
��������	�
�����	�
�������������
������
����

Shane Sendall and Alfred Strohmeier

����������	
���
���������������
�������
��

��������
���
	���
������������	�����
��
�����
	���
��
��	�
���
 �	
��	�

!"!#��
��

������
����$�	�

�

��
��%�&��

�'��
�
��(�)��	��'��	������	*+����'��

�%675$&7 Use cases are an excellent tool for capturing behavioral requirements
of software systems, but they are not an ideal work product for driving design
activities. We believe that there is value from complementing use case descrip-
tions with pre- and postcondition descriptions, not only to better support reason-
ing about system properties and a basis for testing and debugging, but also to
better support a predictable decomposition level on which one can base a sys-
tematic transition to design. Nevertheless, we recognize that pre- and postcondi-
tion descriptions are not widely used in practice. We believe this is in part due to
the formalism used. Either the formalism is too heavy to learn and use, or the
formalism does not offer sufficient abstraction from the vocabulary of imple-
mentation.

Via an example, the paper highlights our approach for specifying system behav-
ior, which uses the Unified Modeling Language (UML) and its Object Con-
straint Language (OCL). We focus the paper on pre- and postconditions
descriptions and in particular propose a number of enhancements and interpreta-
tions to OCL that we made while refining our approach. In particular, we
describe a number of issues that cover areas such as the frame problem, incre-
mental descriptions, structuring schemas, and events and exceptions.

�(<:25'6 Unified Modeling Language, Object Constraint Language, Pre- and
Postcondition Assertions, Software Specification, Requirements Analysis.

����
�����
���
Software development projects are subject to many factors, software and non-software
related. It is a balancing act to get the right combination for a given project and its con-
text—there are always trade-offs to make, according to priorities. For example, time-
to-delivery and budget typically have a higher priority than rigor of development and
quality assurance for most web-based systems [9], where the inverse is normally the
case for systems that are human-life critical.

There are more and more projects that are somewhere inbetween safety-critical at the
one end and non-critical at the other end. We believe that there is an increasing need
for approaches that can provide a reasonable level of quality assurance and rigor in
development but still must obey a restrained schedule and budget. For example, at the
mid-to-upper range there are many e-business applications, which are “24-7” and mis-
sion-critical.

Our goal is to produce an approach for specifying reactive system behavior that can be
used in the development of systems that lie in the mid-to-upper range. As a conse-
quence, we have developed a software development method called Fondue [33] that
covers the whole software development cycle, uses the UML notations, and is based on
the Fusion process [6]. In this paper, we cover an important part of the analysis phase
of Fondue.
Page 1 of 28

We have defined a number of criteria that we believe need to be taken into account
while developing an approach for the analysis phase:

 • The proposed model should be compatible with industry practices and standards.
 • The proposed model should be precise so that it can be used as a clear and unam-

biguous contract for later design activities, as a basis for understanding and docu-
menting the application under development, and to precipitate hidden behavior.

 • The proposed model should be targeted towards ease of use for the developer, i.e.,
it should be simple to learn and use, concise, understandable, etc.

 • The proposed model should allow one to manage complexity and size of the
description in a modular way that also allows one to localize the effects of change.

 • The proposed model should allow one to contain design complexities.
 • The proposed model should be conducive to verification activities—via and with

the support of tools.
 • The proposed model should express “quantifiable” non-functional requirements,

such as performance constraints, in an integrated way with the functional require-
ments.

 • The proposed model should be capable of capturing inherent concurrent properties
of the system and quality of service properties.

Currently, we believe our approach fulfils, more or less, the first five criteria and goes
someway in fulfilling the last three criteria—part of our current and future work.

Our Fondue analysis approach has three principal views:

 • a model composed of descriptions of the effects caused by operations, which uses
pre- and postcondition assertions written in UML’s Object Constraint Language
[29], called Operation Schemas [27];

 • a model of the allowable temporal ordering of operations, called the System Inter-
face Protocol (SIP) [23]; and

 • a model that describes the system state used in the Operation Schemas, called the
Analysis Class Model (ACM) [23].

The principal purpose of this paper is the proposition of a number of enhancements
and interpretations to OCL that, we believe, make it less laborious to write pre- and
postcondition assertions in Operation Schemas and that result in more readable and
usable schemas. In particular, we describe a number of issues that cover areas such as
the frame problem, incremental descriptions, structuring schemas, and events and
exceptions.

The paper is composed of 8 sections. Section 2 provides the motivation for our
approach and some justifications for some of the decisions that were made in coming
up with Operation Schemas. Section 3 gives a brief overview of Operation Schemas
and discusses how OCL is used in schemas. Section 4 presents an elevator case study
that is used as an example throughout the paper. Section 5 makes a number of propos-
als for enhancing and interpreting OCL for use in pre- and postcondition descriptions;
there is a continuous thread of proposals throughout. Section 6 discusses some issues
related to the work presented and poses some open questions about OCL. Section 7
discusses related work and section 8 draws some conclusions.

����
��

������������

���������
�
The ability of use cases to bridge the gap between the customers and the developers, or
more precisely between the non-technical and technical stakeholders, has led to their
wide and almost unanimous use in practice. However, use cases are not necessarily the
Page 2 of 28

ideal work product for driving design activities due, in part, to their focus on user
intentions, which can lead to the unnecessary description of situations that cannot be
detected or acted upon by the system. Furthermore, they do not offer sufficient guide-
lines for obtaining a description with a consistent level of precision, and they are prone
to ambiguity and redundancy in their descriptions [17]; consequently they are only
supported by tools that are limited to the analysis capabilities of word processors. In
addition, use cases do not provide adequate means for dealing with interaction between
use cases [13], cannot express state-dependent system behavior adequately [13], and
can lead to naïve object-oriented designs in the hands of novice developers if care is
not taken [11][12].

One of our first goals was to provide an additional, more precise model to which use
cases can be systematically mapped, and which offers fixes to some of the problems
encountered with use cases. This proposed model consists of Operation Schemas and a
System Interface Protocol (SIP). The mapping process from use cases to Operation
Schemas is described in [24]. In short, the use case descriptions are analyzed for events
that would trigger system-level operations, these operations are then described using
Operation Schemas, and the temporal ordering of those operations is defined in the
System Interface Protocol. The advantages of such an approach are the following:

 • Consistency of precision is better regulated: the combination of the Analysis Class
Model, which defines the vocabulary from which Operation Schemas are defined,
and OCL’s restricted calculus allow a more consistent level of precision than the
natural language descriptions of use cases. Furthermore, iteration between use
cases and Operation Schemas focus the developer on refactoring use cases at a
more consistent level of precision.

 • Use cases are less likely to be over-decomposed (this poses problems, such as, pre-
mature design details, and a bias towards functional decomposition designs)
because we decompose use cases until we get to the system operation level, and
Operation Schemas provide better heuristics on what grain-size a system operation
should be.

 • Ambiguity is minimized by the calculus of OCL which is based on first-order pred-
icate logic and set theory.

 • Redundancy is reduced due to the (decision-making) process of mapping use cases
to Operation Schemas.

 • Operation schemas and the System Interface Protocol provide a precise means to
deal with feature/service interaction (use case interaction at the use case level) and
can express state-dependent system behavior.

Ultimately, we hope it is possible to show that the value added by mapping use cases to
Operation Schemas is of greater value than the time spent in addition to produce the
Operation Schemas.

To improve our chances of achieving this goal we put particular focus on making the
Operation Schemas concise and precise, yet simple and easy to use for developers. We
found that declarative pre- and postcondition descriptions were a good choice for
achieving the first two points, because they offer the ability to specify the essential
problem by focusing on what functionality is required—the abstract responsibilities
provided/required—rather than its realization. The advantage is that one can abstract
above the detail of how the operation is realized in terms of object collaborations for an
object-oriented system, for example. Provision for the latter two points was made by
enhancing the chosen language for writing pre- and postconditions, i.e. OCL, with a
procedural programming language-like style. Also, we made the observation that pro-
cedural programming languages are more commonly used in practice compared to
Page 3 of 28

declarative ones. We concluded that most developers would therefore be more familiar
with this style, as opposed to a declarative style. Our idea was therefore to experiment
with a procedural programming language-like facade for Operation Schemas and
OCL, and also to provide practical guidelines to some grey areas of pre- and postcon-
dition descriptions such as the frame problem, incremental descriptions, concurrency,
etc.

We chose OCL as our formalism for writing Operation Schemas because (1) as we are
committed to using UML, OCL is an obvious choice for writing constraints on UML
models; (2) OCL already had a operational style that is one step towards what we
imagined a procedural style facade in a declarative language to be; and (3) OCL is rel-
atively easy to learn and use, even though we admit that it is sometimes verbose, due to
its simple navigation style for constructing constraints—everything, more or less, is
achieved by working with and manipulating sets, bags and sequences. The downside
that we face with taking OCL on board for Operation Schemas is that it is still a young
language and there are therefore still a few unresolved questions on its semantics [22].
Tool support for OCL is progressing and becoming more common (see [31] for a full
list of tools), although we admit that major CASE tool vendors still have not shown a
lot of interest in OCL, even though it is part of the UML standard [32].

������

���������
��
�����	
An Operation Schema declaratively describes the effect of the operation on an abstract
state representation of the system and by events sent to the outside world. It describes
the assumed initial state by a precondition, and the required change in system state
after the execution of the operation by a postcondition, both written in UML’s OCL
formalism. Moreover, we use the same correctness interpretation as the Larch family
of specification languages [14]: when the precondition is satisfied, the operation must
terminate in a state that satisfies the postcondition. Operation schemas as we define
them here specify operations that are assumed to be executed atomically and instanta-
neously, hence no interference is possible.

The system model is reactive in nature and all communications with the environment
are achieved by asynchronous input/output events. All system operations are triggered
by input events, usually of the same name as the triggered operation.

The change of state resulting from an operation’s execution is described in terms of
objects, attributes and association links, which conform to the constraints imposed by
the Analysis Class Model of the respective system. The postcondition of the system
operation can assert that objects are created, attribute values are changed, association
links are added or removed, and certain events are sent to outside actors. The associa-
tion links between objects act like a network, guaranteeing that one can navigate to any
state information that is used by an operation.

The Analysis Class Model is used to describe all the concepts and relationships in the
system, and all actors that are present in the environment, and thus should not be con-
fused with a design class model. Classes and associations model concepts of the prob-
lem domain, not software components. Analysis objects do not have behavior and are
more closely related to entities from Entity-Relationship models [5] than to design
objects.

The standard template for an Operation Schema is shown in figure 1. The various sub-
sections of the schema were defined by the authors, and are not part of the OCL. How-
ever, all expressions are written in OCL and conform to our proposals presented in
section 5. Each clause is optional except the first. 3UH and 3RVW clauses that are not
included default to true and an omitted 6FRSH clause defaults to the operation’s context,
Page 4 of 28

which is the system. The 'HFODUHV clause allows all declarations to be made in a sepa-
rate and single place, which is in line with the proposal of Cook et al. [7], in contrast to
standard use of the let construct in OCL, which form part of the expression. A more
detailed description of the grammar and usage of Operation Schemas can be found in
[27][34].

)LJ�����Operation Schema Format

����� �����

���������	

OCL is a semi-formal language for writing expressions whose principles are based on
set theory and first-order predicate logic. OCL can be used in various ways to add pre-
cision to UML models beyond the capabilities of the graphical diagrams. Two com-
mon uses of OCL are the definition of constraints on class models and the statement of
system invariants. As we will see, it can also be used to define pre- and postconditions
for operations.

OCL is a declarative language. An OCL expression has no side effects, i.e. an OCL
expression constrains the system by observation rather than prescription. OCL is a
typed language; it provides elementary types, like Boolean, Integer, etc., includes col-
lections, like Set, Bag, and Sequence, and has an assortment of predefined operators on
these basic types. It also allows user-defined types which can be any type defined in a
UML model, in particular classes. OCL uses an object-oriented-like notation to access
properties, attributes, and for applying operators.

!�"#��

������
��#�"$
��#�
For illustrating our approach and for use as a common example throughout this paper,
we describe an elevator control system, adapted from [24]. The system controls multi-
ple lifts that all service the same floors of a building. There is a button to go up and one
to go down on each floor, which are used to request a lift. Inside each cabin, there is a
series of buttons, one for each floor. The arrival of the cabin at a floor is detected by a
sensor. The system may ask a cabin to go up, go down or stop. In this example, we
assume that a cabin’s braking distance is negligible (or that at least the action of stop-
ping the cabin is harmonized with the signal from the floor sensor). The system may

2SHUDWLRQ: This clause displays the entity that services the operation (aka the name of the
system of focus), followed by the name of the operation and parameter list.
'HVFULSWLRQ:A concise natural language description of the purpose and effects of the operation.
1RWHV: This clause provides additional comments.
8VH�&DVHV: This clause provides cross-references to related use case(s).
6FRSH: All classes, and associations from the class model of the system defining the name
space of the operation. (Note that it would be possible to have a tool generate this clause
automatically from the contents of the other clauses.)
'HFODUHV: This clause provides two kinds of declarations: aliasing, and naming.
Aliases are name substitutions that override precedence rules, i.e., treated as an atom, and not
just as a macro expansion.
A name declaration designates an object to be “created” by the operation, i.e. the postcondition
will state oclIsNew() for it. Each name declares a distinct object.
6HQGV: This clause contains three subclauses: 7\SH, 2FFXUUHQFH, and 2UGHU. 7\SH declares
all the events that are output by the operation together with their destinations, the receiving
actor classes. 2FFXUUHQFH declares event occurrences and collections of event
occurrences. 2UGHU�defines the constraints on the order of events output by the operation.
3UH: The condition that must be met for the postcondition to be guaranteed. It is a boolean
expression written in OCL, standing for a predicate.
3RVW: The condition that will be met after the execution of the operation. It is a boolean
expression written in OCL, standing for a predicate.
Page 5 of 28

ask a cabin to open its door, and it receives a notification when the door is closed; the
door closes automatically after a predefined amount of time, when no more people get
on or off at a floor. However, neither the automatic closing of an elevator door nor the
protection associated with the door closing, stopping it from squashing people, are part
of the system to realize.

A scenario for John using the elevator could be: John calls the lift from the 5th floor,
choosing to go up. An available lift comes from the 10th floor to the 5th floor to pick
him/her up and stops and opens its door. The user gets in and requests the 20th floor.
The lift closes its door and goes to the 20th floor. Once it arrives it stops and opens its
door. John leaves the lift. A use case that encompasses all scenarios related to a user
using the elevator to go from one floor to another can be found in [24].

%�������Collaboration diagram summarizing the interaction between the system and its actors

The system operations for the elevator control system are derived from use case
descriptions of the system. How this mapping activity is achieved is not discussed in
this paper; interested readers are referred to [24]. The result of this mapping activity
from a use case that describes a user taking the lift from one floor to another is shown
in figure 2. A (specification-level) collaboration diagram shows four different input
events: externalRequest, internalRequest, doorIsClosed, and atFloor, and eight different
types of output events: AckExtRequest, AckIntRequest, ServicedExtRequest, ServicedIntRe-
quest, OpenDoor, GoUp, GoDown, and Stop.

The diagram also shows that there is some form of communication between the User
actor type and the external request indicator (ExtRequestIndicator) and internal request
indicator (IntRequestIndicator) to clarify that the requests originally come from the user.
Although we admit this may not be valid UML, strictly speaking, we think showing
external communications paths often clarifies the overall working of a system and the
consistent exchange of events in the system context.

One could imagine that the indicators control button lights to highlight a pending
request.

The Analysis Class Model for the elevator control system is shown in figure 3. It
shows all the concepts and relationships between them, the combination of which pro-
vide an abstract model of the state space of the system. Inside the system there are five
classes, Cabin, Floor, Request, IntRequest, and ExtRequest, and outside six actor classes,
Motor, Door, IntRequestIndicator, ExtRequestIndicator, User, and Sensor. The system has five
associations: IsFoundAt links a cabin to its current floor, HasIntRequest links a set of
internal requests to a particular cabin, HasCurrentRequest links a cabin to its current
request, HasExtRequest links the set of all external requests issued by users to the sys-

��([W5HTXHVW,QGLFDWRU

���0RWRU

���'RRU

���(OHYDWRU&RQWURO

H[WHUQDO5HTXHVW

$FN([W5HTXHVW
6HUYLFHG([W5HTXHVW

*R8S
*R'RZQ
6WRS

GRRU,V&ORVHG

2SHQ'RRU

���6HQVRU

DW)ORRU

��,QW5HTXHVW,QGLFDWRU

LQWHUQDO5HTXHVW

$FN,QW5HTXHVW
6HUYLFHG,QW5HTXHVW

���8VHU
Page 6 of 28

tem, and HasTargetFloor links requests to their target floor (source of call or destina-
tion). Finally, an <<id>> stereotyped association means that the system can identify an
actor starting from an object belonging to the system, e.g., given a Cabin, cab, we can
find its corresponding motor via the HasMotor association, denoted in OCL by
cab.movedBy. The reason for the <<id>> stereotyped association is that the system can
only send an event to an actor that can be identified. Identifying an external actor from
inside the system strictly requires an <<id>> stereotyped association.

%�������Analysis Class Model of the Elevator Control System

The System Interface Protocol (SIP) defines the temporal ordering of system opera-
tions. An SIP is described with a UML state diagram. A transition in the SIP is trig-
gered by an input event only if the SIP is in a state to receive it, i.e., there exists an arc
with the name of the input event. If not, the input event that would otherwise trigger
the operation is ignored. A transition from one state to another that has an event as
label indicates the execution of the system operation with the same name as the input
event.

The Elevator Control SIP is shown in figure 4. It consists of two parallel sub-states.
The top-most sub-state models the activity of processing external requests. The dashed
line shows that it works in parallel with the lift activities. The Lift submachine, the bot-
tom-most state, is an auto-concurrent statemachine, indicated by a multiplicity of
many (‘*’) in the upper right hand corner. There is a statemachine for each lift1 but
their number is not predefined, hence the multiplicity many. A Lift submachine consists
itself of two parallel submachines. The submachine, on the left, models the activity of
processing internal requests for the lift. The submachine, on the right, models the func-
tioning of the lift cabin itself.

1. We use the term lift to mean the cabin and it facilities.

Motor

Door

1
movedBy

<<id>>

1 +DV'RRU
<<id>>

Sensor

User

,QGLFDWHV3UHVHQFH

1

0DNHV

1

1
+DV([W5HT,QGLFDWRU

ExtRequestIndicator

<<id>>

1

Floor
num

Cabin
doorState
mode
movement

0..10..* ,V)RXQG$W

0..1

+DV&XUUHQW5HTXHVW

+DV,QW5HTXHVW

0..1

0..*

2..*

1..*

5HTXHVW

direction

ExtRequestIntRequest

+DV7DUJHW)ORRU

0..*

1

1

ElevatorControl
<<system>>

0..*

0..* 1+DV([W5HTXHVW

1+DV,QW5HT,QGLFDWRU

IntRequestIndicator

<<id>>
1

1

1

1..*

1

1

currentFloorcabinsPresent

targetFloor

requestsForFlr

currentRequest

servicingCabin

+DV0RWRU

myDoor

intRequests

requestingCabin

extRequests control
Page 7 of 28

)LJ�����Elevator Control System Interface Protocol

Each system operation, externalRequest, internalRequest, atFloor, and doorIsClosed, are
described by Operation Schemas. However for reasons of size, we highlight just the
atFloor Operation Schema, shown in figure 5. The atFloor Operation Schema describes
the atFloor system operation. The atFloor system operation occurs as a consequence of a
floor sensor detecting the arrival of an elevator cabin at a floor. The system must
decide at this point whether there are any requests for the floor that it should service
(this will depend on its mode); if so, it will drop off and/or pick up the requesting
user(s), otherwise the system will let the lift continue.

The dot notation of OCL usually indicates the traversal of an association, in which case
the result is a collection of objects, or the traversal to a property, in which case the
result is value of the property. When navigating on association links, the dot notation is
used together with the role name, e.g. cab.currentFloor. If there is no explicit role name,
then the name of the target class is used as an implicit role name. For example,
self.cabin denotes the set of cabins that can be reached by navigating from self, denoting
the system instance, on the composition association between the system and the class
Cabin.

The arrow operator is used only on collections, in postfix style. The operator following
the arrow is applied to the previous “term”. For instance, cab.intRequests->select (r |
r.targetFloor = f) results in a set consisting of all internal requests r of the cabin, cab, that
have the floor f as destination. Note also that we make use of the fact that an IntRequest
inherits all the associations of its parent. For instance, it will inherit the association
HasTargetFloor that links it to a Floor.

The 'HFODUHV clause defines four aliases that are used for reasons of reuse and to make
the postcondition less cluttered. The fourth alias, makeStop, (when substituted) results
in true if there is an internal request and/or external request for the supplied floor f that
should be serviced by the cabin. The second, third and fourth alias make use of the
other aliases and the first alias uses a function calls, detailed in section 5.6.

a tF lo o r

d o o r Is C lo s e d

E le v a to r C o n tr o l

a tF lo o r
L if t

in te r n a lR e q u e s t

D o o r
O p e n

In
M o t io n

Id le

d o o r Is C lo s e d e x te rn a lR e q u e s t

e x te r n a lR e q u e s t

in te rn a lR e q u e s t

�

Page 8 of 28

%����&��atFloor Operation Schema for the Elevator Control System

The 6HQGV clause shows that instances of the event types Stop, OpenDoor, ServicedExtRe-
quest, ServicedIntRequest may be sent to the indicated actors (7\SH subclause) and that
Stop and OpenDoor have named instances (2FFXUUHQFH subclause). It also defines a
sequencing constraint on the output events that states that the two event instances are
delivered to their respective actors in the order “stop followed by open” (2UGHU sub-
clause). The 3UH clause states that the cabin, cab, is currently moving.

The first line of the 3RVW clause states that the cabin is now found at floor f with the
isFoundAt association updated accordingly. The next (compound) expression states that
if the lift has a request for this floor, then the cabin’s motor was told to stop, the cabin’s
door was told to open, the state attributes of the cabin were updated, and the requests
that were serviced by this stop were removed from the system state.

2SHUDWLRQ: ElevatorControl::atFloor (cab: Cabin, f: Floor);
'HVFULSWLRQ: The cabin has reached a particular floor, it may continue or stop depending on its
destination and the requests for this floor;
1RWHV: The system can receive many atFloor events at any one time, each for a different cabin;
8VH�&DVHV: take lift;
6FRSH: Cabin; Floor; Request; IntRequest; ExtRequest; HasIntRequest; HasExtRequest;
HasCurrentRequest; HasTargetFloor; IsFoundAt;
'HFODUHV:
reqsToStopFor: Set (Request) ,V

calcAllowedStops (cab, f, cab.intRequests->select (r | r.targetFloor = f),
 self.extRequests->select (r | r.targetFloor = f));

pickUpRequest: Set (ExtRequest) ,V reqsToStopFor->select (r | r.oclIsType(ExtRequest));
dropOffRequest: Set (IntRequest) ,V reqsToStopFor->select (r | r.oclIsType(IntRequest));
makeStop: Boolean ,V reqsToStopFor->notEmpty ();
6HQGV:
7\SH: Motor::{Stop;}; Door::{OpenDoor;};

ExtRequestIndicator::{ServicedExtRequest;}; IntRequestIndicator::{ServicedIntRequest;};
2FFXUUHQFH: stop: Stop; open: OpenDoor;
2UGHU: <stop, open>; -- the output events are delivered in the order “stop followed by open”
3UH:
cab.movement <> Movement::stopped; -- cab was moving
3RVW:
cab.currentFloor = f & -- new current floor for the cabin

LI makeStop WKHQ -- someone to drop off or pick up
(cab.movedBy).VHQW (stop) & -- stop sent to cab motor
cab.movement = Movement::stopped &
(cab.myDoor).VHQW (open) & -- open sent to door
cab.doorState = DoorState::open &
self.request->excludesAll (reqsToStopFor) & -- removed all serviceable requests for this floor

LI pickUpRequest->notEmpty () WKHQ
(self.extReqIndicator).VHQW (ServicedExtRequest (

(callingFlr => pickUpRequest->any (true).targetFloor,
 dir => pickRequest->any (true).direction)))

HQGLI &
LI dropOffRequest->notEmpty () WKHQ

(self.intReqIndicator).VHQW (ServicedIntRequest (
(destFlr => dropOffRequest->any (true).targetFloor))) --inform int. request is serviced

HQGLI

HQGLI;
Page 9 of 28

The expression, self.request->excludesAll (reqsToStopFor), not only removes the serviced
request objects from the system (discussed in section 6.2), but deletes also all the asso-
ciation links connected to the deleted objects. This sort of implicit removal ensures
consistency of associations and is explained in section 5.1.

Also, the & operator used throughout the schema is a shorthand for logical “and” it is
discussed in section 5.4. In the 3RVW clause, we assert that an actor is sent an event
using the “sent” shorthand, which indicates that the supplied event instance was placed
in the event queue of the appropriate actor instance; this is detailed in section 5.7.
Looking further at the OCL notation, an expression, such as cab.doorState =
DoorState::open, means that the attribute, doorState, of the object cab has the enumeration
value open (of the type DoorState) after the execution of the operation.

&� �����
#�
In this section, we make a number of proposals to OCL. It has a number of subsec-
tions, but there is a continuous thread of proposals for enhancements and interpreta-
tions to OCL throughout. We cover such areas as the association consistency
assumption, the frame problem, incremental descriptions, structuring schemas, and
events and exceptions.

&����������
��������'�����

����

An association link can only link existing objects; it is therefore a well known consis-
tency constraint for class models that when an object is removed from the system state
all association links connected to it have to be removed too. Although it would be pos-
sible to explicitly state all association links that must be destroyed, this is quite cum-
bersome in the presence of numerous associations. Therefore we propose the
association consistency assumption.

���������	
��

������
��
�	
������
����
���
������
�������
����������
����
���
����������	
 ��	��
 �	
 ���
 ������
 ����
 �	������
 ���
 ���������
 ������
 ���
����������
�	
�������	�

&����%�
���'�����
���

The frame of the specification is the list of all variables that can be changed by the
operation [18], which in our model is always a subset of all objects and all associations
links that are part of the system state. The postcondition of a specification describes all
the changes to the frame variables, and since the specification is declarative, the post-
condition must also state all the frame variables that stay unchanged. The reason is
simple: if the unchanged frame variables are left unmentioned, they are free to be given
any value and the result will still conform to the specification.

Formal approaches such as Z, VDM, Larch, etc. explicitly state what happens to each
one of these frame variables—even for those variables that stay unchanged. This
approach soon becomes cumbersome to write and error-prone, particularly for specifi-
cations that have complex case distinctions (where the complete frame is the combina-
tion of all the variables read/changed in each different case). One approach that avoids
this extra work is to imply a “... and nothing else changes” rule when dealing with
these types of declarative specifications [3]. This means that the specification implies
that the frame variables are changed according to the postcondition with the unmen-
tioned frame variables being left unchanged. This approach reduces the size of the
specification, thus increases its readability, and makes the activity of writing specifica-
tions less error prone. We therefore adhere to this convention.
Page 10 of 28

However, there is a slight problem with this assumption in the case of implicit
removal—a consequence of the association consistency assumption. For an example,
let us reconsider the seventh line of the postcondition in figure 5.

self.request->excludesAll (reqsToStopFor)

If we strictly apply the frame assumption “... and nothing else changes”, as a result the
associations HasIntRequest, HasExtRequest, HasCurrentRequest, and HasTargetFloor would
stay unchanged which would lead to an inconsistent system state. At least three of the
associations have to be changed, and will be changed following our implicit consis-
tency of associations convention stated in section 5.1.

Also, we need to cover two more cases: what happens to attributes of frame objects
that are not mentioned by the postcondition, and what happens to attributes of newly
“created” objects that are not mentioned in the postcondition.

We propose the following amended frame assumption.

���������	
��
��
�����
���������
��	�����	 �
��
�
��������
��	����
�	
�������
���
������
����������!
���
���	 ��
"���
���
�#������	
��
 ���
��������	
�����
���	
�����
����
���
�#��������
��	���	��
��
��
���	 ��
��
���
������	�����	�
���
����������	�
����
���
����������
��������
��
����	��
��
���
����������	
��	$
�����	��
���������	�
�	�
���
��������
�	�
�����
�����������
����
���
	�"
��
���
������
�����
��
�
��	��%��	��
��
���
��������	�
This assumption forces all attributes of objects that are not mentioned to keep the same
value with the exception of new objects added to the system state; in this case, we pro-
vide three possible interpretations: 1) attributes of new objects that are not mentioned
in the postcondition can take any value, 2) the unmentioned attributes get predefined
default values, or 3) the specification is incorrect if a value is not given to the respec-
tive attributes. The last interpretation gives more of a prescriptive flavor and one could
probably expand this to also prohibit specifications where attribute values are con-
strained to a range rather than a precise value, e.g., acc.num > 0 would not be allowed in
the description of an effect.

&������������

#�(������
����

It is common practice in software development to tackle a problem in a piece-meal
fashion—describing the problem incrementally. In a similar way, it is useful to
describe postconditions incrementally, i.e., a particular effect of an operation may be
defined by a combination of constraints that are defined at different places throughout
the postcondition. However, declarative specifications do not in general support incre-
mental descriptions. For example, it is not possible to state the effect on a given set in
the following way (an extract of an inconsistent postcondition),

req.targetFloor = req.targetFloor@pre->including (flr1)
...
req.targetFloor = req.targetFloor@pre->excluding (flr2)

because both conditions define a different final set, but nevertheless refer to the same
one: clearly a contradiction.

Set manipulations, like the two from above, are commonplace in OCL, and there are
many reasons, detailed later, why an incremental description of sets is advantageous.
For this purpose, we introduce the principle of minimum set into OCL to facilitate
incremental description of effects on sets in postconditions.
Page 11 of 28

&����������������
� ������#�
&�������
��
'��
��	����
���
���	�����
��
�������
��
���
�	�����������	
��
����$
��	�����	��
We propose to define the semantics of OCL postconditions by applying the principle of
minimum sets. For each class and each association within the system, we will consider
their sets of instances and links, and claim that these are all minimum sets after execu-
tion of the operation.

Unless otherwise stated, if C is a class of the system, if SetOfAllObjects(C)@pre is the set
of its instances before the execution of the operation, and SetOfAllObjects(C) is the set of
its instances after the execution of the operation, then SetOfAllObjects(C) is the minimum
set containing SetOfAllObjects(C)@pre and fulfilling the postcondition. Intuitively, SetO-
fAllObjects(C) can be constructed by adding to SetOfAllObjects(C)@pre all instances of C
created by the operation. Similarly, we can come to a similar result for an association A
of the system, where SetOfAllLinks(A) is the minimum set containing SetOfAllLinks(A)@pre
and fulfilling the postcondition. The rule must hold for all classes and associations.
Also, the minimum set principle is quite complementary to our frame assumption that
states, more or less, that nothing changes other than what is explicit in the postcondi-
tion.

There is a slight problem, however, when we allow for the destruction of objects or
removal of association links. For defining the semantics, the idea is then to gather the
deleted entities into a temporary set, and rephrase the rule in the following way: let A
be an association of the system, let us denote by SetOfLinksToRemove(A) the set of links
of A destroyed by the operation, then SetOfAllLinks(A) ∩ SetOfLinksToRemove(A) is empty,
and SetOfAllLinks(A) ∪ SetOfLinksToRemove(A) is equal to SetOfAllLinks(A)@pre, where Set-
OfAllLinks(A) is the minimum set. The minimum set principle has a similar effect to re-
dashing of schemas when composing them in Z [21].

Applying the minimum set principle to a postcondition, for example, we could rewrite
the condition,

req.targetFloor = req.targetFloor@pre->including (flr)

as:
req.targetFloor->includes (flr)

which would be equivalent as long as no other effects have been expressed about the
state of req.targetFloor.

One consequence of the minimum set principle that is not so intuitive is the case where
the condition is negated. For example, the following condition:

QRW req.targetFloor->includes (flr)

is not equivalent to the condition:
req.targetFloor->excludes (flr)

because the first condition states that flr is not one of the elements added to the set
req.targetFloor, where the second condition states that flr was one of the elements to be
removed from the set req.targetFloor@pre.

The minimum set principle can also be applied to collections in general.

However, when it is applied to a bag, duplicates are not accounted for, e.g.,
Pre: bagX = Bag {};
Post: bagX->includes (x1) DQG

bagX->includes (x1);

is equivalent to:
Post: bagX->includes (x1);
Page 12 of 28

An additional constraint it therefore required for the bag to contain two x1 elements,
e.g., bagX->count(x1) = 2.

We take the opportunity, even though this has nothing to do with the minimum set prin-
ciple, to insist that ordering of conditions does not suffice to order elements in a
sequence, e.g.,

3UH: seqX = Sequence {};
3RVW: seqX->includes (x1) DQG

seqX->includes (x2);

does not mean that x1 precedes x2 in seqX. The correct postcondition would be
seqX = seqX@pre->union (Seq{x1, x2})

which, using the minimum set principle, can be simplified to:
seqX->union (Seq{x1, x2})

The minimum set principle allows one to write the postconditions incrementally. For
example, we could define a fragment of the postcondition for an imagined operation
called swapCabins, which exchanges two cabins, cab1 and cab2, from floors f1 to f2 and
from f2 to f1, respectively:

f1.cabinsPresent->excludes (cab1) DQG
f2.cabinsPresent->includes (cab1) DQG
f2.cabinsPresent->excludes (cab2) DQG
f1.cabinsPresent->includes (cab2)

Taking this example further we could be later asked, in a maintenance phase for exam-
ple, to modify the operation by putting the cabin specialCab at the floor f1, as part of the
swapCabins operation. This would simply require the following additional line in the
postcondition.

... DQG
f1.cabinsPresent->includes (specialCab)

Such an incremental description, possible because of the minimum set principle, is
easier to maintain because conditions are not definitive can be extended constructively.

%����)��Incremental Approach

Incremental descriptions also offer one the possibility to break large case distinctions
into more manageable and concise if-then-else conditions. Normally with a non-incre-
mental description, one would specify each individual case completely with possibly
many repetitions. Figure 6 shows an example of an incremental description using three

LI inPriorityMode WKHQ
self.extRequest->includes (r1)

else
self.extRequest->excludes (r5)

HQGLI DQG
LI liftAtSameFloor WKHQ

self.extRequest->excludes (r2)
HOVH

self.extRequest->includes (r4)
HQGLI DQG
LI liftIsBusy WKHQ

self.extRequest->includes (r6)
HOVH

self.extRequest->excludes (r3)
HQGLI
Page 13 of 28

if-then-else conditions. Figure 7 shows an equivalent description that is not incremen-
tal, it uses eight implication conditions.

Note that the relationship between the two approaches is exponential: there are 2n sep-
arate cases for n if-then-else conditions. Note that we used implications in figure 7, but
it is common practice to use separate pre/post pairs (see section 5.6 for more details),
which would make the text even longer. Clearly, the usefulness of our incremental
descriptions becomes even clearer as n gets larger.

%����*��Non-Incremental Approach

&��������������

#� #���
��������
Continuing with incremental descriptions, we can use an idea similar to the minimum
set principle for numeric types. We propose to use the operators, “+=” and “-=” with the
following meaning: the value of the numeric entity in the post-state is equivalent to the
value in the pre-state plus all the right-hand sides of all += operators used in the post-
condition that refer to the numeric entity, and minus all the right-hand sides of all -=
operators that refer to the numeric entity. For example:

obj.x += 5 DQG
obj.x -= 4

is equivalent to (and can be rewritten as):
obj.x = obj.x@pre + 1

However, care needs to be taken when the incremental style is mixed with the other
styles.

3RVW: ...
obj.x += 5 DQG� -- line one

obj.x -= 4 DQG -- line two

obj.x = obj.x@pre + 2 DQG� -- line three

obj.x = 2 -- line four

The above example is an erroneous specification: line three is in contradiction with the
result defined by the incremental plus and minus, and line four would require that
obj.x@pre be either 0 or 1 depending on whether line three was brought into agreement
with line one and two or vice versa.

Unfortunately, the incremental plus and minus facility cannot be extended to more
complex expressions (e.g. multiplication) because it relies on the commutativity of
additions and subtractions.

inPriorityMode DQG liftAtSameFloor DQG liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre->union (Set {r1,r6})->excluding (r2) DQG
inPriorityMode DQG�QRW liftAtSameFloor DQG�QRW liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre->union (Set {r1, r4})->excluding (r3) DQG
inPriorityMode DQG�QRW liftAtSameFloor DQG�liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre->union (Set {r1, r4, r6}) DQG
inPriorityMode DQG�liftAtSameFloor DQG�QRW liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre->including (r1) - Set {r2, r3} DQG
QRW inPriorityMode DQG�liftAtSameFloor DQG�liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre->including (r6) - Set {r5, r2} DQG
QRW inPriorityMode DQG�QRW liftAtSameFloor DQG�QRW liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre->including (r4) - Set {r5, r3} DQG
QRW inPriorityMode DQG�QRW liftAtSameFloor DQG�liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre->union (Set {r4, r6})->excluding (r5) DQG
QRW inPriorityMode DQG�liftAtSameFloor DQG�QRW liftIsBusy LPSOLHV

self.extRequest = self.extRequest@pre - Set {r5, r2, r3}
Page 14 of 28

&�!������
�
��� �����
#��������	

In this subsection, we propose some shorthand notations that could be used in OCL to
make the job of the specifier less laborious and therefore probably less error-prone.

&�������
��
'��
����
����
�	
���
������	�����
��	������
��
�����	��
��
���
������$
�	
����
��
���
������	�����
�#�������	
��
������	�
We use if-then-else conditions for case distinction. Without our frame assumption, we
would write:

LI makeStop WKHQ
cab.movement = Movement::stopped

HOVH

cab.movement = cab.movement@pre
HQGLI

Taking the frame assumption into account, we are not required to state which variables
stay unchanged; consequently, the else part, in this case, is simply true:

LI makeStop WKHQ
cab.movement = Movement::stopped

HOVH

true
HQGLI

Applying proposal 2, the else part of the if-then-else condition can be made implicit:
LI makeStop WKHQ

cab.movement = Movement::stopped
HQGLI

An implicit else true promotes a smaller, more readable postcondition. Thus, every time
that a postcondition includes an if-then statement (without the else part), the expression
is of type boolean and an else true is implied. To support this feature in OCL, only a
syntax change would be required.

&�������
(�
�����
�����
��	
��
����
�	
��$���	$����
��	��������
When dealing with a large number of branches by using the if-then-else construct, it is
common to nest if-then-else constructs within other if-then-else constructs. This prac-
tice, however, can become problematic as the depth of nesting increases, having a neg-
ative impact on clarity for the reader and even the writer. Using an elsif part for the if-
then-else construct can help make such situations cleaner and clearer to write and
understand. The elsif addition is directly derivable from nested if-then-else constructs.
For example, the following two conditions are equivalent:

The required change to OCL to realize this proposal would be purely a syntactic one,
i.e., the elsif keyword is simply added as a new part of the if-then-else construct. Fur-
thermore, one could treat the new construct as a syntactic rewrite of the if-then-else
construct.

LI condA WKHQ
effectA

HOVLI condB WKHQ
effectB

HOVH
effectC

HQGLI

LI condA WKHQ
effectA

HOVH
LI condB WKHQ

effectB
HOVH

effectC
HQGLI

HQGLI
Page 15 of 28

&�������
)�
'��
����������$�	�
+
��	
��
����
 ���
��������	
��	��	�����
��������
,�
��
�	
�����	�����
��
�������	
���
���
�	�
����
���"�����
OCL uses the keywords “pre” and “post” to separate system effects in a pre- and post-
condition respectively [32]. However, we believe this becomes quite heavy and disrup-
tive for the reader of large specifications. Therefore, we propose to use the
commercial-and “&” as an effect description separator, because it is more discrete for
use in large specifications and it has a clear usage with if-then-else conditions.

The commercial-and “&” and the logical-and “DQG” operators are logically equivalent.
The difference between them lies in their interpretation that helps the human reader.
Commercial-and, &, is used to separate conjunctive system effects, whereas logical-
and, DQG, is used to separate boolean expressions that form conditions for branches
leading to different effects.

For example, the following two postconditions are equivalent, but the one on the left-
hand side is written using the multiple post keywords style, and the one on the right-
hand side is written using our proposed style.

Again the change required to OCL to accommodate this proposal would be simply a
syntactic one.

&�&����
�����
�����������
��+
#���������	

Composite values for objects and events (section 5.7) are very useful in comparing and
matching values between entities.

&�������
-�
'��
� �� ���
	������	
��	
��
����
���
��	���	
���������
���$
����
We propose the optional use of an Ada-style aggregate notation for denoting composite
values. The value attributes of an object, and the parameters of an event correspond to
composite values.

%����,��Company Class in UML class notation

An aggregate is written by associating with each attribute a value, denoted by its name.
The following aggregate conforms to figure 8:

(name => “Microsoft”, headquarters => “Richmond”, budget => 50.0E9)

Positional notation is also possible, but then the ordering of the values must be agreed
upon by some convention, e.g. alphabetical order of the attribute names for objects:

(50.0E9, “Richmond”, “Microsoft”)

For clarity, it is sometimes useful to be able to qualify an aggregate by its type, e.g. the
class name or the event type, yielding a so-called qualified aggregate. We propose to

3RVW: effectA
3RVW: LI condA DQG condB WKHQ

effectB
DQG�effectC

HQGLI

3RVW: effectD
3RVW: effectE

3RVW: effectA &
LI condA DQG condB WKHQ

effectB &
effectC

HQGLI &
effectD &
effectE

Company
name
headquarters
budget
Page 16 of 28

use the Ada-like “tick” notation, i.e. the type name precedes the aggregate, separated
by an apostrophe, e.g.

Company’(50.0E9, “Richmond”, “Microsoft”)

Due to the “by-reference” semantics of objects and events, we propose to denote their
composite value by introducing the property “all”. Thus we can write expressions like
the following:

company.DOO = (name => “Microsoft”, headquarters => “Richmond”, budget => 50.0E9)

which evaluates to true if the object referenced to by company has the corresponding
attribute values. The above condition is equivalent to:

company.name =“Microsoft” DQG
company.headquarters = “Richmond” DQG
company.budget = 50.0E9

The advantage of aggregates is that related values are kept together in one place.

&�������
.�
'��
�����
��
���	�
	���
�� �����
"���
�	
� �� ���
��	
��
����
��
��	�����
�
�������	������
������
��
���	��
We introduce a special shorthand that makes it possible to match objects and events
directly to composite values. The shorthand is defined for each object/event type. It
uses the same name as the type, and it takes a composite value as parameter, resulting
in a reference to the corresponding object/event in the system that has the matching
composite value. For example, the expression:

Company ((50.0E9, “Richmond”, “Microsoft”))

results in all the company objects that have the corresponding composite value and
chooses one, if there are more than one.

The above expression is a shorthand for the following expression:
Company.allInstances->select (c | c.all = (50.0E9, “Richmond”, “Microsoft”))->any (true)

The precondition of the any collection operator states that the supplied collection, i.e.,
the expression on the left-hand side, must have at least one element satisfying the
expression. This means that if there are no objects matched, then the shorthand is
undefined. Thus, the specifier should ensure that the corresponding object exists for all
valid system states.

Such a shorthand allows one to write concise and, we believe, intuitive expressions in
postconditions, e.g.:

region.localCompanies->includes (Company ((50.0E9, “Richmond”, “Microsoft”)))

which results in true if Microsoft is a member of the local companies in the region,
region. This shorthand notation is particularly useful for denoting event sending, as we
will see in section 5.7.

&�������
/�
'��
���,���"
��������
��	
��
�����	����
����������0��
��
�
���$
������
������
"����
������
���
���
��	�����!
���������
������
��
���
�������
We propose to allow the oclIsNew property to be parameterized with a composite value,
defining the attribute values of the new object. For example, asserting that a new object
has the same value as another one can be described simply by:

myCompany.oclIsNew (john.company.DOO)

It is also possible to use an aggregate, which denotes the actual attribute values. For
example, a postcondition could state:

cabinX.oclIsNew ((doorState => DoorState::closed, mode => Mode::express,
 movement => Movement::stopped))
Page 17 of 28

which means that the object, cabinX, became a new element of the system state with the
execution of the operation, and all its value attributes, i.e., doorState, mode, and
movement, were given the enumeration values, closed, express, and stopped, respectively.

The above expression is directly equivalent to the following one:
cabinX.oclIsNew DQG
cabinX.doorState = DoorState::closed DQG
cabinX.mode = Mode::express DQG
cabinX.movement = Movement::stopped

The proposed notation ensures that all attributes of a newly created object were con-
strained to the given values, and none of them were forgotten.

&�������
1�
'��
���,���"
��������
��	
��
�������
��
�
���������	2
��
���	
�����
�
��	 ��
���������
"����
�� 	�����
���
	�����
��
	�"
�������
����
"���
���$
����
"���
���
�#������	
��
���
��������	
�	�
���
���
�	��
�������
��
���
���$
������	�
We propose to allow the creation of a collection of objects by introducing the oclIsNew
property for collections, where the oclIsNew property takes as parameter the number
of elements to be created. Assuming colX: Collection (X), then:

colX.oclIsNew (n)

is equivalent to,
colX->forall (x: X | x.oclIsNew) DQG
colX->size () = n

Both conditions state that the collection contains exactly n new objects. For example, a
postcondition defining the result of initializing the ElevatorControl system could include
the following extract:

self.cabin.oclIsNew (5)

which is equivalent to the following condition:
self.cabin->forall (c: Cabin| c.oclIsNew) DQG
self.cabin->size () = 5

&�)���
���
�����������
��-��
�
��
���.��� �����

���
���%���
����

For the sake of readability and usability, it is necessary to be able to structure Opera-
tion Schemas as the size of a schema increases. One common approach is to use multi-
ple pre- and postcondition pairs for structuring operations (called case analysis in the
Larch community) [30][8], where each schema describes the effect by the operation in
a distinct case. We avoid this style of structuring because it leads to the case explosion
problem that was demonstrated by figure 7.

Even though incremental descriptions help reduce the size of a specification, specifica-
tions can nevertheless get large and we have made the observation that they become
cumbersome to write and use. This observation is backed by the results of a controlled
experiment by Finney et al.; the result of the experiment gives evidence that structuring
a specification into schemas of about 20 lines significantly improves comprehensibility
over a monolithic specification [10].

We introduce two new concepts that help structure Operation Schemas and provide a
means for reuse. We call them parameterized predicates and functions.

A parameterized predicate can be used in 3UH and 3RVW clauses to better support read-
ability of schemas and to allow one to reuse commonly recurring predicates. They are
inspired from those proposed in Catalysis [8]. They are used to encapsulate a ‘piece’ of
the pre- or postcondition and therefore they can use the suffix ‘@pre’ (in the case that it
is destined for postconditions); they evaluate to true or false. They implicitly refer to
Page 18 of 28

self, the system object of the schema where they are instantiated. At definition, their
scope is the schema (i.e. the names declared in the 6FRSH, 'HFODUHV and 6HQGV clauses)
where it is supposed to be used; it can then be used in all schemas having this scope or
a wider one. When a predicate is referred to in a postcondition, it must be possible to
resolve all references within the current context. For example, we could define a
parameterized predicate that encapsulates the condition that the state of a cabin was
changed to stopped and open, and two events were sent to the motor and the door to
stop and open, respectively:

3UHGLFDWH: madeStop (targetCabin: Cabin, stopTheLift: Stop, openTheDoor: OpenDoor);
%RG\: (targetCabin.movedBy).events->includes (stopTheLift) DQG -- stop sent to cab motor

targetCabin.movement = Movement::stopped DQG
(targetCabin.myDoor).events->includes (openTheDoor) DQG -- open sent to door

targetCabin.doorState = DoorState::open;

The parameterized predicate can then be used in the postcondition of the atFloor Opera-
tion Schema of figure 5, for example, in the following way:

3RVW: ...
LI makeStop WKHQ

madeStop (cab, stop, open) DQG -- use of parameterized predicate

self.request->excludesAll (reqsToStopFor) DQG
...

A function may be used to encapsulate a computation. They do not have any side
effects, i.e. they are pure mathematical functions, and to the contrary of a system oper-
ation they do not change the system state. Functions may be used as a reuse mecha-
nism for commonly recurring calculations.

We propose to separate the function declaration (its signature) from the function defi-
nition. In that way, they can be used as a placeholder when the need for the function is
known, but its realization is deferred to a later stage of development, i.e. design or
implementation. For example, we might know that we have to determine the best
suited lift to service a particular request, which can be expressed by a function, e.g.

)XQFWLRQ: bestSuitedCabin (options: Set (Cabin), requestedFlr: Floor): Cabin;
-- A function that hides the algorithm for choosing the best suited cabin to service a request

but the choice of the algorithm is deferred until design.

Functions can also be used when OCL is not suitable for expressing the algorithm, e.g.
in the case of numeric computations. Functions are therefore a way to escape the lim-
ited expressive power of OCL when necessary. However, we admit that such a facility
can be abused.

Functions can be referred to anywhere, in contrast to parameterized predicates, whose
use is limited to pre- and postconditions. They can refer to the model elements of the
Analysis Class Model. If a function does not refer to any model elements, then it is a
universal function, e.g. the sine function, and it is possible to refer to it “anywhere”.
Functions can include an $OLDVHV clause, which is local to the function, and is equiva-
lent to the 'HFODUHV clause of Operation Schemas, except only aliases are allowed.
When referring to a function, it must be possible to resolve all references within the
current context.

For example, the first line after the 'HFODUHV�of figure 5 (atFloor Operation Schema)
used a function calcAllowedRequests, which returns a possibly empty set of requests to
service. A possible definition of the function could be:
Page 19 of 28

This function calculates the internal and external requests that are allowed to be ser-
viced according to the mode of the lift, and the context, e.g., direction the lift is going,
etc.

&�*��"���
�/��
##�/�
���"$���
����

Operation schemas specify not only the changes to the system state, but also the system
events that are output by the operation. Communications between the system and
actors are through event occurrence delivery. In our approach, we distinguish input
from output events. Input events are incoming to the system and trigger system opera-
tions. Usually, their names are the same. The parameters of the input event are the
parameters of the system operation. Output event occurrences are outgoing from the
system and are delivered to a destination actor.

We propose to interpret a system event occurrence as:

 • having by-reference semantics;
 • having unique identity;
 • having an implicit reference to its sender, referred to by the keyword VHQGHU;
 • being reliably and instantaneously delivered (no latency).
There are several kinds of system events, which can be thought of as either a special-
ization of SignalEvent or CallEvent in UML, depending on whether the event is asyn-
chronous or synchronous. We will distinguish three kinds of system event types that
we call Event, Exception, CallWithReturn, respectively stereotyped <<event>>,
<<exception>>, and <<callwithreturn>>. They all have a single compartment containing
parameters.

An Event occurrence instigates an asynchronous communication; it usually triggers
the execution of an operation. An Exception occurrence signals an unusual outcome to
the receiver, e.g., an overdraft of an account (section 5.7.2). A CallWithReturn occur-

)XQFWLRQ: calcAllowedRequests (c: Cabin, currentFlr: Floor, intReqs: Set (IntRequest)
 extReqs: Set (ExtRequest)): Set (Request);

)XQFWLRQ�%RG\: calcAllowedRequests (c: Cabin, currentFlr: Floor, intReqs: Set (IntRequest)
 extReqs: Set (ExtRequest)): Set (Request);

$OLDVHV:
atFloorExtremities: Boolean ,V currentFlr.num = MIN_FLOOR_NUM RU

 currentFlr.num = MAX_FLOOR_NUM;
3RVW:

LI intReqs->notEmpty () DQG
(intReqs->any (true) = c.currentRequest RU�allowedToDropOff (c.mode)) WKHQ

UHVXOW->includes (intReqs->any (true))
HQGLI &
LI extReqs->notEmpty () DQG

(extReqs->exists (r | r = c.currentRequest) RU allowedToPickUp(c.mode)) WKHQ
LI extReqs->exists (r | r = c.currentRequest) WKHQ

UHVXOW->includes (c.currentRequest)
HOVH�-- allowed to make a pick-up

LI atFloorExtremities WKHQ
UHVXOW->includes (extReqs->any (true))

HOVH

UHVXOW->includes (extReqs->select(r | r.direction = cab.movement)->any (true))
HQGLI

HQGLI

HQGLI;
Page 20 of 28

rence triggers the synchronous execution of an operation that returns a result to the
sender (section 5.7.1). The result is modelled by an Event occurrence.

Often we use the term event with the meaning of any of the above kinds or even occur-
rences.

We use a naming convention to differentiate the different kinds of events: suffix “_e”
for an Exception, and suffix “_r” for CallWithReturn. The reason for this naming con-
vention is to help specifiers visually differentiate between different kinds of events.

Care must be taken that all parameters of an event sent by an operation have defined
values.

The System Interface Protocol defines the temporal ordering of the input events (as
shown in figure 4 for the elevator control system), but the events that are output by the
system during the execution of an operation are specified in the respective schema.
This is achieved by stating:

 • the type of the event and the destination actor type;
 • the condition(s) under which the event occurrence is sent;
 • the actual parameters of the event occurrence;
 • the destination actor instance(s);
 • and optionally any ordering constraints that the event occurrence may have relative

to other events output by the same operation.
The declaration of output events is written in the 6HQGV clause of the Operation
Schema. The 6HQGV clause is broken up into three (optional) sub-clauses called 7\SH,
2FFXUUHQFH, and 2UGHU. The 7\SH sub-clause declares the actor types together with the
event types that may be sent. The 2FFXUUHQFH sub-clause declares the named event
occurrences. The 2UGHU clause defines the constraints on the order that the events are
output.

As an example, let us consider a 6HQGV clause of an Operation Schema for a subsystem
of the elevator control system called cabin controller, which communicates with the
scheduler subsystem, the administration subsystem, the motor, and the door (figure 9).

%����0��Sends clause of an Operation Schema

It states by the 7\SH sub-clause that actor instances of type Motor, Door, Administration,
and Scheduler may be sent occurrences of the events Stop, Open, Message, and
GetNextRequest_r respectively. It also uses the 7KURZV keyword to indicate that an
occurrence of the exception NoRequest_e may be received by the operation instead of a
reply from the call triggered by an occurrence of GetNextRequest_r.

The 2FFXUUHQFH sub-clause declares an event occurrence of type Stop, Open,
GetNextRequest_r, and a sequence of event occurrences of type Message. The 2UGHU sub-
clause states that the sequence of message occurrences are sent before the stoplift occur-
rence, and the stoplift occurrence is sent before the openLiftDoor occurrence.

We propose that declaring a group of events as a sequence means that they are received
in the order that they are in the sequence, and events in a set or bag are not ordered.

6HQGV:
7\SH: Motor::{Stop;}; Door::{OpenDoor;}; Administration::{LogMessage;};

Scheduler::{GetNextRequest_r 7KURZV NoRequests_e;};
2FFXUUHQFH: stopLift: Stop; openLiftDoor: OpenDoor; gnr: GetNextRequest_r;

seqMessages: Sequence (LogMessage);
2UGHU: <seqMessages, stoplift, openLiftDoor>;
Page 21 of 28

Moreover, if a collection is specified, ordering is not dealt with, but deferred to later
design activities.

All event occurrences have to be created within the execution of the operation. There-
fore we propose to avoid explicitly stating that they were created in the postcondition
(to the contrary of new objects in the system).

Each actor has an event queue—just as the system has an event queue. If the actor is
able to deal with occurrences of a given event (type), then it is possible to state that an
event was placed in the actor’s (input) event queue as a result of an operation.

Hence, an event is specified as delivered by asserting that it is present in the event
queue of the destination actor. For example, the output of a request to the door actor of
the cabin controller system can be asserted in the postcondition of the Operation
Schema, corresponding to figure 9, in the following way, given that there is an associa-
tion from the cabin controller to its door that has the role name myDoor.

3RVW:
...
(self.myDoor).events->includes (openLiftDoor)
...

In addition to explicitly writing that an event is placed on the target actor’s event
queue, we propose a shorthand that we have found in practice to be more intuitive to
users and writers. It has the following form, where actorX denotes any identifiable actor
and eventOccurrenceX denotes any appropriate event occurrence:

actorX.VHQW (eventOccurrenceX)

and is equivalent to or syntactic sugar for:
actorX.events->includes (eventOccurrenceX)

We emphasize that VHQW is just a shorthand and should not be confused with a property
of the actor.

&�������
3�
'��
��������
��
�	
���	�
 �	
�	
456
������	�����	
 ��
��������
��
�����	
���
���	�
�������	��
�	
�	
�����7�
���	�
%�����
Note that because events have by-reference semantics, an event can be placed in sev-
eral event queues (multicast).

For example, we could imagine a situation where a fire alarm triggers a system opera-
tion that stops all moving lifts. An extract of the postcondition that asserts the output of
a stop event to all moving cabins could be the following, given emergencyStop: Stop and
movingCabins = self.cabin->select(c | c.movement <> Movement::stopped):

movingCabins.movedBy -> forall (m | m.VHQW (emergencyStop))

&�*��������#����1���#
��1�
������-������

����
In this subsection, we discuss our ideas on how to use Operation Schemas for model-
ing results returned by operations to other actors or subsystems.

Figure 10 shows two approaches for servicing a particular request from an actor. The
two approaches produce the same result. The first approach (top) shows a blocking call
from requestingActor to subsystemA. During the execution of this operation, subsystemA
executes a blocking call to subsystemB. Once the call returns, subsystemA returns the
result of the request to requestingActor. For modeling this situation, we will use Call-
WithReturn occurrences and operations returning results.

The second approach (bottom) achieves the same result by exchanging asynchronous
events. Consequently, two asynchronous calls are made to subsystemA, as opposed to a
single synchronous call in the first approach. This second case is handled with sending
Page 22 of 28

event occurrences as we have already seen in this paper. It is our preferred approach
and we recommend it for systems specified from scratch.

However, both approaches are needed when we are modeling already existing compo-
nents.

%�����2��Alternatives for Returning Results from “Calls”

A CallWithReturn occurrence has an associated result event (figure 11). It is possible to
navigate to this returned result.

%��������Relationship between a CallWithReturn and its Reply

With the event declarations shown in figure 11, here is a postcondition fragment that
asserts that a CallWithReturn occurrence was delivered to subsystemB and shows how
the returned result can be accessed via result.

subsystemB.VHQW (makeAQuery) & -- like for a non-blocking call

objX.addr = makeAQuery.result.param1 -- note the reply event has possibly many return parameters

The first line asserts that the event makeAQuery has been delivered to the actor instance
subsystemB. The second line asserts that the value attribute objX.addr was given the
same value as the first parameter of the result of the call. The assumption is that the
results are always available when the postcondition is evaluated.

Finally, we have to show how an operation returning a result can be specified by an
operation schema. In the postcondition that describes such an operation, the reply
event is referred to by the keyword UHVXOW, and from UHVXOW one can navigate to the return
parameters.

For example,
2SHUDWLRQ: SubsystemB::makeAQuery (): Param1Type;
3RVW:

UHVXOW = ReplyToMakeAQuery ((param1 => Color::blue));

We could have equally replaced the last line with:
UHVXOW.param1 = Color::blue;

The result event is implicitly sent back to the sender (who made the call), e.g., the fol-
lowing is redundant and may be omitted:

VHQGHU.VHQW (UHVXOW);

VXEV\VWHP$

VXEV\VWHP%UHTXHVWLQJ$FWRU

1: request 1.1: makeAQuery

VXEV\VWHP$

VXEV\VWHP%
UHTXHVWLQJ$FWRU

1: request 1.1: makeAQuery

2: replyToQuery2.1: replyToRequest

Versus

<<callwithreturn>> <<event>>

0..1
result

param1: Param1Type
MakeAQuery_r ReplyToMakeAQuery
Page 23 of 28

&�*����"$���
����
Despite our assumption for reliable communications, there are often situations where
the called actor cannot provide what was requested for. We will use exceptions for han-
dling these situations. For instance, in the example of figure 9, if the scheduler can not
return a request to be serviced it might throw an exception, rather than return some
“dummy” value. We require that any actor requesting a service that can throw an
exception must provide an exception handler. It may choose to pass it on, but this is to
be asserted explicitly in a handler. We therefore propose to add an additional clause in
the schema format called ([FHSWLRQV. This clause is used to handle all exceptions stated
in the 6HQGV clause (associated with the 7KURZV keyword).

The 3RVW clause of the schema should be written in such a way that the functionality
associated with exception handling is asserted within the ([FHSWLRQV clause and not in
the 3RVW clause. In the case that the called operation throws an exception, instead of
getting a result via the result rolename of the output event, the caller will receive an
exception in its event queue, and the semantics of the Operation Schema’s postcondi-
tion will be the conjunction of the 3RVW clause and the ([FHSWLRQV clause. It is possible
to write a specification that conforms to this rule because in the 3RVW clause, the expres-
sion, event.result->isEmpty (), is true if an exception occurred.

We demonstrate exception handling on a call to the scheduler. The handler deals with
the case when the scheduler is unable to return a request to be serviced, and instead
raises an exception called noRequests_e:

The 3RVW clause asserts that the scheduler actor, scheduler, is delivered gnr, an event of
type GetNextRequest_r, and if there is a reply, then the system’s current request is equiv-
alent to the nextRequest parameter of the result. The ([FHSWLRQ clause states that if the
exception occurrence of type NoRequests_e is thrown as a consequence of a call made
by the operation, then the condition after the +DQGOHG%\ keyword is fulfilled.

)������##
������������
In this section, we discuss how packages of OCL constraints can be used in a similar
way to libraries in programming languages and how we describe “creating” and
“destroying” objects in Operation Schemas. And, we describe some issues related to
the navigational style of OCL over n-ary associations.

)����	�-�
�����
���
�3
���

According to UML, packages can be used to store any kind of UML model elements.
OCL constraints are a subtype of model element in the meta-model. It is therefore pos-
sible to define a package that contains only constraints. Furthermore, one could well
imagine that a package could be used as a library or even just a common place to store
related constraints. Clearly, packages could be useful to the OCL modeler for storing
invariants, extensions to OCL types, parameterized predicates, functions, etc. For
example, we could imagine “importing” a certain package of functions into a schema,

3RVW:
scheduler.VHQW (gnr) &
LI gnr.result->notEmpty () WKHQ

self.currentRequest = gnr.result.nextRequest
HQGLI;
([FHSWLRQV:
noRequests_e () +DQGOHG%\

self.mode = Mode::express;
Page 24 of 28

like one would in Java, for example. Of course, the level of reuse would depend on
how generic the constraints supplied by the package are.

)�������

����
���(��
���
��������-4��
�

Instead of explicitly asserting that an object is created or destroyed with the execution
of an operation, we rather define creation and destruction in terms of what is part of
system state and what ceases to be part of system state. We judge an object as part of
system state if and only if it has a composition link either directly or transitively with
the system. For instance, an object that is a component of a component of the system is
also part of the system state by transitivity. Thus, “creating” an object requires only
that one asserts that a link was added to a composition association with the system
(direct or transitive), and “destroying” an object requires that one asserts that a link
was removed from a composition association with the system.

We have found that this approach simplifies the description of destruction in particular,
because it abstracts away from a particular implementation interpretation, i.e., we
could interpret removing the link between the object and the system as either instant
destruction (a call to a destructor), or as flagging the garbage collector, or even as a
prompt for the system to place the object back into the program’s object pool.

)����5
���

���

OCL was created with the main purpose of providing navigation of UML models and
consequently it is asymmetric with respect to associations. OCL’s style of navigation
has quite some advantages, e.g. there are not too many operators and they are easy to
understand, but there are also some drawbacks.

First of all, the addition of a new link between two objects can be easily misinter-
preted. For example, in a postcondition an expression like the following:

cab.intRequests->includes (req)

means that there is a new link between cab and req in the HasIntRequest association. It
can be easily misinterpreted as being a unidirectional link from cab to req, whereas the
condition is strictly equivalent to:

req.requestingCabin->includes (cab)

More seriously, it is impossible to use the navigational notation for higher-order asso-
ciations, and at least awkward to use it for handling attributes belonging to association
classes.

*�1�#

���6��3
The idea of Operation Schema descriptions comes from the work on the Fusion
method by Coleman et al. [6]. They took many ideas for Operation Schemas from for-
mal notations, in particular, Z and VDM. The Operation Schema notation that we
present here has a similar goal to the original proposal, but we have made notable
changes to the style and format of the schema. Several proposals for formalizing
Fusion models with Z and variants of Z have been proposed [2] [4]. One advantage of
these approaches is that they can draw upon already existing analysis tools for Z.

Z [26] and VDM [15] are both rich formal notations but they suffer from the problem
that they are very costly to introduce into software development environments, as is the
case with most formal methods, because of their high requirements for mathematical
maturity on the user.

The Z notation is based on set theory and classical first-order predicate logic. An inter-
esting feature of the Z specification language is the schema notation. A schema can be
viewed as an encapsulated structure, associated with some properties. Using the
Page 25 of 28

schema notation, it is possible to specify parts of a system separately, and then com-
pose the specifications for the parts to obtain the specification of the whole system.
Schemas are commonly used in Z to represent types, state spaces and operations.

In contrast to Z, which is strictly a specification notation, VDM offers notations that
provide a wider treatment of the software lifecycle. VDM supports the modeling and
analysis of software systems at different levels of abstraction. Both data and algorith-
mic abstractions expressed at one level can be refined to a lower level to derive a con-
crete model that is closer to the final implementation of the system. A VDM
specification written in assertional style can be refined into another VDM specification
written using statements, i.e., VDM has imperative programming constructs as part of
its notation. An even more complete treatment of the software development lifecycle is
offered by the B-method [1], which uses a formalism that has similarities to both Z and
VDM. It uses a unified notation for specification, design and implementation and is
supported by the B-toolkit which provides tool support for specification, animation,
design, proof obligation generation, automatic and interactive proof, and code genera-
tion.

The Catalysis approach [8], developed by D’Souza and Wills, provides action specifi-
cations. Catalysis defines two types of actions: localized and joint actions. Localized
actions are what we would term operations in our approach and joint actions are
related to use cases. In the endeavor to support controlled refinement by decomposition
through a single mechanism, Catalysis defines actions, which can be decomposed into
subordinate actions, at a lower-level of abstraction, or composed to form a superordi-
nate action, at a higher-level of abstraction. Furthermore, Catalysis defines joint
actions to describe multi-party collaborations, and localized actions to describe strictly
the services provided by a type. However, joint actions lack the ability of goal-based
use cases to describe stakeholder concerns due to the focus of pre- and postconditions
on state changes and not the goals of the participants/stakeholders. The activity of
assuring stakeholder concerns when writing use cases is often a source for discovering
new requirements and business rules. It is for these reasons that we did not merge use
case descriptions and pre- and postcondition descriptions of operations, but instead
chose to keep them separate.

Meyer [19] proposes design-by-contract; it is an assertion language that is integrated
into the Eiffel object-oriented programming language. Pre- and postconditions are
placed in class methods: require assertions (preconditions) are checked before their
respective method is executed and ensure assertions (postconditions) are checked after
the execution of the method; if either assertion fails then an exception is raised. All
assertions are made on the program state and for each class. Therefore assertions are
numerous and limited to the abstraction level of the implemented program. Design-by-
contract is also complemented by the BON method [28]. The BON assertion language
has similarities to OCL [20].

,�����#�����
The goal of this paper was to motivate and justify a number of enhancements and inter-
pretations that we made to UML’s Object Constraint Language while developing an
approach for pre- and postcondition assertions. We proposed a number of modifica-
tions for making OCL more effective when used by developers for writing and reading
pre- and postconditions: incremental descriptions, aggregates, structuring techniques,
etc. Also, the paper discussed our proposal for specifying events and exceptions and
delivering them to actors.
Page 26 of 28

We defined a list of criteria, detailed in section 1, to measure our approach and guide
its design. Currently, we believe our approach fulfils, more or less, the first five criteria
and goes someway in fulfilling the last three ones—part of our future work. Our
approach conforms to UML (criterion 1) and we propose a model that is sufficiently
precise and consistent that the transition to design can be performed in a systematic
manner (criterion 2). Also, we believe that we were able to show that with our
approach usability does not necessarily have to be traded-in against rigor. For example,
we believe that the application of the minimum set principle and our frame assumption
makes it easier to formulate correct postconditions (criterion 3). We proposed parame-
terized predicates and functions to manage reuse and to support modularity (criterion
4). Our model offers both operational and representational abstraction (criterion 5): the
pre- and postconditions avoid design details thanks to their declarative description and
because the state of the system is defined in terms of domain concepts and not software
components. Currently, we have a prototype tool that supports our approach by check-
ing both syntax and type correctness (criterion 6). Our ideas for modeling performance
constraints on the SIP (criterion 7) and concurrent operations (criterion 8) are pub-
lished elsewhere [25].

Our approach has been successfully taught to students and practitioners and used in a
number of small-to-medium sized projects. This leads us to believe that Operation
Schemas based on OCL are not only a powerful, but indeed a usable mechanism for
precisely describing operations.

For examples of our approach applied to several case studies see [35].

References
[1] J. Abrial. ���� ,-,��.%�)����
�
�� �	��	
��� ���/�

�
��. Cambridge University Press,

1996.
[2] K. Achatz and W. Schulte.)���	�
��00�/�������
���	��� �������
�

��0 1���-2. In J. P.

Bowen, M. G. Hinchey, and D. Till (eds.): ZUM’97: The Z Formal Specification Notation,
LNCS 1212 Springer, 1997.

[3] A. Borigda, J. Mylopoulos and R. Reiter. 0
������	
����	� �����
��	�����	����������
-
���
�. IEEE Transactions on Software Engineering, Vol. 21, No. 10: October 1995, pp. 785-
798.

[4] J-M. Bruel and R. France. �	

���	��
��3/��������������	�
����������
���
�. Proceedings
of the OOPSLA’98 Workshop on Formalizing UML: Why? How?, Vancouver, Canada,
1998.

[5] P. Chen; �����
����-4��
���
�����/����5���
	��)�3
������6��������
�
. ACM Transac-
tions on Database Systems, 1(1), 1976, pp. 9-36.

[6] D. Coleman et al. 0 1���-0	��
������7������
�%����������
�/�����. Prentice Hall, 1994.
[7] S. Cook, A. Kleppe, R. Mitchell, J. Warmer, and A. Wills. ����
�
��������
��8�����0��

�8�	�����
�. Second International Conference on the Unified Modeling Language:
UML’99, Fort Collins, USA, 1999.

[8] D. D’Souza and A.Wills. 0 1����(������
�
���

���	
����	.��9����3/�%������
�
�����
)��	�
��. Addison-Wesley 1998.

[9] J. Daniels et al. �

��%��	
�.�
�����������
	���
	
��8. OOPSLA 2000 Companion from
the Conference on Object-Oriented Programming, Systems, Languages, and Application,
USA, 2000.

[10] K. Finney, N. Fenton, and A. Fedorec. �������������	����	���
���������	���
�� �����������	-
�
����������
���
�. IEEE Proc.-Softw. Vol. 146, No. 4, August 1999.

[11] D. Firesmith. 3����
���/�����
��:������
��. Proc. 30th Conference on Technology for
Object-Oriented Programming Languages and Systems (TOOLS-30), pp. 184-193, IEEE
Computer Society, 1999.

[12] M. Fowler; 3���

��) �����
���. Distributed Computing Magazine, 1999 (electronically
available at http://www.martinfowler.com/articles.html).
Page 27 of 28

[13] M. Glinz; �	� �����

���������
��������3/��
��
�4�;��	���
�����������
���
��

��
��.
Proceedings of the Tenth International Workshop on Software Specification and Design,
San Diego, 2000, pp. 11-22.

[14] J. Guttag et al. �����
	����
����������������
���
��

��
���. IEEE Trans Soft Eng 2(5),
September 1985.

[15] C. Jones. ������
���������
	����7������
��3��
��6�/. Prentice Hall, 1986.
[16] M. Kandé and A. Strohmeier. ���
	���
�3/���	��������	������
	��)	��������	������	��-

���
�. UML 2000 - The Unified Modeling Language: Advancing the Standard, Third Inter-
national Conference, York, UK, October 2-6, 2000, S. Kent, A. Evans and B. Selic (Eds.),
LNCS (Lecture Notes in Computer Science), no. 1939, 2000, pp. 513-527.

[17] B. Kovitz; �	
����
�������
	��4�;��	���
��%�)�/

�
�������
��
��

�������. Manning 1999.
[18] C. Morgan. �	��	
���
���	�����������
���
�. Second Edition, Prentice Hall 1994.
[19] B. Meyer. 0 1���-0	��
���������
	����
��	�����
. Second Edition, Prentice Hall, 1997.
[20] R. Paige and J. Ostroff.)�����
	���
���� ����,���
����0 1����<��
���
�

�� ����3
�����

/�����
���

��
��. UML ‘99 - The Unified Modeling Language: Beyond the Standard,
Second International Conference, Fort Collins, CO, USA, October 28-30, 1999, Robert
France and Bernard Rumpe (Eds.), LNCS (Lecture Notes in Computer Science), no. 1723,
1999, pp. 67-82.

[21] B. Potter, J. Sinclair and D. Till.)
��
�	�������
������	�
����������
���
�

��2. Prentice
Hall, 1991.

[22] M. Richters and M. Gogolla. 0
���	�
��$�
������3/��0 1������
��	
�
���

��
���0��.
In Tok Wang Ling, Sudha Ram, and Mong Li Lee, editors, Proc. 17th Int. Conf. Conceptual
Modeling (ER'98), pages 449-464. Springer, Berlin, LNCS Vol. 1507, 1998.

[23] S. Sendall and A. Strohmeier. 3/�-
���������
�)

�����. UML ‘99 - The Unified Model-
ing Language: Beyond the Standard, Second International Conference, Fort Collins, CO,
USA, October 28-30, 1999, Robert France and Bernard Rumpe (Ed.), LNCS (Lecture
Notes in Computer Science), no. 1723, 1999, pp. 278-291, extended version also available
as Technical Report (EPFL-DI No 99/319).

[24] S. Sendall and A. Strohmeier. �	���3����
��������������0��	
���
���������
���
�. UML
2000 — The Unified Modeling Language: Advancing the Standard, Third International
Conference, S. Kent and A. Evans (Ed.), LNCS (Lecture Notes in Computer Science), no.
1939, pp. 1-15; Also available as Technical Report (EPFL-DI No 00/333).

[25] S. Sendall and A. Strohmeier. ��������
����
��		�
���������,��
7��	�

������
����
-
��	
�
���3��
��0���

��3/�. <<UML>> 2001 - The Unified Modeling Language: Model-
ing Languages, Concepts and Tools, Fourth International Conference, Toronto, Canada,
October 1-5, Martin Gogolla (Ed.), Lecture Notes in Computer Science, Springer-Verlag, to
be published in 2001. Also available as Technical Report EPFL-DI No 01/367.

[26] J.M. Spivey. ����2�<��
���
%�)�4���	�
���/

�
�. Prentice Hall, 1989.
[27] A. Strohmeier and S. Sendall. 0��	
���
������
��

��0��. Technical Report (EPFL-DI

No 01/358), Swiss Federal Institute of Technology in Lausanne, Software Engineering
Lab., 2001.

[28] K. Walden and J.-M. Nerson. ��
������0 1���-0	��
���� �����
	��)	��������	�%�)

�����

�������
����4���
 ����������. Prentice-Hall, 1995.

[29] J. Warmer and A. Kleppe. ����0 1������
��	
�
���

��
��%��	������/�����
��9����3/�.
Addison-Wesley 1998.

[30] J. Wing.)����-���	���)��	�
��������������
���	��	
��. Technical Report TR-299, Massa-
chusetts Institute of Technology, Laboratory for Computer Science, 1983.

Electronic Resources
[31] Klasse Objecten. 0�����
��	%�0��������. http://www.klasse.nl/ocl/index.htm
[32] OMG Unified Modeling Language Revision Task Force. 0/:�3
������ /�����
�� �

-

��
�����������
���
. Version 1.3, June 1999. http://www.celigent.com/omg/umlrtf/
[33] Software Engineering Lab., Swiss Federal Institute of Technology in Lausanne. ������
-

����/�����. http://lglwww.epfl.ch/research/fondue/
[34] Software Engineering Lab., Swiss Federal Institute of Technology in Lausanne. 0��	
���

�����
�. http://lglwww.epfl.ch/research/operation-schemas/
[35] S. Sendall. ��������
���
��
����������. http://lglwww.epfl.ch/~sendall/case-studies/
Page 28 of 28

	1 Introduction
	2 Motivation for Operation Schemas
	3 Operation Schemas and OCL
	3.1 Presentation of OCL

	4 Elevator Control Example
	5 Proposals
	5.1 Consistency of Associations
	5.2 Frame Assumption
	5.3 Incremental Descriptions
	5.3.1 Minimum Set Principle
	5.3.2 Incremental Plus and Minus

	5.4 Shorthand Proposals for OCL
	5.5 Interpreting Composite Values in OCL
	5.6 Structuring Schemas by Parameterized Predicates and Functions
	5.7 Events, Calls, and Exceptions
	5.7.1 Modeling Results Returned by Operations
	5.7.2 Exceptions

	6 Miscellaneous Issues
	6.1 Libraries and Packages
	6.2 Creation and Destruction of Objects
	6.3 Navigation

	7 Related Work
	8 Conclusion

