repellent character and low interactions with cells. In this 

chapter, we employ J774A.1 murine macrophages as model phagocytic cells in order to 

investigate the particle-cell interactions and assess the potential of the NPs as long circulating 

carriers. 

Practical interest exists in the in vitro evaluation of MPS-evading properties of 

colloidal carriers. Although the pattern and quantity of adsorbed proteins is critical, binding 

studies from plasma or serum have proven to be poor simulators of the dynamic events 

occuring during protein adsorption/desorption, with weak capability to predict in vivo particle 

longevity. The exact role of the adsorbed proteins, the time-dependent adsorption patterns and 

the effect of incubation medium need to be clarified in order to obtain satisfying translation to 

physiological behavior. On the other hand, colloid-cell interaction studies have provided 

insight on uptake mechanisms and more reliable translation of results in physiological 

situations.  

The cell line we have selected (J774) for our study, has previously been used to 

investigate the mechanism of binding and internalization of colloidal systems, mainly 

liposomes21-23 but also polymeric colloids17, 24. These studies have shown that charged 

(positive or negative) liposomes are internalized to a greater extent than neutral ones, 

independent of the nature of the charged groups. Uptake is a two-step process with initial 

binding (rate determining step) and subsequent endocytosis. Chenevier et al. showed that for 

cationic liposomes, the first binding step involves the presence of two different binding 

sites23. The protective effect of PEG has also been demonstrated using this cell line: 

Mosquiera et al. used poly(lactide) nanocapsules to study in detail the effect of PEG length 

and concentration on macrophage-colloid interactions, reported decreased cell association of 

PEGylated carriers24. In order to quantify NPs at very low concentrations and visualize their 

interactions with the cells, we previously introduced amine groups in the nanoparticle 

structure and fluorescently labeled them a posteriori using versatile and mild chemistry 

(chapter 4).    

Finally, having in mind clinical applications of the NPs proposed in this thesis, we 

aimed at resolving another important concern using cell studies, the toxicity of the carrier. 
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Development of several polymeric systems has been hampered by their non-specific toxicity; 

here, as a first indication of the non-toxic character of the material, proliferation of HeLa cells 

was evaluated in the absence and presence of NPs.   

 
 
6.2 Materials & Methods 

 

6.2.1 Nanoparticle formation 

Nanoparticles were prepared as described in chapters 2 and 4; conditions of the 

different samples used in this study are presented in Table 6.1. In all cases hexane-to-aqueous 

phase weight ratio was set at 72:28, emulsifier (Span®65) concentration at 2% wt. and total 

macromonomer weight ratio in the aqueous phase at 12.5% w/waqueous. For photo-initiated 

polymerization concentration of triethanolamine and eosin Y were set at 2.0% and 0.02% 

w/waqueous respectively, whereas for initation using APS and TEMED concentrations were set 

at 2.0% w/waqueous and 3.7% w/wtotal.  

 

Table 6.1 Inverse emulsion polymerization parameters for preparation of NPs used in this 
chapter. 

 

Sample Pluronic-to-total 
macromonomer weight ratio 

APMA concentration 
(% w/wNP) 

Initiation type 

PH-ST-1 0.50 - Photo-initiation 

TH-ST-1 0.50 - Redox-initiation 

TH-NH-1 0.50 0.40 Redox-initiation 

TH-ST-G 0.75 - Redox-initiation 

 

6.2.2 Zeta potential  and fluorescence spectroscopy measurements 

 Zeta potential was determined in 1mM phosphate buffer (pH=7.4) using a Malvern 

Nano-ZS zetasizer instrument. Fluorescence spectra were obtained using a Tecan Safire2 

microplate reader. 

6.2.3 Cell Culture 

The murine macrophage cell line J774A.1 (ATCC) and HeLa cells were cultured as 

exponentially growing subconfluent monolayers in DMEM and MEM-alpha media 

respectively. Both culture media were supplemented with 10% bovine growth serum 
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(Hyclone) and 0.1% antibiotic-antimycotic (Invitrogen), unless otherwise stated. Cells were 

grown at 37°C, humidified atmosphere and 5% CO2.  

 

6.2.4 Cytotoxicity assays 

Cell proliferation of HeLa cells was monitored using the MTS assay with a CellTiter 

96 AQueous One Solution Cell Proliferation Assay kit from Promega. MTS stands for a novel 

tetrazolium compound that is bioreduced by cells into a colored formazan product, soluble in 

tissue culture medium. HeLa cells were seeded in 96-well plates at a density of 16×103 

cells/cm2, left overnight to adhere and then incubated with nanoparticle dispersions in 

medium (ranging from 40 to 1000 µg/ml). After 24h incubation at 37°C and 5% CO2, 20µl of 

MTS solution was added and the absorbance was recorded at 490nm after 1 hr. Results are 

reported as proliferation relative to controls (absence of NPs in medium). 

Viability of cells during the formation of a colloidal glass from a concentrated 

nanoparticle dispersion was assessed using calcein and ethidium homodimer-1 as a 

LIVE/DEAD viability/cytotoxicity kit from Molecular Probes. HeLa cells were seeded in 

chamber slides at a density of 16×103 cells/cm2. A cold dispersion of NPs (12.5% wt; 100µl) 

in MEM-Alpha (serum-free) was then added until complete coverage of the cell layer; the 

chamber slide was incubated for 30 min followed by addition of 200µl culture medium. After 

an additional 4.5 h incubation cells were stained with calcein and ethidium homodimer-1 to 

visualize live and dead cells.  

 

6.2.5 Cell-nanoparticle association studies 

Association of fluorescent nanoparticles with J774A.1 macrophage-like cells was 

studied using fluorescence spectroscopy and fluorescent activated cell-sorting (FACS) 

analysis. 

Cells were seeded in 24-well plates at a density of 125×103 cells/cm2, allowed to 

attach overnight and incubated with NPs or fluospheres® (100nm, carboxylated;  Molecular 

Probes) in supplemented culture medium (unless otherwise mentioned) for 4h, at 37°C.  

For fluorescence association experiments cells were then washed twice with PBS and 

lysed using CelLytic™ (Sigma) lysis reagent (200 µl/well, 10min). Each well was rinsed with 

PBS (200µl) to give a final cell lysate volume of 400 µl. Additional experiments were carried 

out at 4°C and using the phagocytosis inhibitor sodium azide (Fluka); in the former case 
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HEPES was added in culture medium, whereas in the latter, cells were preincubated with 

NaN3 (0.1% w/v) 30 min prior to NP addition.  

Protein content was measured using the BIO-RAD Protein Assay kit, with albumin as 

standard. Nanoparticle concentration was determined by fluorescence spectroscopy 

measurements using calibration curves prepared in control cell lysates (absence of NPs). 

For the FACS analysis, after incubation with NPs, cells were washed twice with PBS 

and scraped off the well plates mechanically. Cell suspensions were divided in two parts; in 

one part Trypan blue (Invitrogen) was added to quench external fluorescence (20µl in 200µl 

cell suspension). Analysis by FACS was performed using a CyAn ADP analyzer and a total of 

10,000 cells per sample was analyzed. 

 

6.2.6 Confocal Laser Scanning Microscopy (CLSM) 

Cells were seeded in chamber slides (Lab-Tek, Nalge Nunc International) at a density 

of 125×103 cells/cm2, allowed to attach overnight and incubated with NPs or fluospheres® in 

supplemented culture medium for 4h, at 37°C. Subsequently, cells were washed two times 

with PBS and inspected immediately in PBS solution without any fixation using a Zeiss LSM 

510 META confocal laser scanning microscope. 

Cell membrane and nucleus of live cells were visualized using an Image iT LIVE 

Plasma Membrane and Nuclear Labeling Kit (Molecular Probes). After washing a solution of 

Hoechst dye and fluorescently labeled agglutinin were added, the cells incubated 10min and 

inspected immediately after. 

 

6.3 Results & Discussion 

 

6.3.1 Nanoparticle characterization 

It is well established that NPs with diameter between 50-200nm are better-suited as 

long-circulating carriers5. We concentrated our focus on this size range to assess cytotoxicity 

and probe the stealth character of PEG-Pluronic NPs (Table 6.2). For all samples prepared, 

double bond conversion was complete, as evidenced by the absence of the corresponding 

proton signals in 1H-NMR spectra (δ=5.8, 6.2 and 6.4 of -OC(O)CH=CH2); toxic, unreacted 

acrylate presence was therefore negligible. 

The surface charge of the colloids used in our experiments was determined using zeta 

potential measurements. Slightly negative values close to zero for PEG-Pluronic NPs indicate 
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that particles are practically electroneutral. Incorporation of APMA comonomer containing a 

primary amine did not affect ζ-potential, most likely due to its low surface concentration 

(approx. 3% of dry weight). On the other hand, carboxylated fluospheres® were negatively 

charged at physiological pH (Table 6.2). 

 

Table 6.2. Hydrodynamic diameter determined by DLS and zeta potential of the nanoparticles 
used in our studies 

 
Sample Hydrodynamic 

diameter (nm)a 
Polydispersity 

indexb 
Zeta potential 

(mV) 

PH-ST-1 145±12 0.12 -6.7±1.1 

TH-ST-1 102±17 0.22 -5.1±0.8 

TH-NH-1 137±4 0.18 -6.5±0.5 

TH-NH-Gc 118 0.27 - 

Fluospheres® 124±2 0.02 -53.2±2.2 

    a average and standard deviation (n=3) 
     b average values(n=3) 
     c n=1 
 

6.3.2  Cytotoxicity of nanoparticle formulations 

Poly(ethylene glycol) and Poloxamers are generally viewed as non-toxic; we were 

here interested in testing the cytotoxicity of NPs based on these polymers. The fabrication 

process requires functionalization of macromonomers, as well as use of initiators and an 

organic solvent (n-hexane), which are all potentially toxic to the cells. 
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Figure 6.1. Mitochondrial activity measured by the MTS assay, indicative of cell viability and 
proliferation, at different NP concentrations in the culture medium for NP prepared by 
radical polymerization using two different initiation schemes. 
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Figure 6.2. Effect of thermally-induced physical transition on HeLa cell viability and 
morphology. Cells were either covered with the colloidal glass and incubated for 5h (A,C) or 
simply incubated (control: B,D) in non-supplemented cell culture medium. Live (green)/dead 
(red) stain cytotoxicity assay revealed similar results for cells in contact with the 
thermogelling material (A) and control (B). Cells  remained attached  and well spread under 
the colloidal glass (C). 
 

Viability of HeLa cells, measured as their mitochondrial metabolic activity, in 

presence of nanoparticles (PH-ST-1 and TH-ST-1) at concentrations as high as 1mg/ml, was 

equal to controls for NPs prepared by both initiation mechanisms (Figure 6.1). We can 

therefore conclude that the production and purification protocols used, resulted in non-toxic 

NPs.  

We were also interested to see whether the thermally-induced glass transition 

(described in chapter 5) is compatible with viable cells. To this end, a cold (~5°C) NP 

dispersion (12.5 %wt in MEM-Alpha culture medium) was applied on top of attached HeLa 
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cells; incubation at 37°C triggered the formation of a semi-solid covering the cells. 

Qualitatively (using a  live/dead stain), cytotoxocity was found to be negligible compared to 

controls (Figure 6.2 A,B); cell morphology was also unaffected by the physical transition 

(Figure 6.2 C,D). 

 
6.3.3 Nanoparticle uptake studies 

Given the significance of long circulation times and the important role of macrophages 

on the removal of foreign particulate matter from the bloodstream, we decided to probe the 

interactions of our NPs with a macrophage-like cell line to assess their stealth character. J774 

cells were selected as model phagocytic cells of the MPS and fluorescently labeled NPs were 

used for detection and quantification of uptake. 

Different concentrations of NPs were incubated with cells for 4 hr and fluorescence 

associated with cells was normalized to total protein content; parallel experiments were 

performed with commercially available carboxylated fluospheres®. We should note at this 

point, that the quantification through fluorescence spectroscopy of particles associated with 

cells, makes no distinction between internalized and adsorbed NPs. 
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Figure 6.3. Effect of nanoparticle concentration in serum-supplemented growth medium on 
association with J774A.1 macrophages. Colloids were incubated for 4h at 37°C and 5% CO2. 
Values represent mean and standard deviation from 3 independent experiments.  
 
 

The interaction of NPs with macrophages was dose-dependent, with the saturation 

limit not being reached at the highest concentration studied here (Figure 6.3). In the case of 

fluospheres®, concentrations above 100 µg/ml resulted in fluorescence values above the 

detection limit of the experimental setup. We interpret the markedly reduced phagocytosis of 
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hydrogel NPs compared to fluospheres® on the basis of their dissimilar physicochemical 

properties: the absence of considerable charge and the hydrophilic character of the PEG-

Pluronic colloids reduce direct binding, and/or binding after adsorption of serum proteins to 

cells, a key, first step of colloidal uptake.    

In order to examine the effect of opsonization, we incubated the colloids in serum-free 

culture medium (Figure 6.4). For PEG-Pluronic NPs we did not observe any significant 

change in cell-NP association in the absence of serum: this finding supports our hypothesis 

that protein adsorption is minimal and therefore has a negligible role on the interactions of 

these NPs with cells. On the other hand, a slight increase in internalization of fluospheres® 

was observed. Presence of serum could lead to protein adsoption and screening of the 

negative suface charge reducing in this way phagocytosis.  
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Figure 6.4. Effect of various manipulations in respect to the standard internalization 
experiment; J774A.1 cells were incubated 4h in the absence of serum, at 4°C or in the 
presence of 0.1% w/v sodium azide. Concentration was set at 0.25mg/ml for PEG-Pluronic 
NPs and at 0.10mg/ml for fluospheres®. Values represent mean and standard deviation from 
3 independent experiments.  
 

Associated fluorescence may either be due to internalized NPs or NPs merely bound to 

the cell surface. To distinguish between these two possibilities we selectively quenched 

fluorescence of NPs attached to the cell membrane of live cells, using a membrane 

imprermeable quencher. Trypan blue completely quenched fluorescence of FITC-labeled 

nanoparticle dispersions at the concentrations used in our study. FACS analysis showed that 

essentially all NPs after washing the cells were internalized (Figure 6.5A). This finding was 
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not unexpected considering the absence of charge or targeting groups, which would allow a 

firm binding to cell surface. The use of FACS analysis to compare quantitavely the uptake of 

hydrogel NPs and fluospheres was not possible since the fluorescence emission per particle is 

different; an agreement with the fluorescence spectroscopy data was however evident (Figure 

6.5B) 

 

  

 

Figure 6.5  Frequency distributions of fluorescence intensity in J774A.1 cells incubated for 4 
hr with colloids. The presence of Trypan blue, which is able to quench fluorescence of 
colloids attached to the cell surface, did decrease only slightly the frequency distribution of 
FITC-labeled, hydrogel NPs (A). The fluorescence intensity of cells incubated with 
fluospheres (100 µg/ml) was much higher than that of cells incubated with hydrogel NPs (250 
µg/ml). A direct comparison is however not possible since the fluorescent intensity per 
particle is different for these two colloids,  

 

Some internalization processes of colloidal objects by cells involve energy 

consumption. We have studied the contribution of these energy-dependent routes by using 

physical and chemical inhibitors. Both low temperature and energy depletion by sodium azide 

(NaN3) are known to block endocytosis. However, incubation at 4°C is known to additionally 

rigidify the lipid cell membrane and moreover, the physicohemical properties of the 

thermally-sensitive NPs are different at this temperature (chapter 5). For the above reasons, 

we additionally used NaN3 to obtain unambiguous results.  

Both treatments resulted in a similar decrease of particle uptake. The magnitude of 

reduction was however different for the two colloids tested: fluosphere® inhibition was 65-

70% compared to approx. 30% for the hydrogel NPs (Figure 6.4). Low but significant 

inhibition observed for PEG-Pluronic NPs, suggests that endocytosis is not the primary way 

of internalization. 
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There are several remaining possible endocytic pathways through which NPs may be 

internalized and trafficked in the cell. Determination of the predominant mechanisms is 

possible by two main approaches.  

The first approach is based on inhibition of specific pathways or cell functions: 

reduced uptake in the presence of inhibitors demonstrates involvement of these processes. 

Nystatin and β-cyclodextrin, sequester and deplete respectively, cholesterol, disrupting in this 

way lipid-raft mediated pathways25. Filipin inhibits caveola-coated pit endocytosis, 

cytochalasin D actin polymerization and nocodazole microtubule formation26. Inhibition of 

clathrin-coated pit endocytosis is possible with brefeldin A or chlorpromazine27. However, 

intrepreting of the results obtained should be treated with caution since a number of these 

molecules have multiple actions. The second approach utilizes fluorescent markers of 

intracellular targets: co-localization with the drug carrier corroborates their active 

participation28, 29. In this case, care should be taken to avoid artifacts caused by cell fixation; 

for this reason live-cell microscopy is better-suited for these studies.  

The experimental setup we have developed allows the implementation of the first 

approach and studies are currently under way. Considering the second approach, we initially 

incubated cells in the presence of the colloids only. Laser confocal images of live cells 

corroborated our findings from the fluorescence association studies (Figure 6.6). Although 

virtually all macrophages incubated with fluospheres® showed high levels of internalization, 

very low fluorescence was detected with NPs. The low amounts of internalized NPs, their 

weak fluorescence and rapid photo-bleaching of fluorescein, render visualization of colloids 

difficult. Moreover, fluorescein emission depends highly on pH: approx. 97% reduction in 

intensity was observed at pH 5.5 (acetate buffer) compared to pH 7.4 (phosphate buffer). 

Given the pH drop in cellular compartments during endocytosis it is probable that NPs located 

in organelles of low pH (e.g. lysosomes) are not visible. We believe a switch to a more stable, 

pH-insensitive fluorophore and an increase of the conjugated amount to NPs are necessary for 

obtaining better images and revealing the intracellular localization of NPs. Nevertheless, our 

microscopy data confirmed our findings from fluorescence association experiments and 

FACS analysis showing low uptake and intracellular distribution on the NPs.  
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Figure 6.6 Internalization of fluorescent nanoparticles in J774A.1 cells after 4 hr incubation. 
Very weak fluorescence emission was observed for FITC-labeled, hydrogel NPs (A): a CLSM 
image of a section in the middle of the cells shown in (B). (C,D): CLSM images of live cells 
with internalized FITC-labeled NPs (C) or fluospheres® (D) (red: cell membrane, blue: 
nucleus, green: NPs). 
 

6.4 Conclusions 

 

Removal of foreign particulate matter by phagocytic cells of the MPS poses a substantial 

obstacle to effective carrier-mediated, targeted drug delivery. In this chapter we have 

demonstrated that hydrogel nanoparticles, formulated by non-ionic and inert polymers, 

interacted a great deal less with J774 cells than model hydrophobic and charged colloids 

(Fluospheres®). The presence of opsonic factors did not affect uptake while a slight decrease 

of association was observed after inhibition of energy-dependent processes. Based on the 

above results, and the absence of toxicity of the NPs, we conclude that these colloids carriers 

hold potential as long-circulating carriers and in vivo circulation studies should be undertaken. 
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7.1 Important features of PEG-Pluronic hydrogel nanoparticles 

 

The main features of the nanoparticles presented in this thesis are here summarized. 

We have synthesized a novel colloidal system based on Pluronic® F127 and 

poly(ethylene glycol) of various molecular weights (575-3400). Both polymers are 

biocompatible, with FDA approval for pharmaceutical purposes. We were interested in 

formulating these polymers in robust, nano-sized structures to overcome limitations in size 

control, loading capacity and stability. 

The inverse emulsion polymerization technique selected for the production of NPs is 

simple, versatile and easy to scale-up. A number of different monomers may be included in 

the cross-linked, hydrogel network of the NPs, providing a flexible way of regulating material 

properties and introducing functionality; incorporation of electrostatically charged and 

reactive groups was demonstrated by copolymerization of appropriate monomers. The use of 

the latter for modification with a fluroescent dye yielded fluorescent NPs, able to be detected 

in vitro. 

Inverse emulsion additionally allowed for size control in the sub-micron diameter 

range; regulation of emulsifier concentration is a potent way to adjust the size of the aqueous 

droplets, which template the final hydrogel particles formed. High polydispersity is however a 

challenge that remains to be resolved. 

Long-term storage is possible through lyophilization of aqueous NP dispersions, an 

important requirement when envisioning commercial pharmaceutical formulations. 

A closer look on structure revealed that the aggregated state of Pluronic micelles in 

water was preserved during the stabilizing cross-linking reaction. The particles can thus be 

visualized as nanoscale, three-dimensional, polymeric networks consisting of PPG-rich, 

hydrophobic domains surrounded by a hydrophilic, PEG-rich matrix. The permanence of 

domains similar in hydrophobicity to Pluronic micellar cores, but insensitive to dilution under 

the CMC, allows the encapsulation of hydrophobic drugs. As an example, a fast and efficient 

solvent evaporation technique was developed to partition doxorubicin in the NPs. Physically 

entrapped drug molecules are partially protected from degradation and diffuse out of the NPs 

without a burst, over one week under sink conditions. We aniticipate that this a posteriori 

loading approach, which has the advantage of avoiding possible deactivation of the drug in 

the reaction environment, may be applied to a variety of low MW, poorly water-soluble 
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drugs. Alternative drug loading approaches have not yet been explored but are nevertheless 

possible with the NPs described here and are discussed later on. 

The chain segregation of incorporated Pluronic, apart from offering drug loading sites, 

imparts the hydrogel NPs with interesting temperature-responsive mechanical properties. 

Bound water is released from the hydrogel NPs with increasing temperature, reducing their 

dimensions and transforming them into more elastic spheres. At concentrations above which 

there is physical contact of neighboring particles, this intra-particulate event is manifested as a 

macroscopic, fluid-to-solid transition; NPs are dynamically arrested within a ‘cage’ formed by 

their neighbors. The mild and reversible transition occurs at a clinically-relevant temperature 

range, with no syneresis or by-product formation, and is compatible with living cells. The 

colloidal macroscopic drug depot will give rise, upon dissolution in bodily fluids, to a 

colloidal nanoparticle dispersion; however, it is notable that the processes of drug release 

within the NPs and dissolution are independent and may be tailored on a case-to-case basis.  

Biomaterials intend to come in contact with tissue and therefore in vitro cell-

nanoparticle interactions studies were undertaken. Absence of cytotoxicity is a promising 

finding and substantiates not only the non-toxic character of the precursors but also that of the 

fabrication method. The hydrophilic and protein repellent nature of the particles are 

responsible for low association with a macrophage-like cell line. Although is difficult to 

extrapolate our data to in vivo situations, we believe it is reasonable to anticipate a stealth 

character and long circulation times. 

The above mentioned characteristics of this novel drug delivery system provide a 

platform for further studies and exploitation for therapeutic purposes.  

 

7.2 Suggestions for improvements and further development 

 

In the previous paragraph we presented methodologies leading to the development of 

novel drug delivery systems, in the form of nanoparticles or colloidal glasses. On the long 

road towards clinical applications, a number of additional issues need to be addressed, some 

critical, others less. Improvements on existing characteristics are also valuable and would 

enhance the quality and effectiveness of these NPs as therapeutic products. Here we briefly 

discuss these areas, providing strategies and preliminary results. 
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7.2.1 Biodegradability 

The hydrogel network of the NPs presented so far is itself nondegradable under 

physiological conditions. The ester bonds present in the acrylate moieties of PEG and 

Pluronic cross-linkers are hydrolyzed extremely slowly in PBS, rendering the hydrogels 

prepared through radical polymerization stable for very long periods1.  

In order to avoid accumulation of the material in the body we propose the alternate use 

of PEG-based biodegradable cross-linkers compatible with the preparation scheme. 

Degradation can be based on protease sensitive substrates2-4 or hydrolyzable (poly)ester5 or 

anhydride2,6 groups, incorporated in the polymeric structure. In addition to the above 

opportunities, we decided to design novel, degradable, linear polymers, which would function 

both as macronomonomers and cross-linkers; their resemblance to the macromonomers used 

in our studies should allow the trivial replacement of our model system with a biodegradable 

one (compound iii, Scheme 7.1).  

Labile ester bonds are introduced following Michael-type addition of thiols onto 

acrylates7; the presence of electronegative sulfur atoms in close proximitiy of the ester bond 

leads to an increase in hydrolytic sensitivity 8. As Schoenmakers et al. have shown, the 

hydrolysis kinetics show a dependance on the number of methylene units between the sulfide 

and the ester bond. In the case of a 3-sulfanylpropionyl linker an estimated half life of 4.2±0.1 

days was reported 8, although this value is expected to be influenced by the 

microenvironment’s hydrophobicity. 

Use of this chemisty has been implemented in preparing degradable hydrogels via a 

step-growth mechanism9, and recently also through a combined step-growth and chain-growth 

polymerization scheme10.   

Synthesis of compound (iii) with poly(ethylene glycol) (MW=3400) as the backbone 

was succesful and is currently being optimized. Macroscopic hydrogel discs based on this 

macromer were prepared and are being studied in respect to their degradation kinetics 

whereas the final step of preparing fully resorbable particles is being planned. 

For a degradable network prepared by radical polymerization of macromonomers with 

the strructure of compound (iii), the degradation products would be comprised of the original 

macromonomer core and the kinetic chains generated during polymerization. Provided the 

molecular weight of the latter is below the renal threshold barrier (20-30,000), the polymers 

can be excreted from the body. For this reason, we are planning to investigate the molecular 

weight distribution of the kinetic chains after fully degrading the hydrogels using GPC. 
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Scheme 7.1 
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7.2.2 Surface functionalization 

The potential that active targeting confers to colloidal drug carriers was briefly 

discussed in the introductory chapter. Emulsion techniques are ideal for engineering 

nanoparticles with different surface from bulk properties through the use of emulsifiers which 

are incorporated (linked, adsorbed or entangled) in the NPs. Introduction of reactive groups 

selectively on the surface is the first step of attaching specific ligands.  

Inconveniently, in inverse emulsion the amphiphiles intented to provide surface 

functionality, expose their hydrophobic part outwards, rendering the formed colloids unstable 

against aggregation when exposed to aqueous environment and prone to opsonization. To 

overcome this problem we suggest a strategy which would make use of cleavable co-

emulsifiers containing a reactive double bond on their hydrophilic segment. After NP 

formation and while in inverse emulsion the hydrophobic part of the linked emulsifier could 

be removed, exposing reactive groups. Crucial considerations for this approach are the ability 

of the co-emulsifier to partition in the interface and participate in the polymerization as well 

as the conditions of cleavage, which should not affect the bulk of the NPs. 
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7.2.3 Polydispersity issues 

The effect of size distribution on the in vivo fate of NPs is well documented. In our 

work we were able to control the average size through proper adjustment of inverse emulsion 

parameters; however, we were not able to obtain particles with very narrow polydispersity. 

We believe this incapacity is due to emulsion instability issues. Switching to a 

thermodynamically stable inverse microemulsion template at the expense of higher emulsifier 

concentrations and lower aqueous volume ratios, would not necessarily solve this problem. It 

is known that in microemulsions water droplets are in constant collision with each other11, 12: 

uncontrolled reactions between transient droplets would result in a polydisperse population, of 

course with a lower average diameter. On the other hand, the transparent nature of inverse 

microemulsions might allow faster photopolymerization kinetics and quicker stabilization of 

the colloids.  

Based on the above considerations, we believe it is worthwhile attempting the switch 

to a microemulsion-based scheme, with the aim of enhanced control over size distribution, of 

even smaller particles. 

 

7.2.4 Drug loading 

In terms of drug loading the succesful physical encapsulation of doxorubicin and the 

covalent linking of fluorescein established the proof of principle of two different loading 

strategies. 

The former approach has not yet been tested in relation to its long-term stability. After 

purification of the loaded NPs the equilibrium is shifted and release takes place. In order to 

ensure an efficient pharmaceutical formulation, the ability to obtain a freeze-dried drug-

loaded product, which upon rehydration retains its drug loading, needs to be confirmed.  

Concerning the latter approach, the necessity of releasing the active agent after 

covalent linking has to be addressed. The copolymerization of monomers containing labile 

linkers is certainly an option as it has already been used for formation of cross-linked PEG 

hydrogels via photopolymerization8,13. Alternatively, the drug may be linked after NP 

production via a labile moiety. 

Another possibility accessible by the NPs presented in this thesis is the electrostatic 

binding of molecules. Nucleic acids and certain therapeutic peptides14 are charged and would 

therefore interact with modified PEG-Pluronic NPs. Adsorption throughout the particle 

volume or selectively on the surface has already been demonstrated using PEG-based 
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nanogels15, 16. To enhance binding it might be beneficial to pre-adsorb high MW, opposite 

charged polyelectrolytes17.  

Finally, entrappment of high MW therapeutics or antigens (for vaccines), is an option 

which merits investigation; recent studies using inverse emulsion polymerization in the 

presence of proteins showed their succesful entrappment in the degradable or non-degradable 

hydrogel matrix of NPs17, 18. 

Each of the above loading approaches will determine the mechanism of drug release; 

combined loading of more than one agents and/or use of multiple loading approaches might 

prove beneficial in targeting several aspects of a particular disease19.   

 

7.2.5 Drug delivery from colloidal glass 

Drug delivery from individual NPs in the form of dilute dispersions can be engineered 

by proper selection of agent, particle characteristics and loading approach. The formation of 

physically bonded colloidal solids offers an additional possibility for the delivery of high MW 

therapeutics (e.g. proteins). Mixing of such macromolecules in the cold precursor solution 

would lead in their entrapment in the formed colloidal glass upon heating to body 

temperature. Release would then occur upon dissolution into a colloidal dispersion or via 

diffusion through the interparticle pores20. Combined release of macromolecules and drugs 

incorporated in the NPs could also be implemented (Figure 7.1).  

 

 

 

Figure 7.1. Schematic representation of combined release of low and high MW drugs from 
colloidal glass  
 

As a first step we are currently performing in vitro release experiments of albumin and 

fluorescently labeled dextrans (of different MW) entrapped in colloidal glasses. 
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7.2.6 Stealth character  

The in vitro cell studies presented in chapter 6 have shown low interactions of the 

hydrogel NPs with a macrophage-like cell line, intended to act as a model of MPS 

macrophages; these results imply a ‘stealth’ character. A key experiment will be the 

determination of the in vivo blood circulation times of the carriers proposed here.   

 

 

7.3 Potential biomedical applications 

 

Initially, we sought to develop NPs as carriers for drug delivery through parenteral 

administration. Focus was placed on the physicochemical characterization of dilute colloid 

dispersions, their drug loading capabilities and their interactions with cells as individual 

particles. Anticancer therapy being a primary target application, we concentrated our efforts 

in obtaining NPs with appropriate size for passive targeting and loaded with potent 

chemotherapeutics.  

The thermal properties of the colloids, and especially the thermally-induced, sol-gel 

transition of their concentrated dispersions, made us consider additional applications of our 

system as injectable in situ forming biomaterials. We here briefly present some potential 

applications exploiting the unique characteristics of the NPs portrayed in this thesis.  

 

7.3.1 Tumor therapy 

Two different administration routes may be employed using our doxorubicin-loaded 

colloidal system for the treatment of cancer: parenteral injections or injections directly at the 

tumor. 

In the case of parenteral injections, the size range of the NPs would allow their passive 

accumulation in tumor tissue thanks to the EPR effect. Drug molecules would then be 

released in the intestitial space and diffuse into the cells (bigger fraction), or would get 

liberated after uptake of the NPs by tumor cells (smaller fraction). Release is not dependent 

on destabilizing factors (as in the case of liposomal formulations) and is expected to proceed 

continuously until drug depletion. However, the risk of multidrug resistance development 

might pose a significant obstacle to this tactic. 

Direct, local injection is an alternative approach which might circumvent certain 

complications of systemic administration. Taking advantage of the liquid-to-solid transition, 
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drug-loaded NPs could be introduced and remain within (or in close proximitiy of) tumors, 

releasing locally their payload. Similar approaches have already been reported using 

microparticles21, 22, thermo-responsive23, 24 or protease-sensitive25 hydrogels. Although 

administration becomes more complicated, high drug concentrations at the target site and 

reduction of side effects might make this approach better-suited for certain applications.  

 

7.3.2 Prevention of postoperative adhesions 

Abdominal and pelvic adhesions are abnormal fibrous structures bridging surfaces of 

the peritoneal and pelvic cavities. They form following abdominal surgery (>30%) or 

inflammation and might cause bowel obstruction, pain and infertility in women26, 27.  

Peritoneal adhesions are certainly the most known, but not the only ones; 

postoperative adhesions and fibrosis may also lead to spinal cord tethering after neurosurgery. 

Different strategies have been proposed to prevent adhesion formation: use of fibrinolytic 

agents26, 28, biodegradable materials acting as physical barriers29, controlled antiproliferative 

drug delivery30, 31 or combination of these. We considered using the drug loading capabilities 

of the NPs combined with the trivial formation of colloidal hydrogels to locally administer 

rapamycin, a potent antiproliferative agent. The slow dissolution kinetics of our system, its 

ease of application and the biocompatible character of the material make it an ideal candidate 

for the application in mind. Experiments are in planning in collaboration with Dr. H. 

Schmoekel at the EPFL using experimental animal models.    
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