
Normal Forms in Function Fields

Karl Aberer,

ETH Zürich

Abstract

We consider function fields of functions of one variable
augmented by the binary operation of composition of
functions. It is shown that the straightforward axiom-
atization of this concept allows the introduction of a
normal form for expressions denoting elements in such
fields. While the description of this normal form seems
relatively intuitive, it is surprisingly difficult to prove
this fact. We present an algorithm for the normaliza-
tion of expressions, formulated in the symbolic com-
puter algebra language mathematica. This allows us to
effectively decide compositional identities in such fields.
Examples are given.

1 Introduction

One of the fundamental questions in symbolic compu-
tation is to find normal forms for expressions where
certain identities are considered to be valid for these
expressions. Function fields are structures appearing
frequently as domains for symbolic computations, one
has to think only of the rational functions, elementary
functions, special functions etc. . Such function fields
satisfy, besides the identities resulting from their prop-
erty of being a field, additional identities resulting from
the properties of the composition operator. These prop-
erties are known very well, and important contributions
to the investigation of spaces equipped with composi-
tion as an additional operation were especially made by
K. Menger [6]. It now seems natural to ask for normal
form algorithms in such spaces, in our case function
fields, to be able e.g. to computationally decide the
equivalence problem for terms. In the following exam-
ple let a, F, j be unary function symbols, where addi-

0

tionally j(x) = x, for all x. It is quite straightforward
to simplify the term

((F + 1)(1 + a((j + 1)2)))(x − 1)

to

F (1 + a(x2)) + 1.

But first how do we know that this is the simplest or
an otherwise outstanding form of that term and second
what to do when the terms get longer and computation
by hand gets error prone or even impracticable? For
example: does the following expression have a simple
equivalent “normal” form:

(((F + 1)(1 + a((1 + j)2)))(a − 1)+
j · (1 + F (1 + a(a2))))(F (a + a2)(x2 − 1) −
(F + 1)(a(j2 − 1)(x) · (1 + a(j · (2 + j))(x − 1)))).

(with multiplications indicated by · .) When expres-
sions get a certain size, and as we will see the normal
forms can grow exponential in length, the help of com-
puters is unavoidable. With the help of the computer al-
gebra system mathematica we will be able to implement
the normal forms for expressions like the ones given
above. The goal of the algorithm is to reduce every
term to a simple form of which we can show by con-
struction of an appropriate substitution of the function
symbols that it is not identical to zero iff the expression
itself is nonzero. This form is the desired normal form.

This work is part of a project to develop a system
to compute in combinatory analytic structures and lan-
guages, e.g. fields or vector spaces with operators ap-
propriate to represent programs. For a short motivation
compare with section 6 where the terms of the first of
the two examples above are interpreted as programs.
Extensions of our algorithm to the case where differen-
tiation (differential fields) or programming constructs
like if..then..else are involved were made [1] and are
used as a part of a system to compute in combinatory
differential fields [3].

Page 1

2 Definitions

First we give a general definition of the notion of normal
form. Let T be a set of terms and =T an equivalence
relation on the terms.

Definition 1 (Normal form) A normal form is
given by a normal form function

N : T → NT ⊆ T, τ �→ N(τ),

with the properties

1. N(N(τ)) ≡ N(τ),
2. a =T b iff N(a) ≡ N(b).

The relation ≡ means syntactically equal. The set NT
is the set of terms in normal form.

Next we define a language C in which we describe
the properties of function fields and for whose terms
we intend to construct normal forms. The terms are
built up from the individual constants 0, 1 and ι, vari-
ables x1, x2, x3 . . ., the field operations +, ·, −, −1, and
the composition operation ◦. The predicates are = and
const. We characterize the structure of function fields
by the following first order theory formulated in the
language C, using σ, τ, . . . as metavariables for terms.

Definition 2 (Field axioms AR) A function field is
a field of characteristic 0 with neutral element 0 for
addition and 1 for multiplication. A subset of elements
x with const(x) true are called the constant elements
and form a subfield.

const(0), const(1),
const(σ) ∧ const(τ) → const(σ + τ) ∧ const(σ · τ),

const(τ) → const(−τ),
const(τ) ∧ τ �= 0 → const(τ−1)

Definition 3 (Axioms of composition AC)

(τ1 + τ2) ◦ σ = τ1 ◦ σ + τ2 ◦ σ,

(τ1 · τ2) ◦ σ = τ1 ◦ σ · τ2 ◦ σ,

(−τ) ◦ σ = −(τ ◦ σ),
(τ−1) ◦ σ = (τ ◦ σ)−1,

τ1 ◦ (τ2 ◦ τ3) = (τ1 ◦ τ2) ◦ τ3,

τ ◦ ι = ι ◦ τ = τ,

const(σ) → σ ◦ τ = σ.

We introduce different classes of terms.

Definition 4 (Term classes)

(1) Constant Terms Q: Terms built up with the con-
stants 0, 1 and operations +, ·, −, −1 containing
no variables.

(2) Rational Terms R(σ1, . . . , σk): Terms built up with
the constants 0, 1 and operations +, · , −, −1

using terms σ1, . . . , σk.

(3) Composition Terms C(x1, . . . , xk): Terms built
up with the constants 0, 1, ι and operations
+, ·, −, −1, ◦ using variables x1, . . . , xk.

Example 1
R(ι, x) ⊆ C(x).

Q ⊆ R(x, x ◦ x, x ◦ (x2), . . .) ⊆ C(x).

On these classes we define the following equivalence re-
lations, where we use “�” to denote provability in first-
order logic with equality.

Definition 5 (Equivalence relations on terms)

(1) τ =R σ for τ, σ ∈ C(x1, x2, . . .) iff
AR � τ = σ.

(2) τ =C σ for τ, σ ∈ C(x1, x2, . . .) iff
AR ∪ AC � τ = σ.

Remark. Hence we have τ �=R σ iff AR �� τ = σ and
τ �=C σ iff AR ∪ AC �� τ = σ. Our goal will be to con-
struct a normal form function NC under the equivalence
relation =C .

3 Rational Terms

The obvious normal form for Q under =R is given by:

NQ = { p
q | p ≡ ±(1 + 1 + . . . + 1),

q ≡ 1 + 1 + . . . + 1, gcd(p, q) = 1, p, q ∈ ZZ}.
Similarly for rational terms in the class R(x1, . . . , xk) a
class of normal forms under =R (with NP the class of
normal forms of polynomials over ZZ, i.e. normal forms
for elements in ZZ[x1, . . . , xk]) is given by:

NR(x1, . . . , xk) = { p
q | p, q ∈ NP (x1, . . . , xk),

lc(q) > 0, gcd(p, q) = 1}.
Normal forms for polynomials are trivial, one could take
the polynomial expanded with equal powers collected
and sorted in a canonical order. We want to summarize
in the following lemma.

Lemma 1 For the class Q there exists a normal form
function NQ which computes the unique normal form
for terms in Q under the equivalence relation =R. For
the class R(x1, . . . , xk) there exists a normal form func-
tion NR which computes the unique normal form for
terms in R(x1, . . . , xk) under the equivalence relation
=R.

Page 2

4 Composition Terms

Remark. To increase the readability we want to
use in the following lower case latin letters for rational
terms and lower case greek letters for terms in C. Nev-
ertheless the type of a term always will be obvious from
the context. In the proofs we therefore often suppress
argument lists.

Lemma 2 For terms τ ∈ C and t(ι, x1, . . . , xk) ∈
R(ι, x1, . . . , xk) the following equation holds.

t(ι, x1, . . . , xk) ◦ τ =C t(τ, x1 ◦ τ, . . . , xk ◦ τ).

Proof. Induction on the structure of the term t.

Remark. We will use the following obvious properties:

(1) If σ =R τ then σ =C τ and the contraposition, if
σ �=C τ then σ �=R τ.

(2) The converse we can only state for σ ∈ Q. If σ ∈ Q
and σ �=R 0 then σ �=C 0. This property follows
immediately from the field axiom ¬(1 = 0) and the
fact that all constant terms in Q have a normal
form in NQ.

The first non-trivial problem is to specify a subclass of
composition terms that will serve as normal forms. We
propose the following definition.

Definition 6 (Classes of composition terms) Let
V (x1, . . . , xk) and T (x1, . . . , xk) be defined recursively
as follows.

V0(x1, . . . , xk) := {x1, . . . , xk},
Tn(x1, . . . , xk) := {t(ι, v1, . . . , vl) |

v1, . . . , vl ∈
⋃

j≤n

Vj(x1, . . . , xk),

t ∈ NR(ι, v1, . . . , vl)},
Vn+1(x1, . . . , xk) := {xi ◦ τ | i = 1, . . . , k,

τ ∈ Tn(x1, . . . , xk), τ �≡ ι},
V (x1, . . . , xk) :=

⋃

j∈IN

Vj(x1, . . . , xk),

T (x1, . . . , xk) :=
⋃

j∈IN

Tj(x1, . . . , xk).

Remark. We have T0 ⊂ T1 ⊂ T2 . . . and V0 ⊂ V1 ⊂
V2

Lemma 3 If v ∈ Vn(x1, . . . , xk) and
τ ∈ Tm(x1, . . . , xk), τ �≡ ι, then there exists a term
u ∈ Vn+m+1(x1, . . . , xk) such that v ◦ τ =C u.

Proof. Induction on the structure of v.
Base step. Let v ∈ V0, v ≡ xi. Then take u :≡ xi ◦ τ ∈
Vm+1 for τ ∈ Tm.

Induction step. Let v ∈ Vn, n > 0, v ≡ xi ◦ ρ ≡
xi ◦ r(ι, v1, . . . , vh) with r ∈ NR(ι, v1, . . . , vh) and ρ ∈
Tn−1. Then v1, . . . , vh ∈ ⋃

j≤n−1 Vj . Furthermore let
τ ∈ Tm, τ ≡ s(ι, w1, . . . , wl) ∈ NR(ι, w1, . . . , wl). Then
again w1, . . . , wl ∈

⋃
j≤m Vj . We observe v ◦ τ =C (xi ◦

r) ◦ τ =C xi ◦ (r ◦ τ). By application of lemma 2 we get

v ◦ τ =C xi ◦ (r(ι, v1, . . . , vh) ◦ τ) =C

xi ◦ r(τ, v1 ◦ τ, . . . , vh ◦ τ) =C

xi ◦ r(s(ι, w1, . . . , wl), v1 ◦ τ, . . . , vh ◦ τ) =C

xi ◦ t(ι, w1, . . . , wl, v1 ◦ τ, . . . , vh ◦ τ),

where t ∈ R(ι, w1, . . . , wl, v1◦τ, . . . , vh◦τ). We take u :≡
xi ◦ NR(t) and then u ∈ Vn+m+1 because w1, . . . , wl ∈⋃

j≤m Vj and v1◦τ, . . . , vh◦τ ∈ ⋃
j≤n+m Vj , by induction

hypothesis.

Lemma 4 There exists a function

NC : C(x1, . . . , xk) → T (x1, . . . , xk)

such that for every composition term
τ ∈ C(x1, . . . , xk) we have NC(τ) =C τ.

Proof. Induction on the structure of the term τ .
Base step. For τ ≡ 0, 1, ι, xi this is trivial because then
τ ∈ T0 ⊆ T and we take NC(τ) :≡ τ.
Induction step, by cases according to the type of oper-
ations used:
Case 1. Field operations; let τ ≡ τ1 + τ2. Then
NC(τ1) ∈ Tn1 and NC(τ2) ∈ Tn2 . Take

NC(τ) :≡ NR(NC(τ1) + NC(τ2)) ∈ Tmax(n1,n2);

similarly for the other field operations.
Case 2. Composition operator; let τ ≡ τ1 ◦ τ2.
Case 2.1. For the special case τ2 ≡ ι we have τ1 ◦ τ2 =C

NC(τ1) ≡: NC(τ) ∈ T .
Case 2.2. For τ2 �≡ ι we have

NC(τ1) ≡ r(ι, v1, . . . , vh) ∈ NR(ι, v1, . . . , vh) ⊆ Tn,

and

NC(τ2) ≡ s(ι, w1, . . . , wl) ∈ NR(ι, w1, . . . , wl) ⊆ Tm.

Then we get

NC(τ1) ◦ NC(τ2) =C

r(ι, v1, . . . , vh) ◦ NC(τ2) =C

r(NC(τ2), v1 ◦ NC(τ2), . . . , vh ◦ NC(τ2)) =C

r(s(ι, w1, . . . , wl), v1 ◦ NC(τ2), . . . , vh ◦ NC(τ2)) =C

t(ι, w1, . . . , wl, v1 ◦ NC(τ2), . . . , vh ◦ NC(τ2)).

By lemma 3 we see that v1 ◦NC(τ2), . . . , vh ◦NC(τ2) ∈
Vn+m+1.

Page 3

Hence if we take, NC(τ) :≡
NR(t(ι, w1, . . . , wl, v1 ◦ NC(τ2), . . . , vn ◦ NC(τ2)))
we get NC(τ) ∈ Tn+m+1.

Next we want to show, for proving the main theorem
later, that τ �=C 0 follows from τ �=R 0 for all elements
τ ∈ T . The following examples indicate that we need to
construct for every term τ ∈ T a term q ∈ R(ι) and a
constant a ∈ Q such that τ |qx ◦ a �=C 0. They also show
that this is not obvious.

Example 2

(1) For v ∈ V we have v ≡ xi ◦ τ or v ≡ xi. In both
cases we get by substituting c ∈ Q, c �=R 0, for xi

the desired property v|cxi
�=C c �=C 0.

(2) For every term τ ∈ T of the form τ ≡ t(x1 ◦
τ1, . . . , xk ◦ τk), where t �=R 0 we get τ �=C

0 by substituting suitable constants c1, . . . , ck for
x1, . . . , xk.

(3) For τ ≡ x ◦ τ1 − x ◦ τ2 we cannot show that τ �=C 0
by simply substituting a constant for x.

(4) Furthermore, in the case of the term τ ≡ (x ◦ 1 −
1) · (x ◦ x− x ◦ 1), we have τ |qx =C 0 for q ≡ c ∈ Q
or q(ι) ≡ ιn, n ∈ IN.

Lemma 5 For a term τ ∈ T (x) of the form τ ≡
t(ι, v1, . . . , vl), t ∈ NR(ι, v1, . . . , vl) with v1, . . . , vl ∈
V (x) we have the property

t(ι, v1, . . . , vl) �=C 0 iff t(ι, v1, . . . , vl) �=R 0.

Proof. We construct for every τ ∈ T (x) a set of equa-
tions Eτ for q ∈ R(ι) and a constant a ∈ Q with the
following properties:

(1) if q satisfies the equations Eτ we have τ |qx ◦a �=C 0;

(2) there always exists a polynomial q ∈ R(ι) satisfying
the equations Eτ .

We introduce now an auxiliary notation for variables.
Let α, β be fixed symbols. With these we construct sets
of variable-symbols as follows:

B0 := {α},
Bn := {βi | i ≡ t(βi1 , . . . , βil

),

t ∈ NR(βi1 , . . . , βil
), βij ∈ Bn−1, j = 1, . . . , l},

B :=
⋃

n∈IN Bn.

Let τ ∈ T (x), τ = t(ι, v1, . . . , vl) ∈ NR(ι, v1, . . . , vl)
with t �=R 0. There exists a finite set of equations Eτ for
q, a set of variables Vτ ⊆ B, a set of terms Iτ ⊆ NR(Vτ),
and a term jτ ∈ NR(Vτ) with the following properties.

(1) The equations of Eτ are of the form βi =C q ◦ i,
with i ∈ NR(Vτ) and βi ∈ Vτ .

(2) For all i ∈ NR(Vτ), appearing as argument of q on
the r.h.s. of an equation in Eτ , we have i ∈ Iτ .

(3) For jτ we have jτ �∈ Iτ , jτ ∈ NR(Vτ) and jτ �=R

0. Furthermore the following equation holds if all
equations of Eτ are satisfied.

jτ =C τ |qx ◦ α.

We construct Eτ , Vτ , Iτ and jτ inductively.
Base step. In the case τ ≡ t(ι, x) ∈ T0 take

Eτ := {βα =C q ◦ α}, Vτ := {α, βα}
Iτ := {α}, jτ :≡ t(α, βα).

We have to show (3).

t(ι, x)|qx ◦ α =C t(α, q ◦ α) =C t(α, βα) =C jτ .

For the case τ ≡ t(ι) we have Eτ := ∅, Vτ := ∅, Iτ := ∅
and jτ :≡ t(α).
Induction step. For τ ≡ t(ι, x ◦ τ1, . . . , x ◦ τl) with
τ1, . . . , τl ∈ Tn(x) we define

Eτ :=
⋃l

m=1 Eτm ∪ ⋃l
m=1{βjτm

=C q ◦ jτm},
Vτ :=

⋃l
m=1 Vτm ∪ ⋃l

m=1{βjτm
},

Iτ :=
⋃l

m=1 Iτm ∪ ⋃l
m=1{jτm},

jτ :≡ t(α, βjτ1
, . . . , βjτl

).

(1) and (2) are now satisfied by this definition. We want
to show (3).

τ |qx ◦ α =C t(ι, q ◦ τ1|qx, . . . , q ◦ τl|qx) ◦ α =C

t(ι ◦ α, (q ◦ τ1|qx) ◦ α, . . . , (q ◦ τl|qx) ◦ α) =C

t(α, q ◦ (τ1|qx ◦ α), . . . , q ◦ (τl|qx ◦ α)) =C

t(α, q ◦ jτ1 , . . . , q ◦ jτl
) =C

t(α, βjτ1
, . . . , βjτl

) =C jτ .

We used the definitions stated above, the induction hy-
pothesis, the assumption that q ∈ R(ι) and repeated
application of lemma 2. Furthermore jτ �=R 0 because
t �=R 0. Now we proceed as follows. For τ �=R 0 con-
struct Eτ , Vτ , Iτ and jτ . Then define

p :≡ jτ ·
∏

{i,j},i�=Rj, i,j∈Iτ

(i − j) ∈ R(Vτ).

(Remark: i �=R j iff i �≡ j.) With jτ �=R 0 we see
that p �=R 0. Therefore we can find rational constants
bi1 , . . . , bik

, a for the variables βi1 , . . . , βik
, α ∈ Vτ ap-

pearing in p such that p|bi1 ,...,bik
,a

βi1 ,...,βik
,α �=R 0 . Let p∗ denote

Page 4

p|bi1 ,...,bik
,a

βi1 ,...,βik
,α. From the construction of the polynomial

p it follows that for two terms i, j ∈ Iτ with i �=R j

i∗ �=R j∗.

Therefore it is easy to construct a polynomial q ∈ R(ι)
that satisfies the equations

bi =C q ◦ i∗, i ∈ Iτ ,

namely

q :≡
∑

i∈Iτ

bi ·
∏

i,j∈Iτ , j �=Ri

(ι − i∗)
(j∗ − i∗)

∈ R(ι).

We get then with (3),

τ |qx ◦ a =C t(a, bi1 , . . . , bil
) =C j∗τ �=R 0.

Because of t(a, bi1 , . . . , bil
) ∈ Q we conclude

t(a, bi1 , . . . , bil
) �=C 0 and τ |qx◦a �=C 0. Since 0|qx◦a =C 0

we conclude τ �=C 0, which completes the proof.

Example 3 To illustrate the proof let us compute the
polynomial q explicitly for the term given in example
2.4:

τ ≡ (x ◦ 1 − 1) · (x ◦ x − x ◦ 1) =C

x ◦ 1 · x ◦ x − x ◦ 12 + x ◦ 1 − x ◦ x ≡
t(x ◦ x, x ◦ 1).

For the terms x and 1 we get

Ex = {βα =C q ◦ α}, Vx = {α, βα},
Ix = {α}, jx ≡ βα,

E1 = ∅, V1 = ∅, I1 = ∅, j1 ≡ 1.

For t(x ◦ x, x ◦ 1) we get

Et(x◦x,x◦1) = {βα =C q ◦ α, ββα =C q ◦ βα,

β1 =C q ◦ 1},
Vt(x◦x,x◦1) = {α, βα, 1, ββα},
It(x◦x,x◦1) = {α, βα, 1},
jt(x◦x,x◦1) ≡ t(ββα , β1).

p ≡ t(ββα , β1) · (1 − βα) · (1 − α) · (βα − α)

=C (ββα · β1 − β2
1 + β1 − ββα)·

(1 − βα) · (1 − α) · (βα − α).

If we set a ≡ −1, bα ≡ 0, bβα ≡ 1, b1 ≡ 2 we get
for p the value −2 �=R 0. For the terms in Iτ we get

α∗ =R −1, 1∗ =R 1, β∗
α =R 0 which of course are all

different. So the computation yields for q

q =C 0 · (ι − 0)(ι − 1)
(−1 − 0)(−1 − 1)

+

1 · (ι − 1)(ι + 1)
(0 − 1)(0 + 1)

+

2 · (ι − 0)(ι + 1)
(1 − 0)(1 + 1)

=C ι + 1.

Finally we want to generalize lemma 5 to the multivari-
ate case.

Lemma 6 For a term τ ∈ T (x1, . . . , xk) of the form
τ ≡ t(ι, v1, . . . , vl), t ∈ NR(ι, v1, . . . , vl) with
v1, . . . , vl ∈ V (x1, . . . , xk) we have the property

t(ι, v1, . . . , vl) �=C 0 iff t(ι, v1, . . . , vl) �=R 0.

Proof. First we show the fact for the special case of
τ ∈ T (x1, x2) with

τ ≡ t(ι, x1 ◦ τ1, . . . , x2 ◦ σ1, . . .).

We substitute for x2 a term ρ(x1) such that x2 ◦σi|ρ(x1)
x2

is not equal to one of the arguments x1 ◦ τj . This we
can force by taking ρ(x1) :≡ x1 ◦ x1 ◦ . . . ◦ x1 (suffi-
ciently often) such that the r.h.s. term never appears
as subterm in x1 ◦ τj . For the general case we repeat
this substitution until we get a term in T (x1) and then
we can apply lemma 5.

Theorem 1 The function NC is a normal form func-
tion for terms in C with respect to the equivalence rela-
tion =C. For the set of normal forms we have NC = T .

Proof. The first property to show for a normal form
function is NC(NC(τ)) ≡ NC(τ). This is clear from
the construction of NC . For the second property as-
sume that τ =C σ and NC(σ) �≡ NC(τ). We conclude
NC(σ) �=R NC(τ) since NC gives rational normal form.
Therefore NC(σ) − NC(τ) �=R 0. By definition of NC

we have

NC(NC(σ) − NC(τ)) =R NR(NC(σ) − NC(τ)) �=R 0.

Since NR(NC(σ)−NC(τ)) ∈ T we conclude with lemma
6 that NR(NC(σ)−NC(τ)) �=C 0. On the other hand we
conclude from τ =C σ with the property NC(τ) =C τ of
lemma 4 that NR(NC(σ) − NC(τ)) =C 0 which results
in a contradiction. For the set of normal forms remark
that if σ ∈ T there is NC(σ) ≡ σ and so NC = T .

Remark. The size of the normal form can grow ex-
ponentially with the size of the input. Consider for
example the term

(σ + τ) ◦ (σ + τ) ◦ . . . ◦ (σ + τ). (see below)

Page 5

5 Implementation

The implementation of the algorithm in mathematica
is given by the following compact rule-based program,
using the full power of the pattern-matching abilities of
mathematica [7].

NR[r_]:=Together[
ExpandAll[Cancel[Together[r]]]]

(* NR returns rational normal form *)

Const[n_Integer]:=True
Const[j]=False
Const[-a_]:=Const[a]
Const[1/a_]:=Const[a]
Const[a_+b_]:=Const[a] && Const[b]
Const[a_*b_]:=Const[a] && Const[b]
Const[a_^n_Integer]:=Const[a]
Const[x_]:=False}
(* Const identifies constant terms *)

Comp[a_]=Map[NR,a]
Comp[x___,a_,b_,c___]:=

Map[NR,Comp[x,a,c]]/;Const[a]
Comp[x___,j,c_,d___]:=

Map[NR,Comp[x,c,d]]
Comp[x___,c_,j,d___]:=

Map[NR,Comp[x,c,d]]
Comp[x___,a_+b_,c__]:=

Map[NR,Comp[x,Comp[a,c]+Comp[b,c]]]
Comp[x___,a_*b_,c__]:=

Map[NR,Comp[x,Comp[a,c]*Comp[b,c]]]
Comp[x___,-a_,c__]:=

Map[NR,Comp[x,-Comp[a,c]]]
Comp[x___,1/a_,c__]:=

Map[NR,Comp[x,1/Comp[a,c]]]
Comp[x___,a_^n_Integer,c__]:=

Map[NR,Comp[x,Comp[a^(n-1),c]*Comp[a,c]]]
Attributes[Comp]={Flat}
(* Comp may take any number of arguments due
to the associativity. This is expressed by
the Attribute Flat which means that e.g.
Comp[a,Comp[b,c]]= Comp[a,b,c].
The axioms of composition are applied to the
arguments of Comp and after every application
Map[NR,_] establishes rational normal form on
all subterms. *)

The first example given in the introduction is handled
by this program as follows.

In[1]:=Comp[Comp[F+1,1+
Comp[a,(1+j)^2]],x-1]}

Out[1]= 1+Comp[F,1+Comp[a,x^2]]

Now let us compute the complicated expression from
the introduction.

In[2]:=Comp[Comp[Comp[F+1,1+
Comp[a,(1+j)^2]],a-1]+
j*(1+Comp[F,1+Comp[a,a^2]]),
Comp[Comp[F,a+a^2],Comp[x^2-1]]-
Comp[F+1,Comp[Comp[a,j^2-1],x]*
(1+Comp[Comp[a,j*(2+j)],x-1])]]}

Out[2]= 0

As illustration of the last remark in the previous
chapter we compute.

In[3]:= Comp[s+t,s+t,s+t,x]}

Out[3]= Comp[s,Comp[s,Comp[s,x]+Comp[t,x]]+
Comp[t,Comp[s,x]+ Comp[t,x]]]+
Comp[t,Comp[s,Comp[s,x]+Comp[t,x]]+
Comp[t, Comp[s, x] + Comp[t, x]]]

6 Concluding Remarks

A natural interpretation for composition terms are pro-
grams built up by rational operations and function calls.
For example the two terms of our first introducing ex-
ample could be interpreted as the mathematical repre-
sentations of the following two programs. The first term
representing the computation of f(x):

function f(x);
f := x − 1;
f := h(f);
return(f);

function h(x);
h := (x + 1)2;
h := 1 + a(h);
h := l(h);
return(h);

function l(x);
l := F (x);
l := l + 1;
return(l);

The second term representing the computation of g(x):

function g(x);
g := x2;
g := 1 + a(g);
g := F (g);
g := g + 1;
return(g);

These two programs, using unknown subprograms for
computing a(x) and F (x), will compute the same results
for all a(x), F (x) and inputs x. Now we are not only in
the position to tell whether programs of the kind above

Page 6

always compute the same results, but furthermore we
can, when they are different, give by lemma 5 and 6
explicitely instances of the unknown subprograms such
that this is the case.

A natural extension of the algorithm would be to
the case of multivariate functions. Another exten-
sions could be made by introducing additional functions
into the theory by new axioms like exp ◦ (x + y) =
(exp ◦ x) · (exp ◦ y).

When interested in the rewriting approach [5], it
could be worth to restrict to rings, since it is difficult to
see how to do the computation of normal forms in fields,
classically based on GCD-computation, by rewriting
techniques. In rings Knuth-Bendix-algorithms for com-
puting the normal form are known. On the other hand
a pure compositional structure is a monoid also al-
lowing normal form computation by a Knuth-Bendix-
algorithm. Therefore it seems quite plausible to extend
the Knuth-Bendix-algorithm for rings to a normal form
algorithm for function rings, involving rules similar to
those in the mathematica program given above. In this
framework the composition axiom for constants could
serve as a test case for conditional term rewriting.

7 Acknowledgements

I wish to thank Prof. E.Engeler for his encouragement
and help in improving the paper, Oliver Gloor for care-
fully reading the paper, and an anonymous referee for
his knowledgeable comments.

References

[1] Aberer, K.: “Normal Forms in Combinatory Differ-
ential Fields”. ETH-Report No. 89-01, (1989).

[2] Davenport, J.H., Siret, Y. and Tournier, E.: “Com-
puter Algebra”. Academic Press, N.Y., (1988).

[3] Engeler, E.: “Combinatory Differential Fields”. to
appear in Theoretical Computer Science, (1990).

[4] Geddes, K.O., Labahn, G., Czapor, S.R.: “Algo-
rithms for Computer Algebra”. preprint, (1989).

[5] Le Chenadec, P.: “Canonical Forms in Finitely
Presented Algebras”, Research Notes in Theoretical
Computer Science, Pitman, (1986)

[6] Menger, K.: “Function Algebra and Propositional
Calculus”. Self-Organizing Systems, Spartan Books,
(1962), p. 525ff.

[7] Wolfram, S.: “Mathematica”. Addison-Wesley Pub-
lishing Company, (1988).

REFERENCES Page 7

