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Abstract

The application of structured overlay networks
to implement index structures for data-oriented
applications such as peer-to-peer databases or
peer-to-peer information retrieval, requires highly
efficient approaches for overlay construction,
as changing application requirements frequently
lead to re-indexing of the data and hence (re-
)construction of overlay networks. This prob-
lem has so far not been addressed in the liter-
ature and thus we describe an approach for the
efficient construction of data-oriented, structured
overlay networks from scratch in a self-organized
way. Standard maintenance algorithms for over-
lay networks cannot accomplish this efficiently, as
they are inherently sequential. Our proposed al-
gorithm is completely decentralized, parallel, and
can construct a new overlay network with short
latency. At the same time it ensures good load-
balancing for skewed data key distributions which
result from preserving key order relationships as
necessitated by data-oriented applications. We
provide both a theoretical analysis of the basic al-
gorithms and a complete system implementation
that has been tested on PlanetLab. We use this im-
plementation to support peer-to-peer information
retrieval and database applications.

1 Introduction

In standard database systems it is common practice to reg-
ularly (re-)index attributes to meet changing requirements
and optimize search performance. Recently, structured
peer-to-peer overlay networks are increasingly being used
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as an access structure for highly distributed data-oriented
applications, such as relational query processing, metadata
search or information retrieval [5, 19]. Their use was moti-
vated by the presence of certain features that are supported
by their design such as scalability, decentralized mainte-
nance, and robustness under network churn. Compared to
unstructured overlay networks which are also being pro-
posed for these applications [13, 16], structured overlay
networks additionally exhibit much lower bandwidth con-
sumption for search.

The standard maintenance model for peer-to-peer over-
lay networks assumes a dynamic group of peers forming
a network where peers can join and leave, essentially in a
sequential manner. In addition proactive or reactive main-
tenance schemes are used to repair inconsistencies result-
ing from node and network failures or to re-balance load
in order to react to data updates. These approaches to
maintenance, that have been extensively studied in the lit-
erature, correspond essentially to updating database index
structures in reaction to updates.

In contrast to this, almost no results exist on how to ef-
ficiently construct a large overlay network from scratch,
i.e., how to bootstrap a new, large-scale, structured overlay
network in a practical way within reasonable time. This
is understandable insofar as most of the work on over-
lay networks was done under the assumption of providing
an efficient resource location scheme using an application-
specific, yet fairly stable, resource identifier space (e.g., file
names for file sharing).

With the increasing adoption of structured overlay net-
work technology for data-oriented applications this as-
sumption no longer holds. Resources are identified by dy-
namically changing predicates and different overlay net-
works can be used simultaneously, each of them supporting
a specific addressing need. We can illustrate these require-
ments by a typical application case of peer-to-peer infor-
mation retrieval which we investigated recently.

The standard application of structured overlay networks
in peer-to-peer information retrieval is the implementation
of a distributed inverted file structure for efficient keyword
based search. In this scenario, several situations occur,
in which the overlay network has to be constructed from
scratch:

e A set of documents that is distributed among (a po-
tentially very large number) of peers is identified as
holding information pertaining to a common topic. To
support efficient retrieval for this specific document
collection, a dedicated overlay network implementing



inverted file access may have to be set up.

e A new indexing method, for example, a new text ex-
traction function for identifying semantically relevant
keywords or phrases, is being used to search a set of
semantically related documents distributed among a
large set of peers. Since the index keys change as a
result of changing the indexing method a new overlay
network needs to be constructed to support efficient
access.

e Due to updates to a distributed document collection
an existing distributed inverted file has become ob-
solete. This may either result from not maintaining
the inverted file during document updates or due to
changing characteristics of the global vocabulary and
thus changing the indexing strategy (e.g., term selec-
tion based on inverse document frequency). Thus a
complete reconstruction of the overlay network is re-
quired.

e Due to catastrophic network failures the standard
maintenance mechanisms no longer can reconstruct
a consistent overlay network. Thus the overlay net-
works needs to be constructed from scratch. Of
course, this scenario applies generally in any applica-
tion, but becomes more probable when multiple over-
lay networks are deployed in parallel.

In principle a (re-)construction of an overlay network
in any of these scenarios can be achieved by the standard
maintenance model of sequential node joins and leaves.
Most existing proposals for structured overlay networks
[17, 24, 25] do not offer a completely parallel construction
process involving all peers simultaneously. They assume a
model of joins of peers in an essentially sequential process.
However, this approach encounters two serious problems:

e The peer community will have to decide on a serial-
ization of the process, e.g., electing a peer to initiate
the process. Thus the peer community has to solve
a leader election problem, which might turn out to
be unsolvable for very large peer populations without
making strong assumptions on coordination or limit-
ing peer autonomy.

o Since the process is performed essentially in a serial-
ized manner, it incurs a substantial latency. In partic-
ular it does not take any advantage of potential paral-
lelization, which would be a natural approach.

In principle some systems like Pastry [24] would sup-
port concurrent construction as they take an optimistic ap-
proach in which concurrent node joins are possible as long
as there are no conflicts. However, this assumes that there
already exists a large overlay, so that conflicts are rather
unlikely. In an early stage of bootstrapping and with large
number of peers joining concurrently, conflicts will be very
likely, however. Thus this type of strategy is not applica-
ble to the problem we are addressing. DKS [6] avoids this
problem by equipping joining peers with an approximate
routing table which in the course of the operation of the
overlay will be corrected (correction on use). While this
approach is robust, it incurs considerable efforts as on av-
erage the number of lookups per peer required to stabilize
the network is of the same order as the number of node

joins and leaves.

In this paper we will address the problem how a struc-
tured overlay network can be constructed efficiently from
scratch, a problem that the research community has only
recently identified and started to address [2, 8, 14]. Our
approach is a generic mechanism to autonomously parti-
tion a keyspace in a completely parallel manner. The ap-
proach can potentially be used for constructing any struc-
tured overlay with fixed key space partitioning [7].

In data-oriented applications there exists an additional
factor that adds to the difficulty of finding a solution to this
problem: load balancing. When using overlay networks for
semantic processing of keys (range queries being a popu-
lar example) the canonical method of uniform hashing of
keys to remove skew in the key distribution is no more ap-
plicable. This has led to substantial research on including
load balancing features into overlay networks [2, 12, 17].
During construction this must be taken into account, thus
the construction approach also has to solve load balancing
problems. In fact, we will address two types of load bal-
ancing problems simultaneously: the balancing of storage
load among peers under skewed key distributions and the
balancing of the number of replica peers across key space
partitions. The first problem is important to balance work-
load among peers and is solved by adapting the overlay
network structure to the key distribution. The second one
is important to guarantee approximately uniform availabil-
ity of keys in unreliable networks where peers have poten-
tially low availability. This is a classical “balls into bins”
load balancing problem.

Our approach is based on a keyspace bisection process
through a completely decentralized, parallel, and random-
ized algorithm for assigning peers to key space partitions
in proportion to the key distributions of the partitions. By
recursively applying keyspace bisections, peers can incre-
mentally construct the overlay network while maintaining
load balance. We will introduce our approach in the context
of the P-Grid overlay network structure [3], which we have
developed over the last years, though the essential elements
of the approach are applicable to all overlay networks us-
ing fixed key space partitioning schemes, such as CAN [23]
or Pastry [24]. We demonstrate the theoretical correctness
of the basic keyspace bisection process by analysis and
simulation and show the feasibility of building a complete
system matching the theoretically predicted behavior with
experimental results obtained from a full-fledged imple-
mentation deployed on the PlanetLab [11] infrastructure.
The resulting system (available at http://www.p-grid.org)
is currently used to implement both peer-to-peer retrieval
(http://www.alvis.info/) and peer-to-peer data management
systems [1].

2  Overview of the Approach
2.1 A trie-structured overlay

We assume that data keys are taken from the key space
consisting of the interval [0, 1[. The design of the P-Grid
overlay network is based on two simple principal ideas: (1)
Divide and conquer: The key space is recursively bisected



such that the resulting partitions carry approximately the
same workload and peers are associated with those parti-
tions. Using a bisection approach greatly simplifies de-
centralized load balancing by local decision making. (2)
Canonical trie structure: Bisecting the key space induces
a canonical trie structure which is used as the basis for im-
plementing a standard, distributed prefix routing scheme for
efficient search. The resulting overlay is illustrated in Fig-
ure 1.
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Figure 1: Trie-structured overlay network

At the bottom we see a possible skewed distribution
of data keys in the interval [0,1[. We bisect the interval
such that each resulting partition carries (approximately)
the same load. Each partition can be uniquely identified
by a bit sequence. We associate one or more peers—in the
example exactly two—with each of the partitions. We will
call the bit sequence of a peer’s partition the peer’s path.
The bit sequences induce a trie structure which is used to
implement prefix routing. Each peer maintains references
in its routing table that pertain to its path. More specifically,
for each bit position of its path it maintains one or more
randomly selected references to a peer that has a path with
the opposite bit at this position. Thus the trie structure is
represented in a distributed fashion by the routing tables of
the peers. This topology is analogous to other prefix rout-
ing schemes that have been devised [20, 24] and have been
classified as a fixed key space partitioning scheme for struc-
tured overlay networks in the literature [7]. Search in such
an overlay network is performed by resolving a requested
key bit by bit. When bits cannot be resolved locally, peers
forward the request to a peer from its routing table.

We use replication in two ways in order to increase the
resilience of the overlay network when nodes of network
links fail. Multiple references are kept in the routing ta-
bles, thus providing alternative access paths, and multi-
ple peers are associated with the same key space partitions
(structural replication) in order to provide data redundancy.
Since the routing choices are made by randomly choosing
peers from the complementary sub-tree at each level, the
resulting overlay network additionally provides efficient

search in terms of the communication cost of O(log(n))
message, where n is the number of leaf nodes in the tree,
irrespective of the shape of the tree [2].

2.2 Overlay Network Construction

The process of constructing such an overlay network from
scratch should require low latency, i.e., be highly paral-
lel and require minimal bandwidth consumption. At the
same time the following load balancing criteria should be
achieved:

1. The partitioning of the search space should be such
that each partition holds a maximal data load of d., 4,
e.g., measured as the number of keys present in the
partition. We will call d,y, 4, also the maximal storage
load in the following.

2. Each resulting partition should be associated with a
constant number of peers n,i,, such that the avail-
ability of the different data keys is approximately the
same. We will call n,,;, also the minimal replication
factor in the following.

With perfect load balancing these properties can be
achieved iff. diptNmin = dmazn, Where dg,¢ is the total
number of data keys and n is the number of peers. Algo-
rithm 1 shows our global partitioning algorithm Partition
that attempts to achieve these load balancing goals by best
effort while bisecting the key space, if the idealizing as-
sumptions are not met.

Algorithm 1 Partition(p, n, d)
1: ifd > dew and n > 2n,,iy then
2:  ifn % > Nmin then
d dy

3 noznT}n;nlznT

4 Partition(pg, no, do); Partition(p1, n1, d1)
5:  else

6: if do < d; then

7: N = Nmin; N1 =N — NQ

8 Partition(pg, no, do); Partition(p1, n1, d1)
9: else

10: {analogous}

11: end if

12:  endif

13: end if

The algorithm works as follows. Assume n peers are
associated with one key space partition p containing d data
keys and two sub-partitions pg and p; containing dy respec-
tively d; data keys, such that d = dy + d; . To achieve load
balance criterion 1, a fraction of n % of peers should be as-
sociated with partition p; for¢ = 0, 1. In case n % < Nmin
at least n.,,,;,, peers should be associated with p; to achieve
load balance criterion 2. Partition recursively applies this
bisection step to the key space.

For various reasons this algorithm will achieve the load
balancing goals only approximately. Provided the number
of data keys is large enough, i.e., diot > dmazn/Nmin, the
number of peers associated with a partition will be between
Nomin and 2n,,;, — 1, instead of constant n,,;,. For very
skewed data distributions it can happen that very small par-
titions contain a large fraction of the data keys, and bisec-
tion “disperses” many peers to underloaded partitions even



before reaching such partitions. These are fundamental
problems of any bisection approach. However, for practi-
cal data distributions and large peer populations these prob-
lems are more theoretical in nature and Partition achieves
good load balancing properties provided 1, and dp,qz
are chosen properly.

We will use in the following Partition as an algorithm
that defines what we consider as an optimal partitioning
of the search space among peers and a resulting optimal
overlay network. Since in a peer-to-peer system no global
coordination exists, the problem we intend to solve is to
achieve the partitioning generated by Partition by a de-
centralized process approximately. We will measure the
quality of a solution by determining the deviation from the
optimal partitioning.

In a decentralized process peers do not have precise in-
formation on the number of peers and keys present in a par-
tition and cannot know which decision the other peers in a
partition take with respect to associating themselves with a
partition. The only available information is on the set of lo-
cally stored data keys and information gathered from local
interactions with other peers.

The decentralized process we design is based on random
peer encounters and a set of basic local interactions. The
random encounters can be initiated by performing random
walks on a pre-existing unstructured overlay network. The
interactions peers can perform in their encounters can be
classified in three categories, as shown in Figure 2.
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Figure 2: Network evolution

If peers belong to the same partition they can either
repartition the present partition (a divide-and-conquer
strategy) or replicate the data keys they currently hold. If
they do not belong to the same partition, they can refer
each other to other peers using their routing table entries
and thus route to a peer that belongs to the same partition.

If peers from the same partition meet, they may de-
cide to repartition in case the current partition contains
a sufficient number of data keys to justify a further split,
i.e., the partition is overloaded (corresponding to line 1 in
Partition). They can coordinate locally their decision. In
addition, peers keep a reference to the peer encountered af-
ter a split, and thus incrementally construct their routing
tables.

We can thus reduce the problem of load-balanced over-
lay network construction to the problem of decentralized
partitioning of one key space partition. The problem is that
a large number of peers have to perform the decision to split
independently for allowing a fast construction of the over-
lay network, while making these independent decisions in a
way that the ratio of the number of peers matches the ratio
of the data load in the two partitions. In other words, the
global behavior of the distributed decision making process
should match the outcome of the partitioning step in the
global partitioning algorithm Partition (corresponding to
lines 3 and 7 in Partition). The solution to this problem
is one of the central contributions of the paper and will be
discussed in detail in Section 3.

3 Decentralized Partitioning

Consider a set P of n + 1 peers which hold data keys from
key space K. The space K is partitioned into two parts, 0
and 1, such that the load measured in number of data keys
related to the partitions, /o and [; are p and 1 — p. In the
following we assume w.l.o.g. that 0 < p < % Then the
partitioning that we would ideally like to achieve should
have the following properties:

1. Proportional replication: Each peer has to decide for
one of the two partitions such that (in expectation) a
fraction p of the peers decides for 0 and a fraction
1—pfor 1. Thus the workload becomes uniformly dis-
tributed among the peers, meeting the load-balancing
criteria in the resulting overlay.

2. Referential integrity: During the process each peer has
to encounter at least one peer that decided for the other
partition. Thus the peers have the necessary informa-
tion to construct a routing structure, i.e., the overlay
infrastructure, for delegating requests for keys they are
no longer associated with.

A peer can initiate interactions with any peer selected
uniformly randomly from P. We measure the cost of an
algorithm solving the problem in terms of the number of
interactions initiated by peers and this cost should be min-
imized. The quality of an algorithm solving the problem
is measured by the deviation of the resulting distribution
of peers from an optimal distribution that can be achieved
based on global knowledge and coordination. First we as-
sume that the value of p is known to all peers. We will an-
alyze the influence of having only approximate knowledge
of p by sampling the locally stored data keys later.

To clarify the critical issues we first discuss two sim-
ple heuristic approaches: In the case of p = %, a simple
strategy to adopt would be that peers which have not yet
decided for a partition, initiate a random interaction. If the
contacted peer is also undecided, the peers decide for dif-
ferent partitions (balanced split), otherwise the peer initi-
ating the interaction decides opposite to the contacted peer
which has decided already (unbalanced split). In this way
it learns about a peer from the other partition. Since the
algorithm is symmetric, in expectation the same number
of peers will decide for each partition, and it provides the
best possible performance within the model, since in each



interaction every possible decision is taken. We call this
strategy eager partitioning. While the eager partitioning
strategy works well for p = %, it cannot be employed for
other values of p.

For an arbitrary but known p, a possible strategy, which
we call autonomous partitioning (AUT), would be that
each peer makes a decision for one of the two partitions
in advance, even without meeting any other peer and then
tries to meet some peer from the other partition in order
to satisfy the referential integrity constraint. In this set-
ting, obviously some of the peer interactions are “wasted,”
whenever peers which have decided for the same parti-
tion meet. For the specific case of p = %, by modeling
the interactions as Markovian processes, we observed that
2log(2) = 1.386 interactions are initiated on an average
per peer asymptotically (i.e., for large n), as compared to
log(2) = 0.693 interactions per peer with eager partition-
ing. Thus autonomous partitioning is not an optimal strat-

egy.

3.1 Adaptive eager partitioning

In the following we introduce a method for such an op-
timized solution to the partitioning problem, that has the
characteristics of eager partitioning but works for all p. Due
to space constraints we can only summarize the main points
of the analysis. However, the full analysis can be found in
the long version of this paper [4].

Adaptive eager partitioning (AEP) algorithm:

1. Each undecided peer initiates interactions with a uni-
formly randomly selected peer until a decision is
reached. Selecting peers uniformly at random is a
non-trivial problem in itself which we solve by a vari-
ant of random walks.

2. If the contacted peer is undecided the peers perform
a balanced split with probability 0 < a(p) < 1 and
maintain references to each other.

3. If the contacted peer has already decided for O then
the contacting peer decides for 1 and maintains a ref-
erence to the contacted peer.

4. If the contacted peer has already decided for 1 then
the contacting peer decides for O with probability 0 <
B(p) < 1 and with probability 1 — 3(p) for 1. In the
first case it maintains a reference to the contacted peer.
In the second case it obtains a reference to a peer from
the other partition from the contacted peer.

It is straightforward to see that condition (2) of the par-
titioning problem is satisfied. The question is now to deter-
mine how to satisfy condition (1) by properly choosing the
probabilities a(p) and S(p).

We model the peer interactions as a Markovian process
using mean value analysis. We assume that in each step
¢ a peer which has not yet found its counterpart contacts
another randomly selected peer. By p? and p} we denote
the number of peers that have decided in step 4 for 0 and
1, respectively. Initially, pJ = p§ = 0. At the end of the
process in some step ¢ we have p{ + p; = n + 1. We first
assume that a(p) = 1. Informally speaking, with this a(p)

the partitioning proceeds as fast as possible, optimizing the
required number of interactions. Then the model can be
given as

1
o= PP+ E(n -p) - (1-8)pi_,)

1
pii+ E(" — Bpi_1)
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To determine the proper value of 3 for a given value of p,
we have to solve this recursive system. The first important
observation is that the recursion terminates as soon as no
more undecided peers exist, i.e., as soon as p? + p} =n+1.
Thus we have first to find a value ¢ such that p}, + p;, =
n+ 1. In general this will not be an integer value, but in the
context of mean value analysis we allow fractional steps.
By standard solution methods we obtain
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and evaluating the termination condition, we obtain

_ log(2)
tg(n) = @ +1 (D

Note, that tg does not depend on p, and thus the par-
titioning process requires the same number of interactions
among peers independent of the load distribution. By defi-

0

nition p = :t—fl, thus we obtain a relationship between the
network size n + 1 and the load distribution p with 3(p,n),
the decision probability to be used.

Having 3(p,n) dependent on n is problematic for two
reasons: First the resulting equation is hard to solve, and
second, more importantly, n is not necessarily known to
the peers. Since we are interested in situations where n is
(relatively) large we thus perform an asymptotic analysis.
By letting n — oo we obtain the following relationship

among p and S(p)

1
=1--(1-27° 2
p ﬂ( ) 2)

Positive solutions for 3(p) cannot be obtained for all
values of p. From Equation 2 we derive that positive so-
lutions exist for p > 1 — log(2). This means that the al-
gorithm cannot partition correctly for too highly skewed
partitions. Therefore for 0 < p < 1 — log(2) we have to
pursue a different strategy, by reducing the probability of
balanced splits, i.e., a(p) < 1.

Through an analogous analysis, by setting 5(p) = 0, we
can derive relationships for a(p):



_ log(2a)
~ log(n) —log(1 —2a +n)

to(a,n) (3)

and for the relation between a(p) and p when n — oo

a (1 -2a+log(2a))
(1-2a)’

Before we continue with the discussion of different par-
titioning algorithms, a statement on the modeling approach
is necessary: We use a sequential approach to model and
analyze what is a concurrent process. This is a simplifi-
cation as well as an appropriate approximation for our pur-
pose. Assume that the latency in one interaction is such that
c other interactions among peers occur concurrently. Then
the concurrent behavior of IV peers corresponds (approxi-
mately) to the sequential behavior of % = n + 1 groups.
The analysis we perform shows that the models we use are
sufficiently accurate for relatively small n. Thus for large
numbers of peers the model is a sufficiently good approx-
imation, whereas for small N concurrency is less likely to
occur and less critical.

p=- “)

3.2 Error Analysis

Up to now we assumed that the value of p is known to all
peers. Practically peers will derive an estimate for p by
sampling. Therefore, in the following we analyze the effect
of errors introduced by only approximate knowledge of p.
Other potential sources of errors, such as taking the limit
case n — oo and using mean value analysis turned out to
have a negligible influence.

Assume peers obtain s samples from their locally stored
data keys. The samples correspond to Bernoulli variables
Xi,...,X, with probability p. The peers estimate p by
computing the mean value X = % ijl X which is bi-
nomially distributed. We would like to determine the effect
of an error in estimating p on the values of a(p) and 3(p)
and the resulting effect on the partitioning process when
using approximate values of a and 3. In the following we
will use @ and § instead of a(p) and B(p) as long as the
meaning is clear.

We provide an exemplary error analysis for the evolu-
tion of p} for the case where p > 1 — log(2) since this
is algebraically the simplest case. Analogous analysis have
been done for the other case, but they are substantially more
complex.

‘We assume that in step ¢ the estimation value p; = p+;
is used to determine an estimation value 8; = 8 + €;. The
error +y; is the sampling error obtained by the peer initiating
step ¢. Let us denote by p} = p; + d; the error introduced
into the result of the partitioning process due to sampling
errors. We can derive the following closed-form expression
for 4] from analyzing the Markov model of the process.

6t = (u%)i i_(l_ (l_g)J) ne;

2 FB-n)

)

Since the sampling errors are presumably small we use
a Taylor series expansion to approximate 5(p). In fact, for
reasons that will become clear later, we need to make a sec-
ond order approximation to perform a proper error analysis.
For a given value p, we have

1
& ~ B (p)vi + 5ﬂ”(p)%-2 (©6)

for small ;. We now determine the expectation value
and standard deviation for &} (to simplify the presenta-
tion we will write ¢ instead of ¢g in the following). Since
E[vi] = 0and E[y?] = var[v;] = 1p(1 — p) we obtain for
the expectation value using (5)

B = 58'0) S -p)gBnt O

where —0.21 < g(8,n,t) < —0.20. This shows that
sampling introduces a systematic shift of the balance be-
tween the resulting partitions. In a concrete implementa-
tion we will have to compensate for this systematic error,
as will be discussed in more detail subsequently.

Since var[Yh_, vi] = tvar[yi] = tp(1 — p) we obtain
for the standard deviation by a similar analysis

o] = BGnyip0-p) Bt ®

where 0.07 < f(8,n,t) < 0.09.

The impact of the errors depends in particular also on
the behavior of the functions 8'(p) and 8" (p). Using nu-
merical differentiation we observed that the functions are
well-behaved in the relevant region.

Performing an analogous analysis for p < 1—1log(2) the
behavior of the functions &'(p) and o’ (p) will be relevant
for the error behavior. We have included a plot of o (p)
in order to point out an important observation (Figure 3):
For very small values of p the second derivative grows ex-
tremely fast, and consequently the error will be large as
well.

The error analysis shows that in the presence of sam-
pling errors, we have to include correction terms in the
probabilities a(p) and S(p) used in AEP.

1 1
~a"(p) gp(l -p)

Qeorr(P) = Oé(p)—Q
1
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Figure 3: Numerical Solution for & (p).



3.3 Numerical Simulation of the Markov Model

To validate the correctness of our analytical models we per-
formed numerical simulation experiments. We simulated
five models:

1. MVA: simulation of the mean value model for AEP
with known p

2. SAM: simulation of the mean value model for AEP;
the value of p is estimated from s samples

3. AEP: discrete Simulation of AEP with peers taking
discrete decisions based on a(p) and B(p) instead of
adding mean value contributions as in the mean value
model

4. COR: discrete Simulation of AEP with corrected
probabilities a¢op-(p) and Beorr(P)

5. AUT (Discrete Autonomous Partitioning): Discrete
simulation of autonomous decision making where p
is estimated from s samples

We present the results for n = 1000 and s = 50. Each
experiment has been repeated 100 times.

Figure 4 shows the deviation of the mean value of p§
from the expected value pn averaged over all experiments.
As expected, using sampling for estimating p leads to a sys-
tematic deviation of the resulting distribution (SAM, AEP).
The error correction strategy (COR) eliminates the devia-
tion almost completely. Clearly, autonomous partitioning
(AUT) on average achieves the desired distribution.

0(t)
Mean(p0(t) - n p) Deviation from Mean

12 o - MVA
- — W s.
s IO P
v Y
s ‘ \'_  —& - COR
P* & — aur
‘ ! X
/) c
‘ .f’ \-‘ A
- A a
2 A A [ o
s DU AR SN RN
- A AT S u N |
#g£7$\=¢zmhﬂ p
: 0.1 \‘// 0.2 0.3 .04 0%s
-2

Figure 4: Mean of p over 100 experiments, the expected
value pn is subtracted to highlight the deviation.

Figure 5 shows the cost of each algorithm measured in
number of interactions. As theoretically predicted, we ob-
serve that adaptive eager partitioning performs better than
AUT, except for small values of p (approx. p < 0.15)
independent of which version is considered (MVA, SAM,
COR).

Further experiments with different sample sizes showed
that the sample size has practically no influence. Even very
small samples (1 or 2 samples) lead to the same results as
larger sample sizes. Experiments also showed that adaptive
eager partitioning has a further advantage over autonomous
partitioning as it reduces the standard deviation of the er-
ror in partitioning by approximately a factor of 2. Thus
our AEP approach optimizes both performance in terms of
number of required interactions and error control in terms
of matching the partitioning ratio p.
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Figure 5: Mean total number of interactions over 100
experiments

Superficially, AEP appears to be a more complex al-
gorithm than AUT while not considerably outperforming
AUT. However, the complexity is in the analysis required
to determine the correct decision probabilities, whereas for
practical implementation AEP has even advantages since it
provides an invariant: When taking a decision for a parti-
tion, the availability of a reference is guaranteed.

We would like to point out that the problem studied in
this section is a novel load distribution problem in the area
of distributed systems, particularly because of the referen-
tial integrity constraint. A solution to this problem can be
useful beyond overlay network construction as we use it
here, but also in resource and task distribution and decen-
tralized load-balancing in general.

4 Algorithmic Issues

In order to use AEP for implementing the Partition al-
gorithm in a decentralized fashion we have to address sev-
eral issues related to the global organization of the indexing
process.

4.1 Initiating the Indexing Process

In the absence of global coordination the mechanism to
reach a decision to initiate the indexing process is not ob-
vious. While it is not the focus of this paper, and the initi-
ation process is orthogonal to the index evolution process,
we nonetheless describe a simple, decentralized strategy.

Depending on locally observed queries, individual peers
may make autonomous decisions on whether a new index
may be necessary or re-indexing may be required. Any of
the peers that locally decide that indexing is useful can ini-
tiate a vote, by flooding the peer network. This flooding can
use the pre-existing, generic, unstructured overlay network
which we assume to exist.

When peers receive a voting request they can reply
back their local decision. Additionally, helpful informa-
tion, such as locally available storage space that the peer is
willing to contribute to store information for the new index
and the number of local data items to be indexed can be
piggy-backed. Votes are sent back along the paths they ar-
rived, and multiple votes are aggregated while flowing back
to reduce bandwidth consumption. Based on the number of



positive and negative responses, the peer which initiated the
voting can then decide whether to initiate index construc-
tion or not, and can flood the decision back to all peers. Ad-
ditionally, based on the aggregate storage space available,
and the amount of storage required for all the data items
(references) in the system, the decision will contain the pa-
rameters for ensuring optimized utilization of the available
resources and for synchronization of the indexing process.
We assume a collaborative environment where the major-
ity of peers does not behave maliciously or in a Byzan-
tine manner, and adheres to the democratic decision of the
group, and thus participates in the indexing irrespective of
their individual votes.

4.2 Synchronizing and Terminating the Indexing Pro-
cess

The partitioning algorithm introduced in Section 2 enables
reaching a decision in parallel on bisecting the key space
proportionally among a group of autonomous peers. In the
indexing process the algorithm is executed multiple times
and a synchronization mechanism is needed. In addition
peers need to autonomously recognize when to terminate
the indexing process. We realize this as follows.

The peer communicating the decision to start the in-
dexing process provides the parameters d,,q, and npin
as used in Partition. The values are chosen such that
Amaz = davgNmin/2, where dg, 4 is the average number
of data keys peers hold (as mentioned in Section 4.1 this
information can be derived from information piggy-backed
to the votes). Additionally, it provides a time ¢;,,;;. Before
starting to partition, peers replicate their data keys at time
tinit tO Nmpin randomly chosen other peers. Thus at the start
of the indexing process all data keys are already replicated
the desired number of times in the network.

Besides estimating the number of data keys in the cur-
rent partition, peers also have to estimate the number of
current peers, in order to perform the proper decisions in
algorithm Partition. Attempting this directly, by learning
about all existing replicas at each level of the partitioning
process, would unnecessarily slow down the progress of
indexing. Instead, we estimate the number of replicas in a
partition by analyzing the overlap in the sets of data keys of
two peers interacting in a balanced split. If D; denotes the
set of data keys peers p;,2 = 1,2 hold, and D = D; U D5,
then Lipp s
expected number of peers in the current partition. For ex-
ample, if Dy = Dy and |D1| = djqe, then it should be
expected to have n,,;, peers in the partition since initially
data keys have been replicated n,,;, times. To ensure the
correctness of this estimation was the purpose of initially
replicating the data.

During partitioning, peers that have extended their paths
attempt to immediately contact other peers to perform the
partitioning at the next level. If they do not succeed in iden-
tifying a different peer in the same partition with which a
useful interaction can take place, i.e., “divide and conquer”
or “replicate”, after a fixed number of attempts (e.g., 2),
using the refer interaction (see Figure 2), they stop to ini-
tiate interactions and only will continue after being con-

is a maximum likelihood estimate of the

tacted by another peer. In this way peers that are “ahead
of the crowd”, e.g., due to faster network connections, are
forced to wait for the slower ones. The same mechanism
also eventually leads to termination of the process, when
peers encounter only fully synchronized copies of them-
selves.

4.3 Complexity

The goal of our approach to index construction is to per-
form it with low bandwidth consumption and low latency.
With regard to bandwidth consumption a necessary require-
ment is to perform no worse than a sequential approach
using standard construction mechanisms, i.e., O(n log®n).
To study this, we look at the complexity in the case of a
balanced key distribution (p = %). Then for partitioning at
one level, peers engage in [og(2) bilateral interactions on
average. In addition to locating a peer in the same partition
at level k, peers have to route on expectation log(k) /2 steps
when performing the refer interaction. This shows that the
total number of interactions is also of order O(n log?n).
However, the latency is O(log?n) as opposed to O(n) in
the standard maintenance model.

4.4 Simulation of the System

To study the global behavior of the indexing algorithms
when integrating all the elements discussed so far, we per-
formed simulation studies implemented in Mathematica.
We were mainly interested whether the desired load balanc-
ing properties would be achieved under the various approx-
imations and whether the algorithm performs as predicted.

In the simulations we used peer populations of sizes
256, 512, and 1024. As data distributions we usedaa uni-
form distribution, a Pareto distribution with PDF % with
parameters k = 1 and @ = 0.5, 1.0, 1.5, and a Normal dis-
tribution with mean value % and standard deviation 0.0513,
and test data from text retrieval experiments (project Alvis).
In Figure 6 these distributions are denoted as U, P0.5, P1,
P1.5, N and A. The Pareto and Normal distributions repre-
sent cases with extremely skewed distributions. Initially,
we randomly assigned 10 keys from the distributions to
peers, so that they held samples. We tested with n,,;, = 5
and 7, = 10 such that at least 5 (respectively 10) repli-
cas of the keys are generated. Typically the experiments
had dyge = 10n,4,. All experiments were repeated 10
times and the results were averaged. The algorithms were
implemented as described above. The experiments were
executed on a workstation cluster using up to 36 machines
and were running for more than a week. Note that there
were 36 separate experiments, each conducted 10 times.
Furthermore, in a real network the peers would use exclu-
sive resources, and thus the actual overlay construction pro-
cess is much faster.

For evaluating the experiments we primarily were de-
termining the degree to which the load balancing of peers
across key space partitions worked. To do so, we compared
the generated key sets to the distribution, that would be
generated by global coordination (Partition algorithm).

The Partition algorithm generates a distribution
(kiyn;),i = 1,..., K, where k; are the K partitions of



the key space generated and n; are the number of peers as-
sociated with each partition. We compared this distribution
to the distribution (k¢,n¢) generated by the decentralized
algorithm.

21 (ni —nf)?
* 2i nf

As explained in Section 2, we consider the distribution
generated by Partition as the optimal distribution. Mea-
suring the distance to this distribution provides a measure
for the quality of load balancing.

The first experiment (Fig 6(a)) for n,,;, = 5 and
dmaz = 10 shows the quality of load balancing depending
on the peer population size for the different distributions.
One can observe that the quality remains practically stable
independent of the size.

We also investigated the influence of the replication fac-
tor My im DY cOmparing n,,,;, = 5,10, 15, 20, 25 (Fig 6(b)).
In principle the load balancing properties should not be
affected as we measure deviations relative to the average
replication. This is confirmed for less skewed distribu-
tions, whereas for the strongly skewed distributions a cer-
tain degradation can be observed. We have still to investi-
gate in detail the reasons for this effect, but most likely it is
related to the relatively low number of partitions with high
replication factors.

We were also interested in the influence of the sample
size dqqe On the quality of load balancing. It might be ex-
pected that more samples lead to higher accuracy. In fact,
the result (Fig 6(c)) shows that no such influence exists.
This is insofar important as it shows that the partitioning
can be done using very small samples which enables sev-
eral possibilities for optimization to reduce bandwidth con-
sumption.

In order to understand the quality of the load distribu-
tions achieved we also analyzed the role of our theoretical
framework (Fig 6(d)). We replaced the functions @corr(p)
and B.orr(p) by heuristic functions which likely would be
chosen in the absence of a theoretical understanding of
their properties. The hypothesis we wanted to verify was
whether the concrete nature of these functions plays a sig-
nificant role in view of the many approximations made in
the overall distributed algorithm. We chose

1
aheur(p) = l—_laﬂhem‘(p) =0

P

These functions exhibit qualitatively the same behavior
as the ones used by AEP. The experiment was executed for
n = 256 and n,,;, = 5. The conclusion is clear from
the result: Even a minor change to the theoretically correct
functions degrades the quality of load balancing substan-
tially. Thus the theoretical basis proves valuable despite
many idealizing assumptions.

We also analyzed the communication costs of the algo-
rithm. We can see that both the number of interactions per
peer (Fig 6(e)), and the overall bandwidth consumption per
peer measured in terms of the total number of data keys ex-
changed among all peers during the interactions (Fig 6(f))

grow gracefully in terms of the network size, as expected
from theory. However, skew in the data distribution can
significantly increase the bandwidth consumption.

5 Experimental evaluation

We used the PlanetLab infrastructure [11] to obtain re-
sults from large-scale experiments under realistic network-
ing conditions and to verify our theoretical predictions and
simulation experiments. PlanetLab (http://www.planet-lab.
org/) is a global testbed for large-scale experiments with
distributed systems. At the moment it consists of ap-
proximately 530 nodes geographically distributed over the
whole planet running a modified version of Linux to sup-
port efficient administration and resource sharing for large-
scale experiments. Nodes are connected via a diverse col-
lection of links. Our experiments on PlanetLab ran on up
to 300 nodes depending on the number of available nodes.
Each node executed one instance of a P-Grid node. When
interpreting the results presented in the following, it is im-
portant to consider that PlanetLab is shared by a large num-
ber of research groups for experiments that are executed in
parallel and thus mutually influence the performance con-
siderably especially with respect to absolute latency.

5.1 Experimental setup

We deployed the P-Grid software, i.e., the peers, on all
available nodes at the times the experiments were con-
ducted and assigned 10 keys from a real text collection
(taken from our Alvis information retrieval project) to each
peer. This relatively low number of keys was chosen to
speed up experiments and as we have already seen, sample
size has little influence on load balancing. To validate our
experiments, we also performed tests with larger numbers
(up to 2000 keys per peer) and used various distributions,
including uniform random distribution and Pareto distribu-
tion.

The time-line of the experiments was as follows: In an
initial phase starting at time ¢, peers join the system by
contacting a bootstrap peer (until ¢ + 30min) and form
an unstructured overlay network (from ¢ until ¢ + 45min)
which is used later to replicate data a fixed number of times
(from £ 4+ 45min until £ 4+ 60min). In the replication phase
peers randomly choose 5 peers from the unstructured over-
lay network to replicate their data. Subsequently, from
t 4+ 60min to t + 300min, the structured overlay network
is constructed using the approach presented in this paper.
We were especially interested in evaluating the bandwidth
consumption during this phase and to verify whether the
theoretically predicted load balancing properties of the al-
gorithm are achieved under realistic networking conditions.
Then we run queries on the constructed overlay network
(t+300min to t+400min) to analyze search performance.
Each peer performed a search every 1-2 minutes. In the fi-
nal phase (¢t + 400min to t + 500min) network churn is
simulated to evaluate the failure resilience of P-Grid. Each
peer independently decides to go offline 1-5 minutes ev-
ery 5—10 minutes which causes considerable churn that the
system has to compensate.
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Figure 6: Simulation results for various experiment scenarios.

5.2 Experimental Evaluation

We first verified that the system behavior matches the the-
oretical predictions and the simulations. The experiment
was performed with 296 peers and compared to simulation
results using the same number of peers and the same key
set.

The quality of load balancing is evaluated as defined in
Section 4.4 and is practically identical for simulations and
experiments, with an average of 0.38 for 10 simulations
(the standard deviation is 0.05) resp. a value of 0.39 for
the experiment. This indicates that the theoretically pre-
dicted load distribution properties are met quite accurately
by the implementation even under realistic network condi-
tions with slow connections and communication failures.

We now report some system measurements that we
made to evaluate the performance of the overlay network,
both during the construction phase, as well as in its opera-
tional lifetime both in a static situation (no change in peer
population) as well as under churn (peers leave and join the
network).

Figure 7 shows the number of peers in the overlay at a
given time. We see how first peers join the network and the
number of peers in the network increases to the maximal
number. Then during the construction phase this number
is stable (approx. 300 peers) while decreasing again in the
final phase where we simulate network churn and a sub-
stantial dynamic fraction of peers becomes unavailable.

Figure 8 shows the aggregate bandwidth consumption

bandwidth consumed by queries.
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Figure 9 shows the average query latency and its stan-
dard deviation. The absolute values are relatively high
and essentially reflect the poor response time of PlanetLab
nodes. The response time is slightly higher with a larger de-
viation during the network churn because requested peers
may be offline which has to be compensated.
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Figure 9: Query latency

We observed that the number of query hops per query
is as low as theoretically expected, i.e, approx. half of the
mean path length, even during churn. The average path
length was slightly below 6 and the average number of
query hops per query was approximately 3. Moreover after
the construction phase has led to full evolution of the over-
lay network, all peers discovered all their replicas, and the
system had an expected mean replication factor of 5, as in-
tended, and success rate for queries was between 95% and
100% even during network churn. Queries were mainly
unsuccessful because of network problems such as lost or
corrupted messages.

Finally, we would like to point out that the current ex-
perimental evaluation is still limited in the following sense:
The moderate number of available peers does not allow us
to obtain significant results on the reduction of latency dur-
ing bootstrapping as predicted by our theoretical analysis
in Section 4.3 and which is one of the main properties of
our approach.

6 Related work

The fundamental problems to address for any large-scale
distributed indexing systems are distributed index construc-
tion and load-balancing. Traditionally structured overlay
networks, mainly based on distributed hash tables (DHTs),
have followed sequential construction and maintenance
strategies (online balancing) [12, 17, 24, 25]. In contrast to
this, our approach applies a highly parallel strategy which
speeds up the construction process, takes advantage of the
distributed computing resources by allowing the partici-
pants to work independently and asynchronously on the
construction, and enables the merging of independently
created indices.

To address load-balancing, the standard strategy of over-
lay approaches is to use uniform hashing of keys to remove
skew from the distribution. However, this defeats the appli-
cability of overlay networks to semantic processing of keys

(range queries, etc.). Thus in standard overlay approaches,
typically an additional index on top of the overlay network
needs to be created [22]. The advantage of this approach
is its universal usability on top of any DHT. However, it is
considerably less efficient than our approach since seman-
tically close data items are not necessarily stored close to
each other in the overlay network (high fragmentation), and
hence, multiple overlay network queries are required to lo-
cate all the semantically close content. Thus, apart from the
additional effort of constructing an additional index, such
schemes additionally suffer from inefficiencies throughout
the operational phase of the system.

In contrast to that, we build a trie that clusters semanti-
cally close data, thus realizing in-network indexing which
enables more efficient query processing. This comes at the
expense of a more sophisticated construction process for
such data-oriented overlay networks. Additionally, more
complex online load-balancing strategies have to be ap-
plied, as presented in this paper.

Online load-balancing is widely researched area in the
distributed systems domain which often been modeled as
“balls into bins” [21]. Traditionally, randomized mech-
anisms for load assignment, including load-stealing and
load-shedding and power of two choices [18], have been
used, some of which can partly be reused in the context of
P2P systems [10, 15], but with limited applicability. For
example, [15] provides storage load-balancing as well as
key order preservation to support range queries, but at the
cost that efficient searches of isolated keys can no longer
be guaranteed.

The dynamic nature of P2P systems is also different
from the online load-balancing of temporary tasks [9] be-
cause of the lack of global knowledge and coordination.
Moreover, for replication balancing, there are no real bins,
and actually the number of bins varies over time because
of storage load balancing, but the balls (peers) themselves
have to autonomously migrate to replicate overloaded key
spaces. Also, for storage load balancing, the balls are es-
sentially already determined by the data distribution, and it
is essentially the bins that have to fit the balls by dynami-
cally partitioning the key space, rather than the other way
round.

A distinguishing property of our approach to all other
related load-balancing strategies is actually that we address
two, sometimes conflicting load-balancing problems—
storage load, i.e., balancing the amount of storage used
at the nodes, and replication load, i.e., ensuring approx-
imately uniform data availability by having roughly the
same number of replicas per data partition. The first step
in that direction was a heuristic key space bisection pro-
posal [2]. In comparison to the heuristics, we now exhaus-
tively analyze and refine the bisection mechanism, in order
to better understand and guarantee superior load-balancing
characteristics in the overlay network emerging from the
recursive use of the bisection algorithm. Additionally, we
now not only simulate the construction process, but verify
the analytically predicted properties using a fully-fledged
implementation (P-Grid), deployed on PlanetLab, to back
up our analysis and simulation results with large-scale ex-



perimental data. The overlay network is already used as
a substrate for two data-oriented applications—a peer-to-
peer search engine (http://www.alvis.info/) and a semantic
overlay network [1].

Furthermore, most existing load-balancing as well as
overlay network construction mechanisms have so far been
sequential. However, the need for faster overlay construc-
tion has recently generated interest in the research commu-
nity, as is evident from some recent publications [8, 14].

Both [8] and [14] use random interactions among peers,
induced potentially by the original unstructured topology,
and try to build a desired topology, by essentially trying to
sort the peers according to their identifiers that are gener-
ated at the beginning of the process. These mechanisms
can again be used for overlay networks construction which
support search of keys generated by uniform hashing, since
then peer identifiers can be simply generated using uni-
form hashing, as there is no skew in the load-distribution.
However, for data-oriented applications such a mechanism
has a critical limitation, since peers are predestined for the
amount of load (based on the whole set of peer identifiers
generated at the beginning of the process), and there is no
flexibility or adaptivity for load-balancing, particularly if
the load is skewed. Our scheme—this paper as well as
[2]—on the other hand adaptively creates the key space par-
titions and assigns peers to these partitions based on load
characteristics, and is thus a more generic parallel overlay
construction mechanism. For the special case of uniform
load distribution (as it is traditionally assumed in DHTSs
using uniform hashing), we can easily construct a load-
balanced overlay by requiring p = 0.5 in each step of the
partitioning.

7 Conclusions

The fast (re-)construction of data-oriented structured over-
lay networks is an emerging research topic which has
not yet been covered exhaustively in the literature. (Re-
)indexing due to changing application requirements is a
frequent scenario in data-oriented applications and neces-
sitates the efficient (re-)construction of overlay networks.
Existing approaches are essentially serialized and do not
take into account inherent intricacies like preservation of
key-ordering relationships to enable semantic processing
on data keys. In this paper we have presented an effi-
cient, completely decentralized algorithm which supports
the fast, parallel construction of structured overlay net-
works from scratch based on a recursive bisection scheme
that preserves key semantics and provides good load-
balancing for skewed distributions both for storage and
replication load. We prove the efficiency of our approach
by analytical results which are verified by simulation and
large-scale experiments of a complete system implementa-
tion on PlanetLab. The implementation is available from
http://www.p-grid.org/.
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