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multiple objects can bexecuted as ithey happened in a
sequential environment. If something happens that
prevents normal completion of the transaction, then it can
be aborted,i.e. all state changes made within the

useful for numerous applications, the development of netkansactiorareundone. Once &ansaction hagompleted

models to reflect the ever-increasingcomplexity and

diversity of modern applications is &ery activearea of

research.Analysis of the existing models mifiltithreaded

transactions shows that thejther give too muchreedom

to threads and do not control their participation in

transactions, or unnecessarily restrittte computational
model by assuming that only orread can enter a
transaction.Another important issue, which mampodels

do not addressproperly, is providingadequateexception

handling features. Inthis paper a new model of
multithreaded transactions is proposedis detailed

description isgiven, including rules of thread behaviour

when transactions startcommit and abort, and rules of

exception raising, propagation and handlifichis model is

supported byenhancecerror detection techniques to allow
for earlier error detection and for localise@covery.General

approaches to implementing transaction support are

discussed and a detailed description of an Ada
implementation is given. Special attention pgid to

outlining typical applications forwhich this model is
suitable and to comparing it with several known

approaches (Coordinated\tomic actions, CORBA, and

Argus).

1. Transactions

The notion of (atomic) transaction was finstroduced
in database systems in order to correbtipdle concurrent
data updates and to provitkult tolerancewith respect to
hardware failures. A transaction groups a number of
simple operations together, making the whealppear
indivisible with respect toother concurrenttransactions.
Under the control of transactionsupdates involving

successfully, i.e. is committed, theffects become
permanentand visible to the outside. Thearansaction
scheme relies on three standard operatistast, abort and
commit, which mark the boundaries of a transaction. This
approach focuses on preservingnd guaranteeing
important properties adata,objects, omresourcesffected

by the operationgperformedinside the transaction. In
databasesystems, the focus is igeneral on “pure’data,
whereas in middlewarfor distributedsystems, aesource

is usually data together with related operations, often
called atransactional object. Transaction takesre of
atomicity, consistency, isolation and durabilitglled the
ACID properties [3]. Theatomicity property, understood
here as indivisibility of transaction execution wigspect

to errors(all-or-nothing semantics), is vital fgproper
system structuringand for providing fault tolerance.
Consistency means that the execution of aapsaction

on its own is a correct transformation of tiieta anddoes
not violate their integrity. Isolation plays a major role in
providing inter-transaction concurrency: when it holds, the
designer of aransaction thaaccessesomepiece ofdata
does not have to know about other transactamtessing
the samepiece concurrently. It iguaranteedhat, even
when several transactiorsre executedsimultaneously,
they do notinterferewith eachother, andthe recovery of
any of them is separated from the execution of the others.
Durability is understood athe ability ofdata to survive
any assumed hardware faults that happenafter the
transaction has been successfully completed. aHility

of transactions to hide the effects of concurrency and at the
same time act as firewalls foerrors makes them
appropriate building blocks for structuring reliable
distributed systems.



The basic transaction model, alscalled flat
transactions, wasxtended in order toprovide more
flexible support for concurrency and recovenyd toallow
for recursive system design. Thestedtransactiormodel
[12] allows transactions to start subtransactiotis)s
creating a tree of transactions. A subtransacatem either
commit or rollback;however,its commit doesnot take
effect,i.e. is not visible to theutside world, unless the
parent transaction commits. The advantage of
subtransactions is that thegan abort independently
without causing the abortion of théentire” top-level
transaction. Sinceupdates of transactionabbjects by
subtransactionare isolated fromupdatesmade byother
sibling transactions, siblings can be executed
concurrently.

Recently theconcept of multithreaded transactions
(MTT) has beendeveloped toallow several active
components, i.ethreads omprocesses, to take part in the
same transactioand tooperate together othe same set
of data. Ondhreadstarts a transaction, then othdearn
its identity, which they can use to access data thadsr
the control of the transaction. Finally, one of theeads
can abort or commit the transaction. Thischnique is
very general as it leaveshread control to the
programmers. Unfortunatelthis can be dangerous. For
example, ahreadcandecide toleave the transaction and
perform some other operatiobsforethe outcome of the
transaction has been determined, athreadcanabort the
transaction without notifying the othdinreads. Another
problem of MTT is that transactional objectight not
be aware ofintra-transaction concurrencygnd therefore
consistent execution ofoncurrent operations is not
guaranteedTypical examples of systems using the MTT
model are the CORBA Object Transaction Service and
Arjuna [13].

2. Exception handling
Although transactionsare able to toleratehardware

faults, they cannotlealwith many other types of faults,
e.g. environmental faultsoftware defectsfaults of the

although they aréntendedfor very different purposes. To
achieve this separation, the followingprogramming
language features are needed:

« Contexts are associated with programming units;

* Programming units have interfaceg)ere exceptions
can be declared;

» Contexts can be nested.

The majority of existing exceptionhandling
mechanisms usdynamic exceptiorcontext nesting. In
this casethe execution of the contexan be completed
either successfully or binterfaceexception propagation.
In the latter case thpropagatedexception istreated as an
internal exceptiorraised inthe containing context The
simplest example ofthis approach are nesteggrocedure
calls. Actually this is the dominatingpproachvery
suitable for the client/servandthe remoteprocedurecall
paradigms and used in the majority of systems.

Exception handlingeeaturesshould be inaccordance
with the design and programming abstractions. It is
clearly incorrect and error-prone to apply sequential
exception handling for concurresystems. Following the
previous discussion, the bestpproach is tomerge
exception handlingand transactions by considering
transactions as exception contexts. Thapproach
facilitates system design and makes it possiblolgrate
additionalkinds of faults. Another important benefit is
system state consistency in theesence ofexceptions.
Existing exceptionhandling mechanisms usuallgave
the responsibility for consistency to the application
programmer, which igrror-prone, as practicakperience
shows.

Many researcherbaverealisedall these benefits. The
object-based languagargus [10] is a very interesting
example of MTT enriched with powerful exception
handling: applicationsare composedout of guardians,
each of whichprovides an interfaceonsisting ofcallable
procedures, calleandlers. Ahandler carfork concurrent
threadswhich arejoined when theéhandler is completed.
The execution of &andlerforms an atomic transaction,
andnested handlecalls form nestedtransactions Argus
provides a very powerful extension of sequential exception

underlying software, etc. The most general mechanism fohandling: handlers can havexceptionsdeclared intheir
dealing with such abnormalities at the application level isinierface, whichare propagated to a single-threaded caller

exception handling [2].

Exception handlingfeatures allow programmers to
declare exceptionsand provide them with the ability to
treat a program block as axceptioncontext Handlers

when they are signalled bytlareadinside the transaction.
Any threadmay decide tosignal an exception with or
without transaction abort. The Argasodel proved to be
very influential: several systems have beendeveloped

are associatedvith such a context, so that when an which rely on similar computational modelimcluding
exception is raised in this context the execution stops ang/inari/ML [4] and Transactional Drago [5].

the handler corresponding tthe exception issearched
among thehandlers. Notethat there are some models
where anexception can beropagatedstraight to the
outside of the context. In owpinion, a vitalfeature of
any exception handling mechanism is differentiate
between internal exceptionsto be handledinside the
contextand external exceptionswhich are propagated to
the outside of the contexthesetwo kinds ofexceptions
arenot clearly separated irmost programmindanguages

Let us now analyseexisting exceptionhandling
models in transactionaystems. Classicaransactional
systems usually do not incorporate exception handling and
use returrerror codesnstead.There aremany problems
with this approachFirstly, using return codeshas been
always beerconsidered bagracticeand apoor substitute
for a proper exception handlingnechanism.Secondly,
even if the host language has exception handéatures,
they are not integratedwith the transaction mechanisms.



The CORBA Object Transaction Service is an example ofconsistent state to anothene. Also, if atransaction

this situation. CORBA OTS ibased on asophisticated
MTT model but it provides only sequential exception

aborts, the system state remains unchanged.
Threads working on behalf of a transactame referred

handling, i.e. that of the host languages C++ or Java. Ario as participants. Externéthireadsthat create orjoin a

exceptionraised in anMTT can cross the MTT border
unnoticed,because aMTT is not an exception context,
and eachMTT participantdeals with its exceptions in
isolation. Actually, the border of transaction is ratearly
defined asthreadstaking part in a transactioare not
coordinated inany way. Therefore threadcoordination in
both normaland abnormal situations is the application
programmers' responsibility.

It is symptomatic that thelesigners of Enterprise
JavaBeans havemade some efforts in combining
exception handlingvith transactionsBasically the MTT
model issimilar to the CORBAmodelbut the situation
is different with respect to exceptiorhandling. If an

exception is signalled by a transactional object to the
threadparticipating in the transaction, the exception can

affect the execution of the whole transaction: it can
preparethe transaction for abort orommit, signal an
exception, abort the transaction, etc. However, an MTT i
not an exception contexand coordination of multiple
participants is left to the application programmer.

Argus includes exception handling but has a somewhal

restrictive computational model: no outsitl@eads can
join transactionsand threads can bdorked andjoined
only on the boundary of a transaction.

Introducing a more sophisticated model whings the
flexibility of the general MTT model but providdsatures
for disciplined exception handling ismportant for many
applications. Our analysis shows that it is not trivial to
devise aconsistent scheme, especially in th@sence of
concurrency.

In the rest of thepaper we present a new transaction

model called Open Multithreaded Transactions (OMTT),
that is more flexible than the Argumsodelbut still allows
dealingwith threadsand exceptions in a disciplined and
structured fashion.

3. Open multithreaded transactions

In the computationaimodel of openmultithreaded
transactions #hreadcan terminate or fork anothéread.
The modelallows threads tgjoin an ongoingtransaction
at any timeand to be forked and tterminate inside a
transaction.There areonly two rules that restricthread
behaviour: athread createdutside a transaction cannot
terminate inside the transaction, antheead createthside
a transaction must also terminate inside the transaction.

Within a transaction a set of transactional objects cal
be accessed bthe participatingthreads,and individual
threadsinside a transaction collaborate by accessing th
same transactional objects. Thhreads have to be
synchronised inorder to guaranteeconsistency of the
accessedransactional objects. Transactioae units of

S

transactionare calledoined participants a threadcreated
inside a transaction by a participant dalled aspawned
participant

Let us now describe open multithreaded transactions in
detail.

Starting an open multithreaded transaction:

* Any thread can start a transactionwilll be the first
joined participant of the transaction. The nevadgated
transaction ipen.

e Transactions can be nested. A participant obpen
multithreaded transaction canstart a new (nested)
transaction. Sibling transactions created by different
participants execute concurrently.

Joining an open multithreaded transaction:

« A thread can join a transaction as long as it is open,
thus becoming one of itwined participants. To do so it
has tolearn (at run-time) or toknow (statically) the
identity of the transaction it wishes to join.

« A threadcanjoin a top-level transaction #ndonly
{f it does not participate in any other transaction.jdia
a nested transaction,tlireadmust be a participant of the
parent transaction. Ahreadcan only participate in one
sibling transaction at a time.

e A thread spawned by @articipant automatically
becomes a spawned participant of the innermost
transaction in which the spawnirtgread participates. A
spawnedparticipant can join a nested transaction, in
which case itbecomes a joined participant of thested
transaction.
¢ Any participant of a transaction can decidectoseit
at any time. Once the transaction is closed, no jogwed
participantsare acceptednymore. Note that participant
can still spawn athread. If noparticipant closes the
transaction explicitly, it closesnceall participantshave
finished (see below).

Concurrency control
transactions:

« Accesses to transactionabjects by participants
inside a transactioare isolated fromaccesses by other
transactions. The only visible information that might be
available to the outside world is the transaction identity to
be used by threads willing to join.

e Accesses by a chiltransactionare isolated from
accesses hy the parent transaction.

Inside of a given transaction,

in open multithreaded

conventional

fechniqueslike mutual exclusionare used to guarantee

consistency of transactional objects whaccessed by

cSeveral participants.

Ending an open multithreaded transaction:
« All transaction participantBnish their work inside
the transaction by voting on the transaction outcome.

system structuring. They transition the system from onePossible votes ammitandabort.



e The transaction commits ifand only if all
participants commit. In thigase, thechangesmade to
transactional objects on behalf of the transacti@made

e Each participanhas a set of internaxceptions
that must béhandledinside the transactiomnd a set
of external exceptions whiclare signalled to the

visible to theoutside world. If any of the participants outside of the transaction, when needed. fieeefined

wishes to abort, the transaction aborts. In that case, akxternal

exception Transaction_Abort islways

changesmade totransactional objects on behalf of the included in the set of external exceptions.

transaction are undone.

« Once a spawnegarticipant has given its vote, it

terminatesmmediately.
« Joined participantsare not allowed to leave the

transaction, i.e. they are blocked, until the outcome of the

transaction has beedetermined.This means that all
joined participants of acommitting transaction exit

Internal exceptions:

¢ Inside atransactioneach participant has a set of
handlers, one foeachinternal exception thatan occur
during its execution.
» The termination model is adhered &fter an internal
exception israised in aparticipant, thecorresponding
handler is called to handle iand to complete the

synchronously. At the same time, but only then, theparticipant's activity within the transaction. Tihandler

changes made ttvansactional objectare madevisible to

cansignal anexternal exception if it imot able todeal

the outside world. Joined participants of a transaction thaith the situation.

abortscanexit asynchronously, buthangesnade to the
transactional objects are undone.

e If a participating thread “disappears’from a
transaction without voting on its outcome, tin@nsaction
is aborted, as this case is treated as an error.

Figure 1 shows two opemultithreadedtransactions:
T1land T2. Threads A, Bnd C argoined participants of
the containing transaction Tlnside T1 the thread C
forks a newthread D, a spawnegarticipant, which
performs some work on behalf of the transacaodthen
terminates.There is a nestetransaction T2 inside T1
with three joined participants: B, C and D.

A >
T1
B >
T2
C >
D\ ]
time s

Figure 1. An example of open
multithreaded transactions

4. Exception handling in open multithreaded
transactions

In this section wediscuss the exceptiomandling
mechanisndevelopedor OMTT. Two importantdesign
decisions are:

e If a participant “forgets” to handle aninternal
exception, theexternal exception Transaction_Abort is
signalled.

External exceptions:

« External exceptionsre signalled explicitly. Each
participant can signal any of its external exceptions.

e Each joined participant of a transactidras a
containing exception context.

* When an external exception is signalled bjpiaed
participant, it ispropagated tdts containing context. If
several joinedparticipants signal armexternal exception,
each ofthem propagatests own exception toits own
context.

« If any participant of a transaction signals extternal
exception, the transaction mborted,and the exception
Transaction_Abort is signalled tall joined participants
that vote commit.

« Because spawnegarticipantsdon not outlive the
transaction, they cannot signal amxternal exception
except Transaction_Abort, whiatesults in aborting the
transaction.

Because the OMTT model provides transaction
nesting, the exceptionandling rules have to bapplied
“recursively” by the programmer. Alexternal exceptions
of a joined participantare internal exceptions of the
calling environment.

If an interface exception has beerraised, all
participants should baformed about the abort of the
transaction as soon as possibidere aretwo distinct
approacheslockingandpre-emptive

In the blocking approacteachparticipant completes
the transaction by voting commit or by signalling an
interfaceexception. If a participant votes abort, thtber

« Distinguish between internal and external exceptions participants are informed of the abort only when thaye

also called interface exceptions;

« Interpreting any external exception propagated from a

transaction context as an abort vqgtassed bythis
participant.
The following rules govern the OMTT exceptibandling
mechanism.

Classification of exceptions:

completed or also signal an interface exception.

In the pre-emptive approach, the transactioes not
wait for the participants to completbut interrupts all
participants as soon as one of them kamalled an
external exception.



5. Transactional objects

5.1. Two-level concurrency control

In the OMTT modelaccess tdransactional objects
must becontrolled attwo levels. The firstoncern is to
dealwith competitive concurrency,.e. to guarantee the

isolation property of all updates made within a transaction

with respect toother transactions runningoncurrently.

The second concern is to handieoperativeconcurrency
within a transaction, i.e. tensuremutual exclusion of
individual operationsperformed by participants of the
same transaction.Generally speaking, competitive
concurrency control can use existing optimistic or
pessimisticconcurrencycontrol techniqueg3]. With the

optimistic techniques, when transaction abortuised to

compensate for a consistendplation, the abortcan be

either reported to the containing transactionsinalling

the Transaction_Abort exception or the saimamsaction

can be re-tried. The latter approaelguires additional run-
time support for restoring thehread states. In the
presence of cooperative concurrencgnsistencycan be

guaranteed simply by using monitors or similar
techniques found in modern concurrdanguages, for
example protectedobjects in Ada 95, or objects with
synchronised methods in Java.

5.2. Enhanced error detection

Early error detection isvitally important for reliable
modernapplications; it makerror recovery faster and
more effective. To achieve this goal, special
methodologies must besed during development. The
OMTT model strives to makewheneverpossible, the
recovery local to individual transaction participants.
Checkscan beperformedeither by a participatinghread
or by a transactional object.

Firstly, all participants have tacheck all operation
parameters they exchangdth transactional objects his
is in line with the principles of defensive programming.

Secondly.error detection inhanced byself-checking
transactionalobjects Such objectsincorporate pre- and
post-conditionsand invariants. When any of these is
violated during the execution of an operation, an
exception is propagated to the calling participant.

There is a considerable body of researabout
designing classes of objects together witke- and post-
conditions and invariants, as well as about generating
time checks for verifying them. The best knoexample
is BertrandMeyer's "design by contract" methodology
supported by features of EiffeJ11]. This is how
transactional objects should lesignedwhen used in
open multithreaded transactions. Suctieaign guarantees
early error detectiomndlocaliseserror handlingwithin a
single transaction participant.

5.3. Exception handling and transactional
objects

The previously described error detection techniques
make error containment strongeandincreasethe chances
that an internal exceptiocan behandledlocally by a
participant. Of courseherewill still be situationswhen
they fail. In that case, the transaction is aborted and all the
changesmade totransactional objects on behalf of the
transactionare undone, and an external exception is
propagated tothe calling context. Ifadditional error
recovery isneeded, itmust beperformed atthe higher
level context.

Just as the OMTTmodel does not support tight
collaboration among participants by providing means for
direct communication, there is also no automatic
cooperative exception handling. Loose collaboration
among participants of an OMTT transaction can falkee
through transactional objects. Exception handling follows
the same pattern. Twapproaches arpossible here. With
the first one, a transactional object may be left in an
erroneous state after propagating an exception to a
participant that uses. Subsequent operation invocations
by other participantare likely to raise an exception as
well. The second approachallows the programmer to
apply a form of looseooperative exception handling: the
participants may decide to perform corrective or
compensation activities on some transactional objects as a
part of their local handling to recover from tegor which
might have spread within the transaction.

6. Typical uses of OMTTs

Our analysis shows that the OMTmodel is useful
for complexdynamic systems in which more than one
threadcan participate in &ansaction, but the number of
transaction participants is not known statically. It is also
useful for systems in whiclthreadsparticipating in a
transactionare createddynamically. Another important
kind of useare systems thatchieve differenttypes of
fault tolerance byusing bothtransactional techniques and
exception handling.

An important aspect of these systems is autonomy of
the threadsthat eventually participate in a transaction:
although they perform joint work inside a transaction and
have acommon goal, theyare not tightly synchronised
and can perform thejobs even whemot all of them are
in the transaction. Irorder to preservetheir autonomy,
participantscooperatevia transactional objects only and
handle their internal exceptions separately.

Without the cooperation facilities present in the
OMTT model, such systems must hiesigned and
structuredout of individual transactiongather than of
units of cooperation. Such amchitecturemight bemuch
more complex. Also,becauseall these transactions



compete for the same transactional objeptsformance
might be poor.

Typical examples of such systermere auctions,
systems with manyreaders / writers, systems with
workers sharing jobs, etc. We are designing and

implementing an online auction system. An auction isimplementation.

organised around a vendand is designed as @MTT.
Besidesthe vendor, there is an accountirgystem that

OMTT-specific concurrencgontrol policies must be
developedfor transactional objects ta@orrectly address
intra- and inter-transaction concurrency.

In this approachbased on a middlewar¢he main
effort is directed towards thread coordination
Another approach starts with a
concurrent programming language providing extensive
threadcontrol, and addstransaction support. This is the

participates in the auction transaction, but the number ofipproach taken in our prototype implementatiesented

bidders is not known iradvance andnay vary oveitime,
because &iddermight want to join aralreadyongoing
auction.

Another promising applicationarea for OMTT is
developing complexsystems of systems.Individual
subsystems are essentially autonomani it isimportant
to allow them,whenevemossible, todeal separatelywith
their exceptions even whethey participate in goint
activity. Besides, by the very nature of these systehgy;
have todealwith faults from awide range oftypes, and
have to accommodatiéexible participationbecause they
evolve.

7. Implementation approaches

There areseveralways of implementing theOMTT
model. Different run-time supportsare neededfor single-
processor, multi-processor and distribusedtingsbecause

of different fault assumptions and different communication

models. A  complete distributed decentralised
implementation has to rely orordering and group

in the next section.
8. Prototype implementation

We areimplementing OMTT support foAda 95[7].
One goal of this development is the smooth integration of
the native concurrency features oAda andthe newly
developedOMTT features.Generally speaking,there are
two types of services: the onedated to threadontrol,
tasking in Ada terminologyandthe other oneselated to
transactional objects. The latter is implemented as an
extension of the TransLifsamework presented ifb, 6].
The approach isbased ondesign patterns irorder to
maximise modularityandflexibility. The OMTT support
can be easily customised for specific applicatierds by
using object-oriented programming technigues, because:

« it supports optimisticand pessimistic concurrency
control;

« it provides differentlocking schemes, likeead /
write locking and commutativity based locking;

« it is able to employ different kinds of storagdevices

communication protocols. If the communication protocol [8, 9];

is based on the Internet, then the OMTT implementation

can be used to develop complex Internet applications.
In order tominimise implementation effort, thbest

approach is torely as much as possible on existing

transactionmiddleware and threadontrol offered by a

concurrentprogramming language. The implementation

effort then consists in integrating these two capabilities.
A very promising approach for distributedystems is

e it offers a number of recovery strategies,i.e.
Undo/Redo, NoUndo/Redo and Undo/NoRedo;

« it can use physical logging or logical logging;

* it supportsdifferent caching techniquedjke last
recently used or least frequently used.

In order to become a transactionabject, each data
object has amssociateadnemory object, a storageit, a
lock managerand a proxy object. The proxyobject

to rely on existing transactional services, for example thabrovides the samimterface aghe object itselfinstead of

of CORBA, and toaddthreadcoordinationwith regard to
transactions.

The mainidea is tointroduce a coordinatarbject for
eachopenmultithreadedransaction, that keepsferences
to all transaction participants. In turn, allansaction
participants mustkeep a reference tothe coordinator
object. The coordinator object also keegferences to all
coordinator objects of nested transactions.

Each open multithreadedtransaction ismapped to a
CORBA transaction. Theoordinatorobject executes the
CORBA transaction begin, abort and commit operations.

Clearly, the thread handling facilities of thehost
language camot beused assuch. Threadspawning and
joining has to bemplemented in such a way that the
coordinator keeps track ofall thread creations and
terminations, and of all exception raising and signalling.

accessing alataobject directly, participants invoke the
operations on the proxy object, which performs the
required recovery, logging and concurrency control
operations. If locking is used, it starts by obtaining a lock
for the operation from the lock manager. That is flaee
where cooperativeand competitive concurrency control
shows through. lrorder to execute anoperation on a
transactional object, two locksnust be acquired: the
transactional lockand the mutual exclusion lock. The
transactional lockguaranteessolation with respect to
other concurrently executing transactions. Tineitual
exclusion lockguaranteegonsistent updating of thdata

by participant thread€Onceboth locksare acquired, the
proxy object informs therecovery manager of the
operation call,and then passes the operation on to the
memory object. The memory object calls tlache
manager, thatloads the data object's state from the



associated storage unit, if necessary. Finally, the
operation is invoked on th#ataobject. After the call has
been executed, the recovery managertardock manager
arenotified. Only the mutual exclusion lock i®leased,
though. Thetransactional lock is onlyeleasedonce the
outcome of the transaction has been determined.

Our goal was toprovide the OMTT support at the
programming language levelithout modifying the
language. Wetherefore developed aset of service
procedures, a\Pl, and programming guidelines to be
followed when using OMTT. Clearly, the ARkcessarily
depends orthe features ofthe programming language.
Fortunately, Ada is very powerful and many
implementation details can be hidden from &f@l, while
still helping theprogrammer by enforcing correctse.

However, when it comes to OMTT exception handling,

we have toimpose somewhatomplicatedconventions,
becausehe nativeAda exception handling mechanism is
basically sequential and block-oriented.

transaction boundary unnoticed. Programmersmust
follow guidelines toavoid these kinds of problems. For
example, if all transactions in an application are
programmedusing the following template, thadherence
to the OMTT model is guaranteed:

begin
begin
Start_Transaction;
-- perform work
Commit_Transaction;
exception
when ...
-- handle internal exceptions
Commit_Transaction;
-- Or raise an external exception
when others =>
raise Transaction_Abort;
end;

Let us now explain the reason for the simplicity of the €xception

APl in Ada. Once a thread ipart of a transaction, it can
invoke operations on transactional objects. Tésovery
and lock manager must know on behalf of which
transaction the operation is executed. Most
implementations willthereforeneed topass aransaction
identifier (ID) as a parameter to eveoperation of a
transactional objectAda offers anative mechanism that
avoids this explicit parameter passing. Using task
attributes, it is possible tdeclare a datéype where a
transaction ID can be storethere is acopy of thisdata
type associatedith each thread inthe systemand when
the threadjoins a transaction, it isisedfor storing the
corresponding transactiold. When an operation of a
transactional object igalled, the supportcan check the
ID. As a resultthere is nodifferencefor an application
programmer incalling a transactional object or a normal
object.

There areseveralpossibilitiesfor defining anAPI for
the OMTT model. Let us start with therocedural
interface. Several procedures are needed:

e The procedure Start_Transaction starts a new
transaction. If the calling thread &ready aparticipant of
a transaction, a nested transaction is created.

* The procedureJoin_Transaction allows #iread to
join a transaction. ltchecksthat the callingthread is

either a participant of the parent transaction, or is notmplicitly

participating in any transaction.

e The procedure Close_Transaction
transaction by forbidding further joining.

* The procedure Commit_Transaction commits the
changes made on behalf of the transaction; it blocks
the outcome of the transaction has been determined.

» The procedureAbort_Transaction aborts theurrent
transaction; it does not block the caller.

This API is quite flexible, but it does not protect
programmers from makinmistakes. For example, it is
possible to start or join a transaction, fforget to vote

closes the

on its outcome, or to let an unhandled exception cross the

when others =>
Abort_Transaction;
raise;
end;

Another API uses another Adeature called controlled
types for transaction controhda controlled types allow
programmers to providéheir own proceduresvhich are
calledwhen an object of the type igeated, accessed or
goes out of scope. The ABffers atype Transaction that
can be used in the following way:

declare
T : Transaction;
begin
-- perform work
Commit_Transaction (T);
exception
when ...
-- handle internal exceptions
Commit_Transaction (T);
end;

In this approach thé&da block is both thdransaction
and the exception contextWhen the block starts the
procedurdnitialize of the Transaction object T islled
and starts a new transaction.
Commit_Transaction must bealled beforeexiting the
block, or else the implicitly called Finalizaocedurewill
invoke Abort_Transaction.

An object-orientedAPI is underdevelopment asvell.

It is based on an abstract tagged type Transaction_Type:

package Open_Multithreaded _Transactions is
type Transaction_Type is
abstract tagged limited private;
private
procedure Start_Or_Join_Transaction
(T: in out Transaction_Type);



procedure Close_Transaction
(T: in out Transaction_Type);
procedure Abort_Transaction
(T: in out Transaction_Type);
procedure Commit_Transaction
(T: in out Transaction_Type);
end Open_Multithreaded_Transactions;

A concretetransactionderivesfrom this abstract type
and adds application-specific operations, one feach
participant. When ahread wants to participate in the
transaction, it calls the corresponding operation.

8. Discussion

In our opinion, the OMTTmodel offersthe right
balance between unrestrictadread behaviour like in
CORBA-type MTT and the rather restricted model of
Argus [10]. Exception handling is an immanent part of
the model: to thecontrary of CORBA-type MTTs,
exception raising, handling, propagation, eszetightly
coupled with transactions, because transactions are
exception contexts. OMTT alwaykeep all threads
accessing transactional objeatsd all exceptionswhich
can happen inside a transactiomder control. Open
multithreaded transactions aueits of system design, and
exception handling isherefore designed #he same time
as the transactional structure.

Coordinated Atomic (CA) actions [14] is a well
known structuringechniguewhich combinesfeatures of
atomic actions [1l]and transactions. Multiple active
participantscan enter a CAaction to perform goint
activity inside: theycan use both local objects, for
cooperation,and transactional objects, alupdates of
which are isolated from the outside world. CAction
execution looks like a transactidar the outsideworld.
Exception handling is the main feature of actienovery:
all participants are involved in coordinated exception
handling if any of them raises an exceptionrd€overy
fails, an external exception is propagated to the containin
context.

Part of the motivatiorfor CA actionsare similar to
those for OMTT and many problenasdressed bpDMTT

can be solved by CA actions. But in our opinion they are

different: CA actionseffectively add transactional objects
to atomic actions, whereas OMTTs add thread
coordination toMTT. Thesearethe main distinguishing
characteristics of the OMTT model:

* Participants of a CA action collaborate closely: they

rely on eachother, theyare designedogetherand hence
aretightly coupled,andthey synchronise theiexecution
explicitly through localresources. OMTTsare intended
for designing systems with different, less entangling
type of collaboration, in which participantsave their
own reasons for taking part in the transaction andjaite
autonomousand independent.They are designed rather
separatelywith only limited knowledgeabout theother
OMTT participants.

*« The OMTTmodel is moreflexible: threads can be
created and terminated inside transactions.

« The OMTT model pays special attention tosing
enhanced errordetection and to providing special
mechanisms for supporting. As a consequenceerror
recovery is easieand more effective,and chances are
increased for successful local error recovery.

e In OMTTSs, an attempt is alwaysade to handle any
internal exception locally by a participant. Weave
decided against any form of coordinated exception handling
for several reasons. Firstly, the number dOMTT
participants is not known iadvance, antienceany form
of error handling that depends onthe presence of
participants other than the one thatsedthe exception
can be error-proneSecondly, exceptiondefined in one
participant mighthave no meaning in other participants.
Thirdly, we do not want to impose anynnecessary
additionalsynchronisation; wevould like to allow them
to act as independently as possible. Fourthly, dealing with
multiple exceptions whichmight beraised concurrently
(asdone in CAactions) complicates the implementation
and adds run-time overheddgal handling is usually less
expensive and more effective. Finally, ussgjf-checking
transactional objecticreaseghe chancethat errors are
not propagated betweermarticipants: participants act
independently inside a transaction and their "bad" influence
on other participants is limited.

« The OMTT model offers a unified way of participant
coordination via transactional objects which suits well the
type of systems they are intended for.

9. Conclusions

As we haveseen, the opemultithreaded transaction
model provides features for controlling and structuring not
only accesses to objects, as usual in transasiistems,
but alsothreadstaking part in transactions. Thaodel
allows several threads to entéihe same transaction in
order to perform a joint activity. It provides a flexible way

%f manipulatingthreadsexecuting inside a transaction by

allowing them to be forked and terminatédit it restricts
their behaviour whemecessary inorder to guarantee
correctness of transaction nestiagd structured exception
handling. The OMTT model incorporatesdisciplined
exception handling, welhdapted tonested multithreaded
transactions. It allowsndividual threads to handle an
abnormal situation locally,and promotes adefensive
approach for developing transactionabjects, so that
errors are detected early and dealt with inside the
transaction. If local handling fails, the transaction support
reverses the system to its “initial” state.

In the future, we willdevelop casestudies inorder to
experiment with the OMTT model. Anothéliirection of
research is to exteraur prototype tadistributedsystems
by using group communication protocols middleware.
Finally, it would be important to elaborate a formal
description of the OMTT model and its properties.
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