

A Novel Approach for Network on Chip Emulation

Nicolas Genko, LSI/EPFL Switzerland
David Atienza, DACYA/UCM Spain
Giovanni De Micheli, LSI/EPFL Switzerland
Luca Benini, DEIS/Bologna Italy
José Mendias, DACYA/UCM Spain
Roman Hermida, DACYA/UCM Spain
Francky Catthoor, IMEC Belgium

- Introduction
- •General Approach
- Applications
- •Results
- •Conclusions

- Introduction
- General Approach
- Applications
- Results
- Conclusion

- Introduction
- •General Approach
- Applications
- Results
- Conclusions

Motivation -- NoCs

- Provide a structured methodology for realizing on chip communication schemes
 - Modularity
 - Flexibility
- Overcome the limitations of busses
 - Performance and power do not scale up
- Support reliable operation
 - Layered approach to error detection and correction

- Introduction
- •General Approach
- Applications
- Results
- •Conclusions

- NoCs are designed for:
 - On-chip multiprocessing (regular networks)
 - Specific applications (ad hoc networks)
- Design tools:
 - Synthesis: create NoC circuitry from architectural templates (e.g., Xpipes)
 - Analysis: validate functionality and performance
 - Software simulation (cycle accurate)
 - Emulation with Field Programmable Gate Arrays (FPGAs)

- Introduction
- •General Approach
- Applications
- Results
- Conclusions

Previous work

- NoC software simulation:
 - High level models in C/C++ [H.-Sheng et al; Kolso et al]
 - Evaluate latency NoCs [Siguenza et al; Angiolini et al]
 - Evaluate throughput NoCs [Wiklund et al; Pestana et al]
- NoC implementation on FPGAs:
 - For functional validation [Marescaux et al; Moraes et al]
 - Show effectiveness NoCs [Kumar et al; Pinto et al]
 - Validate NoCs features [Brebner et al; Zeferino et al]

- Introduction
- •General Approach
- Applications
- Results
- Conclusions

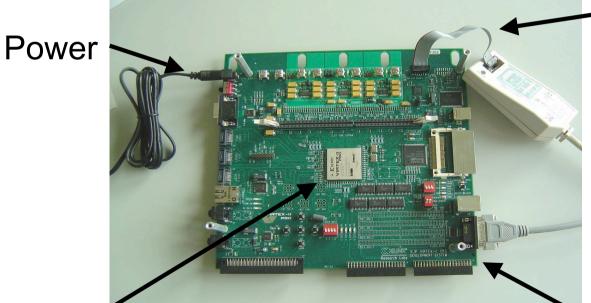
NoC Emulation on FPGA

- Emulation on FPGA enables functional and performance validation of NoC based systems
 - Accurate execution model
 - Probing for profiling and gathering of statistics
- The emulation can achieve important speedups compared to cycle accurate simulation:
 - Up to four orders of magnitude faster
 - Real inputs with millions of packets can be used

- Introduction
- •General Approach
- Applications
- •Results
- •Conclusions

- Introduction
- General Approach
- Applications
- Results
- Conclusion

- Introduction
- •General Approach
- Applications
- Results
- Conclusions


General Approach

- A platform which instantiate a NoC on FPGA with modules for emulation:
 - Traffic generators & receptors
 - NoC switches
 - Traffic analyzers
 - Network interfaces (NIs) to cores can be included
- A system which is controlled by a processor
 - The processor configures and controls the traffic pattern to be emulated and analyzes the statistics provided by the platform

- Introduction
- •General Approach
- Applications
- •Results
- Conclusions

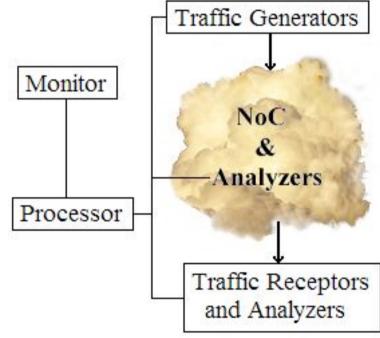
Development board Xilinx XUP

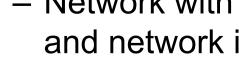
Programming cable

Virtex-II Pro FPGA

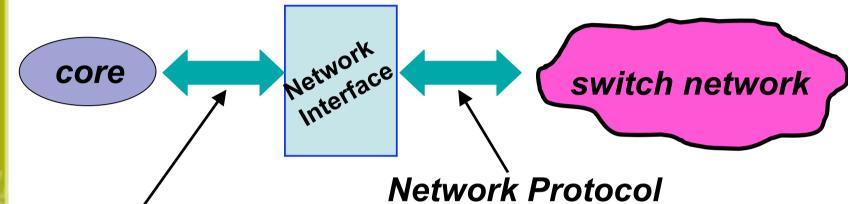
- •2 Power PC Cores
- •3 M programmable gates

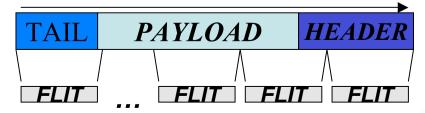
Serial interface




- Introduction
- General Approach
- Applications
- •Results
- Conclusions

Processor linked to each system component


- Monitor
- Traffic generators
- Traffic receptors
- Traffic analyzers
- Two architectures:
 - Network of switches
 - Network with switches and network interfaces


- Introduction
- •General Approach
- Applications
- Results
- Conclusions

The NoC Architectural Flavour

Open Core Protocol (OCP) •Transmit

- Access routing tables
- Assemble packets
- Split into flits
- Receive
 - Synchronize
 - Drop routing information

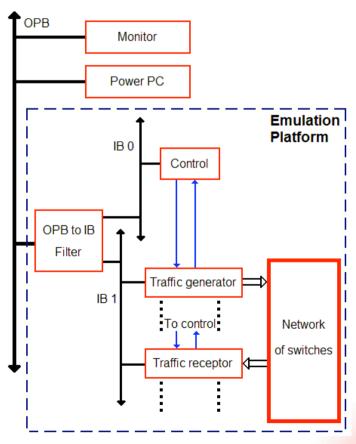
- Introduction
- •General Approach
- Applications
- •Results
- •Conclusions

- Introduction
- General Approach
- Applications
- Results
- Conclusion

- Introduction
- •General

- Applications
- Results
- Conclusions

Architecture 1-- Network of Switches


A Processor (PowerPC):
 Orchestrates the process and access each component independently

A Monitor:

Displays on the PC screen the information extracted

The Emulation Platform:

- Traffic generators
- Traffic receptors
- Network of switches

- Introduction
- •General

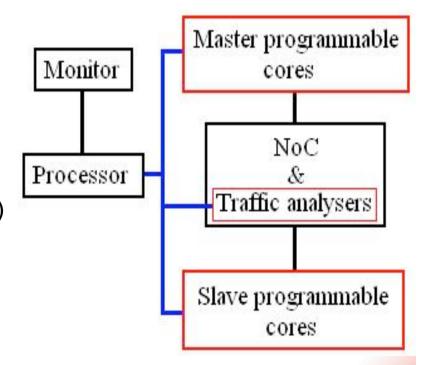
- Applications
- Results
- Conclusions

Emulation of a Network of Switches

- Several types of traffic:
 - Stochastic traffic:
 - Uniform model
 - Burst model (with a two state Markov chain)
 - Trace-driven traffic (real workload)
- Several types of statistics:
 - Measurement of latency of packets
 - Congestion counter (not-acknowledged flits)
- Routing policy evaluation:
 - The routing policy is programmed by software
 - Evaluation of many routing policies without re-synthesis

- Introduction
- General

- Applications
- Results
- •Conclusions


Architecture 2-- NoCs with interfaces

Common components:

- Monitor
- Processor

Additional components:

- Traffic analyzers
- NIs to cores
- Slave core receptiveness
 - Modeled by a two-state (on/off)
 Markov chain
- Traffic analyzers monitor network links activity and interface behavior

- Introduction
- General

- Applications
- Results
- Conclusions

- Master cores generate traffic according to traces provided by the processor from real applications
- Statistics generated by this platform:
 - Master cores measure average operation execution time
 - Slave cores measure packets latency through the NoC
 - Traffic analyzers measure ACK & NACK activities on links
- Main use of emulation platform:
 - Tuning of a NoC for a specific application
 - Latency analysis for application-specific NoC

- Introduction
- •General Approach
- Applications
- •Results
- •Conclusions

- Introduction
- General Approach
- Applications
- Results
- Conclusion

- Introduction
- •General

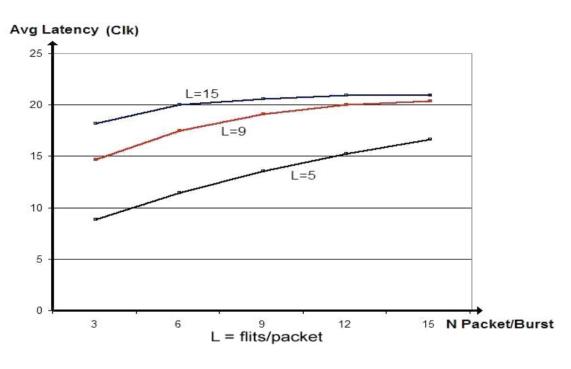
- Applications
- •Results
- •Conclusions

FPGA Reports

Emulation Architecture	Xilinx Slices	Speed
1. Emulation of a Network of switches	7387 slices (47%) (6 switches + 4 traffic generators + 4 traffic receptors)	50 MHz
2. Emulation of a NoC with NIs	7914 slices (51%) (4 switches + 4 master cores + 4 slave cores)	50 MHz

- Introduction
- General
- Approach
- Applications
- •Results
- Conclusions

Speed comparison in cycleaccurate NoC environments


Simulation mode	Speed (cycles/sec)	Simulation time For 16 Mpackets	Simulation time For 1000 Mpackets
Verilog (ModelSim)	3.2K	13h53'	36 days 4h
SystemC (MPARM)	20K	2h13'	5 days 19h
Our emulation architectures	50M	3.2 sec	3'20"

- Introduction
- General

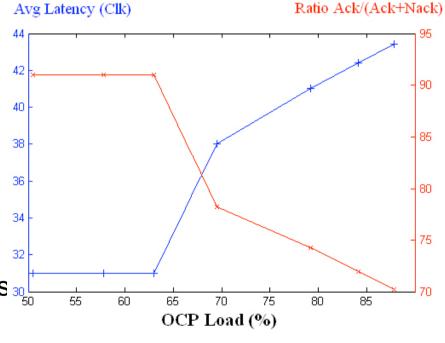
- Applications
- Results
- Conclusions

Emulation Network of Switches

- Example of statistics:
 - Average latency of packets
- Parameters of the emulation Burst traffic:
 - Average number of packets/burst
 - Average number of flits/packet

- Introduction
- General

- Applications
- Results
- Conclusions


Emulation NoC with NIs

Statistics:

- Ratio Ack/(Ack+Nack).
- Average latency of packets on the NoC

Emulation parameters:

- OCP activity
- Average number of R/Ws of per burst

- Introduction
- •General Approach
- Applications
- •Results
- Conclusions

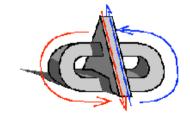
- Introduction
- General Approach
- Applications
- Results
- Conclusions

- Introduction
- •General

- Applications
- Results
- Conclusions

Conclusions

- Mixed HW/SW framework that helps designers to design and validate ad-hoc NoCs
- Two architectures:
 - Emulation of a network of switches.
 - Emulation of a complete NoC with OCP-compliant interfaces
- The FPGA emulation enables to tune NoC parameters with realistic inputs (experiments based on traces from real applications with millions of packets):
 - Topology efficiency
 - Routing policies
 - Latency effects
 - OCP traffic pattern influence


- Introduction
- •General

- Applications
- •Results
- Conclusions
- •Questions

Thank you

