
Combining Pat-Trees and Signature Files for
Query Evaluation in Document Databases

Yangjun Chen and Karl Aberer

IPSI Institute, GMD GmbH, Dolivostr. 15,
64293 Darmstadt, Germany

Abstract. In this paper, a new indexing technique to support the query evaluation
in document databases is proposed. The key idea of the method is the combina-
tion of the technique of pat-trees with signature files. While the signature files are
built to expedite the traversal of object hierarchies, the pat-trees are constructed
to speed up both the signature file searching and the text scanning. In this way,
high performance can be achieved.

1 Introduction

We consider the combination of two different indexing techniques: signature files and
pat-trees for optimizing query evaluation in document databases. Signature files can be
feasibly organized into a hierarchical structure and therefore suitable for indexing doc-
uments stored structurally (in an object-oriented database). Concretely, it can be used to
speed up the traversal along object hierarchies by filtering non-relevant objects as early
as possible. The drawback of the signature file is that it is an inexact filter. A key word
(appearing in the query) surviving the checking may be not in the text. Therefore, a scan-
ning of the text has to be carried out to see whether the text really contains it. Further-
more, if many texts should be checked or a text is long, much time will be spent to do
this task if no index is available. On the other hand, for a large document database, a
signature file may be very large by itself and therefore the overhead caused by the se-
quential search of such files become significant. To make the matter worse, since the sig-
nature file works only as an inexact filter, it can not be sorted and thus the binary search
can not be applied (see 5.3). To this end, we combine the technique of the pat-tree with
the technique of the signature file to make both the searching of a signature file and the
scanning of a text more efficient. As we can see later, the processes of the tree traversal
and the signature file searching (also text scanning) supported by the pat-trees will be
interleaved, leading to an efficient method.

The rest of this paper is organized as follows. In Section 2, we survey related work. In
Section 3, we describe the basic features of a document database and discuss the ap-
proaches to query processing. Section 4 is devoted to hierarchies of representative
words. In Section 5, we discuss different indexing techniques as well as their combina-
tion. In Section 6, we present our algorithms for evaluating queries with signature file
hierarchies and pat-trees used. Finally, Section 7 is a short conclusion.

2 Related work

Index techniques have been extensively investigated in both information retrieval and
database research area and a lot of methods have been developed within the past three
decades.

To index large files in information retrieval systems, different tree indexing approaches
have been proposed, such as binary trees [Kn73], suffix trees [CR94] and their variants,
position trees [AHU74, We73] built over flat files as well as pat-trees [Mo68] using in-
dividual bits of keys. Equipped with these mechanisms, the system performance can be
improved by one order of magnitude or more. Signature file [CF84, DGL98, Fa92] is a
method quite different from the tree indexing techniques, by which each key word is as-
signed a signature and a set of key words is assigned a “super” signature constructed by
superimposing the signatures in the set. It works as an inexact filter. Another interesting
approach is the inverted index that is a set of postings lists [HEBL92, WMB94], each of
which maps one keyword to a list of links to the documents containing that keyword.
Inverted indices can be implemented as sorted arrays, tries and various hashing struc-
tures [HFBL92]. The drawback of this approach is that much space is required for indi-
ces and not suitable for the implementation of a layered index structure as the signature
file does (see 5.2).

Some of the techniques mentioned above have been modified or extended to support the
query evaluation in databases. A notable example is B-tree [BU77] and its variants such
as B+-tree and B*-tree [EN89] which were developed based on the balancing mecha-
nism of binary trees with some special features augmented to ease the tree balance or to
minimize the accesses to data files. In addition, the signature files have been proved to
be useful in object-oriented databases and many researches have been done to integrate
this technique into the object-oriented databases to improve the response time of a query
[YA94, LL92].

One may notice that there is no application of pat-trees or position trees in the database
area. It is due to the essential distinction between the key structures of a relation and the
key words in a text. In this paper, we explore a way to use the pat-tree in document da-
tabases indirectly - we build the pat-trees over signature files (therefore, it is a method
of indexing over indexes.) Obviously, if an object-oriented database system uses signa-
ture files as the indexing mechanism, our method can also be used to improve the query
evaluation. Additionally, in a document database, texts stored as attribute values may be
long and it is necessary to index them if the space overhead for indexes remains low.

3 Queries in document databases

In document database systems, an element is represented as an object, which consists of
methods and attributes. Methods are procedures and functions associated with an object
defining the actions taken by the object in response to messages received. Attributes rep-
resent the state of the object. Objects having the same set of attributes and methods are
grouped into the same class. A class is either a primitive class or a complex class. Ob-
jects in the respective classes are called primitive objects and complex objects. A prim-
itive class, such as integer and string, is not further broken down into attributes or
substructures. A complex class is defined by a set of attributes which may be primitive
or complex with user-defined classes as their domains. Since a class C may have a com-
plex attribute with domain C’, a relationship can be established between C and C’. The
relationship is called aggregation relationship. Using arrows connecting classes to rep-
resent aggregation relationship, an aggregation hierarchy can be constructed to show the
nested structure of the classes.

Fig. 1(a) shows a possible DTD for letter documents (SGML/XML documents). The
class definition for the corresponding elements and the resulting aggregation hierarchy

are shown in Fig. 1(b).

To show the application of our indexing method and to provide a background for discus-
sion, here we consider a kind of simple queries: key word queries (but with the path con-
cept involved) which are most frequently utilized in practice. In such queries, a search
condition is expressed as conjunction of predicates of the form: <path operator value>.
The path is of the form: p1.p2pn, where each pi (i = 1, 2, ..., n-1) represents a class
name and pn is an attribute name. In general, an operator represents a (set) relation op-
eration {⊇, =} and a value is a set of individual (representative) words connected with
“∧“ or “∨“.

As an example, consider the query: retrieve all letters received in 1993, which contain
strings “SGML” and “database”, which can be expressed as follows:

select *
where Letter.Date ⊇ “1993”

and Letter.Body.Para.text ⊇ “SGML” ∧ “database”

The search condition against the classes Letter, Date and Para consists of two predi-
cates, one involving the nested attribute Date and the other involving the nested attribute
text of Para.

A top-down approach will search all of the objects in class Letter and those whose date
attribute contains “1993” will be singled out. Then, the system retrieves the Body objects
referred by the Letter objects found in the previous scan and checks their para attribute,
which leads to retrieving part of Para objects referred by the found Body objects. Final-
ly, those Para objects containing both “SGML” and “database” are returned.

From the above description, we can see that two processes are involved to evaluate a
query. They are

(1) traversing along object hierarchies and

(2) scanning texts to see whether the key words appearing in the query are contained.

What we want is to optimize these two processes by building indexes over both the ob-
ject hierarchies and the texts stored as attribute values. For this purpose, we first intro-
duce an important concept: representative word hierarchy in the next section, which is
useful to specify the key idea of our method.

1. <!DOCTYPE letter [

2. <!ELEMENT letter - - (date, greeting, body, closing, sig)>

3. <!ATTLIST letter
filecode NUMBER #REQUIRED
secret (yes | no) “no”>

4. <!ELEMENT body - - (para)+>

5. <!ELEMENT (date, greeting, closing, sig) - - (#PCDATA)>

6. <!ELEMENT para - - (text | emph)*>

7. <!ELEMENT (text | emph) - - (#PCDATA)>

9. <!ENTITY salute “Dear”>

Fig. 1. DTD and hierarchy structure

8. <!ATTLIST emph
italic (yes | no) “yes”>

(a) (b)
]>

letter

filecode

secret

date
greeting

body

closing

sig

#PCDATA

#PCDATA

#PCDATA

emph

#PCDATA
italic

#PCDATA

#PCDATA
text

para

emph

greeting

date

closing

sig

text

4 Representative word hierarchies

As is well-known, in a traditional document system, it is important to assign represen-
tative words to documents, capable of representing document contents and used to ob-
tain access whenever documents are wanted. Then, signature files can be built over them
and organized into a hierarchy, corresponding to the hierarchical structure of a docu-
ment stored in databases.

- Representative words

Given a set of documents doci (i = 1, ..., n), we can identify a set of (representative)
words Wi for each doci to discriminate it from others by computing weight for each
word:

weightik = fik ⋅ signalk, (1)

where fik represents the frequency of word k appearing in doci and signalk is the signal
value of word k, which can be computed as shown in [SM83]. For example, the repre-
sentative words of a letter document may be a set (denoted Wletter) like {January, 27,
1993, Jean, SGML, databases, information, regards, Genise}, determined by applying
the above formula to the actual document set. In some cases, we can use almost all
words in the document only with high-frequency words (called stop list) removed. The
words appearing in the stop list are poor discriminators and cannot possibly be used by
themselves to identify document content.

- Representative word hierarchy

As mentioned above, the representative word hierarchy is built in terms of the storage
structure of the documents, which can be illustrated as shown in Fig. 2.

For exposition, we assume that the database is of the schema as shown in Fig. 2(a), con-
taining two documents which are organized into two object hierarchies as shown in Fig.
2(b). In the figure, the objects are subscripted in such a way that the objects with the
same subscript belong to the same class. The superscripts are used to number the objects
of a class. For example, , and belong to C1 and superscribed with 1, 2, and 3,
respectively.

Complying with such an storage structure of documents, the representative word hier-
archy can be constructed in a recursive way as follows.

(i) First, each is associated with a set of representative words (representing doci)
determined using formula (1).

Cε

C1 C2 C3

C11 C12 C21 C31 C32

oε
2

o11
3

(a) (b)

Fig. 2. Class hierarchy and object hierarchy

belongs to

belongs to

o12
3

o21
2 o21

3 o32
2

o31
2

oε
1

o1
1

o1
2

o2
1 o3

1
o1

3
o2

2
o3

2
o2

3

o11
1

o12
1

o11
2 o12

2 o21
1 o31

1 o32
1

o1
1 o1

2 o1
3

oε
i

(ii) Let o be an object and W be the set of representative words associated with o. Let
o1, ..., on be the sub-objects of o, which are partitioned into several groups g1, ...,
gm (m ≤ n) such that each group gj belongs to the same class. Then, W is partitioned
into W1, ..., Wm by regarding each gj as a single document with the following two
rules observed:

(1) If w ∈ W and w appears in gj , but w ∉ Wj, then add w to Wj: Wj ← Wj ∪ {w}.

(2) If w ∉ W, but w ∈ Wj, then delete w from Wj: Wj ← Wj − {w}.

(iii) For each gj, its Wj is further partitioned into Wj1, ..., Wjk such that each ojl ∈ gj is
associated with Wjl, which is made in the same way as step (ii).

(iv) For each ojl and its Wjl, do step (ii).

For example, Wletter may be partitioned into {January, 27, 1993}, {Jean}, {SGML, da-
tabases, information}, {regards}, {Genise} for those texts accommodated at classes
Date, Greeting, Body, Closing and Sig, respectively (see Fig. 3).

For each W, its signature can be calculated as discussed in 5.2, based on which we con-
struct signature files for each class (subclass) by collecting the relevant signatures to-
gether.

5 Pat trees and signature files

Now we discuss our indexing technique. The main idea of it can be summarized as fol-
lows:

(i) construct the signature file hierarchies to support the traversal of the object
hierarchies;

(ii) build the pat trees over the texts to expedite the text scanning; and

(iii) build the pat tree over the signature files to avoid the sequential search of
them.

In the following, we first discuss the technique of the pat trees in 5.1. Then, in 5.2, the
signature file hierarchies are addressed. We motivate the combination of the pat trees
and signature files in 5.3. (The discussion on the application of such a combination is
shifted to Section 6.)

5.1 Pat-tree built over representative words

Pat-tree is a digital (binary) tree, by which the key words (or representative words) is

{January,27,1993,Jean,SGML,databases,information,regards,Genise}

{SGML,database} {database,information}

we assume that
Para has two
objects: o1 and o2.

Fig. 3. Representative word hierarchy

OLetter

OPara1

{January,27,1993} {Jean} {SGML,database,information} {regards} {Genise}
ODate OGreeting

OBody OClosing
OSig

OPara2

{SGML,databases} {databases,information}

OEmph1 OEmph2

represented as a sequence of digits (in our case, the ASCII codes of characters are used.)
During a traversal of a pat-tree, the individual bits of the key words are used to decide
on the branching.

Given a text containing key words kw1, kw2, ..., kwn. We define the corresponding key
strings as the strings, each starting from the place where the corresponding key word
first appears to the end of the text. To make each key string not be a prefix of another,
we add a special symbol, say $, to the end of the text, which appears nowhere else. If a
key word appears several times in the text, only the first appearance is used. The follow-
ing example helps for illustration.

Each position in the text indicates a suffix or semi-infinite string (sistring), which goes
to the end of the text. There are about 70 characters in the example; therefore, there are
about 70 semi-infinite strings. We look at only semi-infinite strings that start at the be-
ginning of key words. There are 5 such strings (“This”, “technique ...”, etc.) Here we
assume that “this”, “technique”, “SGML”, “XML” and database” are five key words.
The numbers above the text show positions of starting characters of these sistrings in the
text. Concretely, we have the key strings as shown in Fig. 4(a).

Note that we take the text as an array of bits and assume that they are of the form as
shown in Fig. 4(b).

Using patricia algorithm [Mo68], a graph shown in Fig. 5(a) can be constructed. (Due
to space limitation, a complete description of this algorithm can not be given here.)

It consists of a header and n - 1 = 5 - 1 = 4 nodes. Each node contains six fields:

- Pointer to the text. In Fig. 5(a), P(x) (where x is a word) shown within each node is

text: This paragraph describes the technique concerning SGML, XML and databases.$
1 30 51 57 65

key-string1: This paragraph$
key-string2: technique$
key-string1: SGML$
key-string1: XML$
key-string1: database$

key-string1 = 10011
key-string2 = 01000
key-string3 = 10101
key-string4 = 11100
key-string5 = 11001

(a) (b)
Fig. 4. Key strings and arrays of bits

Fig. 5. Pat-tree

1
P(technique)

header

P(this)

1
P(database)

1
P(SGML)

1
P(XML)

(a)

1

1

1 1

P(this)

P(technique)

P(SGML) P(database)P(XML)

header

0 1

1

1

0

0
1

(b)

root

0

0

0

0

0

1

1

1

1

a pointer to the text, e.g., P(SGML) is the number 51, the starting place of key-
string3 in the text.

- LLINK and RLINK: pointers within the graph. (LLINK is always labeled with 0 and
RLINK is always labeled with 1.)

- LTAG and RTAG: one-bit fields which tell whether or not LLINK and RLINK, re-
spectively, are pointers to sons or to ancestors of the node. The dotted arcs in Fig.
4(a) correspond to pointers whose TAG bit is 1.

- SKIP: a number which tells how many bits to skip when searching, as explained be-
low. The SKIP fields are shown as numbers within each node of Fig. 5(a).

The graph shown in Fig. 5(a) can be represented as a tree by splitting each node into two
ones as shown in Fig. 5(b). That is, each pointer to the text is separated from the corre-
sponding node. There is an arc from a node v to a separated pointer node u (correspond-
ing to a pointer to the text) if there is an ancestor link (dotted arc) from v to a node
containing u in the original graph.

A search in Pat-tree is carried out as follows. Suppose we are looking up the word
SGML (assume that its bit pattern is 10101 11100 11000 10001). We start by looking at
the SKIP field of the root node (see Fig. 5(b)), which tells us to examine the first bit of
the argument (the bit pattern of SGML). It is 1, so we move to the right. The SKIP field
in the next node tells us to look at the 1 + 1 = 2nd bit of the argument. It is 0, so we move
to the left. The SKIP field of the next node tells us to look at the 2 + 1 = 3rd bit, which
is 1; now we reach a leaf node which refer us to the text at position P(SGML). The
search path we have taken would occur for any argument whose bit pattern is 010x ... x
(where “x” represents “don’t care), and we must check to see if it matches the unique
key which begins with that pattern. If it matches, we know that the text contains SGML.
Otherwise, SGML does not appears in the text since the path leading to the leaf node
with P(SGML) is unique and nowhere else through a path matches the pattern 010x ... x.

From Fig. 5(b) we see that the size of a pat-tree is very small. Its space complexity is
bounded by O(numw), where numw is the number of the representative words of a text.
If the text is long, it is worth while building a pat-tree to make the text scanning quickly.

5.2 Signature File Hierarchy

Signature files are based on the inexact filter. They provide a quick test, which discards
many of the nonqualifying elements. But the qualifying elements definitely pass the test
although some elements which actually do not satisfy the search requirement may also
pass it accidentally. Such elements are called “false hits” or “false drops”. In a document
database, an element is stored as an object and represented by a set of representative
words assigned to the text stored in it. The signature of a representative word is a hash-
coded bit string of length k with m bit set to “1”, stored in the “signature file” (see
[Fa85]). An object signature is formed by superimposing the signatures of its represen-
tative words. Object signatures of a class will be stored sequentially in another signature
file. Fig. 6 depicts the signature generation and comparison process of an object having
a text attribute value which is represented by three words, say “SGML”, “database”, and

“information”.

When a query arrives, the object signatures are scanned and many nonqualifying objects
are discarded. The rest are either checked (so that the “false drops” are discarded) or
they are returned to the user as they are. Concretely, a query specifying certain values to
be searched for will be transformed into a query signature sq in the same way as for rep-
resentative words. The query signature is then compared to every object signature in the
signature file. Three possible outcomes of the comparison are exemplified in Fig. 6: (1)
the object matches the query; that is, for every bit set in sq, the corresponding bit in the
object signature s is also set (i.e., s ∧ sq = sq) and the object contains really the query
word; (2) the object doesn’t match the query (i.e., s ∧ sq ≠ sq); and (3) the signature com-
parison indicates a match but the object in fact doesn’t match the search criteria (false
drop). In order to eliminate false drops, the object must be examined after the object sig-
nature signifies a successful match.

The purpose of using a signature file is to screen out most of the nonqualifying objects.
A signature failing to match the query signature guarantees that the corresponding ob-
ject can be ignored. Therefore, unnecessary object accesses are prevented. Signature
files have a much lower storage overhead and a simpler file structure than inverted in-
dexes.

In terms of the representative word hierarchy, a signature file hierarchy can be construct-
ed as follows:

(i) For every representative word w, assign it a signature wsig. (How to construct a
signature for a representative word can be found in [DGL98].)

(ii) Let o be an object and W = {w1, ..., wk} be the set of representative words asso-
ciated with it. There exists an entry <osig, oid>, where osig is the signature of o
and oid is the object identifier of o. osig is obtained by superimposing the signa-
tures of wi (i = 1, ..., k).

(iii) Let C be a class and o1, ..., ol be its objects, there exists a signature file S such
that each oi (i = 1, ..., l) has an entry <osig, oid> in S.

(iv) Let Si and Sj be two signature files associated with classes Ci and Cj, respectively.
If there exists an arrow from Ci to Cj, then there is implicitly an arrow from Si to
Sj.

As an example, see the signature file hierarchy shown in Fig. 7, which is constructed in

text: ... SGML ... databases ... information ...

representative word signature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)

∨

Fig. 6. Signature generation and comparison

queries:

SGML

XML

informatik

query signatures:

010 000 100 110

011 000 100 100

110 100 100 000

matchin results:

match with OS

no match with OS

false drop

terms of the representative word hierarchy shown in Fig. 3.

5.3 Combining pat trees and signature files

In a large document database, a signature file itself may be long. Therefore, the time
elapsed for searching such a file becomes significant. A first idea to improve the perfor-
mance is to sort the signature file and then employ a binary searching. Unfortunately,
this does not work due to the fact that a signature file is only an inexact filter. The fol-
lowing example helps for illustration.

Consider a sorted signature file containing only three signatures:

Assume that the query signature sq is equal to 000010010100. It matches 100 010 010
100. However, if we use a binary search, 100 010 010 100 can not be found.

For this reason, we try another method and construct a pat-tree over a signature file by
considering each signature as a word code; but use a different matching strategy. That
is, for the pat-tree built for a text, the exact matching is used (i.e., 1 matches 1 and 0
matches 0) while for the pat-tree built for a signature file the inexact matching will be
utilized to work as an inexact filter. Concretely, it works as follow. Let sq(i) be a bit
checked when a node v is met during a traversal of the pat-tree. If sq(i) = 0, then the en-
tire subtree rooted at v will be further searched. If sq(i) = 1, we move to the right child
of v. That is, only the subtree rooted at the right child of v will be further traversed.

How to control this process is discussed in detail in the following section.

6 Retrieval

In this section, we first briefly sketch how to use the signature files to cut branches. Then,
we discuss how to use the pat-tree to speed up this process in great detail. During the
traversal of a pat-tree, an inexact matching is carried out, which is quiet different from
the method shown in 5.1.

The signature file can be utilized to expedite the query evaluation by constructing a que-
ry signature tree for the submitted (simple) query, in which each node is a signature. To
evaluate the query, the corresponding signature file hierarchy Sf will be searched against
the query signature tree QT and at each step, a node in QT is checked against the corre-

Fig. 7. Signature file hierarchy

words: signature:

January
23
1993
Jean
SGML
database
information
regards
Genise

110 000 000 110
110 110 000 000
100 110 000 100
110 100 000 100
010 000 100 110
100 010 010 100
010 100 011 000
100 100 001 100
100 100 010 100

010 000 100 110
100 010 010 100

Para

... ...

... ...

110 010 110 110

100 100 001 100

100 100 010 100

110 100 000 100

110 110 000 110

110 110 111 110

Letter

Date

Greeting

Body

Closing

Sig

... ...
... ...

... ...

... ...

... ...

OID
OID

OID

OID

OID

OID

010 000 100 110

100 010 010 100
010 100 011 000

sponding node (a signature file) in Sf to discard the non-relevant branches. (See [CA98]
for a detailed discussion of this process.)

Obviously, many signature files will be searched during a query evaluation. However,
since the signature file works as an inexact filter, we can not expedite its search by sort-
ing it and then using a binary search. For this reason, we build a pat-tree over each sig-
nature file. To work as an inexact filter, we use a different matching strategy. Let sq be
the node encountered during a traversal of the query signature tree QT. The i-th position
of sq is denoted as sq (i). During the traversal of a pat-tree, the inexact matching is de-
fined as follows:

(i) Let b be the node encountered and sq (i) be the position to be checked.

(ii) If sq (i) = 1, we move to the right child of b.

(iii) If sq (i) = 0, both the right and left child of b will be visited.

In fact, this definition just corresponds to the signature matching criterion.

To implement this inexact matching strategy during a traversal of a pat-tree, we search
the pat-tree in the depth-first manner and maintain a stack structure stackp during the
process.

Algorithm pat-tree-search

input: a node in QT;

output: set of object OIDS whose signatures survive the checking;

1. Let sq be the node encountered during a traversal of the query signature hierarchy
QT. The i-th position of sq is denoted as sq (i). S ← ∅.

2. Push the root of the pat-tree into stackp.

3. If stackp is not empty, b ← pop stackp; else return(S).

4. If b is not a leaf node, i ← skip(b);
If sq (i) = 0, push cr and cl into stackp; (where cr and cl are b’s right and left child,
respectively.) otherwise, push only cr into stackp.

5. Compare sq with the substring beginning from position pointed by b.
If sq matches, S ← S ∪ {OID}, where OID is the object identifier associated with
the substring (signature).

The following example helps for illustrating the main idea of the algorithm.

Example 3 Consider the signature file shown in Fig. 8(a). The pat-tree built over it is
shown in Fig. 8(b).

Assume sq = 010 000 000 000. Then, only part of the pat-tree (marked with thick edges)
will be searched. On reaching a leaf node, the bit substring from the position pointed by
the leaf node will be checked against sq. Obviously, this process is much more efficient
than a sequential searching. If the signature file contains N signatures, this method re-
quires only O(N/2l) comparisons in the worst case, where l represents the number of bits
set in sq, since each bit set in sq will prohibit half of a subtree from being visited.

7 Conclusion

In this paper, a new indexing technique has been proposed. The main idea of this ap-
proach consists in the combination of pat-trees and signature files. To optimize the tra-
versal of object hierarchies, we build signature file hierarchies to cut off non-relevant
branches as early as possible. However, since the signature file works only as an inexact
filter, it can not be sorted and thus the binary search can not be utilized to improve the
efficiency. To this end, we construct a pat-tree over each signature file which appears as
a node in the signature file hierarchy. In this way, the sequential search can be avoided.
In addition, we may build a pat-tree over a text stored as an attribute value if it is very
long. At last, we notice that a pat-tree itself is small and therefore no much space over-
head is assumed. On the other hand, since each sequential search (of a signature file or
a text) is replaced with a small tree search along one or several paths (see Subsection 5.1
and Section 6), the time complexities of both the traversal of a signature file hierarchy
and the text search can be reduced by one order of magnitude or more.

References

ACCM96 S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte and J. Simeon, “Que-
rying documents in object databases,” Int. J. on Digital Libraries, Vol. 1, No. 1, Jan.
1997, pp. 5-19.

ACM93 S. Abiteboul, S. Cluet and T. Milo, “Querying and Uodating the File,” Proc. of the 9th
VLDB Conference, Dublin, Ireland, 1993, pp. 386-397.

AHU74 Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The Design and Analysis of Computer Al-
gorithms, Addison-Wesley Publishing Com., London, 1969.

BA94 K. Böhm and K. Aberer, “Storing HyTime Documents in an Obeject-Oriented Datab-
se,” Proc. of 3th Int. Conf. on Information and Knowledge Management, Gaithers-
burg, Maryland, ACM, Nov. 1994, pp. 26-33.

BDK92 F. Bancihon, C. Delobel and P. Kanellakis, “Building an Object-oriented Database
System: The Story of O2,” San Mateo, California, Morgan Kaufman, 1992.

BANY97 K. Böhm, K. Aberer, E.J. Neuhold and X. Yang, “Structured Document Storage and
Refined Declarative and NAvigational Access Mechanism in HyperStorm,” Int. J of
VLDB, 1997.

BU77 R. Bayer and K. Unterrauer, “Prefix B-tree,” ACM Transaction on Database Systems,
2(1), 11-26.

CA98 Y. Chen, K. Aberer, Layered Index Structures in Document Database Systems, Proc.
7th Int. Conference on Information and Knowledge Management (CIKM), Bethesda,
MD, USA: ACM, 1998, pp. 406-413.

CF84 S. Christodoulakis and C. Faloutsos, “Design consideration for a message file server,”

011 001 000 101
110 010 001 011
100 100 010 111
001 000 101 110
010 001 011 100
100 010 111 000
000 101 110 000
001 011 100 000

1

2 2

3 3 4

5

13

73 49 1 61 25

37 93

(a) (b)

0

0

0

0

0 0

0

1

11

111

1

Fig. 8. Pat-tree for signature file

IEEE Trans. Software Engineering, 10(2) (1984) 201-210.
Cr86 D.A. Cruse, Lexical Semantics, Cambridge University Press, 1986.
CR94 Crochemore, M. and Rytter, W., Text Algorithms. Oxford University Press, New York,

1994.
CST92 W.B. Croft, L.A. Smith and H.R. Turtle, “A Loosely Coupled Integration of a Text Re-

trieval System and an Object Oriented Database,” Proc. of 15th Ann. Int. SIGIR, Den-
mark, June 1992.

DaD88 C. Damier and B. Defude, “The Document Management Component of a Multimedia
Data Model,” Proc. of 11th Int. Conf. on Research&Development in Information Re-
trieval, Grenoble, France, 1988, pp. 451-464.

DD94 S.J. DeRose and D.D. Durand, “Making Hypermedia Work: A User’s Guide to Hy-
Time,” Kluwer Academic Publishers, London, 1994.

DGL98 A. Dessmark, O. Garrido and A. Lingas, “Comparison of signature file models with
superimposed coding,” J. of Information Processing Letter 65 (1998) 101 - 106.

DWL92 S.C. Deerwester, K. Waclena and M. Lamar, “A Textual Object Management Sys-
tem,” Proc. of 15th Ann. Int. SIGIR, Denmark, 1992.

EN89 R. Elmasri and S. B. Navathe, Fundamantals of Database Systems, Benjamin Cum-
ming, California, 1989.

Fa85 C. Faloutsos, “Access Methods for Text,” ACM Computing Surveys, 17(1), 1985, pp.
49-74.

Fa92 C. Faloutsos, “Signature Files,” in: Information Retrieval: Data Structures & Algo-
rithms, edited by W.B. Frakes and R. Baeza-Yates, Prentice Hall, New Jersey, 1992,
pp. 44-65.

GBS92 G.H. Gonnet, R.A. Baeza-Yates, “New Indices for Text: Pat Trees and Pat Arrays,” in:
Information Retrieval: Data Structures & Algorithms, edited by W.B. Frakes and R.
Baeza-Yates, Prentice Hall, New Jersey, 1992, pp. 66-82.

Hew92 Hewlett-Packard, OpenODB Reference Manual B3185A, 1992.
HFBL92 D. Harman, E. Fox, R. and Baeza-Yates, “Inverted Files,” in: Information Retrieval:

Data Structures & Algorithms, edited by W.B. Frakes and R. Baeza-Yates, Prentice
Hall, New Jersey, 1992, pp. 28-43.

Kn73 D.E. Knuth, The Art of Computer Programming: Sorting and Searching, Addison-
Wesley Pub. London, 1973.

LL92 W. Lee and D.L. Lee, “Signature File Methods for Indexing Object-Oriented Data-
base Systems,” Proc. ICIC'92 - 2nd Int. Conf. on Data and Knowledge Engineering:
Theory and Application, Hongkong, Dec. 1992, pp. 616-622.

Ma90 I.A. Macleod, “Storage and Retrieval of Structured Documents,” J. of Information
Processing & Management, Vol. 26, No. 2, 1990, pp. 197-208.

[Mo68] Morrison, D.R., PATRICIA - Practical Algorithm To Retrieve Information Coded in
Alphanumeric. Journal of Association for Computing Machinary, Vol. 15, No. 4, Oct.
1968, pp. 514-534.

Sch93 P. Schäuble, “SPIDER: A MultiMedia Forum - An Interactive Online Journal,” Proc.
of Conf. on Electronic Publishing, John Wiley & Sons, Ltd, 1994, pp. 413-422.

SM83 G. Salton and M.J. McGill, “Introduction to Modern Information Retrieval,” McGray-
Hill Int. Book Com., Hamburg, 1983.

VAB96 M. Volz, K. Aberer and K. Böhm, “Applying a Flexible OODBMS-IRS_Coupling to
Structured Document Handling,” Proc. of 12th Int. Conf. on Data Engineering, New
Orleans, 1996, pp. 10-19.

VML95 VODAK V 4.0 User Manual. Technical Report 910, GMD-IPSI, St. Augustin, April
1995.

WMB94 I.H. Witten, A. Moffat and T.C. Bell, Managing Gigabytes, Van Nostrand Reinhold,
1992.

YA94 T.W. Yan and J. Annevelink, “Integrating a Structural-Text Retrieval System with an
Object-Oriented Database System,” Proc. of 20th VLDB Conf., Santiago, Chile, 1994,
pp. 740-749.

YLK94 H.S. Yong, S. Lee and H.J. Kim, “Applying Signatures for Forward Traversal Query
Processing in Object-Oriented Databases,” Proc. of 10th Int. Conf. on Data Engineer-
ing, Houston, Texas, Feb. 1994, pp. 518-525.

