
Open Multithreaded Transactions:
Keeping Threads and Exceptions under Control

Jörg Kienzle, Alexander Romanovsky, Alfred Strohmeier

Swiss Federal Institute of
Technology Lausanne

CH - 1015 Lausanne EPFL
Switzerland

joerg.kienzle@epfl.ch

University of Newcastle upon Tyne
Newcastle upon Tyne

NE1 7RU
United Kingdom

alexander.romanovsky@ncl.ac.uk

Swiss Federal Institute of
Technology Lausanne

CH - 1015 Lausanne EPFL
Switzerland

alfred.strohmeier@epfl.ch

Abstract

Although transactional models have proved to be very
useful for numerous applications, the development of new
models to reflect the ever-increasing complexity and
diversity of modern applications is a very active area of
research. Analysis of the existing models of multithreaded
transactions shows that they either give too much freedom
to threads and do not control their participation in
transactions, or unnecessarily restrict the computational
model by assuming that only one thread can enter a
transaction. Another important issue, which many models
do not address properly, is providing adequate exception
handling features. In this paper a new model of
multithreaded transactions is proposed. Its detailed
description is given, including rules of thread behaviour
when transactions start, commit and abort, and rules of
exception raising, propagation and handling. This model is
supported by enhanced error detection techniques to allow
for earlier error detection and for localised recovery. General
approaches to implementing transaction support are
discussed and a detailed description of an Ada
implementation is given. Special attention is paid to
outlining typical applications for which this model is
suitable and to comparing it with several known
approaches (Coordinated Atomic actions, CORBA, and
Argus).

1. Transactions

The notion of (atomic) transaction was first introduced
in database systems in order to correctly handle concurrent
data updates and to provide fault tolerance with respect to
hardware failures. A transaction groups a number of
simple operations together, making the whole appear
indivisible with respect to other concurrent transactions.
Under the control of transactions, updates involving

multiple objects can be executed as if they happened in a
sequential environment. If something happens that
prevents normal completion of the transaction, then it can
be aborted, i.e. all state changes made within the
transaction are undone. Once a transaction has completed
successfully, i.e. is committed, the effects become
permanent and visible to the outside. The transaction
scheme relies on three standard operations: start, abort and
commit, which mark the boundaries of a transaction. This
approach focuses on preserving and guaranteeing
important properties of data, objects, or resources affected
by the operations performed inside the transaction. In
database systems, the focus is in general on “pure” data,
whereas in middleware for distributed systems, a resource
is usually data together with related operations, often
called a transactional object. Transaction takes care of
atomicity, consistency, isolation and durability, called the
ACID properties [3]. The atomicity property, understood
here as indivisibility of transaction execution with respect
to errors (all-or-nothing semantics), is vital for proper
system structuring and for providing fault tolerance.
Consistency means that the execution of any transaction
on its own is a correct transformation of the data and does
not violate their integrity. Isolation plays a major role in
providing inter-transaction concurrency: when it holds, the
designer of a transaction that accesses some piece of data
does not have to know about other transactions accessing
the same piece concurrently. It is guaranteed that, even
when several transactions are executed simultaneously,
they do not interfere with each other, and the recovery of
any of them is separated from the execution of the others.
Durability is understood as the ability of data to survive
any assumed hardware faults that happen after the
transaction has been successfully completed. The ability
of transactions to hide the effects of concurrency and at the
same time act as firewalls for errors makes them
appropriate building blocks for structuring reliable
distributed systems.

The basic transaction model, also called flat
transactions, was extended in order to provide more
flexible support for concurrency and recovery and to allow
for recursive system design. The nested transaction model
[12] allows transactions to start subtransactions, thus
creating a tree of transactions. A subtransaction can either
commit or rollback; however, its commit does not take
effect, i.e. is not visible to the outside world, unless the
parent transaction commits. The advantage of
subtransactions is that they can abort independently
without causing the abortion of the “entire” top-level
transaction. Since updates of transactional objects by
subtransactions are isolated from updates made by other
sibling transactions, siblings can be executed
concurrently.

Recently the concept of multithreaded transactions
(MTT) has been developed to allow several active
components, i.e. threads or processes, to take part in the
same transaction and to operate together on the same set
of data. One thread starts a transaction, then others learn
its identity, which they can use to access data that is under
the control of the transaction. Finally, one of the threads
can abort or commit the transaction. This technique is
very general as it leaves thread control to the
programmers. Unfortunately this can be dangerous. For
example, a thread can decide to leave the transaction and
perform some other operations before the outcome of the
transaction has been determined, or, a thread can abort the
transaction without notifying the other threads. Another
problem of MTT is that transactional objects might not
be aware of intra-transaction concurrency, and therefore
consistent execution of concurrent operations is not
guaranteed. Typical examples of systems using the MTT
model are the CORBA Object Transaction Service and
Arjuna [13].

2. Exception handling

Although transactions are able to tolerate hardware
faults, they cannot deal with many other types of faults,
e.g. environmental faults, software defects, faults of the
underlying software, etc. The most general mechanism for
dealing with such abnormalities at the application level is
exception handling [2].

Exception handling features allow programmers to
declare exceptions and provide them with the ability to
treat a program block as an exception context. Handlers
are associated with such a context, so that when an
exception is raised in this context the execution stops and
the handler corresponding to the exception is searched
among the handlers. Note that there are some models
where an exception can be propagated straight to the
outside of the context. In our opinion, a vital feature of
any exception handling mechanism is to differentiate
between internal exceptions to be handled inside the
context and external exceptions which are propagated to
the outside of the context. These two kinds of exceptions
are not clearly separated in most programming languages

although they are intended for very different purposes. To
achieve this separation, the following programming
language features are needed:

• Contexts are associated with programming units;
• Programming units have interfaces, where exceptions

can be declared;
• Contexts can be nested.

The majority of existing exception handling
mechanisms use dynamic exception context nesting. In
this case the execution of the context can be completed
either successfully or by interface exception propagation.
In the latter case the propagated exception is treated as an
internal exception raised in the containing context. The
simplest example of this approach are nested procedure
calls. Actually this is the dominating approach very
suitable for the client/server and the remote procedure call
paradigms and used in the majority of systems.

Exception handling features should be in accordance
with the design and programming abstractions. It is
clearly incorrect and error-prone to apply sequential
exception handling for concurrent systems. Following the
previous discussion, the best approach is to merge
exception handling and transactions by considering
transactions as exception contexts. This approach
facilitates system design and makes it possible to tolerate
additional kinds of faults. Another important benefit is
system state consistency in the presence of exceptions.
Existing exception handling mechanisms usually leave
the responsibility for consistency to the application
programmer, which is error-prone, as practical experience
shows.

Many researchers have realised all these benefits. The
object-based language Argus [10] is a very interesting
example of MTT enriched with powerful exception
handling: applications are composed out of guardians,
each of which provides an interface consisting of callable
procedures, called handlers. A handler can fork concurrent
threads, which are joined when the handler is completed.
The execution of a handler forms an atomic transaction,
and nested handler calls form nested transactions. Argus
provides a very powerful extension of sequential exception
handling: handlers can have exceptions declared in their
interface, which are propagated to a single-threaded caller
when they are signalled by a thread inside the transaction.
Any thread may decide to signal an exception with or
without transaction abort. The Argus model proved to be
very influential: several systems have been developed
which rely on similar computational models, including
Vinari/ML [4] and Transactional Drago [5].

Let us now analyse existing exception handling
models in transactional systems. Classical transactional
systems usually do not incorporate exception handling and
use return error codes instead. There are many problems
with this approach. Firstly, using return codes has been
always been considered bad practice and a poor substitute
for a proper exception handling mechanism. Secondly,
even if the host language has exception handling features,
they are not integrated with the transaction mechanisms.

The CORBA Object Transaction Service is an example of
this situation. CORBA OTS is based on a sophisticated
MTT model but it provides only sequential exception
handling, i.e. that of the host languages C++ or Java. An
exception raised in an MTT can cross the MTT border
unnoticed, because an MTT is not an exception context,
and each MTT participant deals with its exceptions in
isolation. Actually, the border of transaction is not clearly
defined as threads taking part in a transaction are not
coordinated in any way. Therefore, thread coordination in
both normal and abnormal situations is the application
programmers' responsibility.

It is symptomatic that the designers of Enterprise
JavaBeans have made some efforts in combining
exception handling with transactions. Basically the MTT
model is similar to the CORBA model but the situation
is different with respect to exception handling. If an
exception is signalled by a transactional object to the
thread participating in the transaction, the exception can
affect the execution of the whole transaction: it can
prepare the transaction for abort or commit, signal an
exception, abort the transaction, etc. However, an MTT is
not an exception context and coordination of multiple
participants is left to the application programmer.

Argus includes exception handling but has a somewhat
restrictive computational model: no outside threads can
join transactions, and threads can be forked and joined
only on the boundary of a transaction.

Introducing a more sophisticated model which has the
flexibility of the general MTT model but provides features
for disciplined exception handling is important for many
applications. Our analysis shows that it is not trivial to
devise a consistent scheme, especially in the presence of
concurrency.

In the rest of the paper we present a new transaction
model called Open Multithreaded Transactions (OMTT),
that is more flexible than the Argus model but still allows
dealing with threads and exceptions in a disciplined and
structured fashion.

3. Open multithreaded transactions

In the computational model of open multithreaded
transactions a thread can terminate or fork another thread.
The model allows threads to join an ongoing transaction
at any time and to be forked and to terminate inside a
transaction. There are only two rules that restrict thread
behaviour: a thread created outside a transaction cannot
terminate inside the transaction, and a thread created inside
a transaction must also terminate inside the transaction.

Within a transaction a set of transactional objects can
be accessed by the participating threads, and individual
threads inside a transaction collaborate by accessing the
same transactional objects. The threads have to be
synchronised in order to guarantee consistency of the
accessed transactional objects. Transactions are units of
system structuring. They transition the system from one

consistent state to another one. Also, if a transaction
aborts, the system state remains unchanged.

Threads working on behalf of a transaction are referred
to as participants. External threads that create or join a
transaction are called joined participants; a thread created
inside a transaction by a participant is called a spawned
participant.

Let us now describe open multithreaded transactions in
detail.

Starting an open multithreaded transaction:
• Any thread can start a transaction: it will be the first

joined participant of the transaction. The newly created
transaction is open.

• Transactions can be nested. A participant of an open
multithreaded transaction can start a new (nested)
transaction. Sibling transactions created by different
participants execute concurrently.

Joining an open multithreaded transaction:
• A thread can join a transaction as long as it is open,

thus becoming one of its joined participants. To do so it
has to learn (at run-time) or to know (statically) the
identity of the transaction it wishes to join.

• A thread can join a top-level transaction if and only
if it does not participate in any other transaction. To join
a nested transaction, a thread must be a participant of the
parent transaction. A thread can only participate in one
sibling transaction at a time.

• A thread spawned by a participant automatically
becomes a spawned participant of the innermost
transaction in which the spawning thread participates. A
spawned participant can join a nested transaction, in
which case it becomes a joined participant of the nested
transaction.

• Any participant of a transaction can decide to close it
at any time. Once the transaction is closed, no new joined
participants are accepted anymore. Note that a participant
can still spawn a thread. If no participant closes the
transaction explicitly, it closes once all participants have
finished (see below).

Concurrency control in open multithreaded
transactions:

• Accesses to transactional objects by participants
inside a transaction are isolated from accesses by other
transactions. The only visible information that might be
available to the outside world is the transaction identity to
be used by threads willing to join.

• Accesses by a child transaction are isolated from
accesses by the parent transaction.

• Inside of a given transaction, conventional
techniques, like mutual exclusion, are used to guarantee
consistency of transactional objects when accessed by
several participants.

Ending an open multithreaded transaction:
• All transaction participants finish their work inside

the transaction by voting on the transaction outcome.
Possible votes are commit and abort.

• The transaction commits if and only if all
participants commit. In this case, the changes made to
transactional objects on behalf of the transaction are made
visible to the outside world. If any of the participants
wishes to abort, the transaction aborts. In that case, all
changes made to transactional objects on behalf of the
transaction are undone.

• Once a spawned participant has given its vote, it
terminates immediately.

• Joined participants are not allowed to leave the
transaction, i.e. they are blocked, until the outcome of the
transaction has been determined. This means that all
joined participants of a committing transaction exit
synchronously. At the same time, but only then, the
changes made to transactional objects are made visible to
the outside world. Joined participants of a transaction that
aborts can exit asynchronously, but changes made to the
transactional objects are undone.

• If a participating thread “disappears” from a
transaction without voting on its outcome, the transaction
is aborted, as this case is treated as an error.

Figure 1 shows two open multithreaded transactions:
T1 and T2. Threads A, B and C are joined participants of
the containing transaction T1. Inside T1 the thread C
forks a new thread D, a spawned participant, which
performs some work on behalf of the transaction and then
terminates. There is a nested transaction T2 inside T1
with three joined participants: B, C and D.

Figure 1. An example of open
multithreaded transactions

4. Exception handling in open multithreaded
transactions

In this section we discuss the exception handling
mechanism developed for OMTT. Two important design
decisions are:

• Distinguish between internal and external exceptions,
also called interface exceptions;

• Interpreting any external exception propagated from a
transaction context as an abort vote passed by this
participant.
The following rules govern the OMTT exception handling
mechanism.

Classification of exceptions:

• Each participant has a set of internal exceptions
that must be handled inside the transaction, and a set
of external exceptions which are signalled to the
outside of the transaction, when needed. The predefined
external exception Transaction_Abort is always
included in the set of external exceptions.

Internal exceptions:
• Inside a transaction each participant has a set of

handlers, one for each internal exception that can occur
during its execution.

• The termination model is adhered to: after an internal
exception is raised in a participant, the corresponding
handler is called to handle it and to complete the
participant’s activity within the transaction. The handler
can signal an external exception if it is not able to deal
with the situation.

• If a participant “forgets” to handle an internal
exception, the external exception Transaction_Abort is
signalled.

External exceptions:
• External exceptions are signalled explicitly. Each

participant can signal any of its external exceptions.
• Each joined participant of a transaction has a

containing exception context.
• When an external exception is signalled by a joined

participant, it is propagated to its containing context. If
several joined participants signal an external exception,
each of them propagates its own exception to its own
context.

• If any participant of a transaction signals an external
exception, the transaction is aborted, and the exception
Transaction_Abort is signalled to all joined participants
that vote commit.

• Because spawned participants don not outlive the
transaction, they cannot signal any external exception
except Transaction_Abort, which results in aborting the
transaction.

Because the OMTT model provides transaction
nesting, the exception handling rules have to be applied
“recursively” by the programmer. All external exceptions
of a joined participant are internal exceptions of the
calling environment.

If an interface exception has been raised, all
participants should be informed about the abort of the
transaction as soon as possible. There are two distinct
approaches: blocking and pre-emptive.

In the blocking approach, each participant completes
the transaction by voting commit or by signalling an
interface exception. If a participant votes abort, the other
participants are informed of the abort only when they have
completed or also signal an interface exception.

In the pre-emptive approach, the transaction does not
wait for the participants to complete, but interrupts all
participants as soon as one of them has signalled an
external exception.

time

C

B

A

T1

T2

D

5. Transactional objects

5.1. Two-level concurrency control

In the OMTT model, access to transactional objects
must be controlled at two levels. The first concern is to
deal with competitive concurrency, i.e. to guarantee the
isolation property of all updates made within a transaction
with respect to other transactions running concurrently.
The second concern is to handle cooperative concurrency
within a transaction, i.e. to ensure mutual exclusion of
individual operations performed by participants of the
same transaction. Generally speaking, competitive
concurrency control can use existing optimistic or
pessimistic concurrency control techniques [3]. With the
optimistic techniques, when transaction abort is used to
compensate for a consistency violation, the abort can be
either reported to the containing transaction by signalling
the Transaction_Abort exception or the same transaction
can be re-tried. The latter approach requires additional run-
time support for restoring the thread states. In the
presence of cooperative concurrency, consistency can be
guaranteed simply by using monitors or similar
techniques found in modern concurrent languages, for
example protected objects in Ada 95, or objects with
synchronised methods in Java.

5.2. Enhanced error detection

Early error detection is vitally important for reliable
modern applications; it makes error recovery faster and
more effective. To achieve this goal, special
methodologies must be used during development. The
OMTT model strives to make, whenever possible, the
recovery local to individual transaction participants.
Checks can be performed either by a participating thread
or by a transactional object.

Firstly, all participants have to check all operation
parameters they exchange with transactional objects. This
is in line with the principles of defensive programming.

Secondly, error detection is enhanced by self-checking
transactional objects. Such objects incorporate pre- and
post-conditions and invariants. When any of these is
violated during the execution of an operation, an
exception is propagated to the calling participant.

There is a considerable body of research about
designing classes of objects together with pre- and post-
conditions and invariants, as well as about generating run-
time checks for verifying them. The best known example
is Bertrand Meyer's "design by contract" methodology
supported by features of Eiffel [11]. This is how
transactional objects should be designed when used in
open multithreaded transactions. Such a design guarantees
early error detection and localises error handling within a
single transaction participant.

5.3. Exception handling and transactional
ob jects

The previously described error detection techniques
make error containment stronger and increase the chances
that an internal exception can be handled locally by a
participant. Of course, there will still be situations when
they fail. In that case, the transaction is aborted and all the
changes made to transactional objects on behalf of the
transaction are undone, and an external exception is
propagated to the calling context. If additional error
recovery is needed, it must be performed at the higher
level context.

Just as the OMTT model does not support tight
collaboration among participants by providing means for
direct communication, there is also no automatic
cooperative exception handling. Loose collaboration
among participants of an OMTT transaction can take place
through transactional objects. Exception handling follows
the same pattern. Two approaches are possible here. With
the first one, a transactional object may be left in an
erroneous state after propagating an exception to a
participant that uses it. Subsequent operation invocations
by other participants are likely to raise an exception as
well. The second approach allows the programmer to
apply a form of loose cooperative exception handling: the
participants may decide to perform corrective or
compensation activities on some transactional objects as a
part of their local handling to recover from the error which
might have spread within the transaction.

6. Typical uses of OMTTs

Our analysis shows that the OMTT model is useful
for complex dynamic systems in which more than one
thread can participate in a transaction, but the number of
transaction participants is not known statically. It is also
useful for systems in which threads participating in a
transaction are created dynamically. Another important
kind of use are systems that achieve different types of
fault tolerance by using both transactional techniques and
exception handling.

An important aspect of these systems is autonomy of
the threads that eventually participate in a transaction:
although they perform joint work inside a transaction and
have a common goal, they are not tightly synchronised
and can perform their jobs even when not all of them are
in the transaction. In order to preserve their autonomy,
participants cooperate via transactional objects only and
handle their internal exceptions separately.

Without the cooperation facilities present in the
OMTT model, such systems must be designed and
structured out of individual transactions rather than of
units of cooperation. Such an architecture might be much
more complex. Also, because all these transactions

compete for the same transactional objects, performance
might be poor.

Typical examples of such systems are auctions,
systems with many readers / writers, systems with
workers sharing jobs, etc. We are designing and
implementing an online auction system. An auction is
organised around a vendor, and is designed as an OMTT.
Besides the vendor, there is an accounting system that
participates in the auction transaction, but the number of
bidders is not known in advance and may vary over time,
because a bidder might want to join an already ongoing
auction.

Another promising application area for OMTT is
developing complex systems of systems. Individual
subsystems are essentially autonomous and it is important
to allow them, whenever possible, to deal separately with
their exceptions even when they participate in a joint
activity. Besides, by the very nature of these systems, they
have to deal with faults from a wide range of types, and
have to accommodate flexible participation because they
evolve.

7. Implementation approaches

There are several ways of implementing the OMTT
model. Different run-time supports are needed for single-
processor, multi-processor and distributed settings because
of different fault assumptions and different communication
models. A complete distributed decentralised
implementation has to rely on ordering and group
communication protocols. If the communication protocol
is based on the Internet, then the OMTT implementation
can be used to develop complex Internet applications.

In order to minimise implementation effort, the best
approach is to rely as much as possible on existing
transaction middleware and thread control offered by a
concurrent programming language. The implementation
effort then consists in integrating these two capabilities.

A very promising approach for distributed systems is
to rely on existing transactional services, for example that
of CORBA, and to add thread coordination with regard to
transactions.

The main idea is to introduce a coordinator object for
each open multithreaded transaction, that keeps references
to all transaction participants. In turn, all transaction
participants must keep a reference to the coordinator
object. The coordinator object also keeps references to all
coordinator objects of nested transactions.

Each open multithreaded transaction is mapped to a
CORBA transaction. The coordinator object executes the
CORBA transaction begin, abort and commit operations.

Clearly, the thread handling facilities of the host
language can not be used as such. Thread spawning and
joining has to be implemented in such a way that the
coordinator keeps track of all thread creations and
terminations, and of all exception raising and signalling.

OMTT-specific concurrency control policies must be
developed for transactional objects to correctly address
intra- and inter-transaction concurrency.

In this approach based on a middleware, the main
effort is directed towards thread coordination
implementation. Another approach starts with a
concurrent programming language providing extensive
thread control, and adds transaction support. This is the
approach taken in our prototype implementation presented
in the next section.

8. Prototype implementation

We are implementing OMTT support for Ada 95 [7].
One goal of this development is the smooth integration of
the native concurrency features of Ada and the newly
developed OMTT features. Generally speaking, there are
two types of services: the ones related to thread control,
tasking in Ada terminology, and the other ones related to
transactional objects. The latter is implemented as an
extension of the TransLib framework presented in [5, 6].
The approach is based on design patterns in order to
maximise modularity and flexibility. The OMTT support
can be easily customised for specific application needs by
using object-oriented programming techniques, because:

• it supports optimistic and pessimistic concurrency
control;

• it provides different locking schemes, like read /
write locking and commutativity based locking;

• it is able to employ different kinds of storage devices
[8, 9];

• it offers a number of recovery strategies, i.e.
Undo/Redo, NoUndo/Redo and Undo/NoRedo;

• it can use physical logging or logical logging;
• it supports different caching techniques, like last

recently used or least frequently used.

In order to become a transactional object, each data
object has an associated memory object, a storage unit, a
lock manager and a proxy object. The proxy object
provides the same interface as the object itself. Instead of
accessing a data object directly, participants invoke the
operations on the proxy object, which performs the
required recovery, logging and concurrency control
operations. If locking is used, it starts by obtaining a lock
for the operation from the lock manager. That is the place
where cooperative and competitive concurrency control
shows through. In order to execute an operation on a
transactional object, two locks must be acquired: the
transactional lock and the mutual exclusion lock. The
transactional lock guarantees isolation with respect to
other concurrently executing transactions. The mutual
exclusion lock guarantees consistent updating of the data
by participant threads. Once both locks are acquired, the
proxy object informs the recovery manager of the
operation call, and then passes the operation on to the
memory object. The memory object calls the cache
manager, that loads the data object’s state from the

associated storage unit, if necessary. Finally, the
operation is invoked on the data object. After the call has
been executed, the recovery manager and the lock manager
are notified. Only the mutual exclusion lock is released,
though. The transactional lock is only released once the
outcome of the transaction has been determined.

Our goal was to provide the OMTT support at the
programming language level without modifying the
language. We therefore developed a set of service
procedures, an API, and programming guidelines to be
followed when using OMTT. Clearly, the API necessarily
depends on the features of the programming language.
Fortunately, Ada is very powerful and many
implementation details can be hidden from the API, while
still helping the programmer by enforcing correct use.
However, when it comes to OMTT exception handling,
we have to impose somewhat complicated conventions,
because the native Ada exception handling mechanism is
basically sequential and block-oriented.

Let us now explain the reason for the simplicity of the
API in Ada. Once a thread is part of a transaction, it can
invoke operations on transactional objects. The recovery
and lock manager must know on behalf of which
transaction the operation is executed. Most
implementations will therefore need to pass a transaction
identifier (ID) as a parameter to every operation of a
transactional object. Ada offers a native mechanism that
avoids this explicit parameter passing. Using task
attributes, it is possible to declare a data type where a
transaction ID can be stored. There is a copy of this data
type associated with each thread in the system, and when
the thread joins a transaction, it is used for storing the
corresponding transaction ID. When an operation of a
transactional object is called, the support can check the
ID. As a result, there is no difference for an application
programmer in calling a transactional object or a normal
object.

There are several possibilities for defining an API for
the OMTT model. Let us start with the procedural
interface. Several procedures are needed:

• The procedure Start_Transaction starts a new
transaction. If the calling thread is already a participant of
a transaction, a nested transaction is created.

• The procedure Join_Transaction allows a thread to
join a transaction. It checks that the calling thread is
either a participant of the parent transaction, or is not
participating in any transaction.

• The procedure Close_Transaction closes the
transaction by forbidding further joining.

• The procedure Commit_Transaction commits the
changes made on behalf of the transaction; it blocks until
the outcome of the transaction has been determined.

• The procedure Abort_Transaction aborts the current
transaction; it does not block the caller.

This API is quite flexible, but it does not protect
programmers from making mistakes. For example, it is
possible to start or join a transaction, but forget to vote
on its outcome, or to let an unhandled exception cross the

transaction boundary unnoticed. Programmers must
follow guidelines to avoid these kinds of problems. For
example, if all transactions in an application are
programmed using the following template, the adherence
to the OMTT model is guaranteed:

begin
 begin

Start_Transaction;
-- perform work
Commit_Transaction;

 exception
 when ...
 -- handle internal exceptions
 Commit_Transaction;
 -- or raise an external exception
 when others =>
 raise Transaction_Abort;
 end;
exception
 when others =>
 Abort_Transaction;
 raise;

end;

Another API uses another Ada feature called controlled
types for transaction control. Ada controlled types allow
programmers to provide their own procedures which are
called when an object of the type is created, accessed or
goes out of scope. The API offers a type Transaction that
can be used in the following way:

declare
 T : Transaction;
begin
 -- perform work
 Commit_Transaction (T);
exception
 when ...
 -- handle internal exceptions
 Commit_Transaction (T);
end;

In this approach the Ada block is both the transaction
and the exception context. When the block starts the
procedure Initialize of the Transaction object T is called
implicitly and starts a new transaction.
Commit_Transaction must be called before exiting the
block, or else the implicitly called Finalize procedure will
invoke Abort_Transaction.

An object-oriented API is under development as well.
It is based on an abstract tagged type Transaction_Type:

package Open_Multithreaded_Transactions is
 type Transaction_Type is
 abstract tagged limited private;
private
 procedure Start_Or_Join_Transaction

(T: in out Transaction_Type);

 procedure Close_Transaction
(T: in out Transaction_Type);

 procedure Abort_Transaction
(T: in out Transaction_Type);

 procedure Commit_Transaction
(T: in out Transaction_Type);

end Open_Multithreaded_Transactions;

A concrete transaction derives from this abstract type
and adds application-specific operations, one for each
participant. When a thread wants to participate in the
transaction, it calls the corresponding operation.

8. Discussion

In our opinion, the OMTT model offers the right
balance between unrestricted thread behaviour like in
CORBA-type MTT and the rather restricted model of
Argus [10]. Exception handling is an immanent part of
the model: to the contrary of CORBA-type MTTs,
exception raising, handling, propagation, etc., are tightly
coupled with transactions, because transactions are
exception contexts. OMTT always keep all threads
accessing transactional objects and all exceptions which
can happen inside a transaction under control. Open
multithreaded transactions are units of system design, and
exception handling is therefore designed at the same time
as the transactional structure.

Coordinated Atomic (CA) actions [14] is a well
known structuring technique which combines features of
atomic actions [1] and transactions. Multiple active
participants can enter a CA action to perform a joint
activity inside: they can use both local objects, for
cooperation, and transactional objects, all updates of
which are isolated from the outside world. CA action
execution looks like a transaction for the outside world.
Exception handling is the main feature of action recovery:
all participants are involved in coordinated exception
handling if any of them raises an exception. If recovery
fails, an external exception is propagated to the containing
context.

Part of the motivation for CA actions are similar to
those for OMTT and many problems addressed by OMTT
can be solved by CA actions. But in our opinion they are
different: CA actions effectively add transactional objects
to atomic actions, whereas OMTTs add thread
coordination to MTT. These are the main distinguishing
characteristics of the OMTT model:

• Participants of a CA action collaborate closely: they
rely on each other, they are designed together and hence
are tightly coupled, and they synchronise their execution
explicitly through local resources. OMTTs are intended
for designing systems with a different, less entangling
type of collaboration, in which participants have their
own reasons for taking part in the transaction and are quite
autonomous and independent. They are designed rather
separately with only limited knowledge about the other
OMTT participants.

• The OMTT model is more flexible: threads can be
created and terminated inside transactions.

• The OMTT model pays special attention to using
enhanced error detection and to providing special
mechanisms for supporting it. As a consequence, error
recovery is easier and more effective, and chances are
increased for successful local error recovery.

• In OMTTs, an attempt is always made to handle any
internal exception locally by a participant. We have
decided against any form of coordinated exception handling
for several reasons. Firstly, the number of OMTT
participants is not known in advance, and hence any form
of error handling that depends on the presence of
participants other than the one that raised the exception
can be error-prone. Secondly, exceptions defined in one
participant might have no meaning in other participants.
Thirdly, we do not want to impose any unnecessary
additional synchronisation; we would like to allow them
to act as independently as possible. Fourthly, dealing with
multiple exceptions which might be raised concurrently
(as done in CA actions) complicates the implementation
and adds run-time overhead; local handling is usually less
expensive and more effective. Finally, using self-checking
transactional objects increases the chance that errors are
not propagated between participants: participants act
independently inside a transaction and their "bad" influence
on other participants is limited.

• The OMTT model offers a unified way of participant
coordination via transactional objects which suits well the
type of systems they are intended for.

9. Conclusions

As we have seen, the open multithreaded transaction
model provides features for controlling and structuring not
only accesses to objects, as usual in transaction systems,
but also threads taking part in transactions. The model
allows several threads to enter the same transaction in
order to perform a joint activity. It provides a flexible way
of manipulating threads executing inside a transaction by
allowing them to be forked and terminated, but it restricts
their behaviour when necessary in order to guarantee
correctness of transaction nesting and structured exception
handling. The OMTT model incorporates disciplined
exception handling, well adapted to nested multithreaded
transactions. It allows individual threads to handle an
abnormal situation locally, and promotes a defensive
approach for developing transactional objects, so that
errors are detected early and dealt with inside the
transaction. If local handling fails, the transaction support
reverses the system to its “initial” state.

In the future, we will develop case studies in order to
experiment with the OMTT model. Another direction of
research is to extend our prototype to distributed systems
by using group communication protocols or middleware.
Finally, it would be important to elaborate a formal
description of the OMTT model and its properties.

Acknowledgements. Alexander Romanovsky has been
supported by the EC IST RTD Project on Dependable
Systems of Systems. Jörg Kienzle has been partially
supported by the Swiss National Science Foundation
project FN 2000-057187.99/1.

10. References

[1] R.H. Campbell, B. Randell. Error Recovery in
Asynchronous Systems. IEEE TSE, SE-12 (8), 1986.

[2] F. Cristian. Exception Handling and Tolerance of
Software Faults. In Software Fault Tolerance. M.R. Lyu (Ed).
Wiley. pp. 81-108, 1994.

[3] J. Gray, A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[4] N. Haines, D. Kindred, J.G. Morrisett, A.M. Nettles, J.M.
Wing. Composing First-Class Transactions. ACM TOPLAS,
16, 6, 1994.

[5] R. Jimenez-Peris, M. Patino-Martinez, S. Arevalo.
TransLib: An Ada 95 Object Oriented Framework for Building
Transactional Applications. Computer Systems: Science &
Engineering J., 15, 1. 2000.

[6] J. Kienzle, R. Jiménez-Peris, A. Romanovsky, M. Patino-
Martinez. Transaction Support for Ada. Submitted to the
International Conference on Reliable Software Technologies
- Ada-Europe'2001, Leuven, Belgium, 2001. Available as
Technical Report (EPFL-DI No 2000/348).

[7] J. Kienzle, A. Romanovsky. Combining Tasking and
Transactions: Open Multithreaded Transactions. Presented at
the 10th Int. Real-Time Ada Workshop, Avila, Spain, 2000
(to be published in AdaLetters).

[8] J. Kienzle, A. Romanovsky. A Framework Based on
Design Patterns for Providing Persistence in Object-Oriented
Programming Languages. Technical Report CS-TR-688,
Dept. of Computing Science, University of Newcastle upon
Tyne, April 2000.

[9] J. Kienzle, A. Romanovsky. On Persistent and Reliable
Streaming in Ada. In International Conference on Reliable
Software Technologies - Ada-Europe'2000, Potsdam,
Germany, June 26-30, 2000, LNCS Volume 1845, pp. 82-95.
Available as Technical Report (EPFL-DI No 99/323).

[10] B. Liskov. Distributed Programming in Argus. CACM,
31, 3, 1988.

[11] B. Meyer. Object-oriented software construction.
Prentice Hall,1997.

[12] J.E.B. Moss. Nested Transactions, An Approach to
Reliable Computing. Ph.D. Thesis, MIT, 1981.

[13] G.D. Parrington, S.K. Shrivastava, S.M. Wheater, M.C.
Little. The Design and Implementation of Arjuna. USENIX
Computing Systems J., 8, 3, pp. 255 – 308,1995.

[14] J. Xu, B. Randell, A. Romanovsky, C.M.F. Rubira, R.J.
Stroud, Z. Wu. Fault Tolerance in Concurrent Object-Oriented
Software through Coordinated Error Recovery. In the 25th
International Symposium on Fault-Tolerant Computing,
USA, pp. 499-509, 1995.

