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Abstract. KeY is a tool that provides facilities for formal
specification and verification of programs within a com-
mercial platform for UML based software development.
Using the KeY tool, formal methods and object-oriented
development techniques are applied in an integrated man-
ner. Formal specification is performed using the Object
Constraint Language (OCL), which is part of the UML
standard. KeY provides support for the authoring and for-
mal analysis of OCL constraints. The target language of
KeY based development is JAvA CARD DL, a proper sub-
set of JAVA for smart card applications and embedded
systems. KeY uses a dynamic logic for JAvA CARD DL to
express proof obligations, and provides a state-of-the-art
theorem prover for interactive and automated verifica-
tion. Apart from its integration into UML based software
development, a characteristic feature of KeY is that for-
mal specification and verification can be introduced in-
crementally.

Keywords: Object-oriented design — Formal specifica-
tion — Formal verification — UML — OCL — Design pat-
terns — JAVA

1 Introduction

KeY is a tool for the development of high quality object-
oriented software. The “KeY” idea behind this tool is
to provide facilities for formal specification and ver-
ification of programs within a software development
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platform supporting contemporary design and imple-
mentation methodologies. The KeY tool empowers its
users to perform formal specification and verification
as part of software development based on the Unified
Modeling Language (UML). To achieve this, the sys-
tem is realised as the extension of a commercial UML-
based Computer Aided Software Engineering Tool (CASE
tool). As a consequence, specification and verification
can be performed within the extended CASE tool it-
self. Such a deep integration of formal specification and
verification into modern software engineering concepts
serves two purposes. First, formal methods and object-
oriented development techniques become applicable in
a meaningful combination. Second, formal specification
and verification become more accessible to developers
who are already using object-oriented design method-
ology. Moreover, KeY allows a lightweight usage of the
provided formal techniques, as both, specification and
verification, can be performed at any time, and to any
desired degree. The homepage of the KeY project is
http://www.key-project.org/.

The target language of KeY-driven software develop-
ment is JAVA. More specifically, the verification facilities
of KeY are restricted to code written in JAVA CARD [27,
68]. JAVA CARD is a proper subset of the JAVA program-
ming language, excluding certain features (like threads,
cloning or dynamic class loading) and with a much re-
duced API. The Java CARD language [68] and plat-
form [69] are provided by Sun Microsystems to enable
JAVA technology to run on smart cards and other devices
with limited memory, such as embedded systems.

UML based software development puts an emphasis
on the activity of designing the targeted system. It is in-
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creasingly accepted that the design stage is very much
where one actually has the power to prevent a system
from failing. This suggests that formal specification and
verification should (in different ways) be closely tied to
the design phase, to design documents, and to design
tools. One way of combining object-oriented design and
formal specification is to attach constraints to class di-
agrams. An appropriate notation for such a purpose is
already offered by the UML: the standard [58] includes
the Object Constraint Language (OCL). We briefly point
out the three major roles of OCL constraints within KeY:

— The KeY tool supports the creation of constraints.
While a user is free in general to formulate any desired
constraint, he or she can also take advantage of the au-
tomatic generation of constraints, a feature which is
realised in the KeY tool by extending the CASE tool’s
design pattern instantiation mechanism.

— The KeY tool supports the formal analysis of con-
straints. The relations between classes in the design
imply relations between corresponding constraints,
which can be analysed regardless of any implementa-
tion.

— The KeY tool supports the werification of imple-
mentations with respect to the constraints. A theo-
rem prover with interactive and automatic operation
modes can check consistency of JAVA implementa-
tions with the given constraints.

These mechanisms, and their interaction with the fea-
tures already provided by the underlying CASE tool, will
be described in detail in this paper.

The KeY tool realises full integration of certain formal
techniques into more widely spread techniques. Never-
theless, the usage of specification or verification facilities
requires additional effort and skill, which has to be moti-
vated. In the software industry, the “residual defect ratio”
(the number of bugs that remain in the shipped product)
normally lies between 0.5 and 5 defects per thousand lines
of non-commented source code [44]. Whether this number
justifies to undertake an extra effort or not depends on
the damage caused by system failures. Application areas,
where this damage is known to be particularly high, in-
clude: safety critical applications (e.g. railway switches),
security critical applications (e.g. access control, elec-
tronic banking), cost critical applications (which, for ex-
ample, run on a large number of non-administrated de-
vices, such as phone cards), and legally critical applica-
tions (e.g. falling under digital signature laws).

Such applications are often intended to run on smart
cards or similar devices. Therefore, JAvA CARD as the
target language of the KeY tool, is highly significant. At
the same time, the technical restrictions of JAvA CARD
make verification of the full language feasible. We stress
that KeY is not restricted to being used for the devel-
opment of smart card applications, because many JAVA
applications do not use features excluded by JAVA CARD.
In general, the KeY tool is particularly valuable, when-

ever the minimisation of software defects is an important
issue.

This article is organised as follows: Section 2 describes
the general architecture of the KeY system. Different sce-
narios of applying the system are discussed in Sect. 3. In
Sect. 4 we introduce an example that is used through-
out the rest of this paper. Section 5 describes the KeY-
specific embedding of formal specifications into a UML-
based design process. Then, the formal analysis of the
relationship of such specifications to each other (Sect. 6),
as well as to a given implementation (Sect.7), is dis-
cussed. Section 8 then describes how the resulting proof
obligations are processed by interactive and automated
theorem proving. After a brief look on implementation is-
sues (Sect. 9), we describe some case studies performed
with KeY (Sect. 10). Finally, we summarise the current
state of the KeY project (Sect. 11), and in Sect. 12 draw
some conclusions. The paper is an updated, extended,
and completely rewritten version of [2, 3].

2 Architecture of the KeY tool

The KeY system is built on top of a commercial CASE
tool. Integrating our system into an already existing tool
has obvious advantages:

1. All features of the existing tool can be used and do not
need to be reimplemented.

2. The software developer does not have to become fa-
miliar with a new design and development tool. Fur-
thermore the developer is not required to change tools
during development, everything that is needed is inte-
grated into one tool.

A CASE tool that is well suited for our purposes has to
be easily extensible and the extensions have to fit nicely
into the tool providing a uniform user interface. We de-
cided to use Together Control Center from Borland [23],
in the following referred to as TogetherCC. Among all the
tools on the market this one seems to be most suitable
for our purposes. It has state-of-the-art development and
UML support (including some very basic support for tex-
tual specifications) and can be extended in almost any
possible way by JAVA modules — TogetherCC offers access
to most of its “internals” by means of a JAVA open API
(see Sect. 9). There is however no fundamental obstacle to
adding the KeY extensions to other, similar CASE tools.
Figure 1 shows a screenshot of TogetherCC with KeY sys-
tem extensions.

The architecture of the KeY system is shown in Fig. 2.
In the following, we briefly describe the components and
the interactions between them:

1. The modelling component (upper part in Fig. 2) con-
sists of the CASE tool with extensions for formal spe-
cification. While the CASE tool already allows the
software model to contain OCL specifications, it does
not have any support to create or process them in
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Fig. 2. The architecture of the KeY system

a formal way — OCL specifications are just textual
annotations and are handled in the same way as com- 3.
ments. This is where the extension comes into play. It
allows the user to create, process and prepare the OCL
specifications (together with the model and its imple-
mentation) which can be later processed and passed
to the deduction component. Manipulating OCL spe-
cifications is done by employing external programs

and libraries [31, 33, 41] as well as using TogetherCC’s
pattern mechanism to instantiate specifications from
OCL specification templates [12] (see also Sect. 5).
The CASE tool itself provides all the functionality for
UML modelling and project development and is re-
sponsible for most of the user interactions with the
project.

The verification middleware is the link between the
modelling and the deduction component. It translates
the model (UML), the implementation (JAvA) and the
specification (OCL) into JAVA CARD Dynamic Logic
proof obligations which are passed to the deduction
component. JAVA CARD Dynamic Logic is a program
logic used by the KeY prover (deduction component),
see Sect. 7. The verification component is also respon-
sible for storing and managing proofs during the devel-
opment process.

The deduction component is used to construct proofs
for JAvA CARD Dynamic Logic proof obligations gen-
erated by the verification component. It is an in-
teractive verification system combined with powerful
automated deduction techniques. All those compo-
nents are fully integrated and work on the same data
structures.
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All components are implemented in JAVA and fully in-
tegrated with TogetherCC through its open API resulting
in a uniform user interface. In addition, some components
of the KeY tool can be used stand alone: the OCL to
JAavA CARD Dynamic Logic translator and the prover, see
Sect. 9. Uniform implementation in JAVA makes the KeY
tool portable. It should also be mentioned that all KeY
system extensions can optionally be switched on and off
in TogetherCC and thus it is the developer’s decision to
use them or not.

3 KeY tool application scenarios

The KeY tool can be used in various scenarios by peo-
ple who have widely differing skills with formal methods.
In the present section we sketch three main scenarios for
the KeY tool: KeY in the development process of indus-
trial software without particular demands on security,
KeY in the development of security critical software, and,
finally, KeY in education and training. Figure 3 shows the
appropriate level of skill with formal methods for each
environment.

As stated in the introduction, the aim of the KeY
project is the integration of formal methods into the
industrial software development process. Therefore, the
most important target user group for the KeY tool are
people who are not experts in formal methods. In many
cases, users will even have reservations against formal
methods.

As a consequence, to reach the goal of the project it is
of crucial importance that the KeY tool allows for gradual
verification, so that software engineers on any (including
low) experience level with formal methods may benefit.
In particular, the existence of full formal specification is
not a prerequisite to make productive use of the KeY tool.
The software engineer is free to determine the amount of
formal methods he or she is willing to utilise.

The main use of KeY in an industrial environment is
not necessarily full formal verification, but formal mod-
elling. While implementations undergo frequent alter-
ations and warrant formal verification only in exceptional
cases, specifications are much less prone to changes. The
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benefits of formal and, hence, unambigous specifications,
are obvious. Moreover, our experience shows that many
bugs are contained in specifications, and mere formalisa-
tion exhibits many of them [26].

To motivate users with few skills in formal methods
or who have reservations against them, the KeY tool pro-
vides automatic support for creating formal specifications
in several ways (see Sect. 5). For example, templates for
often-needed OCL constraints are provided which we call
KeY idioms. These KeY idioms can easily be instantiated
by the user and the corresponding OCL constraints are
then generated automatically. In addition, instantiating
KeY patterns [12,26], extensions of certain well-known
design patterns, is another possibility to obtain a speci-
fication without having to know OCL syntax. Once an
OCL-based formal specification is obtained, one could
even hook up to other theorem provers that support a for-
mal OCL semantics [25]. Finally, an authoring tool for
OCL constraints [41] offers assistance in generating spe-
cifications and helps to understand OCL constraints by
rendering them automatically in natural language. It is
currently being integrated into the KeY tool. We believe
that the user support provided by the KeY tool can help
to overcome reservations against formal methods and,
hopefully, increases the willingness of developers to give
formal methods a try.

A second possible field of application for the KeY tool
is the development (including formal verification) of se-
curity critical software [56]. Here, the high risks that
emanate from faulty implementations warrant the ef-
fort of formal verification. An interesting possibility is
the provision of a formally verified reference implemen-
tation. We stress that the KeY tool cannot merely be
used for functional verification, but is also very suitable
for formal analysis of security properties [30] (see also
Sect. 10.4).

We do not claim that full formal software verifica-
tion is possible without any skills in formal methods, so
this application scenario pertains to formal methods ex-
perts. Since the KeY tool is an integrated system with
a uniform user interface for modelling, specification, im-
plementation, and verification of software, it can be used
for the whole development process. This is an advan-
tage of the KeY tool over conventional verification tools
(for example, [13,59,60]). Without integration, several
tools with typically incompatible interfaces have to be de-
ployed to cover all steps from design to verification.

Another advantage of an integrated tool is that it
enables efficient cooperation between developers whose
skills in formal methods differs significantly (between
none and high). This is important to make efficient use of
those members of a development team that have training
in formal methods.

The final, but no less important, scenario we mention
is the use of KeY in education and training. Its modular
architecture allows certain components to be used stand-
alone which is of advantage here.
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The deduction component, for example, may be used
stand-alone for teaching interactive theorem proving in
first-order predicate logic or program logic. The author-
ing tool for OCL constraints and the OCL syntax checker
are predestined to support teaching how to write for-
mal specifications. But also the integrated tool can be
used in a formal methods course. This has the fortu-
nate effect to emphasise that formal software develop-
ment can be complementary rather than alien to conven-
tional methods. The KeY tool has been used successfully
in various courses at Chalmers University, University of
Karlsruhe, and University of Koblenz since 2002. We plan
to publish a teaching unit for undergraduate level formal
methods courses based on the KeY tool. The stand-alone
components are also suitable for self-study, in particular,
the authoring tool for OCL constraints.

4 Running example

Throughout the paper we will use a running example,
simple enough to concisely illustrate the KeY concepts
and mechanisms. It consists of a credit card application,
the class diagram of which is depicted in Fig. 4, in its
simplest form. We assume some familiarity with reading
UML class diagrams. As a quick introduction to UML
we recommend [34]. The main feature of the diagram in
Fig. 4 is the class BasicCreditCard. In the sequel we often
use the abbreviation BCC for the name of this class. The
class offers the operation debit to charge a certain sum to
the credit card. Successive debits are accumulated in the
balance attribute of the class Account. The debit opera-
tion is only permitted as long as the credit limit bankLine
is not exceeded. Further operations allow to query the

attributes bankLine and account and permissibility of
a debit operation. These operations do not modify the
system state and are, therefore, labelled with the UML
stereotype < query>>. To make things a little bit more in-
teresting we have included in the model two subclasses
JuniorCard, which will have a stricter credit limit, and
BonusCard, in which the debit operation in addition to
its usual function may increase the bonus points stored
in the bonus attribute depending on the result of the
operation bonus. The Account class is modelled only rudi-
mentary. We do, e.g., not consider the transfer of money
to the account to balance the accumulated debts, let’s say,
at the end of the month.

5 Embedding formal specification
into the design process

5.1 Process models

In industrial contexts of software development it became
popular to take advantage of mainly graphical modelling
notations such as the UML. Modelling notations vary
in many aspects and are tailored to special purposes.
It turns out that software developers have difficulties in
practical application of modelling notations even if devel-
opers understood what the notations mean and for which
purposes they should be used. To overcome this problem
it is seen as best practice to follow certain guidelines ac-
cording to which notation should be applied by software
developers in each phase of a project. Such guidelines are
known as process models. Most of these (for example, Ex-
treme Programming (XP) [14], Rational Unified Process
(RUP) [46], Boehm'’s spiral model [22]) include the basic

BasicCreditCard

bankLine:Integer

debit (sum: Integer)
<query>

getBankLine () : Integer
<Kquery>

<query>
getAccount () :Account

debitPermit (sum:Integer) :Boolean

0..* 1 Account

account

balance:Integer

i

JuniorCard

BonusCard

bonus: Integer

juniorBankLine:Integer

debit (sum:Integer)

debit (sum:Integer) <Kquery>
<query>> bonus (sum: Integer) : Integer
debitPermit (sum: Integer) :Boolean <query>

debitPermit (sum:Integer) :Boolean

Fig. 4. A simple credit card scenario
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phases of software development: inception/analysis — de-
sign — implementation/test — deployment/maintenance.
Modern process models tend to cycle through basic
phases (iterative model) and to use at each development
step all information available from artefacts created in
previous development steps. The main concern of a pro-
cess model is twofold:

1. Toincrease the productivity of the software developer.

2. To improve the quality of delivered software including
the documentation so as to facilitate adaptations in
the maintenance phase.

The main goal of the KeY project is the popularisation
of formal methods in the industrial setting of software de-
velopment. In a first step, formalisation is imported in
the form of more precise models obtained through usage
of the textual OCL. We focus on the application of OCL
within class diagrams and we describe at which stage of
a process model users can take advantage of OCL con-
straints.

5.2 OCL constraints in the domain model

The result of the inception/analysis phase is a domain
model of the target system. The domain model ought to
give an overview over concepts identified and the most
important relationships among them. For the sake of
flexibility and changeability in later phases, the domain
model should not be too detailed. On the other hand,
certain properties of domain classes become evident al-
ready in the first phase. As an example, the class diagram
in Fig. 4 does not contain all the information that we
want to be included in our model. The meaning of a bank
(credit) line may be clear to a human reader, but it is
not mirrored in our model so far and thus no analysis
tool, that goes beyond syntactic checks, could make use
of it. It is exactly for the purpose to express informa-
tion of this kind that the OCL has been included in UML
(see [72] for a quick introduction and [58] for the current
language specification of OCL). OCL allows to add invari-
ants such as

context BasicCreditCard
inv: self .bankLine >=0
inv: self.account.balance >= -self .bankLine

to the class BasicCreditCard. The intention is that the
constraint should be satisfied in all system states, where
the reserved variable self is implicitly quantified over all
existing objects in the class BasicCreditCard.

Our experience with software developers working in
an industrial context showed that they are often well
aware of such constraints, which however are being doc-
umented in a rather informal way (if at all) so that no
tool can make use of them [12]. Closer questioning reveals
the reason: Software developers are not used to formu-
late constraints in a formal language such as OCL. The
KeY tool offers a simple, but powerful mechanism to start
authoring formal constraints in a gentle way. Users can

generate formal constraints without the immediate need
to learn specific syntax or keywords.

5.8 KeY idioms

The KeY tool contains a library of predefined constraints
called KeY idioms. Users may choose an idiom from the
library and instantiate it to the current target model by
setting idiom-specific parameters. The desired constraint
is then automatically generated according to the context
of the target model.

The first of the invariants given above for class Basic-
CreditCard, for example, can be generated from an idiom.
Calling the KeY idiom library for class BasicCreditCard
results in the dialog displayed in Fig. 5. Filling in the
values as shown, returns exactly the first invariant from
above.

Not only invariants, but also pre- and postconditions
can be generated in this way. These are attached to oper-
ations instead of classes.

The library of idioms is extensible by means of a sim-
ple scripting language. Hence, experienced users (or the
formal methods expert in a development team) can write
project-specific idioms. In addition, the generated OCL
constraints can, of course, be manually changed after-
wards. Even the generation of constraint skeletons may
be useful in some situations.

What the KeY tool does not (yet) offer is a facil-
ity to “reverse engineer” OCL constraints, i.e., to find
out which idiom a given constraint was generated from.
Reverse engineering could provide a correspondence be-
tween possibly large and complex OCL constraints and
abstract, descriptive, and more understandable idioms.
There are two possibilities to attain similar goals. First,
one may simply change idioms in such a way that suit-
able comments (like the name of the current idiom) are
generated in addition to OCL constraints. The second
possibility is the usage of an authoring tool for simul-
taneous development of natural language and OCL con-
straints [41]. It is currently being integrated into the KeY
tool. With the help of this tool, the example above is thus
rendered in English (German and Swedish are supported
as well):

“The following invariant holds for all Basic-
CreditCards:

the bankLine of the BasicCreditCard is greater
than or equal to zero.”

It is possible to make the textual rendering (“lin-
earisation”) dependent of the type of an object. For ex-
ample, one could write “bank line” instead of “bankLine”
to enhance readability. While automatic translation
from arbitrary natural language texts into OCL is un-
realistic, the other direction is feasible. Even if the
result is not always stylistically elegant, it is quite
helpful, for example, to have an automatic rendering
in English after making changes to the OCL. This
opens up the possibility of “single source” technol-
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ogy for informal and formal specifications. Without
this, we foresee massive synchronisation and mainte-
nance problems for formal specifications of non-trivial
size.

KeY idioms help software developers to become faster
acquainted with the syntax of a formal language. How-
ever, they provide only little help to decide which invari-
ants and pre- /postconditions should be added to a model.
It remains a task for the software developer to char-
acterise the roles played by the classes in the domain
model and the responsibilities they are assigned to. The
KeY tool, as well as OCL, generally follow the design-
by-contract approach. We refer to [55, Chapter 11] for
heuristics to find useful constraints.

5.4 KeY patterns

In the design phase, the domain model is transformed into
a more detailed model in order to meet new requirements
which were intentionally ignored in the first phase. For
our running example in Fig. 4, such a requirement could
be to change the kind of a credit card dynamically, e.g.
a customer applies for the bonus program of the bank
and hence his current credit card of type BasicCreditCard
turns into a card of type BonusCard.

The transformation of a sparsely structured domain
model into a more fine grained and appropriate model
during the design phase is often facilitated by the applica-
tion of design patterns. In the running example, the new
requirements are best captured by application of the Dec-
orator [37, pp. 175 fI] pattern. In terms of the Decorator
pattern, the type change from class BasicCreditCard to
BonusCard for an object is seen as attaching additional

responsibilities to this object. Technically, this is done
by wrapping it in an object of type CardDecorator. The
revised model after applying the Decorator pattern is dis-
played in Fig. 6.

The case tool TogetherCC offers special support for
pattern application. When applying a pattern in Togeth-
erCC, the user must indicate the roles of existing classes
within the applied pattern. For example, the class Ba-
sicCreditCard is assigned to role concrete component
and the class BonusCard to role concrete decorator.
Based on these assignments, TogetherCC automatically
generates further classes and even parts of the implemen-
tation according to the pattern definition. In the example,
the class CardDecorator and the implementation of its
method getBankLine are generated:

public int getBankLine() {
return component.getBankLine();

}

In the KeY tool, the idea of pattern-application support
was extended. KeY patterns are based on the well-known
GoF patterns [37], but they contain constraints written in
OCL that formally characterise important aspects of ap-
plication scenarios. KeY patterns are instantiated in the
same way as other patterns in TogetherCC but the user
selects in addition appropriate textual constraints which
are instantiated' as well [12].

Like in the case of KeY idioms, the library of KeY
patterns can be extended by the user. The predefined

1 The idea of instantiating textual constraints goes back at least
to Syntropy [28] and the technique is used successfully in other
contexts. One example is the proposed language description of
UML 2.0 given in [54] where the process of instantiating constraints
is called stamp out mechanism.
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<interface>
CreditCard

<query>

<query>

<query>

debit (sum:Integer)
getBankLine () : Integer
debitPermit (sum:Integer) :Boolean

getAccount () : Account

< component>
1

<concrete component>

< decorator=>

BasicCreditCard

CardDecorator

bankLine:Integer

debit (sum: Integer)

<Lquery>>

getBankLine () : Integer

<query>

debitPermit (sum:Integer) :Boolean
<query>

getAccount () : Account

debit (sum:Integer)
<query>> >
getBankLine () : Integer

<query>

debitPermit (sum:Integer) :Boolean
<Lquery>

getAccount () : Account

Account

balance:Integer

< concrete decorator=>

<concrete decorator>>

JuniorCard

BonusCard

bonus:Integer

juniorBankLine:Integer

debit (sum:Integer)

debit (sum:Integer)
<query>

debitPermit (sum:Integer) :Boolean <Lquery>>

<query>>
bonus (sum: Integer) : Integer

debitPermit (sum:Integer) :Boolean

Fig. 6. Credit card diagram with Decorator pattern

version of the KeY Decorator pattern supports the gener-
ation of formal constraints for rather complex properties
such as “no object of BonusCard has an inner component
that has the type BonusCard”. In terms of the Decorator
pattern, this means that responsibilities can be attached
to an object at most once. Here is a simpler example
for a generated constraint: a postcondition of the opera-
tion CardDecorator: : getBankLine () to ensure that the
implementation and specification of this operation gen-
erated during the application of the KeY pattern match
each other:

context CardDecorator: :getBankLine() : Integer
post: result =self.component.getBankLine ()

The instantiation of KeY patterns facilitates the creation
of a specification in two ways. As in case of idioms, the
difficulties of using a formal language like OCL are hid-
den from the user. Even more important, however, is the
support in obtaining a complete specification: KeY pat-
terns extend well-known GoF patterns for many scenar-
ios. Listing all the predefined constraints that are useful
in a given context reminds the user of aspects that might
have been forgotten in the specification so far. In some

cases the constraints attached to a pattern might contra-
dict each other, so that choosing all of them would result
in an inconsistent design. The KeY tool does not auto-
matically detect such clashes between chosen constraints.
However, it provides possibilities for computer-assisted
analysis of the resulting constraints (see Sect. 6).

6 Analysing specifications

In this section we look at verification tasks that can be
performed on the specification alone without reference to
a possible or existing implementation. This is sometimes
called horizontal verification. In the first subsection we
describe what tasks are currently supported and in the
following subsection we outline how these tasks are dealt
with in the KeY system.

6.1 Proof obligations

Formal modelling as it is supported by the KeY system
is based on OCL constraints which allow to characterise
precisely the relationship between classes, attributes, and
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operations. A very simple example for an OCL constraint
was already given by the invariants in Sect. 5.2. Now,
we proceed on discussing further examples and give an
overview to other kinds of constraints expressible in OCL
and the most important subtleties of the language OCL.
All constraints refer to our running example in Fig. 4.

The subclass JuniorCard of BasicCreditCard contains
the class attribute juniorBankLine,i.e., the scope of this
attribute is not individual objects but the whole class.
The requirements we want this attribute to fulfil are de-
scribed by these invariants:

context c:JuniorCard
inv: JuniorCard. juniorBankLine >= c.bankLine
inv: c.account.balance >=

—JuniorCard. juniorBankLine
inv: c.bankLine >= 0

For every junior card c the value of its bankLine attribute
does not exceed the integer juniorBankLine, it is non-
negative, and the account of card ¢ should not drop below
-juniorBankLine.

Note that we take advantage of declaring a local vari-
able c and use it instead of self, which results in a more
readable OCL constraint. Besides invariants, OCL also
allows to add pre- and postconditions to operations.

context c:BasicCreditCard::debit (sum:Integer)

pre: debitPermit (sum)

post: c.account.balance=
c.account.balance@pre - sum

pre: not debitPermit (sum)

post: c.account.balance=
c.account.balance@pre

pre: true

post: c.bankLine = c.bankLine@pre

The OCL construct @pre is only applicable in postcon-
ditions and causes the feature it decorates to refer to its
value before the start of the operation. It is admissible
to use the operation debitPermit in the constraints, be-
cause it has been specified as a query in the class diagram
(Fig. 4).

The OCL language definition is not quite precise
regarding the meaning of multiple pre-/postcondition
pairs. We use a constraint with n pre-/postcondition
pairs as a convenient shorthand for n constraints with
respectively one pair each. Furthermore, multiple pre-
/postcondition pairs can be equivalently translated into
a constraint with just one postcondition and precondition
true. For the constraint above the following translation
could be used:

context c:BasicCreditCard::debit (sum: Integer)
pre: true
post: c.bankLine = c.bankLine@pre and
if debitPermit@pre (sum)
then c.account.balance=
c.account.balance@pre - sum
c.account.balance=
c.account.balance@pre

else

The OCL offers the predefined variable result to refer to
the possible return value of an operation. This is particu-
larly useful for query operations which are fully specified
by fixing their return value.

context c:BasicCreditCard: :debitPermit
(sum:Integer) :Boolean

pre: true

post: result= (c.account.balance - sum >=
-c.bankLine)

Note that we need not use the @pre suffix for attributes
in this statement, since we know by the query property of
debitPermit that pre and post values coincide.

Pre- and postconditions are viewed, as is usual in
the design-by-contract paradigm [55, Chapter 11], as two
parts of a contract. If the client calling an operation
makes sure that its precondition is satisfied, then the sup-
plier of the operation guarantees that it terminates, and
upon termination its postcondition holds.

Once a class diagram is supplemented with OCL in-
variants, pre- and postconditions, it is useful to analyse
mutual dependencies among them. The simplest require-
ment, called structural subtyping, is to check whether the
conjunction of all invariants of a subclass implies all in-
variants of its superclass. A quick glance at the above
invariants shows that this is true for the subclass Junior-
Card of BasicCreditCard (the invariants of the latter were
given in Sect. 5.2). It is frequently assumed that an in-
variant of a subclass is an increment over the invariant
of the superclass, i.e. the invariant in force for the sub-
class is the stated invariant plus the invariant of the su-
perclass as an implicit conjunct. In this case structural
subtyping would trivially be true. However, the incremen-
tal reading of invariants does not seem to be a univer-
sally accepted, so we offer support for the more liberal
case.

A design methodology might require that operations
preserve invariants, i.e., that for every operation op of
class C' the precondition of op together with the invariant
of C logically implies the invariant in the successor state.
If there is more than one precondition/postcondition
pair to an operation this implication has, of course,
to be proved for every pair. The operation debit in
class BasicCreditCard does indeed preserve the invariant
c.account.balance >= -bankLine. The computation
establishing this is straightforward and done fully auto-
matically with the KeY tool.

Returning to Fig. 4, the debit operation in subclass
BonusCard has additional functionality — it is supposed
to increase the number of bonus points by bonus (sum)
yielding the constraint:

context c:BonusCard: :debit (sum: Integer)

pre: debitPermit (sum)
post: c.account.balance=
c.account.balance@pre - sum and
bonus = bonus@pre + bonus (sum)
pre: not debitPermit (sum)
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post: c.account.balance=
c.account.balance@pre and
bonus = bonus@pre
pre: true
post: c.bankLine = c.bankLine@pre

This allows us to illustrate another condition required by
some design methodologies, called behavioural subtyping,
or sometimes also the Liskov principle. It applies when an
operation occurs in a class; with precondition pre; and
postcondition post; as well as in a subclass class, of class;
with precondition pres and postcondition posts.

Behavioural subtyping requires that the implications
pre; — pres and posty — post; be logically valid. These
requirements can be justified when one accepts that the
subclass relation entails: any object of classy can be used
in any circumstances that an object from class; could
be used. It is a trivial observation that the behavioural
subtyping regime holds true for BasicCreditCard and its
subclass BonusCard with respect to the operation debit.
In case of multiple pre-/postcondition pairs it is best to
equivalently translate them into a constraint with just one
postcondition and one precondition, as mentioned above.

Both behavioural and structural subtyping, as well as
the preservation of invariants, are supported by the KeY
tool.

6.2 Proving obligations

When the user selects either one of the subtyping tasks
or an invariant preservation task from the KeY exten-
sion menu within TogetherCC, a verification condition,
formalised in dynamic logic, is generated and passed on
to KeY’s deduction system. To this end, the information
contained in the UML class diagram as well as the OCL
constraints have to be translated into dynamic logic.

This translation fixes a particular semantics for UML/
OCL. Quite a number of papers ([24, 32, 35] to name just
a few) have been published doing the same, fixing a for-
mal semantics by translating UML diagrams into some
known formal system. Despite the often voiced need of
a precise semantics for UML the informal semantics de-
scription did not lead to major discrepancies (at least
for class diagrams and not touching issues of the meta-
model). For OCL the situation was a less satisfactory.
Most of the trouble arose from its meta-model and the in-
tegration into the rest of UML. These issues have been
rigorously resolved in the submission [57] for the UML2.0
which is awaiting approval. Its formal semantics is based
on the PhD thesis [63].

In the following we describe our translation from UML
class diagrams with OCL constraints into typed dynamic
logic by way of example. A full account can be found in
the paper [49]. Summaries of parts of it were published
as [17,65].

The first step in the translation is to fix the vocabulary
to be used on the logical side. This is straight forward: for

Types:

names ‘
BCC, JuniorCard, BonusCard, Account
Integer, Boolean,. ..
Setpoc, Sequence ey - -

category |

model types
OCL basic types
OCL collection types

Functions:
‘ name ‘ stgnature
bankLine BCC — Integer
balance Account — Integer
bonus BonusCard — Integer

juniorBankLine Integer
account BCC — Account
bee Account — Setpcc

debitPermit BCC x Integer — Boolean

Fig. 7. Vocabulary for the simple credit card scenario in Fig. 4

every class in the UML model there will be a type in the
logic, built-in OCL types are mapped onto corresponding
abstract data types. Attributes, associations and query
operations are mapped into functions in the obvious man-
ner. Class attributes (e.g., juniorBankLine) turn into
constants. We gloss over some details like naming and
disambiguating conventions, except for the remark that
unlabelled association ends get by default the name of the
class they are attached to (e.g., bee : Account — Setpeoc).
A selection of the vocabulary for the class diagram in
Fig. 4 is shown in Fig. 7. The second invariant in Sect. 5.2
reads in logic as follows:

Vaz: BCC'. (z.account.balance > —x.bankLine)

We decided to stick also on the logical side with the
dot notation as opposed to the traditional notation
using brackets, in which the above formula would read
Va: BCC. (balance(account(x)) > —bankLine(x)). This
way it is possible to keep track of OCL constraints even
when using the interactive theorem prover, see Fig. 8.
To establish the structural subtyping property for the
subclass JuniorCard of BasicCreditCard the following
formula has to be proved to be a tautology:

Ve: JuniorCard.
((juniorBankLine > c.bankLine N
c.account.balance > —juniorBankLine N\
c.bankLine > 0)
_>
(c.bankLine > 0 A
c.account.balance > —c.bankLine))

Let us look at a new invariant for the class Account in
Fig. 4:
context a:Account
inv: a.bcc->select(c| c.bankLine > 1000) ->
size <=10
The same account may be used by different credit cards.
The constraint says that at most 10 credit cards with
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Fig. 8. The KeY prover window

credit limit exceeding 1000 can share the same account.
Its translation into first-order logic reads

Va: Account. (a.bec.select . size < 10)

selectp : Setpocc — Setpcoc is a new function symbol de-
pending on the expression E = select(c | c.bankLine >
1000). If we use 0 (of type Setpcc) and insert (of type
BCC x Setpcc — Setpoc) as the constructors of the ab-
stract data type Setpcc then the definition of selectg
reads

0.selecty =0

c.bankLine > 1000 — c.insert(s).selectp =
c.insert(s.selectg)

c.bankLine < 1000 — c.insert(s).select g = s.selectg

All these formulas are passed on to the deduction system.
The translation of the @pre construct requires more than
first-order logic and will be explained in Sect. 7.3.

7 Verifying correctness of implementations

Besides supporting the analysis of a specification, KeY
provides functionality for checking the correctness of
a JAVA implementation with respect to a given UML/OCL
specification.

In particular, KeY allows (1) to prove that after run-
ning a method, the method’s post-condition holds, and
(2) to prove that a method preserves a class invariant
(program correctness requires that all public methods
preserve all invariants).

7.1 Dynamic logic

We use an instance of dynamic logic (DL) [42, 43,51, 61]
— which can be seen as an extension of Hoare logic — as
the logical basis of the KeY system’s software verification

component. Deduction in DL is based on symbolic pro-
gram execution and simple program transformations and
is, thus, close to a programmer’s understanding of JAVA.
DL is used in the software verification systems KIV [13]
and VSE [45] for (artificial) imperative programming lan-
guages. More recently, the KIV system supports also
a fragment of the JAvA language [67]. In both systems,
DL was successfully applied to verify software systems of
considerable size.

DL can be seen as a modal logic with a modality
(p) for every program p (we allow p to be any sequence
of legal JAVA CARD statements); (p) refers to the suc-
cessor worlds (called states in the DL framework) that
are reachable by running the program p. In standard DL
there can be several such states (worlds) because the pro-
grams can be non-deterministic; but here, since JAVA pro-
grams are deterministic, there is exactly one such world
(if p terminates) or there is no such world (if p does
not terminate). The formula (p)¢ expresses that the pro-
gram p terminates in a state in which ¢ holds. A for-
mula ¢ — (p)1p is valid if for every state s satisfying pre-
condition ¢ a run of the program p starting in s termi-
nates, and in the terminating state the post-condition ¢
holds.

Thus, the formula ¢ — (p)¢ is similar to the Hoare
triple {¢}p{v}. But in contrast to Hoare logic, the set
of formulas of DL is closed under the usual logical op-
erators: In Hoare logic, the formulas ¢ and ¢ are pure
first-order formulas, whereas in DL they can contain pro-
grams. DL allows to involve programs in the descriptions
¢ resp. ¥ of states. For example, using a program, it is
easy to specify that a data structure is not cyclic, which
is impossible in pure first-order logic. Also, all JAVA con-
structs are available in our DL for the description of states
(including while loops and recursion). It is, therefore, not
necessary to define an abstract data type state and to rep-
resent states as terms of that type; instead DL formulas
can be used to give a (partial) description of states, which
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is a more flexible technique and allows to concentrate on
the relevant properties of a state.

7.2 Syntazx of JAVA CARD DL

As said above, a dynamic logic is constructed by ex-
tending some non-dynamic logic with a modal opera-
tor (-). In addition, we use the dual operator [-], for which
[pl¢ = —(p)—¢. The non-dynamic base logic of our DL is
typed first-order predicate logic. We do not describe in
detail what the types of our logic are (basically they are
identical to the JAVA types) nor how exactly terms and
formulas are built. The definitions can be found in [15].
Note that terms (which we often call “logical terms” in
the following) are different from JAVA expressions; the
former never have side effects.

In order to reduce the complexity of the programs
occurring in formulas, we introduce the notion of a pro-
gram context. The context can consist of any JAVA CARD
program, i.e., it is a sequence of class and interface defini-
tions. Syntax and semantics of JAVA CARD DL formulas
are then defined with respect to a given context; and the
programs in JAVA CARD DL formulas are assumed not to
contain class definitions.

The programs in JAVA CARD DL formulas are ba-
sically executable statements of JAVA CARD code. The
verification of a given program can be thought of as sym-
bolic code execution. As will be detailed below, each rule of
the calculus for JAVA CARD DL specifies how to execute
one particular JAVA statement, possibly with additional
restrictions. When a loop or a recursive method call is
encountered, it is necessary to perform induction over
a suitable data structure.

Given that we follow the symbolic execution paradigm
for verification, it is evident that a certain amount of
runtime infrastructure must be represented in JAvA
CARD DL. It would be possible, but clumsy and ineffi-
cient, to achieve this by purely logical means. Therefore,
we introduced an additional construct for handling of
method calls that is not available in plain JAVA CARD.
Methods are invoked by syntactically replacing the call
by the method’s implementation. To handle the return
statement in the right way, it is necessary (a) to record
the object field or variable x that the result is to be
assigned to, and (b) to mark the boundaries of the im-
plementation body when it is substituted for the method
call. For that purpose, we allow statements of the form
method-frame(z){body} to occur in JAvA CARD DL pro-
grams. Note, that this is a “harmless” extension because
the additional construct is only used for proof purposes
and never occurs in the verified JAVA CARD programs.

7.8 Proof obligations

Let us now turn to the translation of OCL constraints
into JAVA CARD DL proof obligations. To prove that

a method m(argy, ... ,arg,) of class C satisfies a pre-
/post-condition pair, the OCL conditions are first trans-
lated into first-order formulas pre(self,argy,... ,args,)
and post(self,arg, ... ,argn), respectively (as described
in Sect. 6). From these formulas, KeY constructs the JAva
CARD DL proof obligation

,arg,,) —
.. ,arg,);)post(self, argy, . ..

pre(self,arg,, ...

(self.m(arg, . ,arg,)

where now self and argy, ... ,arg,, are program variables,
which are implicitly universally quantified w.r.t. their ini-
tial value.

For example, the first pre-/postcondition pair for the
debit operation from Sect. 6 is transformed into

c.debitPermit(sum) = TRUE —
(c.debit(sum);)(c.account.balance =
c.account.balance@pre —sum) .

The call to the operation debit is translated into the
Java CARD DL program “c.debit(sum);” that appears
within angle brackets in the above formula. Furthermore
balance@pre is a new function symbol with the same
signature as balance. There are several possibilities to
ensure that the function balance@pre has the intended
semantics, see [10] for a detailed account. The simplest
way is by adding a definition of balance@pre to the above
formula:

Va: Account. (x.balance@pre = x.balance N
c.debitPermit(sum) = TRUE —
(c.debit(sum);)(c.account.balance =
c.account.balance@pre —sum)) .

Similarly, to prove that a method m(argy, ... ,arg,)

preserves an invariant, the proof obligation

.,arg,)) —
,arg,, )iyinov(self)

(inv(self) A pre(self, argq, ..
(self.m(argy, ...

is constructed, where inv(self) is the first-order transla-
tion of the invariant.

7.4 Deductive calculus for proving obligations

As usual for deductive program verification, we use
a sequent-style calculus. A sequent is of the form I' - A,
where ') A are duplicate-free lists of formulas. Intu-
itively, its semantics is the same as that of the formula
ATl =V A.

Rules of a sequent calculus are often represented by
rule schemata, such as the example rules in the rest of this
section. In the KeY system, rules are implemented using
the taclet mechanism (see Sect. 8.1).

A proof for a goal (a sequent) S is an upside-down tree
with root S. In practice, rules are applied from bottom
to top. That is, proof construction starts with the ini-
tial proof obligation at the bottom and ends with axioms
(rules with an empty premiss tuple).
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Since our JAVA CARD DL calculus contains (at least)
one rule for each JAVA CARD programming construct
(there are about 250 rules for handling the JAVA part of
the logic), we cannot present all rules in this paper. In-
stead we describe some important ones, which are exem-
plary for their respective class of rules.

7.4.1 The active statement in a program

The rules of our calculus operate on the first active com-
mand p of a program mpw. The non-active prefix m con-
sists of an arbitrary sequence of opening braces “{”, la-
bels, beginnings “try{” of try-catch-finally blocks, and
beginnings “method-frame(...){” of method invocation
blocks. The prefix is needed to keep track of the blocks
that the (first) active command is part of, such that the
abruptly terminating statements throw, return, break, and
continue can be handled appropriately.? The postfix w de-
notes the “rest” of the program, i.e., everything except
the non-active prefix and the part of the program the rule
operates on. For example, if a rule is applied to the fol-
lowing JAVA block operating on its first active command
“i=0;”, then the non-active prefix m and the “rest” w are
the indicated parts of the block:

I:{try{ i=0; j=0; } finally{ k=0; }}
——

T w

7.4.2 The assignment rule and handling state updates

In JAavA (like in other object-oriented programming lan-
guages), different object variables can refer to the same
object. This phenomenon, called aliasing, causes serious
difficulties for handling of assignments in a calculus for
Java CARD DL.

For example, whether or not a formula “ol.a = 1" still
holds after the (symbolic) execution of the assignment
“02.a = 2;”, depends on whether or not ol and o2 refer to
the same object.

Therefore, JAVA assignments cannot be symbolically
executed by syntactic substitution. Solving this problem
naively — by doing a case split if the effect of an assign-
ment is unclear — is inefficient and leads to heavy branch-
ing of the proof tree.

In our JAVA CARD DL calculus we use a different so-
lution. It is based on the notion of updates. These (state)
updates are of the form (loc:=wal) and can be put in
front of any formula. The semantics of (loc := val)¢ is the
same as that of (loc = val;)¢. The difference between an

2 In DL versions for simple artificial programming languages,
where no prefixes are needed, any formula of the form (pq)¢ can
be replaced by (p){q)¢. In our calculus, splitting of (mpqw)¢ into
(mp){qw)¢ is not possible (unless the prefix 7 is empty) because mp
is not a valid program; and the formula (mpw)(mqw)¢$ cannot be
used either because its semantics is in general different from that
of (mpqw)¢.

update and an assignment is syntactical. The expressions
loc and val must be simple in the following sense: loc is
(a) a program variable var, or (b) a field access obj.attr, or
(c) an array access arr[i]; and val is a logical term (that
is free of side effects). More complex expressions are not
allowed in updates.

The syntactical simplicity of loc and val has seman-
tical consequences. In particular, computing the value
of wal has no side effects. The KeY system uses special
simplification rules to compute the result of applying an
update to logical terms and formulas not containing pro-
grams. Computing the effect of an update to a program p
(and a formula (p)¢) is delayed until p has been symbol-
ically executed using other rules of the calculus. Thus,
case distinctions are not only delayed but they can of-
ten be avoided completely, because (a) updates can be
simplified before their effect is computed and (b) their ef-
fect is computed when a maximal amount of information
is available (namely after the symbolic execution of the
program).

The assignment rule now takes the following form
(U stands for an arbitrary sequence of updates):

'+ U(loc:=val){m w)e 1
' F U(r loc = val; w)¢ (1)

That is, it just adds the assignment to the list of up-
datesU. Of course, this does not solve the problem
of computing the effect of the assignment. This prob-
lem is postponed and solved by rules for simplifying
updates.

This assignment rule can, of course, only be used if
the expression val is a logical term. Otherwise, other rules
have to be applied first to evaluate val (as that evalu-
ation may have side effects). For example, these rules
replace the formula (x = ++i;)¢ with (i=i+1;x =i;)¢.
One can view these rules as on-the-fly program trans-
formations. Their effect is always local and fairly obvi-
ous, so that the user’s understanding of the proof is not
obfuscated.

7.4.3 The rule for if-else

As a first example for a rule with more than one premiss,
we present the rule for the if statement.

T, U(b=TRUE) F U(rpw)é
T, U(b=FALSE) + U(r qw)¢ 9
I+ U if(b) pelse g w)e 2

The two premisses of this rule correspond to the two
cases of the if statement. The semantics of rules is that, if
all the premisses are true in a state, then the conclusion is
true in that state. In particular, if the premisses are valid,
then the conclusion is valid.

As the if rule demonstrates, applying a rule (from bot-
tom to top) corresponds to a symbolic execution of the
program to be verified.
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7.4.4 The rule for while loops

The following rule “unwinds” while loops. Its application
is the prerequisite for symbolically executing the loop
body. These “unwind” rules allow to handle while loops if
used together with induction schemata for primitive and
user defined data types.

T F (mif(e)l:{I"{p'} ly:- - -lp:while(c){p}} w)o)
T F ({(mly: - -ly:while(c){p} w)®)

(3)

where

— 1’ and I” are new labels,
— p is the result of (simultaneously) replacing in p
(a) every breakl; (for 1<i<mn) and every break
(with no label) that has the while loop as its target
by break I’, and
(b) every continue l; (for 1 <14 < n) and every continue
(with no label) that has the while loop as its target
by break 1”.3

The list “l1:- - -1,:” usually is empty or has only one elem-
ent, but in general a loop can have more than one label.

In the “unwound” instance p’ of the loop body p, the
label I’ is the new target for break statements and 1" is the
new target for continue statements, which both had the
while loop as target before. This results in the desired be-
haviour: break abruptly terminates the whole loop, while
continue abruptly terminates the current instance of the
loop body.

A continue with or without label is never handled by
a rule directly, because it can only occur in loops, where
it is always transformed into a break by the loop rules.

7.4.5 The rules for try /throw

The following rules allow to handle try-catch-finally blocks
and the throw statement. These are simplified versions of
the actual rules that apply to the case where there is ex-
actly one catch clause and one finally clause.

I' F instanceof (exc,T')
T+ ((m try{e=exc; ¢} finally{r} w)¢)
I' b ((m try{throw exc; p} catch(T e){q} finally{r} w)e)

(4)

I' b —instanceof (exe,T) T+ ({(m r; throw ezc; w)¢)
I' b ({7 try{throw exc; p} catch(T e){q} finally{r} w)e)

(5)

The predicate instanceof (exc, T') has the same semantics
as the instanceof operator in JAVA. It evaluates to true
if the value of exc is assignable to a program variable of
type T, i.e., if its dynamic type is a sub-type of T'.

3 The target of a break or continue statement with no label is the
loop that immediately encloses it.

Rule (4) applies if an exception ezc is thrown that
is an instance of exception class T, i.e., the exception is
caught; otherwise, if the exception is not caught, rule (5)
applies.

8 Interactive and automated proof construction
8.1 Taclets

Most existing interactive theorem provers are “tactical
theorem provers”. The tactics for which these systems are
named are programs which act on the proof tree, mostly
by many applications of primitive rules, of which there is
a small, fixed set. The user constructs the proof by select-
ing the tactics to run. Writing a new tactic for a certain
purpose, e.g. to support a new data type theory requires
expert knowledge of the theorem prover.

In the KeY prover, both tactics and primitive rules are
replaced by the taclet concept [16,40]. A taclet combines
the logical content of a sequent calculus rule with prag-
matic information that indicates when and for what it
should be used. In contrast to the usual fixed set of primi-
tive rules, taclets can easily be added to the system. They
are formulated as simple pattern matching and replace-
ment schemas. For instance, a typical taclet might read as
follows:

find (b —> ¢ ==>) if (b ==>) replacewith
(c ==>) heuristics(simplify)

This means that an implication b —> ¢ on the left side
of a sequent may be replaced by c, if the formula b
also appears on the left side of that sequent. Apart from
this “logical” content, the keyword find indicates that
the taclet will be attached to the implication and not to
the formula b for interactive selection, see Sect. 8.3. The
clause heuristics(simplify) indicates that this rule should
be part of the heuristic named simplify, meaning that it
should be applied automatically whenever possible if that
heuristic is activated, see Sect. 8.4.

While taclets can be more complex than the typically
minimalistic primitive rules of tactical theorem provers,
they do not constitute a tactical programming language.
There are no conditional statements, no procedure calls
and no loop constructs. This makes taclets easier to un-
derstand and easier to formulate than tactics. In con-
junction with an appropriate mechanism for application
of heuristics, they are nevertheless powerful enough to
permit interactive theorem proving in a convenient and
efficient way [40].

In principle, nothing prevents one from formulating
a taclet that represents an unsound proof step. It is pos-
sible, however, to generate a first-order proof obligation
from a taclet, at least for taclets not involving programs.
If that formula can be proven using a restricted set of
“primitive” taclets, then the new taclet is guaranteed to
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be a correct derived rule. As for the primitive taclets for
handling JAVA programs in JAVA CARD DL, it is possible
to show their correctness using the Isabelle formalisation
of JAVA by Oheimb [70, 71].

8.2 Proof visualisation

The KeY prover window (see Fig. 8) consists of two panes,
the left of which has three tabs. The tab called Proof
contains a tree representing the current proof state. The
nodes of the tree correspond to sequents (goals) at dif-
ferent proof stages. One can click on any node to see
the corresponding sequent and the rule that was ap-
plied on it in the following proof step (except when
the node is a leaf). Leaf nodes in open proof branches
are coloured red, whereas leaves of closed branches are
coloured green. The tab named Goals lists the open proof
goals. By clicking on any goal, one can change the active
goal that is displayed in the right pane. When an active
goal is open, one can work towards its closure by apply-
ing proof rules interactively or by activating automated
proof search. The KeY prover allows the user to work on
several proof obligations simultaneously. The third tab,
named Proof obligations, keeps track of all currently open
proofs and lets the user switch between them. For more
information on the user interface of the KeY prover, see
also [39].

8.8 Support for interactive proof construction

Depending on where the mouse pointer is moved, one
sub-formula or sub-term of the goal, the focus term, is
highlighted (for example, in Fig. 8, the diamond oper-
ator and the program it contains is the focus term).
More precisely, a term is put into focus by pointing at
its top-level symbol. Then, pressing the left mouse but-
ton displays a list of all proof rules currently applica-
ble to the focus term (in the example, only the method
call rule is applicable). One of these can be selected
and applied interactively, thus generating a new proof
goal.

8.4 Automated proof search

Automated proof search is performed by applying “heuris-
tics” which can be seen as a collection of rules suited for
a certain task. For example, the heuristic simplify_boolean
contains rules to simplify boolean expressions. The user
can activate and de-activate heuristics depending on the
state of the proof and goal he or she wants to tackle next.
And the automatic application of heuristics can easily
be switched on and off during proof construction. The
prover can automatically find quantifier instantiations in
a way similar to free variable tableaux. Backtracking in
the proof search is avoided through the incremental clo-
sure technique of [38].

9 Implementation issues

From the user perspective, the KeY tool is an extension
of the commercial case tool TogetherCC. The open API
of TogetherCC allows the KeY tool to add items to the
CASE tool’s contextual menus for classes, methods, etc.
The API also makes it possible to modify the currently
open UML model, for instance, during pattern instantia-
tion (see Sect. 5).

9.1 Used technology

The KeY tool is implemented in the JAVA programming
language. This choice has several advantages, besides
the obvious one of portability. Using the JAVA language
makes it easy to link the KeY tool to TogetherCC, which
is also written in JAVA. More generally, JAVA is well suited
for interaction with other tools, written in JAVA or not. In
particular, the imperative nature of the language leads to
a comparatively natural native code interface, in contrast
to the logic or functional programming languages often
preferred for deduction purposes.

JAvVA was also a good choice for the construction of
the graphical user interface, which is an important as-
pect of the KeY tool. Finally, previous experiments with
both interactive [40] and automated [38] theorem prov-
ing have shown that the advantages of JAVA outweigh
the additional effort for the implementation of term data
structures, unification, etc.

A simple form of parametric genericity is used in the
implementation. For instance, instead of the usual inter-
faces Set and List, there are interfaces List0fInteger,
Set0fTerm, etc.; they are semi-automatically generated
from templates. This approach leads to a certain “code
bloat”, but it improves readability and type safety.

Apart from TogetherCC, the KeY tool makes use of
various third party software. Parsers are generated using
ANTLR [5] and JavaCC [47]. The Recoder [62] frame-
work is used for reading and analysing JAVA programs.
We use the Dresden OCL parser [31, 33| for parsing and
type-checking OCL constraints. Finally, the JUnit frame-
work [48] was used for unit testing during development.

9.2 Structure of the Implementation

Figure 9 shows the infrastructure of the KeY tool on
the implementation level. The entities shown as cylinders
represent external files, while the rectangular ones are
programs. The parts rendered with thick lines and bold
type are provided by the KeY project.

The mechanism for instantiating KeY patterns and
idioms as described in Sect. 5, is an extension of the pat-
tern instantiation provided by TogetherCC. Patterns are
represented as JAVA programs which construct the re-
quired classes, associations, etc., using the TogetherCC
API. For KeY patterns, generated entities are annotated
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Fig. 9. Infrastructure of the KeY tool

with OCL constraints. These are generated from OCL
template files [12] belonging to each pattern.

Complying with TogetherCC’s single source philoso-
phy, OCL constraints are stored as comments in the user’s
JAvA files.

For syntax and type checking, as well as transform-
ation to dynamic logic, we use the Dresden OCL parser.
Type checking requires information about the UML
model, which is exported from TogetherCC in XMI for-
mat (part of UML standard).

As a consequence of the single source philosophy, the
UML model of TogetherCC corresponds one-to-one to the
structure of the JAVA implementation.

Alternatively, the model information required by the
OCL parser can be extracted without reference to the
XMI facility from the JAVA code, using Recoder. Addi-

tional information on UML model, for example, associa-
tions, is obtained using the TogetherCC API.

When the KeY prover is used to reason about JAVA
programs, these are parsed using the Recoder system.
Recoder is also used to resolve references, that is, to deter-
mine the variable declaration, method declaration, etc.,
each identifier is referring to.

For the actual proof, different data structures are
used, as explained in the following section. Proof obli-
gations are typically generated from OCL constraints.
These are translated into dynamic logic formulas (see
Sect. 6.2) from the data structures provided by the Dres-
den OCL parser.

9.3 Implementation of the theorem prover

The KeY prover permits automated and interactive con-
struction of proofs for JAvA CARD DL formulas. The cen-
tral data structure is the proof tree. Its nodes contain
sequents, and it is extended by applying rules of the se-
quent calculus for JAVA CARD DL. In a typical rule ap-
plication of the sequent calculus, most of the sequent is
not changed. To reduce memory consumption, data struc-
tures must be used which allow formula representations
to be shared among goals and even among branches of the
proof tree. Moreover, rule applications usually affect only
a small part of the formulas and programs they act upon,
so sharing of sub-formulas should also be possible. Shar-
ing implies the use of non-destructive or persistent tree
data structures for terms, formulas and programs. Such
data structures are ubiquitous in functional and logic pro-
gramming, but unusual in OO programming. The shared
representation of JAVA programs is achieved using a hi-
erarchy of about 250 classes, which are derived from the
Recoder data structures.

All proof rules, including those for the automated sim-
plification of goals, are encoded as taclets, see Sect. 8.1
and [16]. Taclets are described by textual representations
which are collected in an external file and processed at
prover start-up time. There are no “built-in” rules in the
KeY prover. Taclets consist of a matching part and an
action part. For interactive use, the user specifies a for-
mula or term in the sequent, where a taclet should be
applied. This requires finding taclets which match a spe-
cific position in the sequent. For automated (heuristic)
use, taclets which match anywhere in a sequent are auto-
matically selected. Now matching is a potentially expen-
sive operation, and there is a large number of taclets for
the many different JAVA constructs and also for various
abstract data types. To speed up the process of finding
applicable taclets, these are kept in an indexing struc-
ture which permits fast access to a subset of potentially
matching taclets. Typically the top-most predicate or
function symbol is used to find applicable taclets, in the
case of formulas containing programs, the type of the first
statement is used. See also [16] for details on the imple-
mentation of the taclet mechanism.
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9.4 Stand-alone versions

In general, the KeY tool is designed to be used together
with a CASE tool. It was however recognised that parts
of the system might be useful independently. It is thus
possible to invoke the OCL-to-DL translation of Sect. 6.2
separately, if the UML model is given in XMI format.
Furthermore, it is possible to use the KeY prover with-
out a CASE tool. The stand-alone prover parses DL proof
obligations from files.

10 Case studies

In this section we discuss some case studies that have
been used to test the viability of the theoretical approach
of KeY and the implementation of the KeY tool. The case
studies can be roughly divided into three categories de-
pendant whether they are concerned with fundamental,
security or safety aspects. Table 1 gives an overview of the
ongoing and completed case studies.

In the remainder of this section we will briefly sum-
marise each of these studies and point out their main goal.

10.1 The JAVA collections framework

The Java Collection Framework (JCF) provides an ap-
plication programming interface (API) plus reference im-
plementation for lists, sets, trees, and related data struc-
tures. Many data structures found in JAVA programs are
realised via the JCF, hence, it is obvious why they are of
main interest for KeY.

Table 1. Completed and ongoing KeY case studies

Foundations Security Safety
Java Collections PAM EAST-EEA /Volvo
Framework authentification

Java CARD API  Secure Information Speed Restrictions

In this case study the informal API documentation
of the JCF was formalised in terms of UML/OCL. We
investigated then how to refine this quite abstract speci-
fication in a way that it can be used to verify the JCF
reference implementation with KeY. Such an approach
is coherent with the way of developing software by ini-
tially creating a model on an abstract level, which is
then stepwise refined to the implementational level. On
that level, a one-to-one relationship between UML and
JAVA classes exists. This refinement process is visualised
in Fig. 10.

Usually one wants to assure that (OCL) constraints
of refinement level n + 1 satisfy the constraints of level n.
But the constraints of level n do not pertain to the pos-
sibly changed (usually: enlarged) name space of level
n~+ 1. Thus, the changes in the model from level n to
level n+ 1, together with the constraints of level n, are
used to compute these constraints in the name space of
level n 4 1.

Retrieve relations define the interrelation between the
different abstractions. They can be denoted graphically
using stereotyped UML dependencies and an additional
formal textual description. The specifications obtained
from the OCL constraints on the abstract level can be
transformed to the concrete level and are used to generate
proof obligations (in dynamic logic) that serve to prove
the refined model to be a correct refinement.

This technique was successfully applied to parts of the
JCF. A complete account of this case study can be found
in [64].

10.2 Specification of the JAVA CARD API

As part of the KeY project an OCL specification for the
Java CARD APT has been developed [53]. The main pur-
pose of this specification is to support and aid the ver-
ification of JAVA CARD programs. The already existing
specification written in JML (JAvA Modelling Language)
has been used as a starting point for the development
of the OCL specification. All parts that were possible to

Flow for Trains
specify with OCL are covered by this specification. Using
Command Parser .
the KeY system, small parts of the reference implementa-
UML Model n OCL Constraints n g DL formulas n
7
Refined formulas n
4
Show implication =
At :

UML Model n+1

OCL Constraints n+1 >

DL formulas n+1

Fig. 10. Schema of a typical refinement step
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tion of the JAVA CARD API has been proved correct w.r.t.
this specification.

10.3 PAM authentication with iButton

This application allows a Linux user to authenticate him-
or herself to the system using an iButton* or a smart card
instead of a password. The application consists of two
parts:

1. The Pluggable Authentication Module (PAM) running
on the host system. The module is realised as a PAM
library plug-in and, therefore, written in C.

2. The JAvA CARD applet SafeApplet, running on the
user’s JAVA CARD device.

This time, we consider a genuine JAVA CARD applica-
tion. The original JAvA CARD applet has however been
rewritten and cleaned up for this case study. The redesign
of the applet was preceded by an analysis of the system
requirements, and guided by questions like:

1. Is the system administrator or the user the owner of
the applet PIN code?

2. What are the different deployment states of the applet
(how does its life cycle look like)?

3. How can it be ensured that the applet is in a “sound”
state when an iButton is ripped out of the reader and
how can these “soundness” properties be specified?

The applet life cycle states were captured in a UML
state diagrams like the one in Fig. 11. After setting up the
state diagrams, the first portions of code (skeleton code)
were generated.

During the development process, the OCL specifica-
tions of parts of the applet were created, modified, and
adjusted with the help of the KeY system. The main chal-
lenge are the “rip-out” properties. The problem of speci-
fying those boils down to the general problem of express-
ing atomicity properties.

4 “Buttons” are particular JAvA CARD devices embedded in

a button shaped case, see http: //www.ibutton.com/.

It turns out that this requires an extension of JAVA
CARD DL with certain modal operators. The suggested
modal operator is named [-] (pronounced “throughout”).
The formula [p]¢ means that ¢ holds after each atomic
step in program p.

According to the JAvA CARD specification, an atomic
step is an update of a variable or a single object field. A se-
quence of operations can be bundled to a single atomic
step called a transaction by the programmer. Now, it is
important to be able to state that ¢ does not necessar-
ily hold inside a transaction. The main obstacle here is to
capture the semantics and properties of the [-] operator in
JAava CARD DL’s calculus.

The “throughout” modality relates to the general
problem of specifying and verifying the behaviour of
a program in intermediate steps at a low atomicity level
and has been well researched in the area of concurrency
and reactive systems. E.g. [4] presents a fine-grain seman-
tics for reactive systems and shows how an RSDS speci-
fication of such a system can be translated and proved by
the SMV model checker. The extension of a dynamic logic
calculus for abstract while-programs with the throughout
operator was done in the paper [19]. The extension of the
JAVA CARD DL calculus to handle transactions is pre-
sented in [18]. This extension has also been implemented
in the KeY prover and is about to be tested with this and
other case studies. For a full paper on the PAM authen-
tication with iButton case study and the development
process used, see [56].

10.4 Analysis of secure information flow

KeY was applied to analysis of secure information flow [30]:
If there is no information flow from confidential inputs to
publicly observable outputs — either directly or indirectly
via e.g. control flow — then a program may be consid-
ered to be secure. Traditionally this is done by static
analyses based on specialized type systems. Although ef-
ficient, such approaches need to approximate complex
language constructs such as loops, reference types, or ex-
ceptions. Verification is not fully automatic, but yields
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Fig. 11. Life cycle states of the SafeApplet
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higher precision. We were able to prove security and in-
security of programs including advanced features such
as method calls, loops, and object types for the target
language JAVA CARD. In addition, we can express de-
classification of information. Secure information flow can
be characterized by relatively simple proof obligations
so that the degree of automation is higher than for full
property verification.

10.5 Formal language for design requirements in
automotive domain

EAST-EEA (Embedded Electronic Architecture) is an
ITEA project to enable electronic integration of automo-
tive platforms through definition of an open architecture.
With Volvo Technology AB we work on a UML 2.0-based
formal language for design requirements.

10.6 Computation of speed restrictions of trains

Several hundred trains run at any given time on the net-
work of the German railway company Deutsche Bahn AG
(DB). Strict compliance by the train to numerous restric-
tions such as speed limits, signals and brake distances, is
an absolute safety requirement.

The train drivers are handed out a schedule in printed
or electronic form containing the speed restrictions and
other additional information along the different way
(track) points of a route. These schedules are computed
for each train-route combination and consist of head-
ers and tables. The headers contain general information
about the route and required technical features of the
trains, for example the required minimal brake power.
Track point dependant information like speed restrictions
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or signals are listed in the tables. The ‘schedule’ approach
allows a flexible respond to the available technology of
concrete trains (e.g. tilting), in contrast to the rather rigid
road traffic speed restrictions.

Responsible for the schedule computation is the soft-
ware system Satzerstellung betrieblicher Fahrplanunter-
lagen (SbF) developed by DBSystems, which served as
starting point for the present study.

DBSystems provided us with a current version of
SbF and the product description in natural language,
which described among others the speed computation al-
gorithm. The program SbF itself is written in Smalltalk
consisting of estimated seven hundred classes from which
around eighty are concerned with the speed and brake
power computation. The latter classes had to be cross-
translated into JAVA, which is required by KeY. The
alm is to achieve a verified JAVA program, whose be-
haviour can be compared on runtime with the ori-
ginal program. Consequently not the correctness of the
original program will be proven, but the correctness
of the computed booktables via the verified reference
implementation.

The first step, was to formalise the product specifi-
cation in UML/OCL. The resulting analysis model ab-
stracts away from all details of the concrete implementa-
tion, for example, modeling the infrastructure as shown
in Fig. 12 required eleven classes, whereas the actual im-
plementation makes use of more than twenty five classes.
Incrementing the level of detail towards the actual im-
plementation involves several well organised refinement
steps, which are currently worked out using the refine-
ment technique as described in [64], see Sect. 10.1.

As an intermediate result of writing the formal speci-
fication we discovered some ambiguities and incomplete-
ness of the product specification and surprisingly also
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brakeConfiguration:String
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Fig. 12. Infrastructure model on the analysis level
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runtime inefficiencies. The verification of SbF is under
way.

10.7 A command parser for chemical analysis devices

The specification and verification of a command parser
used in a series of chemical analysis devices is done in co-
operation with Agilent Technologies and the Institut fiir
Technik der Informationsverarbeitung of the University
of Karlsruhe.

Agilent produces several chemical analysis devices
used among others for research or medical purposes. The
different product lines share a common subset of mod-
ules. One of these modules is a command parser, which is
for example used to parse steering commands of injection
pumps.

The aim is to specify the parser in UML/OCL and
verify its reimplementation in JAVA. The verified reimple-
mentation is then automatical translated to C++ code
using the tool GeneralStore.

10.8 Summary

The case studies discussed here differ considerably with
respect to the nature of the target programs, but also
with respect to their objectives. They show that the KeY
approach is flexible enough to cope with varying de-
mands. The case studies, respectively, the intermediate
results obtained so far, demonstrate the viability and us-
ability of the KeY approach.

11 Current state and future work
11.1 Current state

The core of the KeY tool is finished. All features of
JAvA CARD including the transaction mechanism are
supported by the tool and it is, with a few minor restric-
tions, already successfully applicable.> The case studies
described in Sect. 10 prove this. They also show that it is
possible to verify the average JAVA method (consisting of
about 10 to 20 lines of code) within a few minutes. Often,
the KeY prover can even automatically establish correct-
ness if the code does not contain loops (in this case the
user has to provide a loop invariant interactively).

To improve the usability of the KeY tool we have
integrated an authoring tool for OCL constraints [41].
This tool offers assistance in generating specifications and
helps to understand OCL constraints by rendering them
automatically in natural language. We believe that the
integration of such a tool helps to overcome reservations
against formal methods.

5 The KéY tool can be downloaded at http://download.key-
project.org/. The version available for download supports all
JAvA CARD features except for class initialisation which is currently
implemented.

Another important aspect is the support of proof re-
use in the KéY tool [50]. This technique diminishes the
amount of work spent with verification after a (minor)
change of the specification or implementation. We count
this as an essential point since one of the prejudices
against program verification is that it is too costly to be
ever usable in practice.

Proof re-use makes it feasible to check automati-
cally and periodically whether the implementation still
complies with the properties expressed in the OCL con-
straints. The situation is similar to automatic and peri-
odic runs of unit tests, a proven best practice in software
development. Periodical checks prevent specifications
from becoming outdated, which is a major (and common)
problem when specifications are merely available as infor-
mal text.

11.2 Future work

In practice, proof attempts often fail simply because the
implementation does not satisfy the specification. In such
a situation a tool assisting the user in identifying and
solving errors in the implementation would be very valu-
able. A theoretical framework for counter-example gen-
eration based on abstract data types is presented in [1].
The usefulness of this approach has already been shown
in a prototype which is based on a model generation theo-
rem prover [36]. We would like to adapt this tool to our
setting and integrate it into the KeY tool.

One obvious direction for future work includes sup-
port of UML diagram types other than class diagrams,
such as state chart or sequence diagrams. This would al-
low to specify temporal behaviour of programs, which is
not possible in class diagrams.

To make software verification scale up to larger pro-
grams, it is necessary to have a module concept that
makes it possible to independently verify the modules of
a program. Modules are well understood for imperative
languages and are supported by several languages. Un-
fortunately, object-oriented languages including JAVA lag
somewhat behind. One of our next research efforts will be
to look for a module concept for JAVA that is compatible
with the requirements of formal verification.

We are aware that formal verification is only one op-
tion among many formal methods (and perhaps a rather
extreme one). Other approaches, such as abstract inter-
pretation, first order model checking, static analysis, ex-
tended static checking, etc., should be integrated into the
KeY tool.

Finally, we would like to improve the user interface
to the theorem prover in a fundamental way: recall that
one can view verification in KeY as symbolic program
execution. Hence, one may see a single branch in the
proof tree as one program execution with symbolic start
values. We intend to reformulate verification as much
as possible within the well-established paradigm of sym-
bolic source code debugging. We think that a remod-
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elling of formal verification as “abstract debugging” will
not only increase acceptance of verification, but will re-
sult in a massive improvement of efficiency: such elem-
ents of modern debuggers as break points, watches, spy
points, inspectors, and navigation aides make eminent
sense within the symbolic execution paradigm, too. In
addition, one can create views of formal proofs that allow
the engineer to interact with the prover more easily. For
example, the current state of symbolic program execution
(object instances, values of attributes and local variables,
object references, method call stack, active command,
etc.) can be extracted from the JAvA CARD DL formulas
in an open proof goal and presented like in a conven-
tional source code debugger. Such a debugger based on
theorem proving goes beyond current debugging tools,
because full first-order logic is available as an assertion
language.

12 Conclusion

What sets the KeY tool apart from other efforts in for-
mal software specification and verification is the sys-
tematic attempt to conceive a formal technique as an
extension of established, industrial methods of software
development.

Unfortunately, parts of the formal methods commu-
nity in the past have denounced popular industrial soft-
ware development methods as unscientific and, hence, un-
worthy of consideration. Such views are based on a lack
of knowledge about industrial software production and
the conflation of “scientific” with “formal”. In contrast to
this, we believe that formal methods must be tightly inte-
grated with conventional development processes in order
to be immediately useful to developers and designers.
We see this as a prerequisite to be fulfilled before formal
methods can possibly catch on.

The most visible point of the philosophy just sketched
is the interface of the KeY tool, which appears to be
a state-of-the-art, although conventional CASE tool. For-
mal specifications can be added anytime during design
and development without having to change the tool or
paradigm. Machine assistance in generating formal speci-
fication in the form of KeY idioms and patterns help users
to get started. The resulting high degree of integration
with a commercial CASE tool is where KeY goes beyond
other recent approaches that aim at integration of soft-
ware engineering with formal methods [29, 52, 66].6

Integration of informal and formal methods is one of
the corner stones of the KeY approach. A second one is the
consequent choice and design of the formal tools so as to
maximise their usability. For example, the program logic
JAVA CARD DL is transparent with respect to the tar-

6 This does, of course, not mean that these projects are redun-
dant: they cover different languages, domains, and technologies
than KeY.

get language and supports symbolic execution as a proof
paradigm. We are convinced that the pragmatics and us-
ability of formal tools are as important as their soundness
and theoretical adequacy.

We would like to stress that the integration and
scaling-up of our formal method spawned a considerable
number of theoretically interesting questions (resulting
in technical papers such as [15,17-21]). Likewise, for-
malisation of UML and OCL led to clarifications and
extensions [6-9, 11].

Finally, we turn to a brief discussion of the most fre-
quently heard counter argument against software verifica-
tion, which can be paraphrased like this: “full functional
verification will never be a push button technology; but
this is a sine qua non for formal methods to catch on
in industry. Unless you produce something like a model
checker as used for verification of hardware and system
designs, you will never prevail.”

We agree that formal software verification is ex-
tremely unlikely to become fully automated, however,
this is a red herring, because the assessment above is
based on a (at least) twofold misunderstanding: first, the
stumbling block for industrial users when applying formal
methods is not interactivity. The problem is that current
formal approaches are idiosyncratic and require special
skills. The usability threshold is simply very high. Widely
established methods and tools such as symbolic debug-
gers, most testing methods, code reviews, etc., are all far
from being automated. They are accepted, because they
are useful, integral parts of processes, and they can be
mastered with reasonable effort. Second, so-called “push
button” technologies, notably symbolic model checking,
are far from being automated either: system requirements
have to be captured formally in a temporal logic, suitable
abstractions must be discovered, model checkers have to
be tweaked to cope with large problems, etc.

In summary, the real challenge for formal methods in
software development is to make them useful for as many
people as possible. This is what the KeY project is about.
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