
Abstract In this paper, a new technique is developed to support
the query relaxation in biological databases. Query relaxation is re-
quired due to the fact that queries tend not to be expressed exactly
by the users, especially in scientific databas s such as biological
databases, in which complex domain knowledge is heavily in-
volved. To treat this problem, we propose the concept of the so-
called fuzzy equivalence classes to capture important kinds of do-
main knowledge that is used to relax queries. This concept is fur-
ther integrated with the canonical techniques for pattern searching
such as the position tree and automaton theory. As a result, fuzzy
queries produced through relaxation can be efficiently evaluated.
This method has been successfully utilized in a practical biological
database - the GPCRDB.

Categories & Subject Decriptors: H.2.4

General Terms: Algorithms, Performance, Theory

Key Words: Query optimization, Biological databases,
Query relaxation, Position trees, Automaton

1. Introduction

Biological databases are among the most important classes
of scientific databases. A variety of biological databases
have been developed that provide database support for both
the research and the application in different biological dis-
ciplines. Well-known examples include GDB [PMFR92],
GenBank [NCBI92, WZ98]], GSDB (Genome Sequence
Data Base), GCRDb [GC98], GPCR mutant database
[GP98] and GPCRDB [GPCR98]. Protein or DNA
sequence data are the primary data that reside in these data-
bases while various related data such as annotations,
mutant information, physical-chemical characteristics are
often added to the databases along with the main protein
sequences. All these systems are equipped with informa-
tion retrieval to help biologists to solve their own problems.

In this paper, we address an interesting issue: query relaxa-
tion and optimization. Query relaxation is important due to
the fact that a query submitted to the system is usually
domain knowledge related and a user often fails to appro-

priately formulate his/her problem to obtain all relevant
sequences and relevant data. In such a case, it is desired that
some assistance is offered by relaxing a query or providing
helpful information to guide the user to express his/her
problem more exactly. For example, consider a biologist
who is issuing a key word query, say ARCH, to find all
those DNA sequences related to it. If the result does not
match what he/she wants, another key word, say Adreno-
corticotropin, may be chosen to enquire the database once
again. This behaviour is simulated by the query relaxation
of key words along a thesaurus hierarchy built in the sys-
tem. As another example, consider a pattern query, say
P*S*E. If the search fails, he/she may use a different pat-
tern, e.g., G*S*E, which is believed to be close to the origi-
nal one according to biology. Also, this behaviour is
modeled by the query relaxation of pattern queries in our
design. Furthermore, the sequences obtained by evaluating
a query can be explained by imposing a tree structure on
them according to the family tree maintained in the system,
which helps a biologist understand what has been obtained.

Although the above functionalities are important to biologi-
cal research, less attention has been paid to them. We have
recently checked several famous systems such as WPDB
[WPDB02], NDB [NDB02] and SWISS-Prot [SWISS02].
All of them provide powerful sequence retrieval on differ-
ent aspects of DNA structures; but the query relaxation has
not been touched at all. We have also noticed the databases
described in [AOA01, BS02], which are designed for DNA-
binding protein motifs, and for bacterial lipoproteins and
lipid modification, respectively. No discussion on query
relaxation is conducted in them, either.

However, there are a lot of research on query relaxation or
expansion in information retrieval research community
with different methods from ours. In [YK98], a sort of
query relaxation is carried out by loosening the searching
condition in the sense of database theory. In [KJ98,
JKN96], queries are expanded in terms of thesauri, by
which narrower partitive concepts can be replaced with
hierarchically broader generic concepts. A third kind of
query expansion is based on an interactive approach, by
which users select the terms of interests from a list to add to
the initial queries [MSB98, Co00, Ef00]. In this paper, we
consider the similarities among different concepts: similar-
ity among key words and similarity among residue types.
For the first kind of similarities, two hierarchies are con-
structed: family tree and thesaurus hierarchy. Then, the
relaxation can be done bottom-up along the tree structures.

On the Efficient Evaluation of Relaxed Queries in Biological

Databases
Yangjun Chen1, Duren Che2, Karl Aberer3

1Dept. of Business Computing, Uni. of Winnipeg, Canada R3B 2E9
2Dept. of Computer Science, Southern Illinois University, U.S.A. IL 62901

3Distributed Information Systems Laboratory EPFL-DSC, Lausanne, 1015 Switzerland

1The author is partly supported by UW-CIHR grant (CIHR - Canadian Institutes for Health Research).

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM'02, November 4-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011…$5.00.

227

This is similar to the methods proposed in [KJ98, JKN96].
For the second kind of similarities, a new concept of the so-
called fuzzy equivalence classes is developed to capture the
relationships among residue types. In particular, this con-
cept can be integrated with the canonical techniques such as
the position tree [We73, AHU74, CR94] and automaton
theory [HU69] and therefore the relaxation can be per-
formed in an efficient way. The contribution of this paper is
the following:

(1) Family tree and thesaurus hierarchy are built to support
the key word relaxation.

(2) A new concept of the fuzzy equivalence classes is pro-
posed to capture the similarities among residue types.

(3) The technique of the position tree is extended to evalu-
ate regular expressions, especially to evaluate queries
expressed as fuzzy regular expressions. By simulating a
Deterministic Finite Automaton (DFA) of a (fuzzy)
regular expression on a position tree, high performance
can be achieved. We argue that the cost of converting a
regular expression into a DFA will not influence the
time complexity of the pattern matching if the size of
the regular expression is very small compared to the
sequence considered.

(4) The technique mentioned above has been successfully
used in our smart engine embedded in a practical data-
base system GPCRDB [GPCR02], which can be
invoked through the world wide web.

The remainder of the paper is organized as follows. First, in
Section 2, the biological database special for protein
sequences is formally described. Then, in Section 3, the
relaxation processes for both key words and residue types
are discussed. Next, we address the optimization problem in
Section 4. Section 5 is devoted to the system implementa-
tion and Section 6 is on the experiment to compare different
query evaluation strategies. Finally, a short conclusion is set
forth in Section 7.

 2. Biological databases
From an abstract point of view, a biological database is a set
of protein sequences of letters from the protein alphabet ℜ =
{Α, ..., Ζ} (letters B, J, O, U, X and Z are excluded fromℜ),
in which each letter stands for a “residue type”. A biologist
may issue a query against the database to get knowledge on
the relevance of subsequences to a protein structure.

Formally, a biological database can be defined as a triple of
the form: <S, HF, HG>, where S is a set of protein sequences
belonging to ℜ * (ℜ * denotes the set of all finite-length se-
quences of letters from ℜ), HF is a family tree imposed upon
S and HG is a thesaurus hierarchy.

For illustration, see a possible set of protein sequences
shown below.

In terms of the biological classification, S can be partitioned
into several subsets which, in turn, can be organized into a
hierarchy, called the family tree and denoted HF(S). Fig. 1
shows a fragment of the family tree stored in our GPCR da-

s1 = ADCFGKLOHGK
s2 = DDCHFGKLNHGK
... ...
sn =

... ...
... ...

tabase [GPCR02].

In the figure, each leaf node of a family tree is a type corre-
sponding to a subset of S; and each internal node corre-
sponds to a biological concept, representing a subclass
which may further be partitioned into several smaller sub-
classes. Such a family tree helps a biologist understand the
meaning of a subsequence.

In addition, we can also partition S according to the thesau-
rus, leading to another hierarchy, called the thesaurus hier-
archy and denoted HG(S). See Fig. 2 for illustration.

In Fig. 2, instead of giving a concrete example, we illustrate
the generalization (thesaurus) hierarchy using an abstract
representation. Let A, B, C, D, E, F, G, H, ... stand for the
terms in this thesaurus, and SA, SB, SC, SD, SE, SF, SG, SH,
... for the synonym set of term A, B, C, D, E, F, G, H, ...,
respectively. For each main entry in the thesaurus, there is a
corresponding node in the generalization hierarchy, and a
set of synonyms of the term are associated. Following are
several term examples and their synonym sets:

A = Melanocortin
SA = { };

E = ARCH
SE = {Adrenocorticotropic homone, Melanocortin-2};

F = Adrenocorticotropic homone
SF = {ARCH, Adrenocorticotropin};

G = Melanocortin-2
SG = {ARCH};

H = Adrenocorticotropin
SH = {Adrenocorticotropic homone};

A similarity relationship is defined between a pair of terms
if one is a synonym of the other. In addition, a node in HG
represents a generalized concept of the concepts repre-
sented by its child nodes. For the purpose of query relaxa-
tion, we may further indicate the similarities among the
nodes that have the same parent. Obviously, the generaliza-
tion hierarchy as a whole represents the similarities of all

Family

Class A

Class B

Class C

Class D

Class E

Class Y

Class Z

Amine
Adrenoceptors

Acetylcholine

Vertebrate

Vertebrate

Alpha

Calcitonin

Corticotropin releasing factor

Metabotropic glutamate
group I

group II

G alpha type 1

Bacterial rhodopsin type 1

F ig . 1 . A F rag m e n t o f th e G P C R fam ily tree

Root

type 1

type 2

Adrenoceptors

(virtual) Root

A {SA} B {SB} C {SC} D {SD}

E {SE} F {SF} G {SG} H {SH}

Fig. 2. Illustration of the GPCRDB thesaurus hierarchy

➀

➁ ③
④

228

terms in a biological database. It can be used to govern the
first kind of query relaxation: the key word query relaxa-
tion.

In fact, organizing data as above covers main complex inter-
relationships of data: aggregation (similar to the family
tree), generalization (the thesaurus hierarchy when seen
from an epistemological point of view) and set construction.

For the purpose of the biological research, a sequence si ∈ S
is typically partitioned into several subsequences with each
reflecting one of si’s features; and very often only such sub-
sequences are inquired. (How to partition a sequence is de-
termined by biologists. In fact, such a subsequence
corresponds to a so-called “secondary structure” of the pro-
tein sequence, to which a specific biological function is as-
sociated. In particular, it is also named using a character
sequence with some biological meaning.)

Therefore, si is represented as

si = si1si2 ... ,

where each sij represents a subsequence.

Finally, due to the similarity among the residue types, we
partition alphabet ℜ into several fuzzy equivalence classes
(FECs) I1, ..., Im for some m ≥ 1. The membership function
of Ik (k = 1, ..., m) is defined as follows [Co93]:

f: 2ℜ → [0, 1].
The following are several examples of FECs.

 I1: {A}; f({A}) = 1.
I2: {S, T}; f({S, T}) = 0.9.
... ...
I4: {P, G}; f({P, G}) = 0.7.
I5: {E, D, W}; f({E, D, W}) = 0.8.
... ...

Here, an equation such as f({E, D, W}) = 0.8 indicates that
‘E’, ‘D’ and ‘W’ are similar to each other to extent 0.8. By
replacing each letter in a subsequence sij with the fuzzy
equivalence class, to which it belongs, we will obtain an
FEC-subsequence, denoted FEC(sij). Accordingly, the FEC-
sequence for si can be represented as follows

FEC(si) = FEC(si1) ... FEC().

FECs are used for the second kind of query relaxation: the
pattern query relaxation.

In this paper, we consider two kinds of queries. They are

- key word queries and

- pattern queries expressed as a regular expression
or as a fuzzy regular expression (see below).

For evaluating a query containing key words, HG will be
searched and HF may be navigated by the user according to
the query results for the relaxation purpose.

To find the sequences matching a pattern, we build a position
tree [We73, AHU74, CR94] over each protein subsequence
to speed up the evaluation.

An important issue is how the system reacts and offers any
help to the user when a user cannot formulate his/her prob-
lem exactly.

To this end, we develop a relaxation technique in the sense
that a key word in a query can be replaced with its synonym

sini

sini

or its hypernym along HG; and a fuzzy equivalence class is
substituted for a letter (standing for a residue type) appearing
in the regular expression.

From now on, we first concentrate on the relaxation of key
words (along HG) and residue types. Later, how to optimize
the evaluation of fuzzy regular expressions will be discussed
in detail.

3. Relaxation

In our system, the query is of the form: (c11 ∧ ... ∧) ∨ ...
∨ (cj1 ∧ ... ∧), where each ckl is a basic query form to be
discussed. We distinguish between two kinds of query forms:
those containing key words and those expressed as a regular
expression. In this section, we discuss the relaxation technique
for both of them. According to the structures of HF, HG and
FEC sequences, we developed two kinds of query relaxation
techniques: relaxations of key word queries and pattern que-
ries, which will be discussed in 3.1 and 3.2, respectively.

3.1 Relaxation of key word queries
The key word query form is expressed just as a key word kw.

For such a query form, the relaxation is very simple. We cal-
culate the level numbers for all nodes in a hierarchy HG. (The
root is level 0.) If a key word kw is issued, all the sequences
below it in HG will be returned. If the expected results do not
come out, the query will be relaxed in the following way. As-
sume that kw is at level k. We will find a node v that has the
same parent as kw in the hierarchy. (If the similarities among
siblings are specified, we’ll chose node that is the closest to
kw.) Then, all the sequences below v will be output. In a next
loop, another sibling (a sibling that is secondly closest to kw)
will be considered. This process repeats until the expected re-
sults are obtained or all the siblings of kw are visited. The re-
laxation may be expanded to other nodes at level k but with
different parents if necessary. During the relaxation, the re-
sults obtained in each step can be grouped in terms of the fam-
ily tree HF. That is, a tree structure is imposed on the results
so that a user can traverse that tree to find what he/she wants
from the results.

Example 3.1. Consider a key word query: ‘ARCH’. We first
search HG (see Fig. 2) to see whether this key word exists. If
it is the case, all the sequences associated with this key word
will be returned. If the user cannot find what he/she wants
from the result returned, the first relaxation will be made, i.e.,
the synonym set of this key word will be checked. We may do
the second relaxation by checking one of its sibling if neces-
sary. This process repeats until the user finds what he/she ex-
pects, as depicted in Fig. 2: first ➀ is tried, then ➁ , next ③ and
last ④ . This method can be extended to ontologies; but more
complicated control is needed because an ontology is norma-
ly organized into a directed graph [ABB00], where a node rep-
resents a concept and an edge from a to b represents that b is
a direct sub-concept of a.

During the process, the sequences obtained are grouped in
terms of HF, which provides the user a classification of the se-
quences visited. For instance, if the sequences obtained be-
long to ‘Alpha Adrenoceptros’, ‘group II’ and ‘G alpha type 1’
(see Fig. 1), respectively, a sub-family-tree will be constructed
automatically as shown in Fig. 3. This helps a user understand
the meaning of the sequences obtained.

c1i1
cjij

229

3.2 Relaxation of pattern queries

A pattern query form is represented as a pair of the form:
<ss, E> or <_, E>, where ss is a subsequence name, E is a
regular expression representing a pattern and “_” means
“don’t care”. If the query form is <_, E>, the entire database
will be searched to find those sequences containing E. If <ss,
E> is submitted, ss will be checked to see whether it contains
E. If so, all the sequences containing ss as a subsequence
will be output. The following are two examples of pattern
queries:

<gggg, P*S*E>,

<gfgh, (A+D)*CI*>,

where “gggg” and “gfgh” are two subsequence names and
P*S*E and (A+D)*CI* are two regular expressions (see
[AHU74]).

For the relaxation purpose, we define the following three
concepts.

Definition 3.1 (fuzzy regular expression) Let E be a regular
expression. Let li (i = 1, 2, ..., m) be the different letters ap-
pearing in E. By replacing each li with its fuzzy equivalence
class , we get another regular expression E’, called the
fuzzy regular expression (FRE).

Definition 3.2 (mixed regular expression) Let E be a regular
expression. Let li (i = 1, 2, ..., m) be the different letters ap-
pearing in E. By replacing some ’s (j = 1, ..., h; h < m) with
the corresponding fuzzy equivalence classes, respectively,
we get another regular expression E’, called the mixed regu-
lar expression (MRE).

Note that each fuzzy equivalence class I is associated with
its membership function value f(I), based on which the value
for a mixed (fuzzy) regular expression can be defined.

Definition 3.3 (value of mixed regular expression) Let E be
an MRE (FRE). Let Ii (i = 1, ..., h) be the fuzzy equivalences
appearing in MRE(FRE). Then the value of the MRE(FRE)
is defined to be min{f(I1), ..., f(Ih)}, denoted v(MRE)
(v(FRE)).

Based on this definition, the relaxation of a pattern query can
be specified as follows.

Let M be the set of all MREs generated from a regular ex-
pression to be evaluated. We sort M such that all elements in
M are non-increasingly ordered. Assume that M1, ..., Mh are
ordered MREs in M, which can be dynamically produced
and evaluated during a relaxation process. Below is its sim-
plified algorithm description.

Algorithm pattern-query-relaxation
{i ← 1; success ← 0;

repeat
evaluate Mi;

Family

Class A

Class C

Class Y

Amine Adrenoceptors Alpha

Metabotropic group II

G alpha type 1

Figure 3. A sub-family-free automatically constructed

glutamate

Adrenoceptors

root

Iki

lij

if result is O.K. then success ← 1
else i ← i + 1;

until success = 1
}

Example 3.2. Assume that we have a set of FECs as shown
in Section 2. For the regular expression: P*S*E, we’ll have
the following MRE sequence: P*I2*E, P*S*I5, P*I2*I5,
I4*S*E, I4*S*I5, I4*I2*E, I4*I2*I5 with v(P*I2*E) = 0.9,
v(P*S*I5) = v(P*I2*I5) = 0.8 and v(I4*S*E) = v(I4*S*I5) =
v(I4*I2*E) = v(I4*I2*I5) = 0.7. Using the above algorithm,
the relaxation of the pattern query: P*S*E will be done
along the above MRE sequence, i.e., first retrieve P*I2*E,
then P*S*I5, and so on.

In the next section, we will discuss the evaluation optimiza-
tion of the pattern queries expressed as MREs (FREs).

4. Optimization of pattern queries
Two kinds of the optimization have been made in our imple-
mentation. First, the semantic optimization is conducted in a
conventional way. That is, the order of the conjunctive and
disjunctive basic query forms in the original query will be
changed so that the key word queries are always evaluated
first. Then, the pattern queries with subsequence names will
be executed. Next, on the results returned from the previous
execution, the pattern queries with no subsequence names
will performed. Since the relevant techniques are available,
we do not discuss them any further here. Below we concen-
trate only on the (fuzzy) pattern matching and attempt to ex-
tend position trees for both the regular expression and the
mixed (fuzzy) regular expression searching involving fuzzy
equivalence classes. We first show the algorithm for the reg-
ular expression searching based on the position tree in 4.1.
Then, in 4.2, the fuzzy regular expression searching will be
addressed.

4.1 Regular expression searching
The position tree is an index structure built over long se-
quences. It is well-known that this technique can be used to
expedite the simple substring matching. But it has never
been discussed how to utilize it for a regular expression
searching in the literature. Before the algorithm is described,
two concepts concerning the string matching have to be de-
fined: position and position tree (see [AHU74]).

Definition 4.1 (position) A position in a string of length n is
an integer between 1 and n. We say letter c occurs in position
i of string s if s = s1cs2, with |s1| = i - 1. We say substring u
identifies position in string s if s = s1us2, with |s1| = i - 1, and
cannot be written as s1’us2’ unless s1’ = s1. That is, the only
occurrence of u within s begins at position i.

For example, the substring ADDA identifies position 1 of
the string ADDACADD. But the substring ADD does not
identify position 1.

To make each position in a string s over some alphabet A
uniquely identifiable in terms of Definition 4.1, we attach a
special symbol not in A, say $, to the end of the string. Then
each position i of s$ can be identified by at least one string.
We call the shortest string which identify position i in s$ the
substring identifier for position i in s, denoted PI(i).

230

Example 4.1 Consider the string ADDACADD$. The sub-
string identifier for position 1 through 9 are shown in Fig.
4(b).

Definition 4.2 (position tree) A position tree for a string s$
= a1 ... anan+1, where ai ∈ A (A is an alphabet) (1 ≤ i ≤ n)
and an+1 = $, is a tree T such that:

1. For each internal node of T, the edges leaving it have dis-
tinct labels in A.

2. T has n + 1 leaves labeled 1, 2, ..., n + 1. The leaves of T
are in on-to-one correspondence with the positions in s$.

3. The sequence of labels of edges on the path from the root
to the leaf labeled i is PI(i), the substring identifier for po-
sition i.

Example 4.2 The position tree for the string ADDACADD$
is shown in Fig. 4(a). We notice that the path from the root
to the leaf labeled 6 spelled out ADD$, which is the sub-
string identifier for position 6.

(Position trees are also called suffix trees in literature
[McC76, MM96, Uk92].) How to construct a position tree
efficiently is not trivial and a sophisticated method should be
used, which is discussed in detail in [We73, AHU74,
McC76, CR94]. However, we can build the position trees
off-line and prepare them beforehand. Besides, a linear
space complexity (and thus a linear time complexity) can be
achieved through constructing compact position trees
[AHU74, CR94]. This can be obtained by avoiding one-way
branching through including in each internal node the
number of letters to skip over before making the next test as
done for pat-trees [Mo68, Kn73, GBS92]. Therefore, no
much storage overhead arises. (For the sake of exposition,
however, only the normal position tree is shown here to
make the main idea of our algorithm clear.)

In order to use the position tree to expedite a DFA matching,
we change the position tree a bit. That is, each leaf node is
not associate with a point, rather a pair of the form: (po, h),
where po is the point to a substring identifier as defined
above and h is the length of the path from the root to the
node.

The main steps of the algorithm can be described as follows.

(1) Transform the regular expression p issued as a query
into a minimized deterministic automaton (DFA),
which can be performed in two steps. First, we convert
p into a nondeterministic finite automaton (NDFA) M.
Then, in the second step M is transformed into M’, a

Fig. 4. Position tree and substring identifiers

A
C $

D

D

D

A $

C A
$

D

A $

(a)

PI(1):
PI(2):
PI(3):
PI(4):

ADDA
DDA
DA
AC

PI(5): C
PI(6):
PI(7):
PI(8):
PI(9):

ADD$
DD$
D$
$

(b)
1 6

4

5 9

3

2 7

8

minimized DFA. Next eliminate the outgoing transi-
tions from the final states since they are useless for the
pattern matching (see Example 4.3).

(2) Traverse the position tree of the considered protein
substring s. On reaching a node e, some state i of the
DFA will be associated with it. Then, the label of an
edge incident to e will be checked against the label of a
transition leaving i. At the very beginning, we associate
the root of the position tree for s with the initial state of
the DFA; and for any internal node e, if it is associated
with some state i we associate any of its child nodes g
with state j if the transition i → j (in the DFA) and the
edge e → g (in the position tree for s) are labeled with
the same letter.

(3) If a node e is associated with an “unsuccessful” state
(see below), stop the search of that subtree and make a
backtracking. That is, another child of e’s father node
will be checked.

(4) If a node of the position tree is associated with a final
state, accept the whole subtree, terminate the search in
that subtree and if desired, make a backtracking to try
more matching (or report a “successful matching” and
stop the search process.)

(5) If a leaf node e is encountered, traverse the remainder
of the DFA on the substring that begins at position po +
h, where (po, h) is the pair associated with e. If a final
state can be reached, report a “successful matching”.
Otherwise, a backtracking will be made. In other
words, another child of e’s father node will be checked
(against, of course, another transition in the DFA.)

Example 4.3 Now we make a sample trace step by step to
demonstrate how the algorithm works.

- pattern: (D*+C)A

- protein substring: ADDACADD (which will be
changed to ADDACADD$.)

The first step of the algorithm is to transform (D*+C)A into
a DFA which is shown in Fig. 5 (a). (See [AHU74] for DFA
construction.)

In the figure, t0 and tf are the initial and the final state, re-
spectively. In addition, t3 has no outgoing transition. It rep-
resents an “unsuccessful” state. All the outgoing transitions
from the final states will be removed. Then, we have the
DFA as shown in Fig. 5(b).

In the second step, both the DFA for the regular expression
and the position tree for the string will be traversed. The po-
sition tree for ADDACADD$ is shown in Fig. 4(a).

Fig. 5. DFA for (D*+C)A

t0 t1

t2

tf t3C

D

A

A

C

A

D, C

A, D, C

t0 t1

t2

tf t3C

D

A

A

C

A

D, C

(a) (b)

D D

231

The search begins from the position tree root r by associat-
ing it with the initial state t0 of the DFA. Let e be a child node
of r. Let ti be a state reachable directly from t0. If r → e and
t0 → ti are labeled with the same letter, then associate e with
ti. In a next step, we examine one of e’s children and try to
find a subsequent state of ti to which it can be associated in
the same way as for e. This process repeats until one of the
following three cases is encountered.

(i) an “unsuccessful” state is met.

(ii) a final state of the DFA is met.

(iii) a leaf node of the position tree is reached.

If case (i) happens, the third step of the algorithm will be ex-
ecuted, by which a backtracking will be made. For instance,
if we traverse the edge (labeled with A) incident to r, reach-
ing to a node which will be associated with t3, the “unsuc-
cessful” state. In this case, the control will be switched over
to r to try another edge, say the edge labeled with C.

If (ii) is the case, the fourth step of the algorithm will be per-
formed, by which “successful matching” is reported. For the
given pattern and the string, if the path from the root to the
leaf node labeled with 2 is followed, the leaf node will be as-
sociated with the final state of the DFA, which indicates that
the pattern matches the string.

In case (iii), the fifth step of the algorithm will be conducted,
by which the substring from the position indicated by the
leaf node will be searched against the remainder of the DFA.
For the given pattern and the string, if the edge (labeled with
C) incident to r is visited, the node labeled with 5 will be as-
sociated with state t2. Since this node is a leaf, the substring
from position p + h (= 5 + 1) will be searched against part of
the DFA as shown in Fig. 5(b) (the portion marked gray in
Fig. 5(b) will be traversed.) The letter at position 6 is A. It
matches the label of the transition t2 → tf and thus “success-
ful matching” will be reported.

The following is the formal description of the algorithm, by
which a stack is used. Each item of stack is a pair of the
form: (v, t), where v is a node of the position tree and t is a
state of the DFA.
Algorithm pattern-matching
{ transform the pattern p into a DFA;

let r be the root of the position tree;
let t0 be the initial state of the DFA;
push (r, t) into stack;
while stack is not empty do

{(v, t) ← pop(stack);
if t is an unsuccessful state then do nothing
else if t is a final state then report “successful matching”

else if t is a leaf node then
{traverse the remainder of the DFA on the subsequence
that begins at po + h, where (po, h) is the pair associated
with v;

if a final state is encountered then report “successful
matching”;}

else
{let v1, ..., vi be child nodes of v;

let t1, ..., tj be child nodes of t;
put all (,) into stack if v → and t →
have the same label;

}}}

vik
tjl

vik
tjl

The main part of the algorithm consists in a depth-first
search of the position tree. During a traversal, if the DFA
contains no cycles each edge of the DFA is visited at most
once. Thus, in this case, the time complexity of the above
algorithm is bounded by O(|DFA|). If the DFA contains
back edges (a back edge is an edge like t1 → t1 shown in
Fig. 5(a)) and therefore cycles, the time complexity of the
worst case is O(2|P| + |s|), where |s| represents the length of
sequence s, and |P| represents the number of letters in the
pattern P. (Even if it is the case, for the short regular expres-
sions, the scanning using the DFA is still better than the
sequence scanning using a normalized nondeterministic
automaton [CR94], which requires O(|P|⋅|s|) time.) To
mitigate the time complexity, we use the following
methods:

1. Using Tarjan’s algorithm for identifying strong con-
nected components [Ta72] to check the cycles appear-
ing in the DFA.

2. Using the word periodicity theory [GM95] to mark the
cyclic words for each path of the position tree (and the
subsequences) so that the back edges appearing in the
DFA can be skipped over.

Thus, the time complexity of the above algorithm can be re-
duced to O(|DFA|) if the time spent for converting a regular
expression into a DFA is not taken into account. In fact, if the
regular expression is small (compared to the sequence in-
volved), which happens very often in the GBCRDB, the
transformation will not degrade the entire time complexity
although it may take exponential time theoretically.

4.2 Fuzzy regular expression searching

The technique discussed in the previous subsection can be
easily extended to treat fuzzy (mixed) regular expressions.
Concretely, only two simple modifications of the strategy
shown in 4.1 are needed.

First, for relaxing a pattern, the letters labeling some transi-
tions of the corresponding DFA will be replaced with their
respective fuzzy equivalence classes. The resulting DFA is
called the relaxed DFA.

Secondly, the third step of the above algorithm should be ac-
cordingly changed. That is, by simulating a transition a of
the DFA on an edge b in the position tree, we check whether
the label α of a contains the label β of b if α is a fuzzy equiv-
alence class. Otherwise, the equivalence between α and β
will be checked.

The following example helps for illustration.

Example 4.4 Now we consider a new data setting as fol-
lows:

- pattern: (D*+C)A

- protein sequence: ADEADD$

Since the pattern does not match the protein sequence, the
system will answer “no”. The position tree for ADEADD$
is shown in Fig. 6(a). In this case, the relaxation may be in-
voked.

Assume that I = {D, E} with f(I) = 0.7 and at a certain step

232

during the relaxation (see Example 3.2 to understand a re-
laxation step) the mixed regular expression: (I*+C)A is pro-
duced (automatically) and issued to the query evaluation
component. Then, the DFA of (D*+C)A will be changed as
shown in Fig. 6(b), in which each D is replaced with I.

While simulating transitions in the portion enclosed by the
broken rectangle in the DFA shown in Fig. 6(b) on the part
marked gray in the position tree shown in Fig. 6(a), the sys-
tem will check whether I contains D or E. Since the check-
ings are successful, the final state of the DFA will be
eventually reached and the system will report a positive an-
swer with credibility 0.7.

From this example, we can see that the method works effi-
ciently since we needn’t reconstruct the relaxed DFA for the
mixed regular expression. To achieve a constant time com-
plexity for replacing a letter with its corresponding fuzzy
equivalence class, we build an array a[A .. Z] (not containing
entries for B, J, O, U, X and Z), indexed by the letters in ℜ .
Initially, set a[x] = x for each x ∈ ℜ. We label the transi-
tions of the DFA with a[x] (x ∈ ℜ) when it is constructed.
During the relaxation, if a letter appearing in the regular ex-
pression, say A, should be replaced with its fuzzy equiva-
lence class I, we put simply I into a[A]. No extra operations
are needed. Therefore, it requires only a constant time for
this task.

Since the number of letters in ℜ is a constant, the checking
whether a subset of ℜ contains a letter requires only a
constant time. Therefore, the time complexity of a relaxation
operation is O(|I1| + |I2| ... + |Im| + |DFA|).

5. System implementation

In this section, three important aspects concerning the im-
plementation are presented. They are: system architecture,
interface and sequence storage structure.

5.1 System architecture

Now we briefly outline the system architecture of
GPCRDB query system. As is depicted in Fig. 7, the
GPCRDB query system is designed to run on the world
wide Web. On the client side, users formulate their queries
by simply filling out the query forms embedded in HTML
pages. When submitted, the queries are transmitted to the
IUS Webdriver or to the smart query engine through the
Web server on the server side over the Internet. (Here IUS
stands for “Informix Universal Server”; see [IUS97].) The
IUS Webdriver is provided by the Informix Inc. as a web
datablade that works as a gateway between Informix data-
bases and the Web server while the task of the smart query
engine is to do the pattern matching and the query relaxa-
tion for both key words and regular expressions as
described in the previous sections.

Fig. 6. Position tree and relaxed DFA

t0 t1

t2

tf t3C

I

A

A

C

A

I, C

I

(b)

A
E $

D

D

E D

E D
$

1 4

3 7

2 5 6

(a)

The ordinary queries submitted to the Web server can be
interpreted by the IUS Webdriver that accesses the
GPCRDB database and returns evaluation results as Web
pages to the client’s Web browser. However, if a user acti-
vates the smart query engine explicitly, the control will be
taken over by it from the IUS Webdriver, by which the fol-
lowing steps will be performed:

1. For the key word involved in query, the hierarchies
HG will be taken from the database and the relaxa-
tion will be done in a way as described in 3.1.

2. For the pattern expressed as a regular expression, the
substring and the corresponding tree will be taken
from the database and the relaxation will be made as
described in 4.1 and 4.2.

During the relaxation, the interference of users is allowed
so that they can conveniently choose among multiple alter-
natives and provide the information on how to relax a query
if the system default method is not desired.

5.2 Interface

The GPCRDB query system allows users to query the
GPCR database through a variety of ways: “family”, “key-
word”, “secondary structure” (subsequence), “ligant”
(binding information), “mutants”. In addition, an advanced
(compound) query page is provided for formulating query
expressions consisting of up to six different conditions that
can be logically interconnected with “∧ ” or “∨ ”, constitut-
ing an “and-or” normal form. For example, if c1 ∨ c2 ∧ c3 is
input, it will be treated as c1 ∨ (c2 ∧ c3). That is, “∧ ” takes
precedence over “∨ ”. The interface shown in Fig. 8 con-
tains a query:

Find GPCR sequences that have the keyword ‘ARCH’ (con-
tained in any one of the annotation fields; to each
sequence a number of annotation fields are attached)
and contain the pattern ‘R*SS’; furthermore, the sec-
ondary structure (subsequence) “N-terminus” of the
sequences contain the pattern ‘PP’.

The first response of the query system to an input query is a
summary page that presents to the user some links to vari-
ous pages containing more details about all hits of the query
(the number of the sequences satisfying the query). Fig. 9 is
an example of such summary pages. This summary page
also contains a button at the bottom that the user can use to
invoke the smart query engine to relax a query if he/she
wants more relevant results. Users can activate the relaxa-
tion process of their queries by making additional selec-
tions predefined by clicking an option button that allows
them to specify one or two facets (of their queries) that
should not be relaxed. Currently, three kinds of relaxation
(operating on different facets of a query) are supported,
keyword (concept) generalization, residue pattern

 Web Browser

Web
Server

IUS
Webdriver

SMART
ENGINE

GPCRDB

Query request

Query results
(in HTML pages)

CLIENT
SERVER

Fig. 7. GPCRDB Query System Architecture

Query pages
(HTML forms)
JavaScripts

233

relaxation and secondary structure’s border expansion
(which is not discussed since the technique involved is rela-
tively trivial.) By default, all the three kinds are to be per-
formed on a query. When the user does activate the smart
query engine, the system will return a first alternative
(query results) of relaxation of his/her query, as is illus-
trated in Fig. 10.

With the same input query as in Fig. 9, this page contains a
much enlarged set of matches (68 hits vs. the original 18
hits in Fig. 9). This page also presents the original query
predicate and the relaxed one (just executed) as an explana-
tion to the achieved relaxation. This helps the user not only
to understand result of the query relaxation but also to for-
mulate more pertinent queries for query relaxation in a sub-
sequent step. In the presented relaxed query predicate (see
Fig. 10), expressionrp(‘*R*SS*’, ‘*R*[ST][ST]*’, 2)
stands for that input residue pattern ‘*R*SS*’ is relaxed
as‘*R*[ST][ST]*’ using the fuzzy equivalence class num-
bered 2 (i.e., residue type ‘S’ is replaced in this pattern by

its fuzzy equivalence class
‘[ST]’), and ss(DOMAIN1)
indicates that each of the two
borders of secondary struc-
ture DOMAIN1in this query
is expanded by one residue
position (while
ss(ss(DOMAIN1)) means the
relaxation is performed two
times).

5.3 Sequence storage struc-
ture
The data to be handled in the
GPCRDB involve various,
domain-specific and non-
standard data types. These
include protein sequences,
secondary structure motifs
(subsequence variants), and
hierarchical classifications of
the GPCR proteins (i.e., the
so-called family trees),
mutant and ligant (binding
information), and other
chemical/physical character-
istics. These data can be clas-
sified as two types: the
primary data, i.e., the GPCR
sequence data, and GPCR-
related data. Most of the
GPCR related data are anno-
tations made by the domain
experts, such as keywords,
descriptors, ligand (binding
information), and mutant
data. Typical queries issued
by the intended users indi-
cate a search in the database
for particular sequences, e.g.,
those containing a given resi-
due pattern in the sequences

or in a specific range (secondary structure) of the sequences.
GPCR related data may be queried also with imposed condi-
tions as additional search criteria for sequences. But as long
as the primary data, the sequences, have been identified,
other related data of the sequences can be easily obtained
through the IDs (identifiers) of the identified sequences.
Therefore, in the following, we only show the mains storage
structure of sequences which is depicted in Fig. 11.

For each sequence, a unique Sequence ID, a number of key-
words, the primary sequence data, and 16 substructures
(subsequences) are logically defined. A sequence is physi-
cally decomposed as 16 substructures or subsequences
(called secondary structures in biology). They are separately
stored in 16 buckets, S1, S2, ..., S16. This matrix storage
structure can efficiently support the two primary types of
sequence matching indicated by the queries that are most
frequently issued by the intended users of GPCRDB:

Fig. 8. The advanced query page (form) of GPCRDB

Fig. 9. Result page of ordinary query (without relaxation)

234

1. Search for sequences that contain a given residue
pattern (specified as a regular expression).

2. Search for sequences that contain a given residue
pattern in a specific substructure (a secondary struc-
ture) of the sequences.

In the main database table (see Fig. 11), the “sequence”
field simply holds the internal sequential number assigned
by the system for each sequence. Using this number, the
system can easily locate the 16 subsequences and quickly
construct the sequence data (as a whole) using the 16 subse-
quences when those are needed to perform entire sequence
matching. The matrix storage structure greatly facilitates
quick pattern-matching of sequences as a whole and any of
the 16 subsequences. In our system, pattern search in subse-
quences is even more frequently required for the evaluation
of user queries.

If a query initiates a pattern matching with entire sequences,
the 16 subsequence buckets are in parallel read out; whole
sequences are constructed on the spot, and pattern matching
is then carried out sequentially against each of the
sequences. Once a match is found, the relative position of
any of the involved subsequence in its subsequece stream is
mapped to the Sequence ID of the corresponding sequence
that is unique in our database. (In the above discussion,
number ‘16’ is decided by biologists. This number is
designed as a system parameter and can be changed.)

If a pattern matching is against a subsequence, only the cor-
responding

bucket of the subsequence need to be read out, and pattern
matching is then carried out in a similar way as patter
matching against entire sequences.

For border expansion of a subsequences, the predecessor
and successor (if exist) of the subsequences are additionally
read out for the construction of expanded subsequences’
stream.

6. Experiments
To see our algorithm works effi-
ciently, we did an off-line test, i.e., a
test without involving the Webdriver.
The algorithms are implemented in
C, running on a SUNstation under
UNIX with Informix database sys-
tem. In our database, there are about
5000 DNA sequences and each is
about 1000 characters long. For the
test purpose, we evaluate a pattern
query: (D*+C)A* with relaxation.
For simplicity, however, only the
FEC of ‘D’ is used. That is, to relax
the query, only ‘D’ in (D*+C)A* is
replaced with ID. In addition, we
change the cardinality |ID| of ID from
2 to 10 to observe the performance of
different query evaluation strategies.
(Note that in practice |ID| is deter-
mined by biologists and cannot be
changed as one will.)

In the experiment, three strategies are tested against
(D*+C)A* with relaxation.

SS: (Simple Strategy) It uses the pattern matching function
in C language. The relaxation is done in a step-by-step
fashion. That is, each time ‘D’ is replaced with a dif-
ferent letter in ID for a relaxation.

PSS: (Position-tree Supporting Strategy) It uses the position
trees as indexes; but the relaxation is done in a step-by-
step fashion as by SS strategy

PRS: (Position-tree with Relaxation Strategy) It is the method
proposed in this paper.

The test result is shown in Fig. 12.

The result shows that PRS outperforms SS and PSS uniformly,
indicating that the elaboration of the searching process is
worthwhile.

Sequence ID

Keywords

Sequence

Sub_seq S1

Sub_seq S2

Sub_seq S3

... ...

Sub_seq S16

S1 S2 ... S16

S11

S12

S13

S1n

S21

S22

S23

...

S2n

S161

S162

S163

S16n

Fig. 11. Storage Structure of GPCR Sequence Databases
Main database table

...

...

Fig. 12. Test results

time (seconds)

|ID|
1 2 3 4 5 6 7 8 9 10

200

150

100

50

SS

PSS

PRS

Figure 10. Result page of a relaxed query returned by GPCRDB Smart Query Engine

235

7. Conclusion

In this paper, a new method is proposed to do the query re-
laxation. Two kinds of relaxations can be handled: key word
relaxation and residue type relaxation. For the first kind of
relaxation, two hierarchies: family tree and thesaurus have
been established to govern the relaxation process of the key
words. For the second kind of relaxation, we introduce the
concept of fuzzy equivalence classes to capture the similar-
ities among residue types. This concept is used to develop a
technique for fuzzy pattern searching. In addition, the posi-
tion tree is extended to evaluate regular expressions and
fuzzy regular expressions. In this way, high performance can
be achieved.

References
ABB00 Ashburner, M., Ball, C.A., Black, J.A. and so on, Gene

Ontology: tool for the unification of biology, Nature Ge-
netics, Vol. 25, 2000, pp. 25-29.

AHU74 Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The Design
and Analysis of Computer Algorithms, Addison-Wesley
Publishing Com., London, 1969.

AOA01 Aguilar, D., Oliva, B., Aviles, F.X. and Querol, E.,
TranScount: prediction of gene expression regulatory
proteins from their sequences, Bioinformatics, Vol. 18.
no. 4, 2002, pp. 597-607.

BMR96 Brajnik, G., Mizzaro, S., Rasso, C., Evaluating User Inter-
faces to Information Retrieval Systems: A Case Study on
User Support, in Proc. of the 19th Anual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (1996), pp. 128-136.

Co00 Coverson, C., Query Expansion Using and Interactive
Concept Hierarchy, Master’s dissertation, Department of
Information Studies, University of Sheffield, 2000.

Co93 Cottawald, S., Fuzzy Sets and Fuzzy Logic: the founda-
tions of application - from a mathematical point of view.
Braunschweig, Wiesbaden: Vieweg, 1993.

CR94 Crochemore, M. and Rytter, W., Text Algorithms. Oxford
University Press, New York, 1994.

Ef00 Efthimiadis, E.N., Interactive Query Expansion: A user-
nased evaluation in a relevance feedback environment,
Journal of the American Socienty for Infromation Sci-
ence, 51(11):989-1003, 2000.

GC98 GCRDb, URL: http://www.gcrdb.uthscsa.edu/.
GM95 Giancarlo, R. and Mignosi, F., Generalization of the peri-

odicity theorem of Fine and Wilf, in Proc. CAAP 94, Lec-
ture Notes in Computer Science, vol. 78, Springer, Berlin,
1994, pp. 130-141.

GP98 GPCR mutant database, URL: http://mgddk1.nid-
dk.nih.gov:8000/GPCR.html.

GPCR02 GPCRDB, URL: http://www.sander.embl-heidelberg.de/
7tm/.

GBS92 Gonnet, G.H., Baeza-Yates, R.A. and Snider, T. New In-
dices for Text: PAT trees and PAT arrays, Information Re-
trieval, ed.: Frakes, W.B., Baeza-Yates, R.A., Prentice
Hall, New Jersey, 1992, pp. 66-83.

HU69 Hopcroft, J.E. and Ullman, J.D., Formal Language and
Their Relation to Automata, Addison-Wesley Publishing
Com., London, 1969.

Kn73 Knuth, D.E., The Art of Computer Programming: Sorting
and Searching, Addison-Wesley Publishing Com., Lon-
don, 1973.

IUS97 Informix-Universal Server - Informix Guide to SQL, In-
formix Press, Menlo Park, CA, USA, 1997.

KJ98 Kekakainen, J. and Jarvelin, K., The impact of query
structure and query expansion on retrieval performance,
In: Proc. of the 21th Annual International ACM SIGIR
Conf. on Research and Development in Information Re-
trieval, Melbourne, Australia, August 23-28, 1998.

JKN96 Jarvelin, K., Kristensen, J., Niemi, T., Sormunen, E., and
Keskustalo, H., A deductive data model for query expan-
sion, In: Proc. of the 19th Annual International ACM SI-
GIR Conf. on Research and Development in Information
Retrieval, Zurich, Switzerland, 1996, pp. 235-243.

McC76 E.M. McCreight, “A space-economical suffix tree con-
struction algorithm,“ J. ACM, Vol. 23, No. 2, 1976, pp.
262-272.

Mo68 Morrison, D.R., PATRICIA - Practical Algorithm To Re-
trieve Information Coded in Alphanumeric. Journal of
Association for Computing Machinary, Vol. 15, No. 4,
Oct. 1968, pp. 514-534.

MM93 U. Manber and E. Myers, “Suffix arrays: a new method
for on-line string searches,” SIAM J. Comput. 22 (OCT
1993), pp. 935-948.

MSB98 Mitra, M., Singhal, A., and Buckley, C. Improving Auto-
matic Query Expansion. In Proceedings of the 21 st An-
nual International ACM-SIGIR, 1998, pp. 204-214.

NCBI92 National Center for Biotechnology Information. EN-
TREZ: Sequences User’s Guide, National Library of
Medicine, Bethesda, MD, 1992, Release 1.0.

NDB02 Nucleic Acid Database Project (NDB), URL: http://ndb-
server.rutgers.edu/NDB/structure-finder/tutorials, 2002.

PMFR92 Pearson, P., Matheson, N., Flescher, N., and Robbins,
R.J., The GDB huan genome data base anno 1992, Nucle-
ic Acids Research 20 (1992), 2201-2206.

SWISS02SWISS-PROT Protein knowledgebase, URL: http://
www.expasy.ch/sprot, 2002.

Ta72 R. Tarjan, Depth-first Search and Linear Graph Algo-
rithm, SIAM J. Comput. Vol. 1. No. 2. June 1972.

Uk92 E. Ukkonen, “Constructing suffix trees on-line in linear
time,” in Proc. of IFIP’92, pp. 484-492.

We73 Weiner P., Linear Pattern Matching Algorithms. Conf.
Recorder, IEEE 14th Annual Symposium on Switching
and Automata Theory, 1973, pp. 1-11.

WPDB02The Protein Data Bank Through Microsoft Windows,
URL: http://www.sdsc.edu/pb/wpdb/wpdb.htm, 2002.

WZ96 Williams, H. and Zobel J., Indexing Nucleotide Databas-
es for Fast Query Evaluation, in Proc. of 5th Int. Conf. on
Extending Database Technology, Avignon, France,
March 1998, pp. 275-288.

YK98 Yoon, J. and Kim S.-H. A., Three-Level User Interface of
Multimedia Digital Libraries with Relaxation and Re-
striction, in Proc. of IEEE International Forum on Re-
search and Technology Advances in Digital Libraries
(ADL’98), April 22-24, 1998, Santa Barbara, California,
pp. 206-215.

236

