Refactoring OCL Annotated UML Class
Diagrams*

Slavisa Markovi¢ and Thomas Baar

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
{slavisa.markovic, thomas.baar}@epfl.ch

Abstract. Refactoring of UML class diagrams is an emerging research
topic and heavily inspired by refactoring of program code written in
object-oriented implementation languages. Current class diagram refac-
toring techniques concentrate on the diagrammatic part but neglect OCL
constraints that might become syntactically incorrect by changing the
underlying class diagram. This paper formalizes the most important
refactoring rules for class diagrams and classifies them with respect to
their impact on annotated OCL constraints. For refactoring rules, whose
application on class diagrams could make attached OCL constraints in-
correct, we formally describe how the OCL constraints have to be refac-
tored to preserve their syntactical correctness. Our refactoring rules are
defined in the graph-grammar based formalism proposed by the QVT
Merge Group for the specification of model transformations.

1 Introduction

Modern software development processes, such as Rational Unified Process (RUP)
[1] and eXtreme Programming (XP)[2] propagate the application of refactoring
to support iterative software development. Refactoring (see [3] for an overview)
is a structured technique to improve the quality of artifacts.

Artifacts produced in all phases of the software development lifecycle could
become a subject of refactoring. However, existing techniques and tools mainly
target the implementation code. Due to the increase in popularity of XP, the
tool support for refactoring has been improved considerably over the last years.
An up-to-date list of existing tools can be found at [4].

As the first author, Opdyke has tackled refactoring of implementation code
in [5]. He defines refactorings as ”... reorganization plans that support change at
an intermediate level” and identifies 26 of such reorganization plans; now better
known as refactoring rules. A refactoring rule for implementation code describes
usually three main activities:

1. Identify the parts of the program that should be refactored (code smells).

* This work was supported by Swiss National Scientific Research Fund under the
reference number 2000-067917.

2. Improve the quality of the identified part by applying refactoring rules, e.g.
the rule MoveAtiribute moves one attribute to another class. As the result
of this activity code smells such as LargeClass disappear.

3. Change the program at all other locations which are affected by the refac-
toring done in step 2. For example, if at some location in the code the moved
attribute is accessed, this call became syntactically incorrect in step 2 and
must be rewritten.

There are several catalogs of refactoring rules for different languages. The most
complete and influential was published by Fowler in [6] for refactoring of Java
code. The refactoring of artifacts more abstract than implementation code has
become only recently a research topic. Some initial catalogs of refactoring rules
for UML diagrams, mostly adaptations from the Java refactorings given by
Fowler, are presented in [7-9]. Only few tools are currently available to support
UML refactorings [10, 11]. None of these catalogs or tools takes OCL constraints
into account, which might be attached to diagrams. Thus, applying these refac-
toring rules on diagrams that have constraints attached can make them syntacti-
cally incorrect. As spoken in terms of the above shown MoveAttribute example,
the first two steps have been realized but the last step is ignored. The only
refactoring approach of OCL we are aware of is by Correa and Werner [12], but
here the focus is on improving badly structured OCL constraints and only to a
very limited extent the relationship between OCL constraints and the underlying
class diagram.

In this paper, the most important refactoring rules for class diagrams in-
cluding attached OCL constraints are described formally. Not all class diagram
refactoring rules have an impact on attached OCL constraints, so we first answer
the question which of the rules for class diagrams can destroy the syntactical
correctness of attached OCL constraints. If a rule has no impact on OCL we
informally give the reasons for this. For the rules, whose application can influ-
ence the syntactical correctness of OCL constraints, we formalize the necessary
changes on the OCL code. Up to now, we are not able to argue for all rules that
they preserve the semantics of the refactored OCL constraint. This important
topic will be addressed in our future research.

The formal description of refactoring rules is done on the level of the meta-
model for UML and OCL. Unlike other approaches to describe refactoring rules
formally [12,7,13] we do not use OCL pre/post-conditions for this purpose. The
formalism of our choice is a slight adaptation of the QVT Merge Group [14]
proposal to describe model transformations (note that refactoring can be seen
as a special case of model transformation) that is based on graph grammars.
Hence, our catalog of refactoring rules can also be seen as a case study for QVT.

In Sect. 2 we give preliminaries to understand our rules formally defined in
Sect. 3. The insights gained during the formalization of the refactoring rules are
summarized in Sect. 4 whereas Sect. 5 concludes the paper and gives an outlook
of future research activities.

2 Description of Refactoring Rules with QVT

Model transformations are widely recognized now as the ’heart and soul’ of model
driven development [15]. The Object Management Group (OMG) is currently in
the process to standardize the notation for the formal description of model trans-
formations and has launched a corresponding Query/Views/Transformations
Request for Proposals in 2002. In this paper, we mainly use the notation sug-
gested by the QVT Merge Group in the subsequent proposal [14]. Since our aim
is to refactor UML class diagrams annotated with OCL, our refactoring rules
are based on the metamodels of UML and OCL. The following subsection recalls
those parts of these metamodels that are used in our refactoring rules. After-
wards, a brief introduction to the QVT notation for model transformations is
given.

2.1 Metamodels of UML/OCL

Metamodeling is a powerful technique to describe the abstract syntax of lan-
guages in a concise way. A metamodel for a language can roughly be seen as a
class model whose classes and associations encode the concepts of the language
and the relationships between them. Each syntactically correct sentence of the
language can be represented in form of an instance of the metamodel.

ModelElement ‘ ModelElement | Relationship
name : Name L{ownedElement

" b T
4 0..1¢ +namespace

i Namespace ‘ —1n 1
GeneralizableElement Generalization.generalization {-child|GeneralizableElemen

{ordered} n________ 1
Feature [tfeature =g/ Cjassifier +powertypeRanggn *+specialization +p§arent
0.n +owner T+type +powertype|0..1 4
; ‘BehavioraIFeature \ Association
ypedFeature isQuery : Boolean A +parti%ipant +association® 1
L A +associatior] AssociationEnd 2.

multiplicity : Multiplicity Erg%r;r;gggion

Fig. 1. Relevant parts of UML metamodel - Backbone and Relationships

Fig. 1 and Fig. 2 show relevant parts of the official metamodels for UML1.5
and OCL2.0 (for a complete definition see [16,17]).2 In addition to what is
shown in Fig. 1 and Fig. 2, some of the refactoring rules refer to additional
operations such as Classifier.allParents:Set(Classifier). The definition for these
operations are omitted here for the sake of brevity but can be found in the official
metamodels [16,17].

! In the remaining paper, such representations are called MM-representations.
2 We have chosen UMLL.5 as a basis, because in time of writing this paper, the OCL2.0
metamodel was not aligned yet to UML2.0 and still relied on UMLL1.5.

ModelPropertyCallExp | rappliedProperty
0..1

Constraint |0..1 1 Expression
(from Core) +body (from Data_Types)
0..n| +constraint
0..n|+constrainedElement %

| ExpressionInOcl

ModelElement
(from Core)
+contextualClassifier
sifier

Core)

AttributeCallExp | _+referredAttribute | Attribute
.. 1| (from Core)
NavigationCallExp
A +navigationSource ||, 1

AssociationEndCallExp|_+referredAssociationEnd | AssociationEnd
0..n (from Core)

Clas
(from

1/ +type . ordered -
P 1 +bodyExprassion +ua|lfbers OclExpression |+source

OclExpression 0..n+arguments

{ordered}
Operation
(from Core)

Fig. 2. Relevant part of OCL metamodel - Overview and ModelPropertyCallExp

2.2 Introduction to QVT

The QVT Merge Group proposal [14] aims at providing a standardized graphical
notation to define model transformations.?> A model transformation is defined as
a set of transformation rules that, when applied on a source model, transform
this into a target model. Source and target models are assumed to be represented
as instances of metamodels. In general, QVT can handle the case of different
metamodels for the source and target models but refactoring rules need only
one metamodel for both source and target model.

A transformation rule in graphical notation consists of two patterns LHS (left

hand side), RHS (right hand side) that are connected by a symbol indicating
the transformation’s type such as general transformation (<-O-), relation (<),
or mapping (<——-). Optionally, a rule can have parameters and a when-clause
comprising textual constraints.
The LHS and RHS patterns are denoted by a generalized form of object dia-
grams. In addition to the normal object diagrams, free variables can be used in
order to indicate object identifiers and values of attributes. The same variable
can occur both in LHS and RHS and refers — during the application of the rule
— at all occurrences to the same value. Furthermore, links and objects in the
pattern can be marked as non-existing (by a cross) what is read when applying
the rule as a megative matching condition. In order to distinguish between ob-
jects/links occurring in the patterns and objects/links occurring in the concrete
models we call the former ones as pattern objects/links and the later ones as
concrete objects/links.

If a rule is applied on a source model (represented as an instance of the meta-
model, i.e. as a graph), then each subgraph that matches with LHS is rewritten
by a new subgraph derived from RHS under the same matching. A matching is
an assignment of all variables occurring in LHS/RHS to concrete values. When
applying a rule, the matching must obey the restrictions imposed by the when-

3 The proposal defines also a purely textual notation that results, however, into less
understandable transformation descriptions.

clause. This semantics of the QVT rules has the following consequences: If a
pattern object appears in the rule’s RHS but not in its LHS (i.e., in LHS there is
no pattern object of the same class and identified by the same variable as in RHS)
then — when applying the rule — a corresponding, concrete object is created. If
there is a pattern object in LHS but not in RHS, then the matching object in
the source model is deleted together with all 'dangling links’. Similarly, a link is
created/deleted if the corresponding pattern link does not appear in both LHS
and RHS (pattern links are identified by their role names and the pattern ob-
jects they connect). An attribute value is changed to the value derived from its
specification in RHS under the current matching. Values of the attributes that
are not mentioned in LHS and RHS remain unchanged. We have now explained
the basic principle of rule applications and the fundamental constructs used in
patterns. More complicated constructs will be explained later at the places they
are needed.

As an example, suppose we want to describe the renaming of some model
elements (such as attributes, operations, or classes) in UML models. As a first
step, the model element, whose name should be changed, has to be selected.
Then, its name can be changed to the new name if it is not already used by
another model element of the same type in the same namespace.

RenameElementUML (el:ModelElement, newName:String)

rnamespacef” “o- -~ - T+namespace n:Namespace
+namespace
+ownedElement +ownedElement| SO +ownedElemen
el:ModelElement | f&!1:ModelElement el:ModelElement

name=oldName | | name=newName name=newName

{when}
Set{Attribute,Operation,Class}->exists(x| el.ocllsTypeOf(x) and el1.ocllsTypeOf(x)

Fig. 3. Formalization of RenameFElement refactoring

In the left pattern in Fig. 3, the model element el is selected by a parameter.
If there is no other model element with a name equal to newName in the same
namespace (indicated by the cross on ell), then the RHS pattern describes the
change of the name of el to newName. Furthermore, the model elements el and
ell must be both either attributes, operations, or classes. This is formalized by
the when-clause.

3 A Catalog of UML/OCL Refactoring Rules

The rules presented below for refactoring of UML class diagrams and OCL
are heavily inspired by refactoring rules for the static structure of Java pro-
grams given by Fowler in [6]. We took the freedom to change some rule names
introduced by Fowler to indicate UML as their new application domain (e.g.
MoveMethod became MoveOperation). Table 1 gives the list of the formalized

rules. If the rule name has changed compared to the name used by Fowler, the
original name is given in parentheses. In few cases, not only the name but also
the semantics of the rule has slightly changed. Details on this are given at ap-
propriate places in the text. Furthermore, Table 1 shows which of the rules have
an influence on OCL. Note that two rules have an influence only either on the
MM-representation or the textual notation of the OCL constraints.

Table 1. Overview of UML/OCL refactoring rules

Refactoring rules Influence on syntactical
correctness of OCL constraints
MM-Representation|Textual Notation
ExtractClass No No
EzxtractSuperclass No No
RenameFElement (RenameMethod) No Yes
MoveAttribute (MoveField) Yes Yes
MoveOperation (MoveMethod) Yes Yes
PullUpOperation (PullUpMethod) No No
PullUpAttribute (PullUpField) No No
PushDownOperation (PushDownMethod) Yes Yes
PushDownAttribute (PushDownField) Yes No

3.1 Rules Without Influence on OCL

RenameElement The rule RenameFElement has been already used as an ex-
ample in Sect. 2. Our version allows changing the name of many model elements
(attributes, operations, and classes) whereas Fowler allows in [6] only renaming
of methods.* This motivates the change of the rule name from RenameMethod
to RenameFElement.

At a first glance, renaming of an attribute requires to change all annotated
OCL constraints where the attribute is used. However, these changes are re-
quired only for the textual notation. If the attached OCL constraint is seen as
an instance of the OCL metamodel, then this instance remains the same. Note
that the OCL metamodel refers only to the UML metamodel but does not com-
prise it. Thus, the change made in the underlying UML model is automatically
propagated to all OCL expressions that use the changed UML element.

PullUpAttribute/PullUpOperation These two rules remove one attribute/
operation from a class and insert it into one of its superclasses, Fig. 4 shows a
concrete example. We will concentrate our description on PullUpAttribute, the
rule PullUpOperation is handled analogously.

4 However, there is no principal obstacle for renaming other declarations in Java. The
Eclipse tool [18], for example, provides capability for renaming other model elements,
e.g. attributes.

ExaFather1 | | ExaFather2 ExaFather1 | | ExaFather2
exaAttr

r) x4

exaAttr

Fig. 4. Example for applying PullUpAttribute

PullUpAttributeUML(a:Attribute, father:CIass)l

- _ owner [
father:Class |father.CIass “+feature a:Attribute
+parent
pecialization +specialization

< >||g:Generalization
son:Class

+feature -
son:Class frowner | &:Attribute

Fig. 5. PullUpAttribute refactoring rule

In Fig. 5, the pre-conditions to apply this rule are given: Attribute a is owned
by class son that must have a parent class father. The RHS pattern formalizes
that the owner of attribute a has changed from class son to class father (link
from a to son is deleted and to father created). Unlike the PullUp rules for
Java, it is not necessary to state as a condition on the LHS, that in the pre-state
the class father must not have an attribute with the same name as a. This is
automatically imposed by a well-formedness rule in UML1.5 preventing a class
to use names for its attributes which were already taken by one of its ancestor
classes (cmp. Sect. 2.5.4.4 in [17]). If the class father had an attribute with the
same name as attribute a then this well-formedness rule would be broken for
class son. Java is not so strict in this respect; e.g. names for private attributes
can be reused in subclasses without problems.

The PullUpAttribute rule has no influence on OCL constraints because it
widens the applicability of the moved attribute. The attribute exaAttr can only
occur in attribute call expressions (Attribute CallEzp) of form exp.exaAttr. Here,
the type of expression erp must be compatible with the owner of the attribute
son. After the refactoring, exp.exaAttr is still syntactically correct because the
type of exp is also a subtype of father what is the new owner of the attribute.

ExtractClass/ExtractSuperclass The rule EzxtractClass creates an empty
class and connects it with a new association to the source class from where
it is extracted. The multiplicity of the new association is 1 on both sides.
The FEaxtractSuperclass rule creates an empty class as well but inserts it be-
tween the source class and one of its direct parent classes. Note that Fxtract-
Class/ExtractSuperclass differ from the corresponding rules given by Fowler
in [6]. Our rules are more atomic since they do not move features from the
source class to the newly created class. In order to move features to the new

class one could apply the refactorings MoveAttribute/Operation or PullUpAt-
tribute / Operation.

ExtractClassUML(init:Class, neWCN:String)l ExtractSuperclassUML(son:Class, newCN:String, gen:Generalization) |
extracted:Class gen:Generalization
name=newCN +generalization

+child
+parficipant ,—l .
+association gw%@ father:Class
ae1:AssociationEnd [generalization
> |

name=newCN

,m {>||multiplicity=1 +child <> parent
ae2:AssociationEnd son:Class +specialization
multiplicity=1 QLGLWEQ@

+generalization
+association)
+participant +child
init:Class son:Class

Fig. 6. EztractClass/ExtractSuperclass refactoring rules

Applying the rules ExtractClass/ExtractSuperclass cannot alter the syntac-
tical correctness of attached OCL constraints because both the rules merely
introduce new model elements and do not delete or change old ones.

3.2 Rules With Influence on OCL

PushDownAttribute This rule is the counterpart of the rule PullUpAttribute
from Fig. 5 and moves an attribute from the parent to some selected subclasses
(see Fig. 7). As described by Fowler in [6] for the corresponding rule PushDown-
Field, the attribute is moved only to such classes, where it is actually used.

ExaFather ExaFather
exaAttr :>

ExaSon1 |[ExaSon2 || ExaSon3 ExaSont || ExaSon2 || ExaSon3
exaAttr || exaAttr

Fig. 7. Example for applying PushDownAttribute

The formalization of the PushDownAttribute rule is split into a UML and
an OCL part shown in Fig. 8 and Fig. 9. It uses some elements of QVT that
have not been explained yet as well as some ’private’ elements that are missing
in QVT.

Multiobjects as gs and users are already defined in QVT and represent a set
of objects of the same type (here Generalization and Class). A multiobject that
is linked to an ordinary pattern object — in our example, gs is linked to father
— encodes the situation where all elements represented by the multiobject have
actually a link to the object represented by the ordinary pattern object. Note

PushDownAttributeUML (a:Attribute, users:Set(Class)) |

+specialization { rs ecialization +parent
gs:Generalization father:Class gs:Generalization father:Class
1[+generalization +owne 1[+generalization
+child — 1)+child
+feature!)
users:Class a:Attribute I 1 as:Attribute

{when}

ne
+featurel

as->forAll (x | x.isCopyOf(a))

Fig. 8. UML part of PushDownAttribute rule

PushDownAttributeUML+OCL extends PushDownAttributeUML(a:Attribute, users:Set(Class))
{when}

AttributeCallExp.alllnstances()->
forAll(ace| ace.referredAttribute=a implies
users->exists(user| user=ace.source.type or ace.source.type.allParents->includes(user))

Fig. 9. OCL part of PushDownAttribute rule

that in Fig. 8 the variable a is passed as an parameter and thus father is implicitly
determined as the owner of attribute a. The multiobject gs is determined as the
set of generalizations which have father as the parent and which are linked with
the elements represented by the multiobject users as their child. Note that the
variable users is also passed as a variable to the rule in order to select the
subclasses where the attribute a is moved to.

The multiplicity 1/1 at the link between gs and users is a ’private’ pattern
element and not included in the QVT Merge Group proposal yet. It was added
here to enrich QV'T’s standard semantics of links between two multiobjects. The
QVT semantics always assumes that such a link represents the situation where
each element of the first multiobject is linked to every element of the second
one, and vice versa. This standard semantics is not appropriate to describe the
relationship between gs and users since each element of gs should be linked to
exactly one element of users, and vice versa. Thus we propose to add multiplici-
ties to pattern links between multiobjects what allows to indicate a non-standard
semantics of such links in an intuitive way.

Another new element is the usage of operation isCopyOf() in the when-
clause. Since the multiobject as occurs only in the RHS, we already know that
all its elements are newly created. The multiplicity 1/1 between as and users
let us further conclude, that for each element of users exactly one element of as
is created. The when-clause and the intended semantics of isCopyOf() should
ensure that each element of as is a shallow copy of attribute a. However, the
elements of as have a different owner than a as indicated in RHS.

If PushDownAttribute is applied on a class diagram that has attached OCL
constraints then we must ensure that in all constraints the attribute is never
used in the superclass (father) nor in any class which is not compatible with at
least one of the selected subclasses (users). This has been formalized by the rule
shown in Fig. 9 that extends the rule of Fig. 8.

The rule PushDownAttribute does not cause changes of the OCL textual
notation because instead of calling the attribute that is removed from the su-
perclass, all calls now refer to a copy of this attribute at some of the subclasses.
However, this refactoring causes changes on the MM-representation of OCL be-
cause every instance of AttributeCallExp that was calling the moved attribute
has after the refactoring a new link to a newly created copy of the attribute in
the subclasses.

MoveAttribute Applying the MoveAtiribute rule helps to make a class smaller;
an example of this refactoring is shown in Fig. 10.

Exalnitial [1 ExaDestination

ExaDestination Exalnitial 1
exaAttr :> exaAttr

Fig. 10. Example for applying MoveAttribute

-

The attribute can only be moved to a class which is connected with the initial
class by an association with multiplicity 1 at both ends. This allows objects of
the initial class still to have access to the moved attribute after the refactoring.
Not visible in the example but in the formalization in Fig. 11 is that neither the
destination class nor one of its parents or children is allowed to have already an
attribute with the same name as the moved attribute.

MoveAttributeUML(dest:Class, a:Attribute) |

-connection ,
ae1 -AssociationEnd ae2:AssociationEnd +connection connection
- . iati ae2:AssociationEnd
multiplicity=1 multiplicity=1 ae1:AssociationEnd dec.mssodatontnd
+associafion multiplicity=1 multiplicity=1
+participant[lrassociatio +assop|aflon
init:Class| |dest:Class < *1participant +participant
Fowner
+feature +feature dest:Class
a:Attribute X Attribute +owner
name=attrName = -
name=attrName 2 Attribute
{when} —
dest.allParents->union(dest.allChildren)->forAll(p|p.feature-> name=attrName

select(ala.ocllsTypeOf(Attribute)).name->excludes(attrName)

Fig. 11. UML part of MoveAttribute rule

Analogously to the changes of Java code described by Fowler for the cor-
responding refactoring MoveField, this rule must update OCL constraints on
all locations where the moved attribute is applied. The necessary change of the
OCL expressions can be seen as a kind of ”Forward Navigation”: Terms of form
erp.exalttr have to be rewritten as erp.destination.exaAttr. This change of
OCL is formalized by the rule in Fig. 12.

MoveAttributeUML+OCL extends MoveAttributeUML(dest:Class, a:Attribute)l

at:AttributeCallExp

at:AttributeCallExp

+appliedPropert:

+source
|aec:AssociationEndCalIExg| a:Attribute

+appliedPropert

+SOUICe +referredAssociationEnd

- . it +participant .
: : —= :Cl.
oe:OclExpression ||ae:AssociationEnd HSSOClatlon dest:Class

+heferredAttriblite

oe:OclExpression Ia:Attribute

Fig. 12. OCL part of MoveAttribute rule

MoveOperation The rule MoveOperation is often applied when some class has
too much behavior or when classes are collaborating too much.

The formalization of MoveOperation refactoring is similar to that of MoveAt-
tribute and shown in Fig. 13. As for MoveAttribute, the association must have
on both ends multiplicity 1. The main difference is that the name of the moved
operation is now allowed to be already used in the parent classes of the des-
tination since UML1.5 allows operations to be refined along the generalization
hierarchy.

MoveOperationUML(dest:Class, o:Operation)l
+connection < —— onnection connection
ae1:AssociationEnd ae2:AssociationEnd ae1:AssociationEnd | |ae2:AssociationEnd
multiplicity=1 multiplicity=1 multiplicity=1 multiplicity=1
k-associatio +assop|_at|on
D>+par1ici ant +participant]
init:Class dest:Class
lure - +owner
0:Operation :Operation 0:Operation
name=opName name=opName name=opName [+feature

Fig. 13. UML part of MoveOperation rule

The changes induced on OCL can be described in three steps:

”Change context”: If a constraint is attached to the operation (e.g. as pre/post-
condition) then the context of this constraint has to be changed, in the above
example from context ExaInitial::exaOp() to
context ExaDestination:exaOp(). Fowler describes in [6] informally this
step as "Copy the code from the source method to the target”. Note that
in this step, we only copy the constraint body, the adaptations of the body
will be done in the next steps.

”Backward navigation”: After ”Change context” the constraint attached to the
moved operation still assumes variable self to be of type of the original
class. At the new location, the variable self of the original class can be
”simulated” by navigation from the destination class to the original class.

All occurrences of self.propertyCallExzp in the moved constraints* have to
be rewritten by self.exaInitial.propertyCallExp. This navigation is made
possible by the multiplicity 1 on the end of the original class. For this step,
Fowler says: ”... create or use a reference from the target class to the source”.

”Forward navigation”: In case that the moved operation is a query we have to
redirect in all operation call expressions the operation reference. This means
to substitute all expressions expression.exalp() by
expression.exaDestination.exaOp(). This step corresponds to "Turn the
source method into a delegating method” from Fowler’s book.

MoveOperationUML+OCL extends MoveOperationUML (dest:Class, o:Operation)|

+constrainedElement |

X : N " - —J+constrainedElement ¢:Constraint
0:Operation +Const|,aimlc.Constrenntl |o.Operatlon| +constrant—
feature
+rowner +body +owner

contextualClassifier +contextualClassifier

+bod
eo:ExpressionInOcl

eo:ExpressionInOcIl > |dest:CIass
- {and}
eo:ExpressionInOcl eo:ExpressionInOcl +bodyExpression oe :OclExpression
oression [atisubs:ModelPropertyCalExp |

{and}
L . source
| allSubs:ModelPropertyCallExp IJ <> |aec:AssociationEndCallEx ~appliedPTopety| [me:aliSubs

and) +appl|edPrope%
N N I
mﬁgﬂhedﬁoen mp:allSubs v:VariableExp +referredAss,ociit(:lr;tliicr;a .

name="self name='self" [|a&1:AssociationEnd [~k S init:Class

and}
+appliedPropert: B - ' .
OperationGallE s
+source 0p:OperalionCalExD [ferredOperation > 22eration

|aec:AssociationEndCaIIExgl

appliedPropert sreferredAssociationEnd
I -
- R ot +association _
oe1:OclExpression ae2:AssociationEnd - parficipant dest:Class

when}
allSubs=oe->allSubExps()->select(s| s.ocllsKindOf(ModelPropertyCallExp))

op:OperationCallExp

+source rredOperation
oe1:OclExpression ||o:Operation

Fig. 14. OCL part of MoveOperation rule

As shown in Fig. 14, the formalization of MoveOperation refactoring is com-
posed of three smaller transformations. The first sub-transformation is used to
change the context of one OCL expression. LHS and RHS in the rule differ only
in the class that represents the context for the attached OCL constraint.

In the second sub-transformation, the backward navigation is specified by
adding a new instance of AssociationEndCallEzp to the class from which the
operation has moved. The when-clause uses a new operation
OclEzxpression.allSubExps:Set(OclExpression) that is not part of the OCL meta-
model yet. The intended semantics of allSubFzps is to return all subexpressions
of the OclExpression it is applied to.

The third sub-transformation describes ” Forward navigation”. The LHS pat-
tern finds all occurrences where the moved operation is called. RHS specifies the
insertion of an additional navigation to the destination class.

4 Note that OCL allows in the textual notation to suppress self. Thus, self within
self.propertyCallExp is sometimes given only implicitly.

PushDownOperation This rule is very similar to PushDownAttribute but,
somehow surprisingly, it has influence on the OCL textual notation.

PushDownOperationUML(0:Operation, users:Set(CIass))l

+parent

father:Class

trspecialization

gs:Generalization I

1i+generalization
1[+child

users:Class I

os->forAll (x | x.isCopy(0))

s

owner 1
users:Class |[{~ +featurd

0:Operation

{when}

Fig. 15. UML part of PushDownOperation rule

PushDownOperationUML+OCL extends PushDownOperationUML (o:Operation, users:Set(Class)) |

o0:Operation +constrainedElement os-Operation I+constra|nedEIemlent
osperation; Iy +constraint

+constra|ntl D
c1:Constraint cs:Constraint I

when
OperationCaIIExp.aIIInstances()->forAII(o{ce| oge.referredOperation=o implies
users->exists(user| user.allChildren->including(user)->includes(oce.source.type))) and
cs->forAll(x |x.isCopy(c1))

Fig.16. OCL part of PushDownOperation rule

If the moved operation is a query and occurs in operation call expressions
then the operation must be moved at least to all children that actually use the
query.

No matter whether the moved operation is a query or not all its constraints
have to be copied with an adapted context to the new operations in the selected
subclasses (see Fig. 16).

4 Lessons Learned

The formalization of refactoring rules for UML/OCL has highlighted some ad-
vantages but also some missing elements of the graph-grammar based notation
proposed by the QVT Merge Group in [14].

Since our refactoring rules are described in a graphical formalism they are
much more accessible and understandable than existing formalizations of UML
refactoring rules in form of pure OCL pre/post-conditions. Another advantage
compared to purely OCL-based formalizations is the elegant solution of the
Frame problem that is provided by the QVT semantics: only structures of the
source model which match the LHS pattern of the rule are processed and sub-
stituted by the RHS under the same matching. The source model and the result
of the refactoring can only differ in the elements that were made explicit in the
RHS whereas an OCL formalization of the rules has to be read as "everything
can change unless it is not explicitly stated that it remains the same”.

Compared to corresponding refactoring rules for Java, the rules for UML and
OCL are sometimes simpler to formulate because, for example, the visibility of
model elements is ignored in the OCL syntax. Also the assumption in UML1.5
on the uniqueness of attributes names along the generalization hierarchy helps to
keep the formulation of refactoring rules elegant. On the contrary, other concepts
of UML such as multiple inheritance make the formulation of refactoring rules
often more difficult.

Another interesting insight is that, not all class diagram refactoring rules can
simply be classified in such a way that keep the OCL code untouched and in a
way that can require a change in OCL. There is a group of rules in between which
do not influence the OCL but whose applicability depends on some properties of
the OCL constraints attached to the class diagram (e.g., in PushDownAttribute
the LHS of the rule states that terms of a certain type do not appear).

Proposed change to QVT and OCL We have encountered some elements
that are missing in the current QVT proposal and OCL metamodel:

— Sometimes, it is inevitable to express, that an object is the (shallow) copy of
another object but an operation such as OclAny.isCopyOf(OclAny):Boolean
is not available in OCL yet although its semantics is clear.

— The pattern language of QVT should allow to express a 1-1 relationship
between objects of two multiobjects. As an intuitive way, we propose to add
multiplicities to links connecting two multiobjects.

— The operation OclEzpression.allSubExps():Set(OclExpression) is needed to
access all subexpressions of an expression and, thus, should be added to the
OCL metamodel as an additional operation.

5 Conclusions and Future Work

In the literature, refactoring rules for UML class diagrams have been described so
far only informally or in form of pure OCL pre/post-conditions. In this paper, we
formalized these rules in a precise and very readable way by using the formalism
proposed by the QVT Merge Group. As the main contribution, the impact of
changing class diagrams on annotated OCL constraints has been investigated.
For the rules having an impact on OCL, the class diagram refactoring rules
have been extended by additional transformation rules for OCL expressions.
The extended rules now allow keeping class diagrams, which are often subject
of change, easily in sync with annotated OCL constraints. Note that the OCL
constraints play an important role in modern model-based software development
paradigms.

So far, we are only able to argue that the presented refactoring rules preserve
the syntactical correctness of OCL constraints. In a next step we will investigate
whether or not the given refactoring rules are also behavior preserving (or rather
semantics preserving). As another activity, we are currently developing a tool
that is capable to perform the described UML refactorings and propagate these
refactorings to annotations given in OCL.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley

(2004)

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)

Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software
Eng. 30 (2004) 126-139

Refactoring community: Refactoring homepage. www.refactoring.com (2005)
Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing Object-
Oriented Application Frameworks. PhD thesis, University of Illinois at Urbana-
Champaign (1992)

Fowler, M.: Refactoring: Improving the Design of Existing Programs. Addison-
Wesley (1999)

Rumpe, B.: Agile Modellierung mit UML. Springer (2005) In German.

Astels, D.: Refactoring with UML. In: International Conference eXtreme Pro-
gramming and Flexible Processes in Software Engineering. (2002) 67-70

Sunyé, G., Pennaneac’h, F., Ho, W.M., Guennec, A.L., Jézéquel, J.M.: Using UML
action semantics for executable modeling and beyond. In Dittrich, K.R., Geppert,
A., Norrie, M.C., eds.: CAiSE. Volume 2068 of LNCS., Springer (2001) 433-447
Boger, M., Sturm, T., Fragemann, P.: Refactoring browser for UML. In: In-
ternational Conference eXtreme Programming and Flexible Processes in Software
Engineering. (2002) 77-81

Porres, I.: Model refactorings as rule-based update transformations. In Stevens,
P., Whittle, J., Booch, G., eds.: UML 2003 - The Unified Modeling Language,
Modeling Languages and Applications, San Francisco, CA, USA. Volume 2863 of
LNCS., Springer (2003) 159-174

Correa, A., Werner, C.: Applying refactoring techniques to UML/OCL. In Baar, T,
Strohmeier, A., Moreira, A., Mellor, S.J., eds.: UML 2004 - The Unified Modeling
Language. Model Languages and Applications, Lisbon, Portugal. Volume 3273 of
LNCS., Springer (2004) 173-187

Gorp, P.V., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-
consistent UML refactorings. In Stevens, P., Whittle, J., Booch, G., eds.: UML
2003 - The Unified Modeling Language, Modeling Languages and Applications,
San Francisco, CA, USA. Volume 2863 of LNCS., Springer (2003) 144-158

OMG: Revised submission for MOF 2.0, Query/Views/Transformations, version
1.8. OMG Document ad/04-10-11 (2004)

Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software 20 (2003) 42-45

OMG: UML 2.0 OCL Specification — OMG Final Adopted Specification. OMG
Document ptc/03-10-14 (2003)

OMG: UML 1.5 Specification. OMG Document formal/03-03-01 (2003)

Eclipse community: Eclipse homepage. http: //www.eclipse.org (2005)

