
IEEE International Conference on Multimedia Computing and Systems
May 14.–19., 1994, Boston, USA

 1

Supporting Temporal Multimedia Operations in
Object-Oriented Database Systems

Karl Aberer, Wolfgang Klas
GMD-IPSI, Dolivostr. 15, D-64293 Darmstadt, GERMANY

email: {klas,aberer}@darmstadt.gmd.de

Abstract
Advanced applications in fields like electronic publish-

ing and telecooperation face the problem of handling multi-
media information. Conventional database systems do not
offer adequate support for storage management as they do
not provide for the modelling, indexing, and manipulation
of multimedia data. Database management systems need to
be extended if they should be able to handle multimedia in-
formation like audio and video. In this paper we present an
approach of extending the data model of an object-oriented
database system by means of schedules which allow for the
description of the temporal characteristics of multimedia
operations as they occur when modelling time-dependent
data like audio and video. First, we present a model of
schedules and define the basic concepts and semantics to
execute time-dependent operations. Second, we introduce
the specification language as an extension to the VODAK
Model Language and illustrate the concepts by examples.
Finally, we briefly discuss the impact of integrating multi-
media data modelling support into a database management
system on the system architecture.

Keywords. Object-oriented database systems, temporal
modelling, multimedia databases.

1 Introduction

Advanced applications like electronic journals, news
services, and cooperative editing need to deal with multi-
media information. The integrated handling of video, au-
dio, images, graphics, animations, combined together with
textual information in hypermedia documents, become
more and more important in such applications. Program-
ming languages, visual interfaces, operating systems, net-
works, and database management systems need to support
the handling of multimedia information. At GMD-IPSI we
work on the extension of object-oriented database technol-
ogy in order to provide integrated database-system services
for the management of multimedia data ([9], [12], [13],
[15]).

Multimedia information significantly differs from tradi-
tional information types like text, numeric data, graphics,

and images. In [1] we presented a characterization of the
main problems which have to be addressed when trying to
provide adequate database management support for multi-
media information. There we showed that one of the most
important gaps between today’s programming and data
modelling paradigms employed in the framework of data-
base management systems and the requirements associated
with the handling of multimedia data is that appropriate
concepts related to time-dependent behavior associated
with multimedia data are missing. We derived the necessity
of concepts related to time-dependent behavior from the
need to provide for scheduling of different tasks on multi-
media data, for appropriate simultaneous device interac-
tion, and for efficient handling of user interaction. As a con-
sequence the following support is needed for multimedia
data and operations:
• temporal composition of multimedia data,
• synchronization of multimedia operations,
• interruptability of multimedia operations (by users and

devices).
The objective of this paper is to define an object-ori-

ented modelling language and the corresponding proces-
sing semantics for a database management system that pro-
vides such a support. Our goals are
• to provide a solution that is oriented closely to the re-

quirements of modelling time-dependent multimedia
data without unnecessary overhead,

• to integrate seamlessly the concepts into the existing
data model VML ([8], [10]), with as few extensions as
necessary by exploiting existing modelling features of
VML,

• to allow for an efficient implementation,
• to achieve a solution oriented towards application de-

velopment (i.e., macro synchronization), not low level
problems (i.e., micro synchronization) with the poten-
tial to apply the same concepts to similar problems like
workflow management,

• to allow integration with low-level operations pro-
vided by database-system services like a continuous
object manager at a lower system layer.

 2

In [1] we already discussed that an object-oriented ap-
proach is a very promising way to realize a multimedia da-
tabase system. It allows to capture semantics associated
with multimedia data by means of methods defined for
classes and their instances. Other possible solutions could
be achieved by employing techniques known from the
fields of active and real-time database systems. At a first
glance, the concept of Event-(Condition)-Action (ECA)
rules seems to be adequate for the modelling of time-depen-
dent activities. But the many and quite complex types of
events available in the generic ECA approach as well as the
lack of concrete timing constraints for rules related to a
common time axis does not allow a direct application of it.
However, we will be able to provide features similar to
those of ECA rules in our approach.

Real-time database systems provide concepts to express
timing constraints, but they focus on giving guarantees for
real-time behavior of transactions. Instead, we need sup-
port for the synchronization of multimedia operations and
for expressing temporal relationships of time-dependent
data as well as for the specification of quality-of-service pa-
rameters (e.g., guaranteed delivery, guaranteed capacity of
communication channels).

Timed Petri nets [11] providing the concept of time in-
tervals are an interesting approach and we believe that such
concepts are needed for the temporal composition of multi-
media data. However, the approach lacks appropriate con-
cepts to deal with the problem of interruptability as well as
with conditional activities. Furthermore, the approach pro-
vides for the specification of temporal relationships, but no
operational model integrated in a data model is available.

In [5] the features of a temporal model for temporal
composition of activities are described on top of a conven-
tional object-oriented data model, but these features do not
become part of the object-oriented data model and, hence,
are not offered by the data model to a system designer. Sim-
ilar approaches are taken in [16]. However, these models
could serve as applications of the concepts proposed in this
paper.

[2] discusses interesting solutions at the lower level of
communication protocols but is not very suitable for data
modelling as required by database systems.

Temporal logic is another very interesting approach
which we will use as a general guideline. [3] discusses the
integration of the object-oriented paradigm and real-time
temporal logic which results in a very powerful specifica-
tion mechanism. However, a general logical specification
language is not oriented towards supporting a feasible op-
erational execution model.

The solution proposed in this paper results in an exten-
sion of the open object-oriented VODAK Model Language
([8] and [10]) supporting the modelling of time dependen-

cies. It fits well with the VODAK system-internal multime-
dia extensions (continuous object manager, multimedia
data types, interaction and presentation manager [13][15]).
It also allows for an efficient implementation by making
use of efficient low level components. Using such low level
components is, however, not necessary because of the lack
of expressive power of the model, but always represents a
compromise between flexible semantic modelling for ap-
plication design and efficient processing of large amounts
of data under critical time constraints.

In summary, the significant features of our approach are
as follows:
• Our approach explicitly captures the duration and

execution of temporal operations. We distinguish be-
tween non-temporal operations, which can be mod-
elled by methods, and temporal operations, which are
modelled by the newly introduced concept of sched-
ules. Both are part of the operational interface of ob-
jects according to the object-oriented paradigm.

• Events are used to control the execution of temporal
operations. Besides a well-defined set of primitive
built-in events we introduce two basic events, Start and
End of a temporal operation, and complex events in-
cluding absolute time modification of the basic events.
The primitive built-in events are realized on the basis
of signals. Complex events and the Start/End events
are treated differently and are realized on a logical ba-
sis through a scheduler without using signals.

• The whole model is designed in a way that it allows for
a concrete execution model and fits well into object-
oriented database models and architectures.

The paper is organized as follows. After giving an
introductory example in section 2 in order to provide some
intuition we present the structural and operational model
for the concept of schedules in section 3. In section 4 we
propose extensions for the VODAK Model Language VML
and give some examples for the usage of the extended lan-
guage. Finally in section 5 we briefly discuss the conse-
quences on the architecture of the VODAK system.

2 An introductory example

Suppose we want to model a class of presentations in an
electronic cinema in an object-oriented database. We as-
sume that in this (simple) presentation first a slide with an
advertisement is shown for a fixed period of time, then
there is a variable break (for selling articles), where the
length of the break is determined by a piece of music
played, and then the movie is shown, synchronizing a se-
lected audio and video stream. This scenario will be mod-
elled in the following way (schedules are italicized).

 3

����� ��������	�
��������
������	
��

�
��	��
������ ���
��
��
��� ��
���
��
��� ��
���
��
��� ��
���

�������	�	
��

��
����� ������
����� �����
� �	 �	��	 ����

�
��	��
������
�
�������
�	 �	��	 ������
����
��
��	��
������
����
�
�������
��
�����������

�	 ��� ��
�� ��
����������
�	 ��� ��
�� ��
����������� ��
!���
�	 ��� ��
�� ��	���� �

����

The schedule show consists of a set of schedule state-
ments. Each statement states when (�	 some event) state-
ments have to be executed. The events in the AT clause re-
fer to the start and end of schedules applied to the object ref-
erenced in the clause. For example �	 �	��	 ���� re-
fers to the start of the schedule show which is executed for
the receiver object of this schedule, or �	 ��� ��
�� re-
fers to the end of the schedule play executed for the object
music. Additionally, events may be modified by adding a
time offset. The actions defined at the different events can
either be ordinary method calls (e.g. advertisement�dis-
play()) or calls to other schedules (e.g. music�play()) or a
return statement determining the end of the schedule. Ob-
serve also that schedules may be parameterized.

When executing the schedule show all actions scheduled
for a certain event in the different statements are executed
in parallel. Thus when calling subschedules like playing a
video and audio, these generates processes running in par-
allel. The synchronization of the processes is provided by
referencing the same events and using a common global
clock to determine time offsets.

At a first glance this example seems to be quite trivial,
but a closer analysis reveals non-trivial problems, e.g.
problems with regard to the event model, synchronization
of subschedules, or variable bindings. In the next section
we will capture these concepts in a more formal way and
develop an execution model that is consistent with the intu-
ition given in this section.

3 Temporal operations in object-oriented
databases

3.1 Schedules and events

In this section we discuss the basic concepts of how to
introduce the time dimension into an object-oriented data

model. The concepts will be applicable to most object-ori-
ented data models, because only a few features of the mod-
elling mechanisms of VML we actually work with are pre-
supposed.

In the VML data model there is a distinction between
two types of data, namely objects, which are persistent, and
values, which are transient. We assume that multimedia
data is always modelled as objects. This is a reasonable as-
sumption as objects are the means to represent persistent
data and multimedia data will rarely be available transient-
ly.

VML is a behavioral object-oriented database model.
Hence, objects have a well defined interface of operations,
which are called methods. Objects interact with their envi-
ronment through messages, which are method calls to ob-
jects, while the state of objects is encapsulated. Thus we
first discuss the notion of multimedia operations on objects,
while the structural aspects related to multimedia data will
come in later1, and aspects related to transient multimedia
data and operations on them will not be considered.

The semantics of a method in an object-oriented data
model encompasses two characteristics:
• functional characteristics: Method executions repre-

sent function evaluations that return a value for given
parameters. More formally this behavior of a method m
is described by a function

m: O x D1 x ... x Dn � D,
where O is the set of object identifiers (receiver object)
and Di are the (transient) domains of the parameters,
and D is the domain of the result.

• dynamic2 characteristics: Method executions repre-
sent events that change the state of the database and ini-
tiate other events, by issuing messages. Their interde-
pendencies can be described in terms of an event-state
diagram. More formally a method m changing the state
of a database is described by a function

m: O x D1 x ... x Dn x DB � D x DB
where DB is the set of possible database states.

For multimedia operations a third characteristics is cru-
cial:
• temporal characteristics: Multimedia operations differ

from methods as they have typically a duration over
time, which is relevant for the specification of the op-
eration as well as for the interdependencies with other
operations. An operation with temporal characteristics
has a start time, which influences the execution of the

1. Other approaches for multimedia data models ([5],[11]) advocate
strongly the temporal composition on multimedia data structures.
This can satisfy temporal composition, but not interruptability and
synchronization of operations. The opposite can be easily achieved
as shown later.

2. The terminology is chosen according to [14]. One must not confuse
dynamic characteristics of operations with temporal characteristics.

 4

operation, and an end time, which is determined by the
execution of the operation.

Not all operations applicable to objects in a multimedia
system need to be considered with their temporal character-
istics. Thus we will distinguish between operations with
temporal characteristics and those without (despite the fact
that also the later needs a concrete interval of time to be
executed). This leads to the definition of schedules.

Definition: A schedule s in an object-oriented database
system is a mapping

s: O x D1 x ... x Dn x DB x T � D x DB x T
where O is the set of object identifiers (receiver objects), Di
are the (transient) domains of the parameters, DB is the set
of possible database states, and T=� is the one-dimensional
real coordinate axis for time.

Schedule signatures are part of the interface of an object
(which is typically but not necessarily defined by the ob-
ject’s class). They can have parameters and return values
like methods. This comprises the declarative aspect of
schedule definitions.

The execution of a schedule is initiated like the execu-
tion of a method by a message call of the form

	������	��"#����
�!�
�����������	�����	
�$
The execution of a schedule s is related to a time interval

[tstart, tend]�T x T, tstart�tend and defines two unique
points on the time axis, namely the start of the operation at
tstart and the end of the operation at tend.

Qualitative temporal relationships between temporal
operations can be specified as temporal relationships of the
corresponding time intervals [tstart, tend] and [vstart, vend]:

tstart � vstart and tend � vend, where � � {=, �, �}.
These kinds of relationships (of which 13 different exist)

are a generalization of the linear ordering relationships for
points on the time axis. These relationships are well investi-
gated [7].

In order to refer to the start and end points of temporal
operations we introduce the concept of events.

Definition: An event E is a countable subset of T, E�T.
If t�E we say that event E occurs at time t. The set of all
events is denoted with �.

Events are specified by event specifications. In the fol-
lowing we give elementary examples of primitive event
specifications that are related to the schedule concept.
• Start(o), End(o), o�O are events that correspond to

the start or end of an arbitrary schedule executed by an
object with object identifier o.

• Start(o,s), End(o,s) are event expressions that corre-
spond to the start or end of a particular schedule s
executed by an object with object identifier o.

Note that for example Start(o,s)�Start(o).3 This kind of
event is caused only by the execution of schedules. We refer
to events of this kind in the following as internal events.

Other events that are not related to the execution of
schedules are
• Call(o), which corresponds to sending a message to an

object o,
• Call(o,m), which corresponds to sending a particular

message m to an object o,
• Interrupt(i), i�N, which corresponds to a system inter-

rupt, identified by i.
We will refer to events of this kind as external events.
Using event constructors new events can be defined

from the primitive internal and external events introduced
before.

The central event constructor that allows to combine
qualitative with quantitative temporal relationships is the
following:

E+t:={t’+t | t’�E}, E��, t�T.
Other event constructors can also be defined, e.g.

E1 or E2 := E1 � E2.
For further reference on composition of events see e.g.

[6].
We assume that a set of primitive (built-in) schedules

Sprim is given. Besides performing a well-defined task in the
system, primitive schedules generate start and end events.
Additionally, we introduce a mechanism to define compos-
ite schedules, Scomp.

3.2 Operational specification of schedules

The operational specification, or in other words the im-
plementation of composite schedules, is the place where
temporal relationships between different operations are
specified (similarly as in the implementation of methods
the functional and dynamic relationships to other opera-
tions are specified).

The specification of a schedule consists of actions, that
take place during the execution of the schedule. These ac-
tions determine the duration of the schedule on the one
hand and which operations are executed and when they are
executed on the other hand. First, we describe now the pos-
sible actions that can take place in the execution of a sched-
ule. The actions are given as sequential programs. The
statements that can be used within such programs deter-

3. We will use event specifications to denote the corresponding sets of
events without explicitly distinguishing between the specification
expression and the event itself.

 5

mine largely the expressive power of schedule concept. The
following statement is necessary:
• Termination statement: When it is reached the execu-

tion of the schedule terminates.
The following statements are considered as a minimal

set to obtain reasonable expressive schedules:
• Schedule calls: other schedules can be initiated from

within a schedule. These are called subschedules.
• Method calls: these statements allow to integrate any

non-temporal operation into the execution of sched-
ules.

• Conditional statements (if–then–else): these state-
ments give schedules the expressive power of ECA
rules.

Additional types of statements, as provided for the im-
plementation of methods, may be added to this list. We de-
note in the following the set of sequential programs com-
posed of the available statements by �.

In order to obtain a feasible execution model we impose
the following restrictions on the elements of �.
• Return values generated by a schedule call must not be

used in any other statement of the sequence (R1).
• Recursive schedule calls are not allowed, that is the

schedule must not call itself (also not with different pa-
rameters) (R2).

As certain statements, like schedule and method calls,
return a value, a mechanism for assigning these values is to
be provided. Thus we define for each schedule a local scope
of variable bindings of type [v1: D1,...,vn: Dn], where vi are
variable names and Di are domains. We denote with � the
possible scope types.

Now we are ready to define schedule specifications:
Definition: A specification of a composite schedule

s�Scomp is given by a set of schedule statements Acts� � x
�, and by a scope type Scopes� �.

We denote the projection of Acts on the first component
by Eventss. This is the set of events on which some action is
taken in the schedule execution.

Up to now we have not restricted the use of local vari-
ables in the specification of composite schedule state-
ments. In particular, local variables could be used for defin-
ing events, e.g. by using the + event constructor. However,
as the value of the local variables may change throughout
the schedule execution, the definition of events in the corre-
sponding schedule statements may also change. We ex-
clude this by the following definition.

Definition: A schedule s is static when the set Events is
invariant under execution of schedule statements.

In the following we consider only static schedules. We
achieve this by excluding the usage of local variables in the

event specifications. Still, constants and the values of the
parameters may be used in event specifications.4

3.3 Execution model for schedules

In this subsection we define the execution model for
schedules, which is different from that of methods. The
main difference to the execution model of methods comes
from the fact that order (and time) of execution of schedule
statements can only be determined during runtime. A
schedule is initiated at time tstart by sending a message

��%��
���	��
The assignment is only needed when the schedule gener-

ates a return value.
There is an important difference between calling a

schedule from within a method and from within a schedule.
As the interface of a schedule and a method do not differ, a
method treats a schedule call like any ordinary method call.
I.e. it continues execution not before the return value is re-
ceived and control is returned by the schedule called (pro-
cedural semantics). We call such a schedule call a root
schedule. A schedule call from within a schedule leads to
the parallel execution of the subschedule (process seman-
tics). Restriction R1 on � is then necessary as the execution
of the sequence of statements in a program of � is contin-
ued before the (parallel) subschedule returns a value. Re-
striction R2 on � ensures that the calling hierarchy of sub-
schedules form a tree with a root schedule as the root of the
hierarchy.

A call of a schedule ��
���	�� at time tstart leads first
to processing steps in the database system which we call
registration phase. In this phase a globally defined registra-
tion set Reg� � x � x SID is built up. SID is a set of sched-
ule identifiers. For a root schedule the set Reg is initialized
with the empty set. We define as Sub(s,t) the set of all (e, p)
� Acts for which e takes place at time t and p contains a call
to a composite subschedule.

The following recursive procedure performs the re-
gistration.

procedure register(o,s)
begin
1. A local scope scope of type Scopes is set up

and assigned with default values.
2. All p, such that (e,p)�Sub(s,tstart) are

executed. This leads to a recursive call to
register for all composite subschedules to
be executed at time tstart in a subschedule

4. One could also consider actions that e.g. generate new schedule state-
ments, which would lead to a much more complex schedule model.

 6

calling hierarchy before execution of any
other operation.

3. Reg:=Reg � ((Acts � Sub(s,tstart)) x {sid}),
where sid�SID is a uniquely defined iden-
tifier for s. This includes the evaluation of
all expressions appearing in the event speci-
fications.

4. The event Start(o,s) is generated
5. Call procedure execute()
end

Following the registration phase the system enters the
execution phase by calling the following procedure.

procedure execute()
begin
wait for event such that (event,program,sid) � Reg

for all (event,program,sid) � Reg do in parallel
for all statement�program do in sequential

if statement=termination_statement
then remove all elements in Reg with sid;

update bindings in local scope of call-
 ing schedule with the return value;
generate End event of the schedule
 identified by sid;

if statement is a method call
then call message handler;
if statement�Sprim then start subprocess;
if statement�Scomp then call register;

end

Note that we omitted the representation of some of the
necessary administration information, e.g. about the struc-
ture of the calling hierarchy.
Important remarks:
• The purpose of this execution model is to define the se-

mantics of schedules and not to propose a concrete im-
plementation of processing of schedules. For a con-
crete implementation still many alternatives are left
open. For example, implementing the procedure
execute directly as described above would require an
interpretation of programs p��. Obviously in a com-
piled language like VML a compiler may use functions
provided by a central scheduler component for the
compilation of p.

• In this model for any t�T only one registration phase
followed by an execution phase takes place. This im-
plies that any execution phase consumes a nonzero
amount of time. This also guarantees that all primitive
subschedules scheduled for the same event taking

place at time t are executed in a single execution phase.
This is the central property in order to assure appropri-
ate synchronization of primitive subschedules.

• The execution model shows that the functional and dy-
namic behavior of schedule execution is inherently
non-deterministic, as the order of execution for e.g. for
method calls scheduled at the same time is not deter-
mined.

• There is an important difference between the treatment
of events that are generated by schedules, i.e. start and
end of a schedule execution, and thus can be managed
internally by the system component for executing
schedules, and external events, e.g. system interrupts,
that are out of the control of a system component for
managing schedules.

• During the execution of a schedule a clock is needed in
order to determine composite events that involve time
offsets. Conceptually this is the system clock (world
time), thus all references to time are synchronized over
this clock. In a concrete implementation however the
actual clock used may be delayed, or deviate in other
ways from the system clock. However, these delays af-
fect the execution of all schedules equally.

Up to now we have only considered the situation where
one root schedule is executed at a time. But, in a database
system many root schedules will have to be executed simul-
taneously. In this case there are two alternatives how to treat
internal events in the execution phase. Either only the oc-
currences of those events are detected that are generated in
the scope of a particular calling schedule or occurrences are
detected globally. In the first case interference between
schedules over the database state will still be possible. Thus
schedules will not be considered as conventional transac-
tions.

4 The temporal VML data model language

In this section we propose a minimal language extension
of VML that allows to define schedules in the form
introduced. This is on the one hand to introduce a concrete
language for the sake of giving examples and on the other
hand to illustrate how the concepts fit into a concrete ob-
ject-oriented data model language. For simplicity we con-
sider only a reduced version of the VML language.

4.1 Temporal language constructs

In the declarative part of VML we distinguish between
methods and schedules. Schedules have signatures in the
same way as methods. The syntax for the schedule imple-
mentation is given in Figure 1:

 7

Figure 1: Syntax of schedule implementation

���

�
����	�����&��%
�����&�
����'��	&

��		���

�	������

(&������	
�� �	���	���
�'�������&��	���	���
�'��������&) *+ ��"��� �	���	���
 +*
(&��	
��� ���!�
�
� ����	�&����!�
�
� ����	��) *+ ��"��� ���!�

 +*
(&��
������
�!�
����
� ����	� �
�!�
����
� ����	��) *+ ��"���
�!�
���
 +*

�������	�	
��&
(���	
��� ���!�
�
�'�������&����!�
�
�'��������) *+ ��"��� ��
 �	����� +*
(&��
������
�!�
����
�'������� �
�!�
����
�'��������)

���&���

�!�
����
�'������� ��%
�!�
����
� ����	� ��� ��	��"���
����	�����
�!�
����
�����������
����

�!�
����
�����������
� ��%
�!�
����
�������� ,

�!�
����
�����������
�
�!�
����
��������

�!�
����
�������� ��% �	 ������-�	�

���
�����������
� ���

�����������
� ��%
�������� , ��� �������
�
�������� ���
�������
�
�������� ��%
�������� , �������
�
�������� ���
��������

�������� ��% ��	��� (�-�	�

���) ,

�'�
�������� ,
(��	��"����
����'��	��%�) 	������	��"#����
�!�
�����
���	�����	���
�� ,
(��	��"����
����'��	��%�) 	������	��"#�������!�
��
���	�����	���
��
��	��"����
����'��	��%��-�	�

���

Here we assume that only one schedule call for an object
can be executed at a time. Thus we distinguish between an
activated state of the object where no other schedule call
can be answered, and a silent state. Referencing to the start
and end of a schedule executed by an object can then be
realized by referring to the object.

�������������-�	�

��� ��%
�	��	 �"#�����
����'��	 ,
��� �"#�����
����'��	

������-�	�

��� ��%
�������������-�	�

��� (��� �-�	�

���)

The �-�	�

��� can be any well-formed VML expres-
sion returning a real number.

For method implementations a (built-in) boolean meth-
od is provided that allows to test whether an object is active
or passive:

�"#�����
����'��	���������
���

4.2 Illustrating examples

Now we give some examples illustrating how some ba-
sic functionalities related to temporal behavior can be ex-
pressed using this language.

Periodic behavior. First we show how to model a peri-
odic behavior. We do this for an imaginary class animation
for animating sequences of pictures. For simplicity we fo-
cus on the relevant parts of the class definitions.

����� ���������

��		��� $$$

�������	�	
��

������	
��

�����	��
�.������ /����	����.������

��
������

�������	��
����� ���"�	��'�
���
��

���� �� ����

�	 �	��	 ����

���%0�

�����	��
�.������
�
�����
�� �������

�	 ��� �����	��
�.�����

� �1�

	
�� ��%��0�

�����	��
�.������
�
�����
�� ������

���� ��	���� �

����

 8

����� /����	����.�����

��		��� $$$

�������	�	
��

������	
��

�����	�� �����(0$$�) �� 2������
��
������

�
�����
�� ����� �����
� �	 �	��	 ���� �����	�(�)�
�
�������

�	 �	��	 �����
���� ��	����
*+
���� �
 � ���
���� +*�

����

Video controllers. We observed that besides specifying
temporal relationships between multimedia data and the
corresponding operations, another crucial component in
multimedia systems is modelling user interaction. We
sketch in the following how this can be incorporated by us-
ing the language extensions introduced for VML.

����� /����

��		���

�	������

��
������

3���'�	"�������� �	�
��� *+ "����4��

�!�
���5 ��	������
 3!�� "����� ��
!�
 +*

����

����� 6���	����	

��		��� $$$

�������	�	
��

��
������

����	�������
��5 ��/������
� ��� "� ��7��8�
�	 �	��	 ���� "�%��3���'�	"��������
�	 ��� �

�
� "%%���
� ��	����

� "%%�
��	�� 	
�� ���������

� "%%�
���� 99 ����������
��

	
�� ��
������

� "1:���
�

	
�� "�%��3���'�	"�������� � �
���

Temporal relationships. Up to now we have introduced
ways to specify temporal relationships between multime-
dia operations. We will show now how to exploit this speci-
fication mechanism in order to perform temporal composi-
tion of multimedia data. We give here examples of how se-
quential and parallel composition of multimedia data can
be modelled.

����� ����;
����
���;
���

��		���

�	������

������	
��
�	������
�	�
��	
���
������ ���
���� ������
�	��
��
������ �������

����

����� ��.�������;�����
�����
���	��� *+ ���

 ���!�

 +*

��	
���

�	�����
05
<� ����;
����
���;
�����
��.�������;�����
������

��		���

�	������

������	
��
05
<� ����;
����
���;

����

��	
���

�	��������
������ ���
���� ������
�	��
��
������ �������

�������	�	
��

��	
���

�	��������
�	�
���	���
0$
�	������
<$
�	��������

������
�
�
0���������
�� 	
��
0�
�����

����
<�
�������
 ������
�	��
�
� �1
0�
�	������� 	
��
0� ������

�����
<� ��������
��
������

������ ��	 �	��	 ����
0������� �
�	 ���
0
<��������
�	 ���
< ��	��� ���

����

����� /�	�����;�����
�����
���	��� *+ ���

 ���!�

 +*

��	
���

�	�����
05
<� ����;
����
���;
�����
/�	�����;�����
������

��		���

�	������

������	
��
05
<� ����;
����
���;
���
��	
���

�	��������
������ ���
���� ������
�	��
��-������� ����;
����
���;
����

��
������ �������

�������	�	
��

��	
���

�	��������
�	�
���	�����-�
0$
�	�����5
<$
�	��������

������
�
0�
������
<�
�������

 9

 ������
�	��
�
0� �������
<� ���������

��-������� ����;
����
���;
����
�
�
0�
�	�������:
<�
�	�������
	
�� ��	���
0
���� ��	���
<��

��
������

������
� �	 �	��	 ����
0��������
�	 �	��	 ����
<������� �
�	 ��� �������-������ ��	��� ���

����

A parallel composition of an audio with a video is then
specified as follows:

��� �	�
��������5 ��
��5
��
��� ����;
����
���;
����

�	�
���������%
&&/�	�����;�����
�������	�������
��5��
4

����

Using the metaclass mechanism of VML [10] one can
use the above technique to introduce this composition
mechanism in the form of a data model extension.

5 Implementation and architecture:

For the implementation and integration of the exten-
sions proposed for VML in VODAK the following require-
ments have priority for the development of a database com-
ponent for managing schedule execution, which will be
called schedule manager in the following.

Use on high granularity: The modelling mechanism it-
self is powerful enough to specify temporal relationships
on a low granularity, e.g. single video frames or audio sam-
ples, as well as high level composition of multimedia docu-
ments and user interaction. The latter is what we consider
the relevant application for the proposed extensions of a da-
tabase programming language, while the processing at low
granularity needs high performance processing of data
streams which are features we assume to be available as
primitive schedules.

In VODAK currently different built-in data types for ef-
ficient processing of audio and video data together with
highly parametrized operations (Quality of Service param-
eters) and components for user interaction [15] are pro-
vided. In order to capture the temporal characteristics of
operations defined for these data types, they will be made
visible in the data model in form of built-in classes together
with appropriate primitive schedules. The built-in opera-
tions on multimedia data types synchronize themselves
with the system clock in the same way as all composite
schedules do. Therefore synchronization of application-de-

fined composite schedules with built–in primitive sched-
ules is guaranteed.

Compatibility with current architecture: VML is the
data model for an existing DBMS, namely VODAK. Thus,
we have to be compatible with the existing components, in
particular with the message handler and transaction manag-
er. As it can be seen from the operational model for sched-
ule processing the only interface needed to the DBMS is
through method calls. The message handler has to be
adapted in a way, that it recognizes schedule calls which
have to be delegated to the schedule manager.

Rapid prototyping: In order to prove the usability of the
concepts introduced a major concern is to provide proto-
types as rapidly as possible. Thus, a first prototype will be
based on a single process schedule manager following
closely the conceptual execution model explained above.

6 Conclusions

We have introduced an object-oriented data model
which supports the description of the temporal behavior of
multimedia operations and data. We have introduced the
concept of schedules which are either built-in temporal op-
erations, like playback of audio and video streams, or are
user-defined composite operations, that can specify tempo-
ral behavior using an event concept and references to a sys-
tem clock. We have given an operational semantics for the
execution of schedules and showed how to extend a con-
crete language with a schedule construct. Finally, we have
sketched the integration of this concept into the current ar-
chitecture of VODAK which is currently under way in the
AMOS project (e.g., [12],[13],[15]).

The model introduced offers different alternatives at the
design level, e.g. the event model or scope definitions, as
well as at the implementation level. For further work we
will foremost explore these alternatives, like more complex
event models, including support for qualitative relation-
ships (e.g. before and after) and composition operators for
events, or different implementation strategies, in particular
with regard to the usage of parallel execution of processes.

7 Literature

[1] Aberer K., W. Klas: The Impact of Multimedia Data on Data-
base Mangement Systems. ICSI, TR-92-065, Berkeley, Ca.,
September 1992.

[2] Anderson D.P., L.Delgrosse, R.G.Herrtwich: Structure and
Scheduling in Real-Time Protocol Implementations ICSI,
TR-90–021, Berkeley, Ca., June 1990.

[3] Böhm K., A.Sernadas: An Institution of Real-Time Object Be-
havior. Technical Report No.4/93, Department of Mathematics
–IST (Lisbon Institute of Technology), March 1993.

[4] Dayal U., A. Buchmann, U.Chakravarthy, M.Hsu: The HiPAC
Project: Combining Databases and Timing Constraints. In
SIGMOD RECORD 17/1, March 1988.

 10

[5] Gibbs S., C. Breiteneder, D. Tsichritzis: Audio/Video Data-
bases: An Object–Oriented Approach. Object Frameworks,
Université de Geneve, 1992, pp. 275–291. Proc. of IEEE Ninth
International Conference on Data Engineering (Vienna, April

1993), IEEE, Los Alamitos, 1993.
[6] Gehani, N.H., Jagadish, Shmueli: Composite event specifica-

tion in active databases: Model & Implementation. Proc. of the
18th Int. Conference on Very Large Databases, August 1992.

[7] Hamblin C.L.: Instants and Intervals. In J.T.Frase et al.(Eds.):
Proc. 1st Conf. Int. Soc. for the Study of Time, Springer 1992.

[8] Klas W. et al.: VML – The VODAK Model Language Version
3.1, Technical Report, GMD-IPSI, 1993.

[9] Klas W.: Tailoring an Object-Oriented Database System to In-
tegrate External Multimedia Devices. International Workshop
on Heterogeneous Databases and Semantic Interoperability,
Boulder, February 1992.

[10] Klas W., K.Aberer, E.J.Neuhold: Object–Oriented Modelling
for Hypermedia Systems using the VODAK Modelling
Language (VML). To appear in: A.Biliris, T.Ozsu (Eds.): Ob-
ject-Oriented Database Management Systems. NATO ASI
Series, Springer Verlag Berlin Heidelberg, Dezember 1993.

[11] Little T. D. C., A. Ghafoor: Synchronization and Storage Mod-
els for Multimedia Objects. IEEE J. Select. Areas Commun.,
Vol. 8, No.3, 1990.

[12] Rakow T. C., P. Muth: The V3 Video Server – Managing
Analog and Digital Video Clips. SIGMOD ’93, Washington
DC, May 1993

[13] Rakow T.C., M. Löhr, F. Moser, E. J. Neuhold, K. Süllow: Ein-
satz von objektorientierten Datenbanksystemen für Multime-
dia-Anwendungen (Using Object-Oriented Database Systems
for Multimedia Applications). it + ti – Informationstechnik und
Technische Informatik, Themenheft Multimedia/ Hypermedia,
Teil 2, Oldenbourg Verlag, München, Juni 1993.

[14] Rumbaugh J.E., M.Blaha, W.Premerlani, F.Eddy, and W.Lo-
rensen: Object-oriented Modelling and Design. Prentice-Hall,
1991.

[15] Thimm H., T. C. Rakow: Upgrading Multimedia Data
Handling Services of a Database Mangement System by an
Interaction Manager. Technical report GMD No. 762, Sankt
Augustin, July 1993.

[16] Woelk D., W. Kim, and W.Luther: An Object-Oriented Ap-
proach to Multimedia Databases; ACM SIGMOD Record
1986, pp. 311 – 325, ACM, 1986.

