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Abstract. Search engines are among the most important applications
or services on the web. Most existing successful search engines use global
ranking algorithms to generate the ranking of documents crawled in
their databases. However, global ranking of documents has two potential
problems: high computation cost and potentially poor rankings. Both
of the problems are related to the centralized computation paradigm.
We propose to decentralize the task of ranking. This requires two
things: a decentralized architecture and a logical framework for ranking
computation. In the paper we introduce a ranking algebra providing
such a formal framework. Through partitioning and combining rankings,
we manage to compute document rankings of large-scale web data sets
in a localized fashion. We provide initial results, demonstrating that the
use of such an approach can ameliorate the above-mentioned problems.
The approach presents a step towards P2P Web search enginesﬂ
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1 Introduction

A number of papers in recent years have studied the approach of hyperlink
structure analysis to determine the hub and authority values or reputation of
web documents. One algorithm proposed, PageRank [2], is the kernel of the very
successful search engine Google [1]. The main problem of this sort of solutions is
that they still are based on a centralized framework. The computation cost is thus
prohibitively high since they have to deal with the complete document collection
of the whole web. Even worse, the computation result can never reflect precisely
the reald ranking relationship since the snapshot in search engines’ databases
can never be complete.

! The work presented in this paper was supported (in part) by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322.

2 That is, the ideal ranking of all existing web documents on the Internet.
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We give a more detailed analysis that strongly suggests that increased use of
local rankings should be made as compared to global rankings. Computing local
rankings not only allows to partition the problem of determining a global ranking
and to derive this ranking from fresher information, but also allows to peruse
information that is only locally available for the ranking computation. Examples
of such information are the hidden Web and usage profiles. In this paper, we
also take up the idea of sharing resources at the level of both computing and
knowledge in P2P systems, and explore the possibility to determine document
rankings for the use in Web search.

We first point out some of the potential that such an approach bears, such
as better scalable architectures and improved usage of distributed knowledge.
The key in making such an approach work lies in the ability to compose global
rankings from local rankings. We develop an algebra to concisely specify ranking
composition processes. An important contribution of the paper is the identifi-
cation of the essential operators for ranking compositions that we have derived
from experiences gained by composing rankings in an ad-hoc manner in our
experimental environment. We then present some initial results on ranking com-
positions, that demonstrate their potential use: on the one hand in decomposing
global ranking computation and still being able to retain the original ranking
characteristics, on the other hand in composing new types of rankings depending
on the desired ranking context.

The paper lays ground for many possible future developments. Most notably,
these concern system architectures that allow to implement ranking composi-
tion processes efficiently and the use of the algebraic framework for potential
optimizations of ranking compositions by algebraic rewriting.

2 Limitations of the Global Ranking Approach

In this section we give an overview of a number of inherent limitations of the
global ranking approach, as for example used by Google. Some of those are more
or less well-known facts, whereas others will be more surprising. The limitations
fall into three categories:

1. Practical problems related to scalability
2. Semantic problems related to the exclusive use of global context
3. Semantic problems related to the instability of ranking algorithms

We will illustrate the problems at the example of Google, in particular the
use of the PageRank algorithm, but similar problems can be expected for other
ranking approaches. PageRank uses iterations of matrix multiplication on the
global web adjacency matrix to compute a global ranking of the whole web
graph, and returns the search results in an order that is decided by a combined
factor of PageRank and the ranking of the traditional keyword-based search.
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2.1 Practical Problems of Global Algorithms

We call the algorithms based-on global information ”global algorithms”. The
practical problems of global ranking schemes are mainly related to scalability.

Dynamicity of Web content: According to the recent research result,
the Web consists of approximately 2.5 billion documents in 2000, with a rate
of growth of 7.3 million pages per day [7]. This web growth rate continuously
imposes high pressure on existing search engines. Repetitive computation is re-
quired even if only a small part of the global web is changed. The reason is that,
the global link adjacency matrix is required to compute the final PageRank.

Latency: Most search engines update on a roughly monthly basis [4]. Since
the time needed to retrieve all the existing and newer Web increases, it also
takes longer time to integrate it into the database, thus longer for a page to be
exposed on search engines. A simpler way to demonstrate the impossibility of
catching up with the growing speed of the Web for the current centralized search
systems is that, in December 2001, Google announced that it was spidering 3
million pages each day where freshness had been determined to be crucial [10].
So the Web pages emerging per day are crawled by Google in about 2.5 days.
As a consequence also the Web graph structure that is obtained will be always
incomplete, and the global ranking computation thus less accurate.

High Computation Cost: The computation of PageRank is over the whole
Web that has been grabbed into Google’s servers. Therefore, the algorithm has
to deal with the problem of multiplication of a huge matrices. Early in June 1
of year 2000, Google indexes 300 million pages in total, and Google’s process
entails 500 million variables and 2 million terms to index every month, resulting
in about 1 terabyte of data to index. According to Sergey Brin, hypertext analysis
of Google is computationally expensive [6]. A single matrix multiplication with
75 million URLs takes 5 hours. At that time, Google already used 4,000 PCs
running Linux to provide its service.

2.2 Importance of Context for Ranking

Link-based ranking methods, such as Google’s PageRank algorithm [2] and the
hub and authority method by Kleinberg [3], have proven as a valuable approach
in uncovering hidden, distributed knowledge in the Web. They are based on the
implicit assumption that the existence of a link from a Web document to another
document expresses that the referenced document bears some importance to the
content, of the referencing document and that frequently referenced documents
are of a more general importance.

The rankings derived based on that observation are usually established in
the context of a specific query, either in combination with other global rank-
ing schemes as in Google or by post-processing query results as in Kleinberg’s
proposal. However, other forms of context may be considered, in particular the
aspect of locality.

The first observation we make is that there exists a certain likelihood that
a local link, i.e. a link that references a document within the same local domain,
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typically a Web site, is likely to be semantically more ”precise” since the author
of the link is likely to be better informed about the semantics and particular
importance of the local documents than an external author.

The second observation we make is that documents that are globally
considered as important, also locally will have greater importance. This second
observation suggests that it might be plausible to identify documents of global
importance based on there local rankings only.

The third observation we make is that each Website establishes a specific
semantic context. Depending now on the context we might specifically take ad-
vantage of the semantics implicit in certain Websites in order to obtain rankings
that are tuned towards certain interest profiles.

All of these three observations lead us to the conclusion that it might be
worthwhile to consider from a semantic perspective instead of a single global
ranking various combinations of local rankings for the following three different
but not mutually exclusive purposes:

1. Obtaining more precise rankings by exploiting local knowledge;

2. Reconstructing global rankings from local rankings in order to distribute the
ranking effort;

3. Using selected local rankings in order to tune the resulting ranking towards
specific interest profiles.

2.3 Instability of Ranking Schemes

Little attention is generally paid to the question to which extent link-based
ranking methods are sensitive to changes in context. We performed a number
of experiments indicating that link-based ranking such as PageRank might have
in fact some undesirable properties with respect to stability. We classified them
into two problems.

Effects of Agglomerate Documents

Previous studies on the HITS algorithm [9] revealed that HITS is prone to the
problem of mutual reinforcement: the hub-authority relationships between pages
are mutually reinforced because people put some one-to-many or many-to-one
links in web sites. This problem can be solved in a heuristic way by dividing
the hub or authority weights in the computation by the in-degree or out-degree
number. It seems that it has not been noticed in the literature that the same
phenomenon also occurs for the PageRank algorithm. The heuristic solution used
by HITS to circumvent the problem cannot be applied to PageRank, since the
division by the out-degree number is already used in the PageRank algorithm.
We illustrate this phenomenon by a simple experiment. We applied the
PageRank algorithm to the set of documents that can be found at the ETH
Zuerich website (about 430.000 pages). Interestingly, among the top 20 docu-
ments of PageRank one finds a substantial number of pages from the Java doc-
umentation (13 out of 20), which surely are not the most relevant documents to
characterize ETH Zuerich. The reason for those documents to being ranked that
high is found in the strong cross-referencing the Java documentation exhibits.
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Stability of Local Ranking

Computation of global rankings merges information that is drawn both from
local links and remote links. An interesting question is on the influence local
versus remote links can have on the outcome of the ranking computation.

We illustrate this point by another experiment we did with pages collected
from the EPF Lausanne websites (domain ”.epfl.ch”). We chose two subsets
of pages from them, related to two different organizational units and included
all pages referenced from these web sites which brought the total number of
documents to 1075. We computed now local rankings for documents for both
websites (dscwww and icawww) in two ways.

1. Computing a global ranking including all 1075 documents and then project-
ing the resulting global ranking to the pages from one website;

2. Computing a local ranking from the documents found on each respective
web site only.

The result is somewhat surprising. For the smaller (dscwww) of the two web-
sites, both the projected global and the local ranking coincide almost completely.
For the larger (icawww) of the two the projected global and the local ranking are
substantially different. Analysis shows that by relying solely on global rankings
different aspects of ranking semantics, namely the local ranking (self-assessment)
and the projected global ranking (assessments by others) are merged in a some-
what arbitrary manner. Therefore a separation of these concerns seems to be a
promising approach in order to reveal more precise information from the avail-
able link structure.

3 The Ranking Algebra

In the previous section we have argued that different rankings established in
different contexts can be of interest. Thus we see rankings as first-class objects,
that can be produced, exchanged and manipulated as any other data object. We
introduce now a framework that defines what the type of rankings is, and how
rankings are manipulated. We will use an algebraic framework for rankings, a
ranking algebra, similarly as it is done for other types of data objects (such as
using relational algebra for relations). The ranking algebra will allow to formally
specify different methods of combining rankings, in particular, for aggregating
global rankings from local rankings originating from different semantic contexts.

3.1 Definitions

First we have to define the domain of objects that are to be ranked. Since
rankings can occur at different levels of granularity there will not be rankings of
documents only, but more generally, rankings over subsets of documents. This
leads to the following definition.
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Definition 1: A partition of a document set D is a set P of disjoint, non-
emtpy subsets of D where P = {py,---,px}, D = Ule p;. We denote P(D) or
briefly P as the set of all possible partitions over the document set D. We call
each of the disjoint subsets a zone.

We use Py to denote the finest partition where each zone in it is a single web
document. So rankings at the document levels are also expressed over elements
of P which makes our ranking framework uniform independent of the granular-
ity of ranking. We also use Pg to denote the partition according to web sites,
assuming that there exists a unique way to partition the Web into sites (e.g. via
DNS). Then each zone corresponds to the set of web documents belonging to an
individual site.

In order to be able to compare and relate rankings at different levels of
granularity we introduce now a partial order on partitions.

Definition 2: Given P(D), the relation cover over P(D) for Py, P, € P(D)
is denoted as P; < P, and holds iff. Vp; € P, 3ps € Pa,p1 C po.

We also say that P is covered by P, or P, covers P;. The relation P, > Py
is defined analogously.

We will also need a possibility to directly relate the elements of two partitions
to each other (and not only the whole partitions as with cover). Therefore we
introduce the following operator.

Definition 3: For P, P, € P, P, > P, the mapping pp,sp, : P1 — 2 is
defined for p € Py and ¢ € P> as q € pp,>p,(p) iff. ¢ C p.

This operator selects those elements of the finer partition that are covered by
the selected element p of the coarser partition. For example, for Pg > Pg, given
a web site S € Pg, the operator maps it to its set of web documents contained
in this site: p(S) C Po.

The basis for computing rankings are links among documents or among sets of
documents. Therefore we introduce next the notion of link matrix. Link matrices
are always defined over partitions, even if we consider document links. Also we
define link matrices only for sub-portions of the Web, and therefore introduce
them as partial mappings. Note that it makes a difference whether a link between
two entities is undefined or non-existent.

Definition 4: Given P € P a link matrix Mp € Mp is partial mapping
Mp : P x P — {0,1}. In particular if Mp is defined only for values in P, C P
then we write Mp(Py). We say then Mp(Py) is a link matrix over P.

A number of operations are required to manipulate link matrices before they
are used for ranking computations. We introduce here only those mappings that
we have identified as being relevant for our purposes. The list of operations can
be clearly extended by other graph manipulation operators.

The most important operation is the projection of a link matrix to a subset
of the zones that are to be ranked.

Definition 5: For P € P(D), P, C P and Mp € Mp, the node projection
IIp, : Mp — Mp(Py) satisfies IIp, (Mp)(p,q),p,q € P defined iff. p,q € P; and
Mp is defined for p, q.

We also need the ability to change the granularity at which a link matrix is
specified. This is supported by the contraction operator.
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Definition 6: For P, P, € P(D) with P; > P, and link matrices Mp, €
Mp, and Mp, € Mp, the contraction AP»>P2: Mp, — Mp, is the mapping
that maps Mp, to Mp, such that for p’,¢' € P1, Mp, (p',¢") defined iff. Mp, (p, q)
defined for all p,q € P, with p C p’,q C ¢’ and Mp,(p',q") = 1 iff. Mp,(p',q)
defined and exists p,q € Py with p Cp',q C ¢/, Mp,(p,q) = 1.

for p,q € P> Mp,(p,q) = 1 and defined iff. for p’,¢' € P, with p C p’,q C ¢
Mp,(p',q") =1 and defined.

In certain cases it is necessary to directly manipulate the link graph in order
to change the ranking context. This is supported by a link projection.

Definition 7: For P € P(D), P, C P and Mp € Mp the link projection
Ap, : Mp — Mp satisfies for p € P— P;,q € P— P, Ap,(Mp)(p,q) = 0 iff.
Mp(p,q) defined and Ap, (Mp)(p,q) = Mp(p,q) for all other p, q.

Based on link matrices rankings are computed. The domain of rankings will
again be partitions of the document set.

Definition 8: For P € P(D) a ranking Rp € Rp is a partial mapping
Rp : P — [0,1]. When the ranking is defined for P; C P only we also denote
the ranking as Rp(Py).

Normally rankings will be normalized. This leads to the following definition:

Definition 9: A normalized ranking Rp satisfies > p Rp(p) = 1. Given

a general ranking Rp € Rp the operator u : Rp — Rp derives a normalized
Rp(p)

ranking by u(Rp(p)) = S R

The connection between rankings and link matrices is established by rank-
ing algorithms. As these algorithms are specific, we do not define their precise
workings.

Definition 10: A ranking algorithm is a mapping R(f;lg : Mp(P) = Rp(Py)

We will distinguish different ranking algorithms through different super-
scripts. In particular, we will use RF?9¢fank the Page rank algorithm, and
RC°unt the incoming links counting algorithm, in our later examples.

As for link matrices we also need to be able to project rankings to selected
subsets of the Web.

Definition 11: For P € P(D) and Rp € Rp the projection IIp, : Rp —
Rp(Py) is given as ITp (Rp) = p(R}) iff. Rp(p) = Rp(p) with p € P; and
Rp(p) defined.

In many cases different rankings will be combined in an ad-hoc manner driven
by application requirements. We introduce weighted addition for that purpose.

Definition 12: Given rankings R € Rp,i = 1,...,n and a weight vector
w € [0,1]™ then the weighted addition X, : R% x [0,1]" — Rp is given as
Yo(Rp, ..., Rbwy, ... wy) = p(Rp) iff. Rp(p) = Y1, wiR%(p) and R (p)
defined for i =1,... n.

We will in particular look into methods for systematic composition of rank-
ings. These are obtained by combining rankings that have been obtained at
different levels of granularity. To that end we introduce the following concepts.

Definition 13: A covering vector of rankings for Rg over Rp with Q@ > P
is a partial mapping Rg S Rg with signature Rg :Q = Rp.
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This definition says that for each ranking value of a ranking at higher gran-
ularity there exists a ranking at the finer granularity. Next we introduce an
operation for the systematic composition of rankings using covering vectors.

Definition 14: Given a covering vector Rg with @ > P the folding is
the mapping F@>P : RE x Rg — Rp such that for RZ € R, Rg € Ro,
FR>P(RY Rq) = u(R%) iff. for p € P,

Ri(p) = 3 (Ro(a) * R2(a)(0)).

qeQ st. Rg(q) and Rg(q) defined

3.2 Computing Rankings from Different Contexts

In this section we give an illustration of how to apply the ranking algebra in
order to produce different types of rankings by using different ranking contexts.

Suppose Ps = {s1,...,sx} C Pg is a subset of all Web sites. If we determine
D; = ppgsp,(8i) we see that D; C Pg corresponds to the set of documents of
the Web site s;. We denote with Dg = UleDi the set of all documents occuring
in one of the selected Web sites. For ranking documents from the subset Pg of
selected Web sites we propose now different schemes.

Global site ranking: The global site ranking is used to rank the selected
Web sites using the complete Web graph. Since only inter-site links are used the
number of links considered for computing the ranking is substantially reduced
as compared to the global Web graph. In addition such rankings should only be
recomputed at irregular intervals. The ranking algorithm to be used is PageRank.
Global site rankings for subsets of Web sites could be provided by specialized
ranking providers or Web aggregators. Formally we can specify this ranking as
follows. Given the Web link matrix M € Mp, and a selected subset of Web sites
Ps C Pg the global site ranking of these Web sites is given as

RES = Ip, (RT9Ramt(APS>Po (M) € Rpg (Ps)

Local site ranking: In contrast to the global site ranking we use here as
context only the subgraph of the Web graph that concerns the selected Web sites.
In this case we prefer to use the ranking algorithm R€°*" since the number of
inter Web site links may be more limited for this smaller link graph. Formally we
can specify this ranking as follows. Given the Web link matrix M € Mp, and a
selected subset of websites Pg C Pg the local site ranking of these websites is

RES = ROO™(ITpy (APS>Po(M))) € Rpg(Ps)

Note that we assume that R°°“"* ranks only documents for which the link matrix
is defined and thus we don’t have to project the resulting ranking to the subset
of Web sites taken into account.

Global ranking of documents of a Web site: This ranking is the pro-
jection of the global PageRank to the documents from a selected site. Formally
we can specify this ranking as follows. Given the Web link matrix M € Mp,
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and the Web site s; € Pg with D; = ppgsp,(si). Then the global ranking of
documents of a Web site is

Rngfbal — HD,L- (RPageRank(M))) — HDi (Rnggbal) c RPO (Dz)

A more restricted form of global ranking is when we only include the documents
from the set Dg = UleDi. This gives

R%zitermediate _ HDI- (RPageRank(HDs (M)))) c RPO (Dz)
The global or intermediate ranking of documents of a set D' = D;, U---UD,_ of
more than one web sites can be obtained similarly by simply replacing D; with
D' in the projection operators.

Local internal ranking for documents: This corresponds to a ranking
of the documents by the document owners, taking into account their local link
structure only. The algorithm used is PageRank applied to the local link graph.
Formally we can specify this ranking as follows. Given the Web link matrix
M € Mp, and the Web site s; € Ps with D; = ppgsp,(8i), the local internal
ranking is

Rl = RPeseank ([, (M) € Ry (D;)

Note that we assume here that the PageRank algorithm does not rank documents
for which the link matrix is undefined, and therefore the resulting ranking is only
defined for the local web site documents.

Local external ranking for documents: This corresponds to a ranking
of the documents by others. Here for each document we count the number of
incoming links from one of the other Web sites from the set Ps. The local links
are ignored. This results in one ranking per other Web site for each Web site.
Formally we can specify this ranking as follows. Given the Web link matrix
M € Mp, the Web site s; € Pg with D; = ppgsp,(si) to be ranked and the
external Web site s; € Pg with D; = ppgsp,(s;) used as ranking context. We
include the case where ¢ = j. Then

Réi = HDi (RCount (ADj (HDiUDj (M)))) € RPO (DZ)

3.3 Ranking Aggregation

We illustrate here by using ranking algebra again how the rankings described
above can be combined to produce further aggregate rankings. Thus we address
several issues discussed in previous sections and demonstrate two points:

1. We show that global document rankings can be determined in a distributed
fashion, and thus better scalability can be achieved. Hence ranking doc-
uments based on global information not necessarily implies a centralized
architecture.

2. We show how local rankings from different sources can be integrated, such
that rankings can be made precise and can take advantage of globally un-
available information (e.g. the hidden web) or different ranking contents.
Thus a richer set of possible rankings can be made available.
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Our goal is to produce a composite ranking for the documents in one of the
selected subset of Web sites in Ps from the different rankings that have been
described before. The specific way of composition has been chosen with two issues
in mind: first, we want to illustrate different possibilities of computing aggregate
rankings using the ranking algebra, and second, the resulting composite ranking
should exhibit a good ranking quality, which we will evaluate in the experimental
section, by comparing to various rankings described in Section [32]

The aggregate ranking for a Web site s; € Pg with D; = ppgsp,(si) is
obtained in 3 major steps. First we aggregate the local external rankings by
weighting them using the global site ranking. Since for each D; we can compute
a local external ranking RLD’Z relative to D;, we can obtain a covering vector

RLEgS(D;) over Ps by defining RLESS (D;)(s;) = REE . Using the global site
ranking we compose an aggregate local document ranking by using a folding

operation
REY = FPs>Po(RLERS (Dy), REY)

Then we combine this ranking of documents in D; with the local internal
ranking in an ad-hoc fashion, using wg and w; as the weights that we give to
the external and internal rankings.

WA LE LI
RDi = EQ(RDl 7RDi7wanI)

In this manner we have now obtained a local ranking for each D;. We can
again use these local rankings to construct a covering vector RC’LEE over Pg by

RCLpS = R4

Using this covering vector we can obtain a global ranking by applying a
folding operation. This time we use the local site ranking to perform the ranking

RE™P = FPs>Po(ROLES, RES)
Finally we project the ranking obtained to a Web site
Rp™ = Ip,(Rp;™)

This composite ranking we will compare experimentally with some of the
basic rankings introduced earlier.

4 Application and Evaluation

4.1 Experimental Setting

In this section we give an illustration of how to apply the ranking algebra in
a concrete problem setting. We performed an evaluation of the aggregation ap-
proach described above within the EPFL domain which contains about 600 in-
dependent Web sites (Pg) identified by their hostnames or IP addresses. We
crawled about 270.000 documents found in this domain. Using this document
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collection we performed the evaluations using the following approach: we chose
two selected Web sites s; and so, with substantially different characteristics, in
particular of substantially different sizes. For those domains we computed the
local internal and external rankings. We also put the EPFL portal web server s,
(hostname www.epfl.ch) in the collection, since this is a point where most of the
other subdomains are connected to. We consider this subset of documents an
excellent knowledge source for information of web site importance. So we have
Ps = {s1, 52,8} here. We denote the corresponding document ses Dy, Do, Dy,
as in section B3]

Then we applied the algebraic aggregation of the rankings obtained in that
way, in order to generate a global ranking for the joint domains s; and ss. For
local aggregation we chose the values (wg, wr) = (0.8,0.2). This reflects a higher
valuation of external links than internal links. One motivation for this choice is
the relatively low number of links across subdomains as compared to the number
of links within the same subdomain. The resulting aggregate ranking R}/
for the joint domains s; and so is then compared to the ranking obtained by
extracting from the global ranking Rngfﬁall)? computed for the complete EPFL
domain (all 270.000 documents) for the joint domains s; and s3. The comparison
is performed both qualitatively and quantitatively.

4.2 Qualitative Results

We report on one specific experiment performed in the way described above.
The subdomains used are sicwww.epfl.ch, the home of the computing center
(280 documents) and sunwww.epfl.ch, the support site for SUN machines (21685
documents). Figure [l compares the top 25 documents resulting from the two
ranking methods. We can observe some substantial differences. In the top 25
list of the aggregate ranking result, the top 4 are obviously more important
than the top listed ones from the global PageRank. The 2 obviously important
pages ”http://sunwww.epfl.ch/” and ”http://sicwww.epfl.ch/informatique/” are
ranked much lower than some of the software documentation pages. We can
assume that this is an effect due to the agglomorate structure of these document
collections. These play obviously a much less important role in the composite
ranking due to the way of how the ranking is composed from local rankings. It
shows that the global page ranking is not necessarily the best possible ranking
method. We obtained similar qualitative improvements in the ranking results of
other domains.

4.3 Quantitative Comparison

For quantitative comparison of rankings we adopt the Spearman’s Footrule. []]:

F(Ro, 1) Z |Ro(i) — Ra(d)] 1)

In the formula, R;,j = 0,1 are the two ranking vectors to be compared. R, (%)
is the rank of document 1.
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Doc D Rank Value  URL Doc D Rank Value URL

4194 0027078119 hitpi/sunwww.epfl.ch/ 1500 0000121 http:/isicwww.epfl.ch/SIC/

82 X il 10714 6.00E-05  http://sunwww.epfl.ch/Admin/todorov.htmi

1500 0002242407 hitpi/isicwww.epfl ch/SIC/ 66021  4.10E-05 hidavafjok1 html
10714 f 66020  3.40E-05 hidavalidk1 html

66021 0.000710622 pil.chiJavafdk1 himi 168390  3.10E-05 hidavalidk1 htmi
66020 0.000598713 hJavafdkt 168389 3.10E-05 pil.chiJavaljdkl doc.html

168387 0000539437 fl.chiJavaidk1 htmi 168388 3.10E-05 hidavalidk1. A htmi
168388 pil.chiJavafkt himl 168387  3.10E-05 pilchiJavajdkt list htmi
168389 0. fl.chiJavajdk1 htmi 66435  3.00E-05 hidavafidk1 himi
168390 0.000539437 pil.chiJavaljdk1 htmi 65975  2.90E-05 hidavalidk1 htmi
66435 fl.chiJavavjdk1 htmi 405856 2.70E-05 hidavaljdki pecs.html
65975 pil.chiJavaidkl himl 4194 240E-05  htipi/sunwww.epfl.ch

405856 fl.chiJavaidk1 pecs.html 66434 2.30E-05 chidavaljdkl html

66434 0.000404271 pil.chiJavalidkl 3709 230E:05  httpilisicwww.epil.ch/SIC/SIC-welcome. himi

169526 0000404097 fl.chiJavaidk1 list htmi 169528 2.30E-05 chiJavafjdk1 doc.htm

169527 0000404097 pil.chiJavafdk1 htmi 169527 2.30E-05 hidavalidk1 A htmi
169528 hJavafdkt htmi 169526 2.30E-05 pilchiJavaljdkt list htm
65974 fl.chiJavaidkt htmi 65074  2.20E-05 hidavalidk1 htmi

167601 pil.chiJavafkt il 167608 2.20E-05 hidavaljdk1 himl

167603 fl.chiJavajdk1 html 167602 2.20E-05 hidavadk1. A htmi
167602 pil.chiJavaidk1 himl 167601  2.20E-05 hidavalidk1 htmi
406487 0.000349716 fl.chiJavaidk1 /Object htmi 406487  2.00E-05 hidavalidkt Object html
409918 pil.chiJavalidkl ject. htmi 26506 200E-05  htipi/sicwww.epfl.ch/SIC/SIC-SILhtmi

399292 0.000255817 f.ch/Javajdk1 Object.ntmi 82 150605 http:/isicwww.epfl.chvinformatique/

168214 pil.chiJavafjdkl himi 409918 1.50E-05 hidavalidk1. Object htmi

Fig. 1. URLs ranked 1 to 25 in the composite and global ranking

Since search engines return documents in ranking order, top level documents
receive generally much higher attention than documents listed later. To take this
into account we customize Spearman’s Footrule by a weighting scheme

F(Ry, Ry) = Zwo(i)wl(i)lRo(i) — Ry (i) (2)

Since users mostly care about top listed documents we assign 90% of the weight
to the T top-listed documents for T' < n, i.e. w;(i) = % for 1 < ¢ < T and
w;i(i) = 24 for t +1<i<n. When T = n, w;(i) = L for 1 <i <n.

We give now the results of the quantitative comparison for our experiment
on the 2 subdomains in Figure . The figure shows the ranking distance com-
puted using the adapted Spearman’s rule of different rankings with respect to
the global ranking R%fﬁ‘l[l)rz for varying values of T. Besides of the aggregate
ranking we include for comparison purposes other rankings that are computed
for different contexts. The ”subset” ranking is the ranking obtained by selecting
exactly all documents that are involved in the computation of the aggregate
ranking and applying the PageRank algorithm, i.e. Rz’&ta%zedmte. This ranking
thus uses exactly the same information that is available to the computation of
the aggregate ranking, i.e., the documents in the set Pg. The ”tinyset” ranking
is the ranking obtained by selecting exactly all documents that are ranked by the
aggregate ranking and applying PageRank to them, which is exactly Réll UD,- I
addition, we included for calibration a randomly generated ranking. The results
are shown in Figure

One can observe that, interestingly, the result of the ”composite” ranking ap-
pears to be much "worse” for low values of T' than the global ranking. However,
considering the qualitative analysis, the result rather indicates that the global
ranking seems to be poor, whereas the aggregate ranking is to be considered as
the "good” ranking to be approximated. For larger values of T' the aggregate
ranking approximates then the rankings computed on the selected subsets. Also
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Ranking Distances of SICWWW & SUNWWW
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Fig. 2. Ranking Distances of SICWWW & SUNWWW

this is an interesting result, since the aggregate ranking is performed in a dis-
tributed manner, computing separate rankings for each of the three subdomains
involved, whereas the ”subset” and ”tinyset” rankings can be considered as cor-
responding to a global ranking based on the union of the selected subdomains.
This shows that by aggregation one can obtain at least as good results in a
distributed manner as with global ranking using the same information.

Due to limit of space, we only show the main results here. More results can
be found in a longer version of this paper at http://lsirwww.epfl.ch/.

4.4 Summary

From the comparison and analysis, we find that with our ranking algebra, the
ranking result has been improved in two important aspects: firstly, default impor-
tant pages (for example the department home) are levered to the rank that they
deserve; secondly, the reinforcing effect of some agglomerate pages is defeated to
a satisfactory degree.

In short, our results making use only of local information approximate the
result of PageRank based on global information very well and in some cases
appear to be even better with respect to importance of documents. We see this
work as a first step towards a completely decentralized P2P-based search engine
that offers meaningful and efficient rankings.

5 Future Work

By introducing a ranking algebra we made a first step towards an operational
framework for manipulating and composing rankings. An obvious development
is to determine and exploit algebraic equivalences in order to find alternative
plans for computing rankings in a distributed environment most efficiently.
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Having the possibility to consider different contexts for rankings, an inter-
esting approach is to use information obtained from user interactions in order to
obtain information on the relevance of documents. This kind of local feedback
could greatly enhance the quality of local rankings that could be used in the
framework that allows to integrate different local rankings.

Another specific context of which composite rankings can take advantage
of are so-called hub sites. These are special Web sites that provide a directory
function by pointing to many relevant (authority) sites. They would be partic-
ularly useful to provide Web site rankings used to fold multiple local rankings,
as illustrated in our examples.
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