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Business data is frequently exchanged between

heterogeneous information systems using standard EDI
formats like EDIFACT, X12 and in the future also
XML/EDI. For inhouse use, data represented in these formats
must be converted to inhouse data formats by message
converters. With the growing usage of EDI, high volumes of
data, like financial transactions, must be converted and
processed efficiently and reliably.

Considering the complex hierarchical structure of EDI
messages, message conversion is a complex data
transformation problem. For efficient processing, the
different conversion steps have to be executed in an
optimized manner exploiting the available, typically
distributed, processing architecture. In addition, the
processing has to take into account different optimization
goals, like maximizing throughput, minimizing delays and
keeping deadlines.

We approach message conversion as a data management
problem. First we show that the nested relational data model
is adequate for representing the message structure and the
transformation operations. Based on this we develop a cost
model. This serves as input to an optimization strategy for the
conversion processing that uses efficient scheduling
strategies.

We present a novel scheduling strategy and give simulation
results that show that they outperform alternative strategies
for typical workloads of EDI converters.
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In times of growing networking of enterprises, the

electronic implementation of business processes gains great
importance. Electronic data interchange is an important part
of the implementation of business processes. The exchange of
data between heterogeneous systems requires support for
different data formats. Widely used formats are EDIFACT,
X12 and in the future also XML/EDI. In addition national
branch-specific formats, like DTA in Germany, play an
important role. The enterprise side uses different inhouse
formats. These are usually proprietary formats, which are
developed and extended over the years. So the incoming and
outgoing messages must be converted from the incoming
format to the inhouse format, as well as from the inhouse
format to the outgoing format. The volume of data each
enterprise delivers and receives will grow rapidly in the next
years. This fact together with additional business
requirements (e.g. security services), forces the development
of innovative new converter technologies to fulfill these
requirements.

Within the POEM (Parallel Processing Of Voluminous
EDIFACT Documents) project, a new concept for the
conversion of financial EDIFACT message to the inhouse
format and vice versa will be developed. Because of legal
regulations it is expected that the number of EDIFACT
messages and their size (from a few kilobytes to several
megabytes) will grow. Thus processing these messages within
a short time period, while observing reliability, scalability,
and adherence to the business rules is of crucial importance.
One of the most important business rules in the financial
sector is the meeting of deadlines. This is important for the
banks since they guarantee their customers that all incoming
messages, which arrive within a given arrival time, will be
processed till the next deadline.

The following sections describe the first results of
analyzing the problem of EDIFACT message conversion and
the architecture of a future parallel conversion system. In
Section II an abstract message model capturing the common
characteristics of the different data formats will be
introduced. Section III describes the system architecture and
our approach to the scheduling problems within the
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conversion process. The paper ends with an outlook on future
steps.
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We consider message conversion as a new type of data

management problem. The approach we take in POEM is to
use established notions and approaches of data management
as far as possible and then extend them where needed to
address the specific characteristics of the problem. This
applies to the modeling of the message data, to the
description of the message conversion process, and to the
optimization of the message conversion process.

DBMS DFMS

query data

data

query

data

'DWD�IORZ
PDQDJHPHQW

'DWD�VWRUH
PDQDJHPHQW

)LJ�����'DWD�VWRUH�YV��'DWD�IORZ�PDQDJHPHQW

The main difference to classical database management is
that we deal with a data flow management problem rather
than a data store management problem. This reflects the
business dynamics of the application. While in a data store
the process is driven by incoming queries, in a data flow the
process is driven by incoming data while the queries are
mostly static (see Fig. 1).

Our development of an advanced EDI message conversion
system started with an analysis of the message formats used
as incoming data and the processing steps during the
conversion. The message formats used in the financial sector
are:

- EDIFACT: ISO9735, Electronic Data Interchange for
Administration, Transport and Commerce International
[9]

- DTA: German proprietary format for financial data
exchange [7]

- SWIFT: International standard for financial data
exchange [13]

- IDOC: SAP’s format for data exchange

The inhouse formats of the known users are mainly
extensions of the DTA or SWIFT format. So the development
can concentrate on these four formats.

Messages according to these formats have an implicit
hierarchical tree structure. The tree structure is typically used
to cluster single transactions within the message according to
different criteria, e.g. the sender or the receiver of a financial
transaction. Some have a very deep structure (e.g. EDIFACT)
and others have a nearly flat structure (e.g. SWIFT). It turns
out that a common abstract message model can be defined
based on the QHVWHG� UHODWLRQDO� GDWD� PRGHO� [6][11]. It is
sufficiently expressive to represent all of the occurring
message structures and it contains the operations required for
describing the types of conversions required in message
converters. An example of the structure of a header of a
message is given in Fig. 2. It consists of sets, which possess
either one attribute or a tuple of attributes. The operations
required to describe the transformation process are then the
usual nested relational operations of selection, projection,
join, nest, unnest and map together with sorting and
aggregation.

Based on this message model the conversion process can be
separated into the steps shown in Fig. 3. The incoming
message is first analyzed to determine the syntax format (e.g.
EDIFACT, IDOC) and size. After that, the message is parsed,
which results in a semantic representation of the message as a
nested relationally structured object. The unpacking step
splits the hierarchical structure of this object into several
independent objects of a neutral message model without
nesting structure. Then, the aggregation step clusters the
independent objects according to the requirements of the
destination model. This representation can be sorted
according to different business rules, e.g. sender, receiver and
date. Finally, the instantiation step creates the syntactical
representation of the semantic model and the resulting file
can be generated and delivered.

The operations of this abstract processing model have to be
executed in an optimized way with regard to the optimization
goals of maximizing throughput, minimizing delays and
keeping deadlines. To achieve the goals, some knowledge
about the estimated processing costs is required. The abstract
processing model is the basis to determine such a cost model
for the operations (by measuring system performance, s.a.
Section III.C.4). The cost model is used to estimate the costs
for individual processing steps, which is the basis of the
decision for the optimal execution strategy.

The existing system architecture and processing steps allow
to optimize the processing by dynamic assignment of
different processing steps to physical resources in a
distributed system architecture. Thus the optimization
strategy will rely, in the first place, on effective scheduling
methods which in particular have to take account of the
internal data structure of the messages.
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The goal of the system architecture is to achieve the

previously mentioned goals of reliability, scalability and high
throughput. High throughput can be obtained by using
multiple processors. This requires most of the conversion
process to be done in parallel. Scalability means that a user
can start out with the installation of a small machine and add
processors or other machines to the system, later. The
possibility to add different machines also increases the
reliability of system. This is very important for banks, which
guarantee their customers the availability of the system and
certain processing times.

The range of possible system configurations is large. It
begins with one-processor machines and ends with clusters of
different machines with different performance characteristics.

Many combinations are possible. This requires a flexible and
effective scheduling mechanisms for distributing the
incoming jobs on the available computing resources.

$�� 6&+('8/,1*�/(9(/6
The job of a message conversion must be scheduled to the

available machines. The scheduler has to consider the
following goals and constraints:

- Meeting of deadlines: All messages which arrive within a
given arrival time will be processed till the next deadline.

- Priority messages: EDIFACT messages can have a
priority flag. The processing of these messages must start
within a small time range.

- Low response times: The total time to process a message
must be as low as possible.

- High throughput: The number of processed messages
must be as high as possible.

Dependent on the processing strategy, the last two
requirements are in conflict. One strategy is to process as
many files in parallel as possible. So each file is processed on
one processor. This causes much higher delay for each file. In
contrast, processing one file on as many processors as
possible improves the response time for each file.

Since the system architecture is based both on the use of
distributed machines and parallel machines the scheduling
has to be performed at two different levels.

The JOREDO� VFKHGXOLQJ is the first level. On this level the
incoming jobs are distributed with respect to previously
described goals to the available machines. In our processing
model a job is defined as the conversion of a complete
messages shown in Fig. 3. In our system model a job can only
be assigned to one machine. This means that all information
required for the processing is locally available on the
machine. Moving a job to another machine is not allowed
under normal circumstances because moving locally stored
information and processing states are prohibitively expensive.
The only exception of that is a machine failure.

A job should normally not be preempted because this
requires too much control and communication overhead
between the scheduling levels. The only exception we
consider in our system model is the arrival of an EDIFACT
message with priority. In this special case the processing must
start with as little delay as possible. So the processing of a
running job must be suspended and later be restarted.

Each job belongs to a complete or only a part of a message.
So it is possible to distribute the conversion of a message on
several hosts. This is useful for very large messages because
more processing capacity is available for the conversion
process. For small messages it makes less sense because the
administrative overhead grows in relation to the processing
time. Our approach is to decide this dynamically.



The second level of scheduling is the ORFDO� VFKHGXOLQJ
which is performed on each machine separately. At this level
the jobs assigned by the global scheduler are split into the
individual tasks. A task represents one step of the processing
chain. Some restrictions applying to a job are also valid for a
task. So a task cannot be moved to another machine. But the
preemption of tasks is allowed. Depending on the estimated
processing time (Subsection C.4) and the different
possibilities for parallelization for each task the number of
required processors can be determined. After that the
execution of the tasks begins. At this point the local scheduler
is tightly coupled with the operating system (OS) scheduler
[12]. The OS scheduler distributes the tasks to the individual
processors, while the local scheduler controls the execution
order.
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In the literature there exist many algorithms for solving

scheduling problems. They are mostly classified according to
the notation system described in [2] [3]. By this notation, the
machine environment, the characteristics and restrictions of
the tasks and the objective function (optimality criteria) can
be described in a three term expression αβγ in which the
first two terms can be further subdivided and such that the
coding scheme has the form α1... αnβ1... βmγ. In most cases
some of the variables are empty (∅) and do not appear.

 This classification is used for static scheduling problems.
This means that all parameters to the scheduling problem are
known at start time of the scheduling algorithm. In the POEM
scenario the problems (messages) arrive at a unknown future
time. So scheduling has to be done with the available partial
knowledge in runtime (Online scheduling). The schedules
have to be updated every time a new message arrives. To
describe this we extend the classification by an additional
parameter, the ’arrival time’. This extension is based on the
definition of a dynamic job shop scheduling in [15].

$UULYDO�WLPHV

∅ static: all jobs are ready at start time 0

D deterministic dynamic: the jobs arrive at known future
time

S stochastic dynamic: the jobs arrive at unknown future
time

With this definition the problems can be classified in the
following way:

*OREDO�VFKHGXOLQJ

R, MPM | pmtn, dj, S | Lmax

- R - The resources are unrelated multi-purpose machines.

- MPM - The jobs can be executed on all available
machines, but can only be assigned to exactly one
machine.

- pmtn - Preemtion for the scheduling is allowed.

- dj - Each job has a deadline.

- ∅ - The jobs are independent.

- ∅ - The jobs have arbitrary processing times.

- S - Stochastic dynamic arrivals of jobs.

- Lmax - Minimizing the lateness is the goal of the
optimization.

 /RFDO�VFKHGXOLQJ

 P | pmtn, dj, chains, S | Lmax

 They are the short forms for:

- P - The resources are identical parallel processors.

- pmtn - Preemption for the scheduling is allowed.

- dj - Each job has a deadline.

- chains - The precedence constrains for the tasks forming
a chain.

- ∅ - The tasks have arbitrary processing times.

- S - Stochastic dynamic arrival of jobs.

- Lmax - Minimizing the lateness is the goal of the
optimization.
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The arrival-time parameter makes the scheduling problem a

dynamic one, but most available algorithms are used to solve
static scheduling problems. Beside load-balancing strategies,
dynamic scheduling problems are little investigated compared
to static scheduling problems.

Load-balancing strategies have the goal to ensure equally
loaded systems [16]. Because they mainly decide on the load
of the system (where to assign a job), they do not take
account of other optimization goals like e.g. deadlines. The



presented scheduling problems require some knowledge
about the waiting jobs and their influence on the execution
order. In general these goals cannot be achieved by load-
balancing.

Hence a dynamic scheduler is required to achieve these
goals. A first approach is to divide the dynamic problem into
several static problems [14]. In this way static scheduling
algorithms can be applied to solve the dynamic scheduling
problem. Every time a new job arrives, a new schedule will
be calculated. All pending jobs at this moment are used for
the specification of the scheduling problem. The result is a
schedule, which is valid till the next job arrives. Then it must
be recalculated or updated. Because the schedules have to be
calculated very often, the computational complexity has to be
very low.

A second approach is to use online scheduling algorithms.
The algorithms schedule incoming jobs without a complete
recalculation. In this case, they are similar to load-balancing
algorithms but they use further knowledge about the pending
jobs to achieve different goals.
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The behavior of scheduling algorithms is well known for

static problems, but when applied in dynamic situations, as
previously described, their behavior is not understood as
well. Thus we started to evaluate them using a scheduling
simulator. The scheduling simulator can simulate different
scheduling algorithms in different host configurations in a
way they are expected in the future POEM system. It can use
different strategies for generating jobs, e.g. random or
realistic. The generated jobs can also be stored for repeating
tests with the same data.
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Fig. 5 shows an example schedule generated by the
simulation of the global scheduler. It contains a Gantt chart
for each machine, a time line with marks of the arrival time of
each job, a graph that shows the number of pending jobs at
each time and some statistics. The statistics contains
information about, e.g. the host utilization, total runtime, and
average runtime. The simulator can also collect statistics of

several simulation runs to get a general overview of the
scheduler.

The simulator is written in Java. Its object-oriented design
allows to easily integrate different scheduling algorithms or to
add new job generators.
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Though the global scheduling problem has been classified

as being preemptive, we treat it first as a non-preemptive
problem, since this reflects the normal mode of operation.

Non-preemptive scheduling problems are known to be NP-
hard [2] [3]. The following (heuristic) algorithms have been
analyzed with regard to the objectives Lmax (minimizing the
lateness) or Cmax (minimize runtime).

)LUVW�&RPH�)LUVW�6HUYH��)&)6�

This strategy is the simplest form of list scheduling
algorithms [5]. The jobs are executed in the order they
arrive at the system. If a host is idle, it gets the next job
from the waiting queue. The strategy does not consider
different host speeds or the deadlines of the jobs.

If the jobs arrive in the order of their deadlines the
strategy is similar to the Shortest Deadline (SDF).

/RQJHVW�3URFHVVLQJ�7LPH�)LUVW��/37�

This algorithm is another type of list scheduling. It is an
approximative solution for P | | Cmax (identical hosts,
minimize runtime). The jobs are sorted by their processing
time in a non-increasing order. In every step the first
available processor gets the next job of the list. The main
disadvantage of this strategy is that large jobs are preferred.
So small jobs could be heavily delayed.

6KRUWHVW�'HDGOLQH�)LUVW��6')�

This strategy is similar to the previous one. But it is an
approximation for P | | Lmax (identical hosts, minimize
lateness). The algorithm sorts the jobs by their deadlines
and arrival times. As expected, this is a good strategy for
minimizing the lateness. On hosts with different
performance it often happens that large jobs are processed
on the slower machine and vice versa.

%LQ�6WUHWFKLQJ

The bin-stretching approach belongs to the group of
online algorithms. The original algorithm [1] first
categorizes the hosts into groups of underloaded, normally
loaded and overloaded systems based on the future load of
the host. After that, the least loaded system will be selected.
The disadvantages of the original version are that the
algorithm is restricted to identical hosts, that it does not
consider other goals. Nevertheless, we have modified the
strategy to avoid these problems. First results are presented
in Section IV.



The analyzed strategies achieve the goals of the global
scheduler only partially. So in Section IV we present a
combination of BinStretching and list scheduling, which
achieves the goals of the global scheduling.
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The local scheduling can have a preemptive solution. So a

good approximative algorithm can be found more easily. The
problem of the dynamicity remains the same as in the global
scheduling problem. Another important characteristic of the
problem is that the tasks are not independent. This means that
one task requires some or all results of the previous
processing step. The processing steps are organized as a
chain as shown in Fig. 3. Known algorithms for this type of
scheduling problems are described below. The algorithms are
too complex to describe them here briefly, so only the
problems they solve are mentioned.

/HYHO�DOJRULWKP�IRU�SUHHPSWLYH�VFKHGXOLQJ [8]

This strategy approximates Q | chains; pmtn | Cmax

(uniform hosts, precedence relation between tasks forming a
chain, preemption is allowed, minimize runtime).

3ULRULW\�VFKHGXOLQJ [10]

This is an approximation for P | intree; pmtn | Lmax

(identical hosts, precedence relation between tasks forming
a tree which is directed to the root, preemption is allowed,
minimization of lateness).

7KH�
&ULWLFDO�:HLJKW
�$OJRULWKP�[4]

The algorithm solves a problem of the type ’P | tree; pmtn
| Cmax’ (identical hosts, precedence relation between tasks
forming a tree, preemption is allowed, minimize runtime).

The behavior of these algorithms in dynamic situations is
currently not simulated so, actually, no results are available.
But it is expected that the results are similar to the analysis of
the global scheduler.
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All algorithms described need to estimate the processing

times of the job or task. Such an estimation is not easily given
since it depends on a lot of factors, e.g. other activities on the
machines. Currently, we develop such a cost model starting
from the abstract processing model of a generic message
converter, identifying the required processing steps (Section
II). For each of these steps, we determine the complexity of
the algorithms. We also gather statistical information of
processing in real situations. From this we develop an
estimation function which calculates the expected processing
time in relation to the incoming job size. The variance in the
real processing times are described by a standard deviation.
From this the scheduler can also derive a standard deviation
of the expected processing times.

�,9�� *(1(5$/�6&+('8/,1*�$3352$&+
Our general scheduling approach first splits the problem

into normal processing and priority processing. As mentioned
in the previous section, messages with priority have to be
started within a small time range. They must be assigned
immediately to an available host, or a job on a fast host must
be preempted. Hence, a FCFS strategy with the possibility to
preempt running jobs solves this problem.

Global scheduler

Priority Processing

Normal Processing
%LQ6WUHWFKLQJ

FCFS Priority ProcessingSDF
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For the distribution of normal jobs, a combination of two
strategies is used. The first step is to select an appropriate
host for the job by using a modified version of the
BinStretching algorithm [1]. The original BinStretching was
extended in a way that it takes into account different host
speeds. A brief description of the algorithm can be found in
the text box below. The second step is to order the jobs
according to other goals, e.g. deadlines, priorities, etc. This
step is similar to list scheduling [5] on a single host.

0RGLILHG�%LQ6WUHWFKLQJ�$OJRULWKP

First we need some definitions. A host is said to be short

if its current load is at most max/⋅α (Lmax=maximum load

of all hosts). Otherwise, it is tall. The value of α can be in
the range between 0 and 1. It describes the threshold
between a short and tall loaded host. The value of α
influences the quality of the resulting schedule.

After the arrival of a new job the following disjoint sets
are defined. The processing times are always scaled
according to the host speed.

- S1 contains all hosts whose total processing times are
short or remain short if the current job is placed on
them.

- S2 is a set of hosts that are short but become tall if the
job is placed on them.

- S3 contains all remaining jobs

In the next step of the algorithm a host is selected out of
these three sets.

- Put the job on the fastest non-empty host from the set



S1. If S1 contains only empty hosts then put the job on
the fastest empty host.

- If S1 = ∅ then put the job on the least loaded host after
assignment from set S2.

- If S1 = S2 = ∅ then put the job on the least loaded host
after assignment from set S3.

After the assignment of the job to the host, the waiting
queue has to be resorted according to the additional goals
taken into account.

'�� 6,08/$7,21�5(68/76
To analyze the behavior of the modified BinStretching

algorithm, we performed several simulations with the
scheduling simulator introduced in Section C.1. We can
present here the results for one of the simulations with one
host combination and job distribution.

The simulated system consists of a six and two processor
host. This means that the first host is three times faster than
the second one. The incoming job sizes are normally
distributed with a very low average size. The biggest job
requires 20 times more effort to process than an average job.

The charts in Fig. 7 and 8 show histograms of the
differences in response time between FCFS and the modified
BinStretching. Positive values indicate an advantage for the
BinStretching strategy, while negative values indicate an
advantage for FCFS. The charts also contain a comparison of
different α values.

With BinStretching, most of the jobs have the same or
shorter response time. This can be seen in Fig. 7. Interesting
and important for the converter system is that large jobs gain
a lot from the algorithm. A histogram for large jobs is shown
in Fig. 8. It shows that many of the large jobs are processed
much quicker with modified BinStretching. We also analyzed
how jobs keep their deadlines and found similarly positive
results for modified BinStretching.
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When analyzing how jobs are distributed to hosts it shows
that 50% of the small jobs are assigned to the slow host in
this experiment. But over 90% of the large jobs are processed
in the fast machine. Hence, the algorithm takes into account
the host speeds and works as expected.

With respect to the choice of a value of α, values between
0.1 and 0.4 seem to give the best results for the simulated job
distribution and host combination.

�9�� &21&/86,21�$1'�287/22.
This paper describe the first steps and results of the

development of a new systematic approach for converting
messages from one format to another. This requires a formal
message model in which the abstract design of a generic
message converter can be described. It is used for the
identification of the required processing steps. After that, the
system architecture is defined based on the goals of
reliability, scalability and high throughput. The architecture
requires a powerful scheduling component, which is one of
the core problems of the approach. Two types of scheduling
levels are identified, global and local scheduling. The
dynamic character of the scheduling problems and the
complex estimation of processing times make it difficult to
develop an optimal solution. The presented modified
BinStretching approach gives good results with respect to all
identified goals. The algorithm has to be further analyzed
regarding other host combinations and job distributions.
Another problem is the variance of estimated processing time.
The scheduling approach has to be tested how it reacts on
longer or shorter real processing times.
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