
Efficient, self-contained handling of identity in
peer-to-peer systems

�

Karl Aberer
�
, Anwitaman Datta, Manfred Hauswirth

School of Computer and Communication Sciences
Swiss Federal Institute of Technology Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
Email: � karl.aberer, anwitaman.datta, manfred.hauswirth � @epfl.ch

Abstract

Identification is an essential building block for many services in distributed information
systems. The quality and purpose of identification may differ, but the basic underlying prob-
lem is always to bind a set of attributes to an identifier in a unique and deterministic way.
Name/directory services such as DNS, X.500, or UDDI are a well-established concept to ad-
dress this problem in distributed information systems. However, none of these services ad-
dresses the specific requirements of peer-to-peer systems with respect to dynamism, decen-
tralization and maintenance. We propose the implementation of directories using a structured
peer-to-peer overlay network and apply this approach to support self-contained maintenance
of routing tables with dynamic IP addresses in structured P2P systems. Thus we can keep
routing tables intact without affecting the organization of the overlay networks, making it
logically independent of the underlying network infrastructure. Even though the directory is
self-referential, since it uses its own service to maintain itself, we show that it is robust due to
a self-healing capability. For security we apply a combination of PGP-like public key distri-
bution and a quorum-based query scheme. We describe the algorithm as implemented in the
P-Grid P2P lookup system (http://www.p-grid.org/) and give a detailed analysis and simulation
results demonstrating the efficiency and robustness of our approach.
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1 Introduction
Identification provides an essential building block for a large number of services and functionalities
in distributed information systems. In its simplest form identification is used to uniquely denote
computers on the Internet by IP addresses in combination with the Domain Name System (DNS) as
a mapping service between symbolic names and IP addresses. Thus computers can conveniently
be referred to by their symbolic names, whereas in the routing process their IP addresses must
be used. Higher-level directories, such as X.500/LDAP, consistently map properties to objects
which are uniquely identified by their distinguished name (DN), i.e., their position in the X.500
tree. Other directories, such as UDDI, map names onto service descriptions and vice versa. These
are just a few examples among many others that map sets of attributes onto objects, and that
are essential to provide basic functionalities, such as routing of IP packets, searching distributed
databases and retrieving certificates from public key authorities to conduct secure e-commerce.

Although the quality and purpose of identification may differ in the various domains, due to
varying requirements and levels of abstraction, the basic underlying problem is always the one
of binding a set of attributes to an identifier in a unique and deterministic way. Name/directory
services such as DNS, X.500, or UDDI are a well-established concept to address this problem in
distributed information systems. Usually these services are optimized towards the targeted problem
area and differ in the degree of (de-)centralization, security guarantees, descriptive power, and
flexibility. However, none of these pre-existing services addresses the specific requirements of
peer-to-peer systems. Peer-to-peer systems are inherently decentralized and thus identification
management should be decentralized as well, to avoid scalability problems. For example, peer-
to-peer systems are rather dynamic, with nodes frequently joining and leaving the system, and a
centralized identification service may easily become a bottleneck. Additionally, it is favorable not
to depend on a third-party infrastructure because if this external service ceases to exist, the peer-to-
peer system would no longer be operable. Thus the peers should be able to manage identification
issues themselves. This provides excellent scalability but introduces security problems that need
to be addressed, for example, ensuring that entries are updated only by legitimate parties, being
able to detect malicious use, and surviving attacks.

Peer-to-peer systems (also called overlay networks in the literature) such as Chord [29], CAN [24],
Freenet [7, 8], Pastry [27], or P-Grid [1, 4] operate on top of a routing infrastructure based on a
logical identification of the peers participating in the overlay. For routing this logical identification
is mapped onto an IP address in the routing tables. Since IP addresses are scarce most peers will
have dynamic IP addresses that may change over time. This problem would be solved if Mobile
IP [21] or IPv6 [28] were in place already and available at a large scale, because they take into
account mobility (dynamism) and offer a much larger address space. However, this requires con-
siderable changes in the basic networking infrastructure of the complete Internet and it cannot be
foreseen at the moment when this will happen. Our approach could bridge this gap but can also be
applied in many other settings, for example, in mobile ad-hoc networks, because it is independent
of the networking infrastructure. Additionally, peers can leave and join the overlay at any time.
This dynamism introduces inconsistencies into the routing tables and the whole routing process,
which may make correct routing impossible if it is not dealt with appropriately.

In Chord [29], peers that (re-)join the overlay with a new IP address, adopt a new identity and
introduce themselves into the routing infrastructure like a completely new node. This is mainly
due to the fact that in Chord the logical identifier depends on the IP address. To repair faulty en-
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tries in routing tables resulting from node departures, the approach in [17] devises a maintenance
protocol. The execution of the periodic stabilization protocol is independent of changes to the net-
work and the adaptation resulting from repairs may compromise structural properties of the routing
infrastructure, which may have been established in order to address non-uniform workloads [23].
DKS(N,k,f) [6], a generalization of the Chord model, proposes a correction-on-use protocol to
maintain routing tables. The authors show that their protocol is self-stabilizing and more efficient
than the Chord maintenance protocol. In their approach peers can maintain logical identifiers with
changing IP addresses, but routing tables need to be reorganized at all depths with the occurrence
of every update.

In Pastry [27] nodes have an independent logical ID, and upon re-entering the overlay they
may enter their new ID-to-IP binding into the routing tables of peers, encountered when executing
the node join protocol. However, as these peers are typically different from those already storing
such bindings, stale mappings will be encountered by other peers during query routing. These stale
entries are replaced by new routing entries [19], irrespective of whether the peer identified by the
stale entry has rejoined with a new IP address or not.

We see the management of dynamic IP addresses in overlay networks as an instance of the more
general problem of identification. In this paper we will present our decentralized, self-maintaining
approach to identification and prove its applicability and validity by applying it to the basic problem
of changing IP addresses in P-Grid (http://www.p-grid.org/), our structured peer-to-peer system.
In contrast to the approaches of Chord, Pastry, and DKS, our strategy can track changes in the
mapping. This is important as soon as information on the characteristics of specific peers is ex-
ploited for routing purposes, such as their trustworthiness, quality of service or locality. Thus our
approach is in particular relevant for applications such as e-commerce [11], trust management [3],
and mobility management in ad-hoc networks. If information about peers is gathered from earlier
interactions and the choice of routing table entries is made dependent on such properties, changes
to the structure of the overlay network due to modification of routing tables should be avoided if
possible (unless triggered by the application). This is in particular true for changes resulting from
a peer’s physical address, which may be completely independent of a peer’s other properties. The
approaches of changing the logical IDs or restructuring routing tables as a result of changes to the
peers’ physical IDs (Chord, Pastry) would incur a loss of information. Thus our approach makes
the overlay network logically independent of the underlying physical network. This separation of
concerns is an important step towards creating semantic overlay networks as a basic constituent in
distributed information management. It is worth to mention that this functional advantage comes
at no specific additional cost. All approaches (including the one we introduce here) incur message
costs of order ���
	���
������ for maintenance.

Currently file-sharing is the most popular use of P2P systems. Here, user response time is
a major issue and identification is viewed to be only of subordinate importance. However, this
is already changing, since reputation, data authenticity, and fair use of resources have become
major issues in P2P systems and require identification as a service to address them. Also, quickly
finding the peer that offers information of interest will reduce response time. If peers have dynamic
network addresses, this again requires an identification service as described in this paper.

To support dynamic IP addresses as an application of identification, it is necessary to address
the following problems: (1) How can universally unique identifiers be mapped onto physical ad-
dresses in a secure, decentralized, and efficient way, and be maintained securely by the owner? (2)
With the possibility of changes of the mapping, i.e., the physical addresses, how can a peer detect
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whether it is still talking with the intended entity? This means that, (a) if peer ��� goes offline and
a different peer � � gets associated with ��� ’s old IP address, the other peers in the system must be
able to detect this change and react accordingly, and (b) if a peer goes online again with a new
IP address, the other peers must be able to detect this, update their routing tables accordingly, and
check identification before further information transfers.

Unstructured P2P systems, for example, Gnutella [9], and super-peer P2P systems, for ex-
ample, Kazaa (FastTrack), are able to address the first problem in a simpler manner than struc-
tured P2P systems but have other shortcomings, for example, excessive bandwidth consumption
(Gnutella) or scalability limitations due to inherent centralization (FastTrack). However, any peer-
to-peer system should actually address problem (2) for security reasons to avoid simple denial-of-
service (DOS) attacks by registering false mappings.

In our approach, peers generate universally unique identifiers locally, independent of their IP
address or any other global information, and store them along with their public key, their current
IP address, and a cryptographic signature in the P-Grid P2P lookup system [1, 4] on a certain num-
ber of peers (replicas). Instead of IP addresses, the unique IDs are used for querying and routing.
Mapping an ID onto an IP address in the routing process is done by querying P-Grid using the
receiver’s ID as the key. If a certain quorum of identical answers is returned, the mapping is con-
sidered trustworthy and the peer is contacted. If contacting the peer fails, the peer is either offline
or has changed its IP address. The requester can now either assume that the peer is offline and give
up, or, in the latter case, submit a new query to determine the new IP address. If contacting the peer
succeeds in either case, its public key is used to determine whether the contacted peer is really the
one identified by the mapping, or whether a different peer reuses the address, or a malicious peer
tries an impersonation attack. The security concept of our approach is a combination of PGP-like
public key distribution and a quorum-based query scheme, elaborated in [11].

This strategy ensures secure mapping, but may seem like introducing a recursive hen-egg prob-
lem, as we use the mechanism (P-Grid) that depends on using the mappings, also for storing and
maintaining the mappings. We show that, despite this recursive dependency, it is in fact possible
to devise such a self-contained service which is completely decentralized, self-maintaining, and
light-weight, by devising algorithms implementing self-healing capabilities. Decentralization may
require additional security precautions, which we take into account, but it is of primary concern to
avoid performance and especially administrative bottlenecks, i.e., no central authority is required
to maintain mappings, but this service is provided securely by the users of the service themselves.
In turn, self-maintenance must be addressed properly because in a decentralized system no central
authority can enforce maintenance.

The paper is structured as follows: Section 2 introduces P-Grid, which we use to verify our
approach. Section 3 then defines our identification protocol which is demonstrated in Section 4
by a simple example. Section 5 then provides the algorithms which are analyzed and evaluated in
Sections 6 and 7. Section 8 presents related work and we draw our conclusions in Section 9.

2 The P-Grid data structure
Since the approach presented in this paper is based on and used in P-Grid as a proof of concept, we
briefly introduce it. P-Grid is a distributed data structure based on the principles of distributed hash
tables (DHT) [22]. As any DHT approach P-Grid is based on the idea of associating peers with
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data keys from a key space � . Without constraining general applicability we will only consider
binary keys in the following. In contrast to other DHT approaches we do not impose a fixed or
maximal length on the keys, i.e., we assume ���������! #"�$ .

In the P-Grid structure each peer �&%('*)+)-,/. is associated with a binary key from � . We denote
this key by ��0�132��4�5� and will call it the path of the peer. This key determines which data keys the
peer has to manage, i.e., the keys in � that have ��0�132��4��� as prefix. In particular the peer has to
store them. In order to ensure that the complete search space is covered by peers we require that
the set of peers’ keys is complete. The set of peers’ keys is complete, if for every prefix 6!7+8:9 of
the path of a peer � there exists a peer �<; , such that ��0�132=�>�<;>�?�@6/7+8:9 , or there exist peers ��A and �B� ,
such that 6+7+8:9C� is a prefix of ��0�132��4�<A-� and 6/7+8:9- is a prefix of �<0D132��>���E� . Naturally, one of the two
peers �<A and �B� will be � itself in that case. Completeness is guaranteed by P-Grid’s construction
algorithm. We do not exclude the situation where the path of one peer is a prefix of the path of
another peer. This situation will occur during the construction and reorganization of a P-Grid.
Ideally, this situation is avoided, since otherwise peers with shorter paths (prefixes) will have high
storage loads and thus load balancing is compromised. Thus, any algorithm for maintaining a P-
Grid should eventually converge to a state where the P-Grid is prefix-free, i.e., for peers ��A and �B�
we have ��0�132=�>��A-�GFH �<0D132��>�B�E��IJ��0�132=�>�B�/�GFH ��0�132=�>�<AK� , where 6 H 6L; denotes the prefix relationship
among strings 6 and 6L; . An indexing structure based on similar principles as P-Grid which does
not require the prefix-free property is described in [20].

We also allow multiple peers to share the same paths, in that case we call the peers replicas. The
number of peers that share the same path is called the replication factor of the path. Replication is
important to support redundancy and thus robustness of a P-Grid in case of failures and to distribute
workload when searching in a P-Grid.

To be able to search in P-Grid, peers maintain routing tables. The routing tables are defined as
(partial) functions M#NPORQ�'S)+)-,/.UTRVXW ��'S)+)-,/.�" with the properties

1. MYNPOZ�>�[�+\
� is defined for all �]%^'S)+)-,/. and \_%`V with  bac\dafe �<0D132��>�5�Pe
2. MYNPOZ�>�[�+\
� H 'S)+)-,+.hgji
glk3mnmnm gloqp i:r �:s g
o>t with ��0�132=�>�5�u�v6Y�36 �=w!wLw 6Lx4s<�C6hx wLwLw 6Ly#�Kz|{}\

where 'S)+)-,+.L~[���+�]%^'S)+)-,/.�e 1 H ��0�132��4�5�+" for 1�%R� .
For the same association of peers with paths, different P-Grids can be obtained depending

on the choice of MYNPOZ�4�[�/\l� . Algorithms for construction and maintenance of a P-Grid have been
introduced in [2].

Having multiple references at each level \ again is necessary to guarantee robustness of the data
structure. In the following, M denotes the maximum number of references maintained at each level.
The search algorithm for locating data keys indexed by a P-Grid is defined as follows: Each peer
��%�'S)+)-,/. is associated with a location \
���Y�4�5� (IP address in the network). Searches can start at
any peer. Peer � knows the locations of the peers referenced by MYNPOZ�>�[�+\
� , but not of other peers.
Thus the function M#NPOZ�>�[�+\
� provides the necessary routing information to forward search requests
to other peers in case the searched key does not match the peer’s path. Let 1�%^� be the searched
data key and let the search start at ��%�� . Algorithm 1 shows P-Grid’s basic recursive search
algorithm.

Algorithm 1 always terminates successfully, if the P-Grid is complete and all peers are reach-
able. Due to the definition of M#NPO , 6hNh0�MY��2=��1K�+\��Y�Y�4���E� will always find the location of a peer at
which the search can continue (use of completeness). With each invocation of 6hNh0DM#��2���1K�+\����#�>�5�E�
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Algorithm 1 Search in P-Grid: search(t, loc(p))
1: if path(p) � t then
2: return(loc(p));
3: else
4: determine maximal � such that �����C�3�����>���K�
�[�U�����B���Y�!�
������� ;
5: r = randomly selected element from ref(p,l);
6: search(t, loc(r));
7: end if

the length of the common prefix of ��0�132��4�5� and 1 increases at least by one. Therefore the algorithm
always terminates.

In case of an unreliable network, it may occur that a search cannot continue since the peer M
selected from the routing table is not available. Then alternative peers can be selected from the
routing table to continue the search.

3 The identification protocol
This section defines the algorithm and protocol for maintaining ID-to-IP mappings in P-Grid. Gen-
eralizing this specific example to other mappings is implicit and straight-forward.

Each peer � is uniquely identified by a universally unique identifier (UUID) ���#7 . Each peer
generates this identifier locally once in the bootstrap phase by applying a cryptographically secure
hash function to the concatenated values of the current date and time, the current IP address of the
peer 0�� �DM/7 and a large random number. At bootstrap each peer � also generates a private/public
key pair ¡¢7�£#¤¥7 once. In the following, we use the standard security notations ¡�7 ��¦§� and ¤u7 ��¦§� ,
where ¡¢7 �
¤u7 ��¦§�E�¨�©¤¥7 �l¡¨7 ��¦§�E�¨�ª¦ , to denote the application of the private and public keys in
an asymmetric encryption scheme. Note that keys do not have to be certified since we do not need
legally binding authentication guarantees as provided by certification authorities. Also, this would
introduce centralization and limit scalability. Instead, our approach follows a PGP-like strategy of
distributing signed mappings and public keys via independent paths, and we apply a quorum-based
strategy to find trustful mappings. This provides a similar level of security, but, of course, is not
legally binding.

In P-Grid routing tables and the index hold only these identifiers. Each peer � additionally has
a cache of mappings �
� �D«��+0����DM!«¬�3­G®§«�� that it already knows. ­�®B« denotes a timestamp which must
be included to prevent replay attacks, i.e., the recording of transmitted information by a malicious
party and replaying it at a later time (the timestamp guarantees the freshness of messages).

The algorithm for handling dynamic IP addresses works as follows (inserts and updates are
done according to the algorithm presented in [12]):

Bootstrap

1. Upon startup � determines its current IP address.

2. � generates � �P7 , ¡¨7�£#¤¥7 .
3. � inserts the tuple �
� �P7D�+0����DM/7#�+¤¥7D�E­�®�7��+¡¨7 �����h7��/0 ���DM/7��/¤u7��3­G®�7h�E� into P-Grid using � �P7 as

the key. Inserting in P-Grid means that the request is routed to a peer ¯¨«�%c°¥7 . °u7 is the
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set of replicas responsible for the binary path using � �Y7 as the key value. Note that the tuple
contains a signed version of the information to be inserted, to assure that only the originator
of the information can change it. This is a standard strategy used in security which we will
use in all data manipulation operations in the following. How the checking process works,
will be described in those steps of the algorithm, where it is required. If � �#7 already exists
in the P-Grid, � is notified. However, this is very improbable because of the randomization
in the generation of � �P7 and the application of a cryptographically secure hash function.
Nevertheless, if it should occur, � generates a new ���Y7 and repeats this step.

4. The previous step is repeated a limited number of times, which we denote as ¯¢±_«³² in the
following, and � waits for confirmation messages from ¯¨±=«³² distinct peers, to prevent a
malicious peer in °u7 from distributing false data to the other replicas in °�7 .

5. As a result of the previous two steps, the mapping will be physically stored at peers in °´7 .
Based on the randomized algorithms that P-Grid uses, we can assume that the individual
replicas ¯µ«J%�°¥7 are independent and they collude or behave in a Byzantine way only to a
degree that can be handled by existing algorithms.

Peer startup

1. � starts up and checks whether its 0�� �DMK7 has changed. If not, the algorithm terminates.
Otherwise, the following steps are taken.

2. � sends an update message �
� ��7��+0����DM/7��E­�®�7��+¡¨7���� �P7#�+0�� �DM/7#�E­�®�7P�E� to the P-Grid, i.e., a new
mapping and a signature for this mapping.

3. Upon receiving the update request, the ¯G« s check the signature by verifying that ¤�7 �l¡¨7 �����h7��
0����DM/7��E­�®�7P�3� w ���h7���� �h7 (thus only � can update its mapping) and ­�®�¶�·u¸�­�®�7 (to prevent
replay attacks). If yes, the new mapping is stored, otherwise an error message is returned.
Note that this operation does not cause a chase, because the replicas responsible for storing
the mapping already know ¤?7 from the original insertion of the mapping in the bootstrap
phase.

Operation phase
In the operation phase � is up and running, has registered an up-to-date mapping �
� ��7��/0 ���DM/7��3­G®�7h� ,
and is ready to process queries and update requests.

1. � receives a request ¹ from a peer º .
2. In case � can satisfy ¹ , the result is returned to º . Otherwise � finds out to which peers ��» it

can forward the query according to P-Grid’s routing strategy. Then it checks its routing table
and retrieves �
� �P7-¼Y�+0����DM/7-¼Y�+¤¥7-¼Y�E­�®�7-¼L� which had been entered during the construction of
P-Grid.

3. � generates a random number ½ , contacts �B» and sends ¤u7 ¼ ��½ � . As an answer �5» must send
�
¡¢7 ¼ �l¤¥7 ¼ �
½ �E�3� and � can check whether ¡b7 ¼ �
¤u7 ¼ ��½ �E�?�v½ . If yes, ��» is correctly identified,
i.e., � really talks to the peer it intends to, and ¹ is forwarded to �B» .
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4. If not, then �5» has a new IP address (the case that somebody tries to impersonate �B» is
covered implicitly by the signature check above), and � sends a query to P-Grid to retrieve
the current 0�����M/7 ¼ using ���h7 ¼ as the key.

5. � collects all answers 1j«¾� �����h7-¼Y�/¤u7-¼#�+0����DM/7-¼��3­G®�7-¼��+¡¨7�¼#�
� �h7-¼Y�+¤¥7-¼#�+0�����ME7�¼P�E­�®�7-¼L�3� it re-
ceives from the ¯J¿&%@°¥7�¼!� (if extended security is required then the ¯S¿ should sign their
answers, i.e., send ��1C«��+¡À¶#Á���1:«
�3� ). � has to collect at least ¯�±=«³² answers to detect misin-
formed or malicious peers, i.e., checks whether a certain quorum of the answers is identical
( ¯µ±_«q² is defined by each individual � according to its local requirements for trustworthiness
of the reply). Otherwise the query is repeated a certain number of times before aborting.

(a) As an optimization the quorum can be avoided under certain circumstances: If � already
knows ¤u7 ¼ , e.g., from the construction of the P-Grid, or because it has already done
a certain number of (quorum-based) queries for ¤�7 ¼ that have resulted in identical
answers, it can assume that its ¤?7 ¼ is correct. Thus it can immediately check the validity
of the answer by ¤u7 ¼ �l¡¨7 ¼ �
� �h7 ¼ �+¤¥7 ¼ �+0����DM/7 ¼ �E­�®�7 ¼ �3� w � �P7 ¼ �}1:« w � �h7 ¼ .

(b) The scheme can be further optimized (and made more robust and secure) by having all
peers store the ¤u7 s that they receive.

6. Now � can proceed with step 3. In case this is successful, � enters �
� �#7 ¼ �/0 ���DM/7 ¼ �/¤u7 ¼ �3­G®�7 ¼ �
into its local cache.

4 Processing queries
Figure 1 shows a typical state of a P-Grid network.

Figure 1: P-Grid before Query(01*) at �ÃÂ
Peer �=« is denoted by Ä inside an oval. Online peers are indicated by shaded ovals, offline peers

by unshaded ovals. Peers under the same branch are replicas. For example, �´� and �dÂ are both
responsible for paths starting with ����� . Without loss of generality we assume that � ��7 has a length
of 4 bits. Thus �dÂ holds the public key and latest physical address mapping about �J� (updated by
�¥� ) because �dÂ is responsible for the paths 0000 and 0001. The shaded rectangle in the upper-
right corner of each peer shows the peer IDs that a peer is responsible for, i.e., whose public key
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and physical address mapping it manages. Note that there exists no dependency between the peer
identity ( Ä��DÅPÆb�©�� � # ) and the path it is associated with (�<0D132��
�ÃÂK�¨�Ç������� ). In its routing table
�dÂ stores references for paths starting with 1, 01 and 001, so that queries with these prefixes can
be forwarded closer to the peers holding the searched information. The cached physical addresses
of these references may be up-to-date (for example, ���
È ’s) or be stale (denoted by underlining, for
example, �_É ).

A peer �_Ê decides that it has failed to contact a peer � g , if one of the following happens: (1)
No peer is available at the cached address (trivial case). (2) The contacted peer fails in the authen-
tication as described in step 3 in the operation phase of the algorithm described in the previous
section: �_Ê will use � g ’s public key to verify � g ’s identity. Since only � g knows its private key
which must have been used for the signature, it is the only peer that can pass the identity test. In
either of the above two cases an up-to-date mapping must be obtained by querying the P-Grid. We
have investigated two querying strategies:
Isolated-Query: Upon receiving a query a peer checks whether it can answer the request. If not,
it forwards the query to at least one of the peers in its routing table according to P-Grid’s routing
algorithm. If none of these peers can be contacted, the query is abandoned and fails.
Recursive-Query: If a peer fails to contact peers in its routing table, it initiates a new query to
discover the latest “identity-to-address” mapping of any of those peers. If this is successful it
forwards the query.

Assuming this initial setup, the query processing based on the protocol of Section 3 will work
as follows: While the P-Grid is in the state as shown in Figure 1, assume that �¥Â receives a query
¹Ë�l�� YÌ#� . �dÂ fails to forward the query to either of �dÉ or �¥��Í since their cache entries are stale. Here,
the Isolated-Query algorithm fails immediately.

In contrast, the Recursive Query algorithm would try to discover the latest addresses for the
stale entries. �dÂ initiates Recursive-Query �l�dÉK� , i.e., ¹��
�� h�� h� , which needs to be forwarded to
either �_É or �¥��Í . This fails again. �dÂ then initiates Recursive-Query �l�u��Í-� , i.e., ¹��j � � h��� , which
needs to be forwarded to �u� � and (or) �¥�
È . �¥� � is off-line, so irrespective of the cache being stale or
up-to-date, the query cannot be forwarded to ��� � . �¥�
È is online, and the cached physical address of
�¥�
È at �_Â is up-to-date, so the query is forwarded to �?�
È . �¥�
È needs to forward ¹��
�u��Í�� to either � � or
�¥� � . Forwarding to �¥� � fails and so does the attempt to forward the query to � � because �¥�
È ’s cache
entry for � � is stale. Thus �¥�
È initiates another sub-query, Recursive-Query �l� � � , i.e., ¹Ë�l���� h�D� .
Additionally, it may initiate Recursive-Query �l�?� � � . �¥�
È sends ¹��
� � � to �=É which forwards it to �dÂ
and/or �_Î . Let us assume �_Î replies. Thus �¥�
È learns � � ’s address and updates its cache. �?�
È also
starts processing and forwards the parent query Recursive-Query �l����Í�� to � � . � � provides �¥��Í ’s
up-to-date address, and �ZÂ updates its cache.

Having learned �u��Í ’s current physical address, �ZÂ now forwards the original query ¹Ë�l�� YÌ#� to
�¥��Í . This does not only satisfy the original query but �¥Â also has the opportunity to learn and
update physical addresses �u��Í knows and �ZÂ needs, for example, �dÉ ’s latest physical address (we
assume that peers synchronize their routing tables during communication since this does not incur
any overhead). In the end, the query ¹��
�� YÌ#� is answered successfully and additionally �uÂ gets
to know the up-to-date physical addresses of �?��Í and possibly of �dÉ . Furthermore, due to child
queries, �u�
È updates its cached address for � � . Figure 2 shows the final state of the P-Grid with
several caches updated after the the completion of ¹��
�� YÌ#� at �ÃÂ .

We have not explicitly mentioned concurrency issues in the example above because those are
either addressed by the networking layer or do not cause problems since we support only lazy
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Figure 2: P-Grid after Query(01*) at �ÃÂ

consistency. For example, if the IP addresses change during authentication, the networking layer
would drop the connection and the authentication would start anew without causing security or
concurrency problems. If the IP address of a peer to be contacted would change after retrieving a
mapping, i.e., a query would return a “stale” entry, this would be recognized, because the authen-
tication would fail upon contacting the peer present at the retrieved address. Since only the owner
can update a mapping, concurrency control is not needed here and if replicas have not been updated
correctly when being queried, this would also be recognized upon contacting the peer and can be
accounted for by re-issuing the same query. Additionally, we can assume that IP addresses do not
change at a high frequency (normally once a peer goes online it keeps the same address for at least
some hours in typical ISPs’ DHCP setups). However, other “hidden costs,” for example, updates
to the mappings and rectifying stale cache entries (self-healing) need to be taken into account as
discussed in the following sections.

5 Query (search) algorithm
Algorithm 2 shows the recursive query (search) algorithm in pseudo-code. In the following, °´7-Ïj~4Ð
denotes the set of peers (replicas) which has the result to a query for path ��0�132 . If a peer �¥Ê receives
a query ¹Ë�4�<0D132�� and �_ÊÑ£%Ò°¥7KÏC~4Ð , then it tries to route (forward) the query to peers in its routing
table according to P-Grid’s routing strategy. The set of peers in its routing table to which the query
can be forwarded, is denoted as °?7-Ïj~4ÐLÓ Ê . � g denotes a stale cache entry.

In fact, the pseudo-code summarizes three different variants of the algorithm which we will
consider. The non-recursive variant (isolated query) provides a result for a query, if at least one
routing entry is up-to-date for each routing step and the corresponding peers are online. Thus it
only works, if the routing tables are sufficiently redundant. The two other variants (lazy repair and
eager repair) are recursive and try to fix stale routing tables to increase the success probability of a
query. They differ in their approach to repair stale routing entries. The eager strategy tries to repair
any stale entry immediately (correction on use), whereas the lazy strategy starts the repair process
only if all routing entries at one level of a routing table are stale (correction on failure). These
two variants may trigger child queries at any stage in the routing process until they succeed. The
recursive strategies affect the rectification of stale caches at various peers, thereby “self-healing”
the overall P-Grid. To avoid cyclic recursions the queries bear unique identifiers and recursion does
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Algorithm 2 Query �dÊ for ��0�132 (query(��0�132 ) at �_Ê )
1: if Ô�ÕdÖ¢×5Ø3Ù�ÚÜÛ then
2: reply to query; ÝEÔ Õ has the requested information Þ
3: else
4: ×�ß`ÝEÔ�àÃÖG× Ø3Ù�ÚÜÛ-á Õ-â Ô�à is at cached address Þ
5: else
6: Ý the isolated query strategy does not fix stale cache entries as the lazy and eager repair strategies do Þ
7: if ( ×�ß]ã and lazy repair strategy) or eager repair strategy then
8: ä = Ý all cached peers at all levels Þ ;
9: for all Ô�å_ÖG×5Ø3Ù�ÚÜÛ-á Õ�æ�× do

10: forward query(�Y�!�
� ��Ô�å�� ) to a non-stale entry from ä ;
11: end for
12: end if
13: ×|ß&ÝEÔ à Ö¢×5ØCÙ:ÚÜÛKá Õ â Ô à is at cached address Þ
14: if ×èçß]ã then
15: forward query(�Y�!�
� ) to a Ô à Ö¢× ;
16: else
17: return failure;
18: end if
19: end if

not occur when it would apply to a reference that is under repair in a parent query. Additionally,
this helps to prevent concurrent repair requests for the same stale entry at one peer.

Deadlock situations, where none of the recursive queries terminates successfully and all en-
tries at one level are stale, may occur. But experiments show that their influence on performance
decreases with an increasing network size.

6 Analysis of the algorithms
In the analysis of the algorithms below we use the following notations: �Bé¬² denotes the probability
of peers being online; ��ê:ëC² defines the probability that a randomly selected entry of a routing table
is stale; ì is the probability that an isolated attempt to contact any particular peer �Ã« by peer �B¿
using its local cache information fails; í/Ð denotes the failure probability of forwarding a query to
any other peer specialized for the other half of the search-subtree; í defines the failure probability
of a query; � is the number of leaves; M is the number of references for the other half of the
subtree in P-Grid routing tables for each depth. It is important to note, that we can assume these
M references to be independent due to the randomized construction process of P-Grid. î ( îUï��
denotes the expected number of attempts (message exchanges) required for a query (along with
the achieved error rate).

6.1 Analysis of an isolated search/query
We first analyze the effect on P-Grid searches of peers going off-line and then rejoining the P-
Grid with a possibly different physical address. When a peer �ÃÊ needs to forward a query ¹Ë�l�_«�� ,
it may fail to do so, because all the peers in °�Åh·ðÓ Ê , to which the query may be forwarded, are
off-line or their cached physical addresses are stale (or both). If the overall offline probability of
peers is  ¨ñò�<é¬² , and the probability that a cache entry at �ZÊ is stale is �<êjëC² , then the probability
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that an isolated attempt at �dÊ to reach a particular peer in °µÅh·ðÓ Ê is successful equals  óñôìÇ�
�<é¬²��C ¨ñ^�<ê:ë3²�� . Likewise, the failure probability of an isolated attempt to forward a query equals
ì]�õ Sñ&�<é¬²��C SñR�<ê:ëC²D� .

Thus ì represents the coupled probability that a peer is off-line and/or the physical address
associated with any peer � g cached at �_Ê has changed. Consequently, when attempts are made to
contact M random peers from the references °µÅh·�Ó Ê at �=Ê , the probability that all M attempts fail is ì 8 .
So, given a per-hop error tolerance í+Ð , we need a minimum of M references to which a search may
be forwarded, such that ì 8 ¸öíEÐ . Thus we need at least îGï�÷*�XøEùnú:û ï ÷ùnú:ûYü

ý
references for the other half

of the P-Grid subtree at any depth to achieve a given í+Ð (and vice versa).
With a íEÐ-· failure probability for query routing at hop Ä , the probability of successful routing to

a desired leaf node is þbÿ«��§� �C =ñ íEÐK·�� where
�

is the expected number of hops to reach the particular
leaf node in question. If there are at least î¨ï�÷ references available at any hop then í+Ðò{XíEÐK·��§Ä ,
and thus íEÐ determines the worst per-hop failure probability. We use this íKÐ for all hops, thus
determining a worst case average performance in the remaining analysis. We thus obtain the effort
for one hop of the non-recursive version of the query as î « g éÐ � î�ï ÷ . The expected total cost to
process a query in a balanced P-Grid is then îG« g é?� ùnú:û k ²� î « g éÐ .

If íEÐ is achievable at every hop (enough references available) then the success probability is
 �ñ íG� �C �ñ íEÐ�� ÿ where

�
is the number of times the query needs to be forwarded to reach the

leaf node. Thus, the expected value of the achievable success probability is  �ñ í?�v¤ ÿ
� �C �ñ í3Ð#� ÿ�� .

For a general P-Grid, the distribution of
�

and thus the expectation is difficult to evaluate, but
for a balanced P-Grid,

�
is a binomial random variable of size 	 ��
 � � and parameter � w	� . Hence,

 Sñ í��õ�C Sñ ï ÷
� � ùnú:û

k ² .

6.2 Recursive queries and dynamic equilibrium
While cached entries continuously get stale owing to network dynamics, they trigger recursive
queries in order to update the stale mappings. Hence the recursive version of querying in P-Grid
has an inherent self-healing property. With few stale mappings, there is hardly any deterioration
in answering the queries, but as the stale entries accumulate over time, they lead to more frequent
recursions. Thus it is expected that the system will reach a dynamic equilibrium, such that the rate
of changes will equal the rate at which self-maintenance is done due to recursions. If the rate of
changes in the system is very high, then the system’s self-maintenance will be unable to catch up
with the changes, and the system breaks down. In this section, we analyze if a dynamic equilibrium
for a given rate of changes is achievable, thus determining the operational zone with respect to the
rate of change, and if such an equilibrium is achievable, we evaluate the system behavior (dynamic
resilience) at the equilibrium.

In the analysis and the results we quantify the rate of change considering two kinds of events in
the network. With probability M�
37 an event consists of peers independently updating their address.
With probability  BñÀM�
C7 an event consists of peers issuing queries. Since updates necessarily imply
the execution of one query to locate a node to which the update is going to be stored, we assume
that M�
C7Uac� w
� .
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6.2.1 Eager recursion

In the eager recursion, all references are checked and the algorithm tries to rectify all stale cache
entries immediately. The effort for a single hop is î¨Ð � î « g éÐ � M�ì�îµ8�9�� since an expected M�ì
recursions will be initiated at each hop, even if the original query is forwarded, where ìÒ�  ¢ñ
�<é¬²��C �ñ^�<ê:ëC²D� . The effort for a recursive query is î�8:9��*� ùnú:û k ²� î�Ð . Thus the expected number of
recursions Vb8:9��d���������� ·����÷ � ��:s�� � � k�!k 8 ü .

A single hop fails when none of the references can be contacted, either because the recursive
query fails or the concerned peer is offline. If í+Ð is the probability of failure of a single hop
(forwarding) in the querying process, then  Sñ í/8´� �j µñ ï ÷

� � ùnú:û
k ² (as derived in Section 6.1). The

probability that a single hop fails equals the probability that recursions are initiated (�§8:9��d��ì ) and
none of the M children responses are usable, either because the recursions themselves fail, or even
if they do not fail, the concerned routing reference is offline. Thus íKÐ¨����8:9��K�j Sñc�C Sñ í38+���<é¬²�� 8 .

The dynamic equilibrium equation then is �C �ñGM"
C7��!�
Vb8:9#��ñ  h���<é¬²��C �ñ¨íC8��Ã��M�
C7��C �ñ���êjëC² �jMd	 �#
 � � .
The left hand side is the rate at which successful repairs of stale routing table entries occur, due
to the Vb8:9#�¥ñv additional recursive queries. Repairs can only lead to a successful update, if the
peer to be repaired is online, therefore an additional factor of �§é¬² . This reflects the underlying
assumption that queries and thus repairs occur at a substantially higher rate than the peers are
switching between offline and online state. The right hand side is the rate at which routing table
entries turn stale due to changes.

We solve the above equations numerically for �5êjëC² , í38 and Vb8:9#� to determine the system per-
formance at the dynamic equilibrium given the system parameters �§é¬² , M�
C7 , M and � . For the case
�<é¬²^�  it is also relatively easy to see from the equations that V 8:9#�Ëa  � 8#$&%�:s�8 $&% M_	 ��
 � � w This
shows that eager recursion exhibits also excellent scalability with � .

6.2.2 Lazy Recursion

For lazy recursion we need to analyze the states of routing tables in more detail. There are M routing
table entries at each peer at each depth. Let ®�« denote the probability that Ä out of M routing table
entries at a given depth are stale. In the following we will also say that a routing table at a given
depth is in state ®B« .

When using lazy recursion, queries are triggered if a peer cannot use any of its corresponding
routing tables to forward a query. This happens either because the routing entries are stale and the
latest ID-to-IP mappings have to be found (using recursive queries) or because the concerned peers
are offline. We assume that in this case the peer issues parallel queries for all M references in order
to minimize response time. Recursive queries occur with a probability �58:9��d�(' 8«���A ®§8Es�«j�j Jñ]�<él²D� «
where �<é¬² is the probability that any particular peer is online.

The effort to forward any query (one hop) is î¨Ð¨�}î « g éÐ)� MK��8:9#��îµ8�9�� , where îµ8:9�� is the total effort
in terms of number of messages for a newly issued recursive query. From the properties of P-Grid,
any query requires ùnú:û k ²� forwarding steps on an average to successfully answer the query. Hence,
îµ8�9��d� ùnú:û k ²� î�Ð . Solving these recursive equations, we obtain the total number of queries including
the original and children queries invoked per original (isolated) query V 8:9��d� ��:s � % �*��� � � � k�!k .

As mentioned earlier, M�
C7 fraction of the network events are ID-to-IP mapping changes in com-
parison to  ¨ñ M�
37 fraction of queries. Routing tables are created based on P-Grid’s randomized
construction algorithm, and each peer is equally likely to be a routing table entry for other peers. If
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there are V peers populating a P-Grid with � leaves (replication factor of VÀ£�� ), then each peer has
on an average M_	 ��
 � � routing references, M for each of the 	 ��
 � � depth of the search tree. Hence,
each peer is used as a routing reference + 8 ùnú:û k ²+ �XMd	���
 � � times in the whole P-Grid network.
The probability that an update of a specific ID-to-IP mapping affects a routing table entry with Ä
stale entries then is M�
C7�®§« 8Es�«8 Md	 �#
 � � , since the original queries are uniformly distributed and MGñ Ä
out of the M entries are susceptible to become stale.

The self-healing comes into action while processing the original queries, each of which leads
to Vb8:9��¥ñô recursive queries on average, and each of these recursive queries tries to update one
routing reference. When recursive queries are triggered in state ®[« , which occurs with probability
®§«j�j ZñÀ�<é¬²�� 8Es�« , Ä out of the Vb8:9��<ñ( recursive queries are initiated. Thus in state ®�« , the probability
that self-healing occurs due to an initial query is �C Sñ M,
C7P� �7 �*��� ®§«j�C ´ñR�<é¬²�� 83s�« � « �lV¢8:9��=ñÒ P� .

However, recursive queries may not always succeed. If the recursion is triggered when Ä cached
references are stale and the M¨ñ Ä others are offline, then Ä:£�M fraction of references can be updated
at most. If í38 is the probability that a recursive query fails, then - ¿«�sY¿/. �j [ñ|í38�� « sY¿ í ¿ 8 is the probability
that of the Ä possible repairs, only Ädñ10 are successful, such that 0&a@Ä stale entries are left in the
routing table even after recursive queries. í+ÐU�©��ì¥�C *ñ��C *ñ íC8K����é¬²D�3� 8 and  *ñ�í38µ�©�j µñ ï ÷

� � ùnú:û
k ²

are derived as in Section 6.2.1.
For the dynamic equilibrium, the inflow to any state ®�« should equal the outflow from ®B« .

Hence, the dynamic equilibrium equation is

M�
C7 ®§« MGñòÄ
M MZ	���
 � �� �j *ñòM�
C7�� 82

¿3��«�4 �  
��8�9�� ®�¿Y�C Sñ&�<él²�� 83sY¿  0 �lV¢8:9��=ñÒ P�65 Ä0bñ Ä[ñ  87 �C Sñ í38+� ¿+s�« s<� í «�4§�8

� M�
C7P®§«94§� M�ñ Ä[ñ  
M M_	 ��
 � � �C Sñ M8
37��  

��8:9#� ®§«�4§���j *ñR��é¬²D� 8Es�« s<�  
Ä �  �lV¢8:9���ñ  P���C Sñ í «94§�8 �

The left hand side of the equation is the inflow into state ®[«�4§� from ®B« as well as from ®�¿3��0;:
Ä �  , because of partial repairs. The right hand side is the outflow from ®�«�4§� . The outflow is
caused by two factors: The first is because additional entries turn stale; the second occurs whenever
recursions are initiated and at least one cached entry is repaired.

We solve the above equations numerically for ®[« , Vb8�9�� , �<ê:ë3² , í38 and thus determine the system’s
performance (dynamic resilience) at the dynamic equilibrium given the system parameters ��él² , M�
C7 ,
M and � .

7 Analytical and simulation results
We implemented the algorithms described in this paper in order to verify the analytical models by
simulation and to demonstrate their scalability. Due to space limitations, we primarily report on
results where ��é¬²U�õ , i.e., peers only change their IP addresses but stay available, apart from some
analytical results for the more general case of �5é¬²�a� . As in the analysis, we do not consider the
cost of establishing a quorum and refer the reader to [11].

For the underlying storage, we construct P-Grid overlay networks of variable population sizes
V �f ,<>=��?< �>@ � �  ,<�� and  h�A<CB peers. We set the average replication factor to 8, such that the paths
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have an average length of 4, 5, 6 and 7 ( 	 �#
 � � where ��� VÀ£>= ). At each depth of the routing
tables we maintain MU�DB references. The simulation is performed in rounds, where in each round
we issue a random query at a random peer with probability  Àñ@M,
C7 , and with probability M�
C7
we change the identity of a random peer and perform the necessary update. To reach a dynamic
equilibrium state, we run a sufficiently large number of rounds (increasing from < � V to  h����V for
decreasing values M�
C7 ) and take the mean over the last < � V rounds to obtain values of the measured
parameters.

For both the lazy and eager recursive query mechanisms we could show that the performance
of the simulated system matches the predicted performance very well. We summarize the results
in Figure 3, where we show the number of messages generated as a function of the frequency of
updates, both when using the eager and the lazy algorithm.

We see that the message cost in the simulation is slightly higher than the predicted cost. This
is due to the variation of the staleness of references. Since the message cost depends non-linearly
on the staleness, variations inevitably lead to an increase as opposed to our average case analysis.
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Figure 3: Simulation results

We observe that for the lazy algorithm for small V ( V �f ,<>= ) the model starts to break down
when the value of M�
C7 grows. This is so because for very small networks combinatorial effects
such as cycles and deadlocks, which are not accounted for in the analysis, start to take effect, thus
making the model inaccurate. On the other hand, we see that for a larger network population the
predictions are increasingly accurate, as it is the case for any statistical model. The message cost
scales gracefully. Thus for large networks our analytical model can be used to reliably predict its
performance. We also observe that the lazy algorithm overall consumes slightly fewer messages
than the eager algorithm.

Figure 4 shows the analytical predictions and the observed �58:9#� values from simulations for
varying M�
C7 , which may also be used to verify the accuracy of the analytical model. For N=128, the
probability of recursion �<8:9�� starts to increase dramatically, which also implies increase in message
cost, and the simulation results deviate from the analytical predictions. Even for moderately large
network sizes (N = 256 and higher), the results obtained from both simulations and analysis match
well, which shows that the independence assumptions, and statistical results of the analysis are
correct, once the system has a moderately large peer population. This is as expected from any
statistical model.
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Figure 4: ��8:9�� vs. M�
C7 , lazy

We use the analytical model to further explore the properties of the system in dynamic equi-
librium. In Figure 5(a) we show how VU8:9�� varies with varying ��é¬² for any M�
C7 value when using
lazy recursion. We observe that the algorithm is very robust, and the message overhead is stable
for a wide range of ��é¬² values. This is so because for lower ��é¬² values, even fewer stale entries
render the routing table unusable, and trigger recursions. The intuitive expectation will thus be an
increase in Vb8:9�� . However, such recursions also have the effect of quickly repairing the routing
table, such that fewer recursions are triggered later. These two opposite effects balance, hence the
wide stretch of �<é¬² values where the overhead stays stable.

Figure 5(b) shows how the overhead varies with increasing network dynamics (increasing MC
C7 ),
and we observe that it is more sensitive to M"
C7 at lower �<é¬² values.

While the use of recursion almost eliminates failures, tolerating even very low �Bé¬² values and
moderately high network dynamics (high M"
C7 ), the incurred effort may not be affordable in a real-
istic network. In Figure 5(c) we thus provide contour maps corresponding to Vó8:9�� values, with ��é¬²
in the X-axis and M�
37 in the Y-axis. The interpretation of the plot is that if a system (participating
peers) is willing to incur an VU8:9�� fold increase of effort per query with respect to the ideal case
(��é¬²^�  and M�
C7&� � ), the network will operate for all �5él²��/M8
37 combinations below the curve,
with the success probability being 1. If the system is unwilling to use more than Vó8:9�� effort and
if the system operates in the region above the curves of Figure 5(c), there is a non-zero failure
probability, which starts increasing with the increase of distance from the curve. Figure 5(c) thus
captures two important tradeoffs in the system. The first tradeoff is that of efficiency versus prob-
abilistic success guarantee of queries. The second tradeoff is the system’s resilience against the
two “demons” of the network, the network dynamics M,
C7 versus average availability of peers in the
network ��é¬² .

Finally, we analyze the dependency on varying values of �§é¬² . In Figure 6 we show the number
of messages for a fixed M�
C7Ñ� � w < and path length � . We see that for networks with more peers
being online, the lazy strategy is advantageous. The tradeoff is that the lazy strategy collapses
earlier. Thus the eager strategy is more resilient in the case of low availability. This suggests that
combined adaptive strategies with various degrees of “eagerness” are an interesting approach for
environments with varying online characteristics.
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Figure 5: Analytical results

8 Related Work
For unstructured P2P systems such as Gnutella [9] and hierarchical systems such as FastTrack-
based (http://www.fasttrack.nu/) systems like Kazaa, dynamic IP addresses are less of a problem.
For example, Gnutella builds an unstructured graph of peers in which each peer typically has 4
permanent connections to other peers. In the case that a connection drops, a peer simply tries to
reconnect or tries to connect to another peer, it has learned about implicitly through Gnutella’s
routing process. Since no routing tables are maintained no inconsistencies can occur. However,
this comes at the expense of very high network traffic. In hierarchical systems “routing tables” (in
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fact they are rather simple) can become inconsistent but their scope is limited, so the effect can be
compensated easily with existing methods.

Freenet [7, 8] suggests the use of a third-party DNS service that allows the peer to update its
name-IP mapping in special DNS domains. However, this introduces a dependency on a third-party
service and an element of centralization into the architecture which is in contrast to the principles
of decentralization to ensure scalability.

The approaches of Chord [29], DKS [6] and Pastry [27] are the closest ones to ours and have
already been discussed in detail and related to our work in Section 1. Their approaches are com-
plementary to our work and further comparative studies on their performance are required.

The approach presented in [15] extends Tapestry [30] to address the joining and leaving of
peers. In absence of self-healing, network maintenance is very expensive in this approach in terms
of traffic (multicast-based partial flooding of the network), and there are no results on how the
approach will cope with the degree of network dynamics (�Bél² and �<ê:ë3² ).

DNS’s original specification was extended by several RFCs (RFC2136, RFC2846, RFC2535),
so that in theory it could maintain dynamic IP addresses through secure nameserver updates. How-
ever, this is very heavy-weight, requires very elaborate configurations, and is not intended for
allowing a large number of peers to change the DNS database. Also an alternative DNS-based
approach presented in [16] is still way too heavy for P2P systems and does not address security
and unique identity of peers. To some extent our approach for recursive queries is similar to DNS’s
recursive lookup strategy which also updates caches during a name lookup. However, DNS’s strat-
egy is much simpler since DNS servers change their IP addresses very infrequently and thus the
tree structure is basically static which simplifies routing a lot. Additionally, the number of partic-
ipating DNS servers is considerably lower than the number of peers in a P2P system, the depth
of the DNS tree is small, and, in contrast to DNS, our approach is self-contained, i.e., does not
depend on a third-party infrastructure.

Other work using a DNS-like hierarchy without a single root has been done in the context of
decentralized identification, such that some peers authorize other peers to use particular resources
they provide. Any peer can authorize other peers to use its local resources as well as possibly
delegate the authority to authorize other peers to do so. Systems following this approach are [10]
and [5] which are based on [29].

For security we devise a self-organizing public key infrastructure [11] which is comparable to
PGP [13] which uses a similar, decentralized approach. PGP uses transitivity of trust, whereby, if
� � trusts that OQP is �RP ’s public key, and also relies on �SP (personally determined) to certify a third
party’s public key, then � � will use OQT as �RT ’s public key, if �UP certifies it. The strength of such
chains is determined by its weakest link and thus highly vulnerable. So [25] suggests to include
multiple paths which, however, still offers only limited liability due to intersecting paths. Thus
additionally authentication metrics [26] are required to quantify the reliability of such multiple
paths. This approach, however, is heavy-weight, for example, finding multiple paths, loads the
network considerably and both the multiple paths and the metrics need to be evaluated at each
peer, and thus the effort is not shared. In contrast to that, our approach does not suffer from these
problems at all. In P-Grid random (independent) peers replicate identity information (mappings)
and thus our approach does not incur any costs in finding independent paths, the use of a quorum
mitigates malicious behavior, and storage and search costs are distributed among the peers and
require substantially lower computing and network resources. Additionally, since a subset of peers
(to which searches are routed efficiently) are responsible for a given key, it is also simple to revoke
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or update mappings which is superior to PGP-based schemes. Further discussions are provided in
[11].

9 Conclusions
This paper described a decentralized, self-maintaining, light-weight, and secure directory service
based on secure identification. We have demonstrated that our algorithm is robust and applicable
in unreliable environments such as current peer-to-peer systems and that it operates well, even
if we assume low online probabilities. Our approach has five major contributions: (1) We sepa-
rate identity from network properties and thus introduce the concept of logical independence into
overlay networks, (2) we provide a general approach to identify entities and to bind arbitrary infor-
mation to them, (3) we demonstrate that the approach does not corrupt structural properties of the
used P2P system and retains existing knowledge and semantics, (4) we explicitly address security
to guarantee the correctness of identities, and (5) we have explored a P2P system’s dynamic re-
silience in the presence of changes in the underlying network, in contrast to other works that have
only addressed static resilience of P2P systems [14, 18]. The service is based on the P-Grid P2P
system and applied in P-Grid itself to mitigate the problem of dynamic IP addresses. To prove the
efficiency and applicability of our approach we have provided an analytical model for the dynamic
equilibrium case and have evaluated our algorithm based on this model. Additionally, we have pro-
vided simulation results to verify the correctness of the model. Our infrastructure offers a sufficient
level of security—deliberately balancing costs against application requirements—by combining a
PGP-like approach for circulating public keys with a quorum-based query scheme that provides
robustness against cheating peers. The presented approach is self-maintaining since it requires
only little manual configuration and then operates without requiring further explicit maintenance
mechanisms, since this is accomplished implicitly by using the network.

References
[1] K. Aberer. P-Grid: A self-organizing access structure for P2P information systems. In

Proceedings of the Sixth International Conference on Cooperative Information Systems
(CoopIS), 2001.

[2] K. Aberer, A. Datta, and M. Hauswirth. The Quest for Balancing Peer Load in Structured
Peer-to-Peer Systems. Technical Report IC/2003/32, EPFL, 2003.

[3] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information System. In Pro-
ceedings of the 10th International Conference on Information and Knowledge Management
(2001 ACM CIKM). ACM Press, 2001.

[4] K. Aberer, M. Hauswirth, M. Punceva, and R. Schmidt. Improving Data Access in P2P
Systems. IEEE Internet Computing, 6(1), 2002.

[5] S. Ajmani, D. E. Clarke, C.-H. Moh, and S. Richman. ConChord: Cooperative SDSI Cer-
tificate Storage and Name Resolution. In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS ’02), number 2429 in LNCS. Springer, 2002.

19



[6] L. Onana Alima, S. El-Ansary, P. Brand, and S. Haridi. DKS(N,k,f): A Family of Low
Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications. In 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), 2003.

[7] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wiley. Protecting Free Expression
Online with Freenet. IEEE Internet Computing, 6(1), 2002.

[8] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anonymous
Information Storage and Retrieval System. In Designing Privacy Enhancing Technologies:
International Workshop on Design Issues in Anonymity and Unobservability, 2001.

[9] Clip2. The Gnutella Protocol Specification v0.4 (Document Revision 1.2), Jun. 2001. http:
//www9.limewire.com/developer/gnutella protocol 0.4.pdf.

[10] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS using a Peer-to-Peer Lookup Ser-
vice. In Proceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02),
number 2429 in LNCS. Springer, 2002.

[11] A. Datta, M. Hauswirth, and K. Aberer. Beyond “web of trust”: Enabling P2P E-commerce.
In IEEE Conference on Electronic Commerce (CEC’03), 2003.

[12] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Replicated Peer-to-
Peer Systems. In Proceedings of the 23rd International Conference on Distributed Computing
Systems, 2003.

[13] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, 1994.

[14] K. Gummadi, R. Gummadi, S. Ratnasamy, S. Shenker, and I. Stoica. The Impact of DHT
Routing Geometry on Resilience and Proximity. In Proceedings of the ACM SIGCOMM,
2003.

[15] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed Object Location in a
Dynamic Network. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 2002.

[16] P. Huck, M. Butler, A. Gupta, and M. Feng. A Self-Configuring and Self-Administering
Name System with Dynamic Address Assignment. ACM Transactions on Internet Technol-
ogy, 2(1), 2002.

[17] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the Evolution of
Peer-to-Peer Systems. In Proceedings of the Twenty-First Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC), 2002.

[18] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic analysis of structured peer-
to-peer systems: routing distances and fault resilience. In Proceedings of the 2003 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications.
ACM Press, 2003.

20



[19] R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of Reliability in Peer-to-Peer
Overlays. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), LNCS. Springer, 2003.

[20] M. Aris Ouksel and Otto Mayer. A robust and efficient spatial data structure: The nested
interpolation-based grid file. Acta Informatica, 29, 1992.

[21] C. E. Perkins, B. Woolf, and S. R. Alpert. Mobile IP Design Principles and Practices.
Prentice Hall PTR, 1998.

[22] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of Replicated
Objects in a Distribute d Environment. In Proceedings of the 9th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), 1997.

[23] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion Stoica. Load
Balancing in Structured P2P Systems. In Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), LNCS. Springer, 2003.

[24] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A Scalable
Content-Addressable Network. In Proceedings of the ACM SIGCOMM, 2001.

[25] M. K. Reiter and S. G. Stubblebine. Resilient authentication using path independence. IEEE
Transactions on Computers, 47(12), 1998.

[26] M. K. Reiter and S. G. Stubblebine. Authentication metric analysis and design. ACM Trans-
actions on Information and System Security, 2(2), 1999.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), Heidelberg, Germany, 2001.

[28] P. H. Salus, editor. Big Book of IPv6 Addressing RFCs (Big Book). Morgan Kaufmann, 2000.

[29] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-
To-Peer Lookup Service for Internet Applications. In Proceedings of the ACM SIGCOMM,
2001.

[30] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerant
wide-are location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley, 2001.

21



Karl Aberer is a full professor at EPFL since September 2000.
There he is heading the Distributed Information Systems Labora-
tory of the School of Computer and Communications Sciences. His
main research interests are on distributed information management,
P2P computing, semantic web and the self-organization of informa-
tion systems. He received his Ph.D. in mathematics in 1991 from
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