HTML AESTRACT * LINKEES

PHYSICS OF FLUIDS17, 025105(2005

A scale-dependent Lagrangian dynamic model for large eddy simulation
of complex turbulent flows

Elie Bou-Zeid®

Department of Geography and Environmental Engineering and Center for Environmental

and Applied Fluid Mechanics, Johns Hopkins University, 313 Ames Hall, 3400 North Charles Street,
Baltimore, Maryland 21218

Charles Meneveau”
Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics,
Johns Hopkins University, 127 Latrobe Hall, 3400 North Charles Street, Baltimore, Maryland 21218

Marc Parlange®
School of Architecture, Civil, and Environmental Engineering, Swiss Federal Institute of Technology
at Lausanne, Building GC-Ecublens, CH-1015 Lausanne, Switzerland

(Received 25 August 2004; accepted 26 October 2004; published online 19 January 2005

A scale-dependent dynamic subgrid model based on Lagrangian time averaging is proposed and
tested in large eddy simulationdES) of high-Reynolds number boundary layer flows over
homogeneous and heterogeneous rough surfaces. The model is based on the Lagrangian dynamic
Smagorinsky model in which required averages are accumulated in time, following fluid trajectories
of the resolved velocity field. The model allows for scale dependence of the coefficient by including

a second test-filtering operation to determine how the coefficient changes as a function of scale. The
model also uses the empirical observation that when scale dependence (sachras when the

filter scale approaches the limits of the inertial ranghe classic dynamic model yields the
coefficient value appropriate for the test-filter scale. Validation tests in LES of high Reynolds
number, rough wall, boundary layer flow are performed at various resolutions. Results are compared
with other eddy-viscosity subgrid-scale models. Unlike the Smagorinsky—Lilly model with
wall-damping (which is overdissipative or the scale-invariant dynamic modédivhich is
underdissipative the scale-dependent Lagrangian dynamic model is shown to have good
dissipation characteristics. The model is also tested against detailed atmospheric boundary layer data
that include measurements of the response of the flow to abrupt transitions in wall roughness. For
such flows over variable surfaces, the plane-averaged version of the dynamic model is not
appropriate and the Lagrangian averaging is desirable. The simulated wall stress overshoot and
relaxation after a jump in surface roughness and the velocity profiles at several downstream
distances from the jump are compared to the experimental data. Results show that the dynamic
Smagorinsky coefficient close to the wall is very sensitive to the underlying local surface roughness,
thus justifying the use of the Lagrangian formulation. In addition, the Lagrangian formulation
reproduces experimental data more accurately than the planar-averaged formulation in simulations
over heterogeneous rough walls.2005 American Institute of Physid®OI: 10.1063/1.1839152

I. INTRODUCTION (SGS stress tensofits traceless partis modeled according
to
Large-eddy simulatiofLES) has become an important
tool for the study of high-Reynolds number environmehtal ﬂ?MAG = - 207§ = - 2(ce 10T (1)

and engineeringgllturbulent flows. LES resolves the flow at
scales larger than a certain size while the smaller scales Above, v; is the eddy viscosity~,3-:0 5T +dT) is the
' j AT O]

are parametrized. The classic, most often used parametrizgsso|yed strain rate tenséwhereT is the resolved velocity
tion (the Smagorinsky mod]ezl) is based on the concepts of field, and the strain-rate magnitude is given H§

eddy-viscosity and mixing length, in which the subgrid-scale [ == ) .
y y gleng g =V2S;S;. The only undetermined parameter in the above

expression is the Smagorinsky coefficiegt. Even though
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In 1991, an important development took place in LESficient becomes negativeTo reduce the noise for applica-
with the introduction of the dynamic model and the Germandions in complex geometry flow, time averaging was
identity.lg'20 By relating stresses at different scales, the Gerproposed by Meneveaat al?*In order to comply with Gal-
mano identity allows unknown model coefficients, such adlean invariance, time must be considered by following fluid
Csa, to be determined from the smallest resolved scales beparcels of the flow. Thus the Lagrangian dynamic model was
tween the grid-scald and a test-filter scaleA (a>1, usu-  proposed and tested in a number of flo®&%?*2"34n these
ally a=2). A major assumption of the original dynamic ap- applications, viscous sublayers were resolved and hence the
proach is scale-similarity, i.e., that model coefficients are theéasssumption of scale invariance was justified; the scale-
same at different scales;,=Cs,, (See the discussion by invariant Lagrangian approach allowed determination of the
Meneveau and Kaf?). Scale invariance is a reasonable as-coefficient in these complex-geometry situations. However,
sumption if A pertains to an idealized inertial range of tur- for applications where the viscous sublayer cannot be re-
bulence, but it is not expected to holdAffalls near a tran-  solved, such as high-Reynolds numlerg., atmospherjc
sition scale that separates different physical processd¥oundary layers over complex terrain, that model is not ap-
occurring in distinct ranges of scales. One example where plicable due to the lack of scale invariance near the ground.
falls near a transition scale occurs when the grid scale Thus, an important issue remains, namely, the formula-
approaches the integral scale, a limit that is of relevancéion of a scale-dependent Lagrangian dynamic model. This
when LES approaches the Reynolds-averaged Navier-Stok@&per is devoted to this task. In Sec. Il we review the basic
formulation in certain parts of the flow. Of specific interest to €elements of the scale-invariant dynamic model, the scale-
applications to be examined in this paper, such a situatiodependent dynamic formulation with planar averaging of
occurs in LES of high-Reynolds number wall-bounded flowsPorté-Agelet al,?* and the Lagrangian scale-invariant dy-
where the integral scale is on the order of the distance to theamic model of Meneveaat al** Section Iil of the paper
wall. At the high-Reynolds numbers that occur in applica-Presents the proposed Lagrangian scale-dependent dynamic
tions to atmospheric or oceanic boundary layers, LES canndtiodel, enabling applications of the dynamic model to
resolve the viscous sublayédue to computational power complex-geometry flows without assuming scale-invariance
limitations). In such applications, the first few cells near the Or spatial homogeneity. Section IV describes the numerical
surface have a grid scale on the order of the local integra#ode used in this work to simulate high-Reynolds number
scale and inaccurate results are obtained from the tradition&®oundary-layer flows and presents test results in horizontally
scale-invariant dynamic modé&ee SGS comparison section homogeneous flows for which the performances of the vari-
in this paper and Refs. 22 and 23 for a discussion and illusous SGS models described in Secs. Il and Il can be com-
tration of this effect Moreover, in this situation the subgrid Pared in detail. Section V describes applications of the La-
stresses carry a significant fraction of the total mean momergrangian scale-dependent dynamic model to high-Reynolds
tum fluxes, and hence the LES results are particularly senspumber atmospheric flow over rough surfaces with abrupt
tive to the SGS model. changes in wall roughness.e., horizontally nonhomoge-

To address this shortcoming of the traditional dynamicn€ous, and compares the results to existing field measure-
model, Porté-Agekt al?? proposed a scale-dependent ver-ments data and to the results obtained with a planar-averaged
sion of the dynamic model in which a second test filter de-version of the scale-dependent model. Conclusions are pre-
termines how the coefficient changes across scales, thus préented in Sec. VI.
viding more accurate estimation of the coefficient at the grid
scale. In the tests of atmospheric boundary layer flow over
homogeneous surfaces performed in Porté-Agedl,*? the
scale-dependent dynamic model was implemented using plar REVIEW OF THE DYNAMIC, SCALE-DEPENDENT,
nar averaging, i.e., the averages required to enforce the GeaND LAGRANGIAN DYNAMIC SGS MODELS
mano identity were evaluated over horizontal planes parallel
to the ground. This was appropriate for the simple geom-  The original nondynamic Smagorinsky—Lilly modele-
etries envisioned in those tests, where horizontal planes conoted SMAG below has already been introduced in Sec. I.
respond to directions of statistical homogeneity of the turbufor isotropic homogeneous turbulence, wilalling in the
lence. An important question is how to treat complex-inertial range, the analysis of Liﬁ§7yieldsc5~0.16(for the
geometry flows that do not possess directions of statisticadpectral cutoff filtey, a value that provides good results in
homogeneity and thus do not present obvious spatial dd-ES of idealized isotropic turbulence. It remains to point out
mains over which to evaluate averages during LES. that for applications to high-Reynolds number boundary lay-

For the dynamic model, the issue of averaging the termers in which the viscous sublayer is not resolysee Pop?é3)
in the Germano identity has been the subject of considerable wall-damping function needs to be included in the specifi-
research’?*?°(also see discussion in PdPe Especially in  cation of the coefficient, otherwise turbulence generation is
the context of eddy-viscosity closures, averaging is crucial texcessively damped and insufficient kinetic energy occurs in
reduce the large amount of noise that is present when nthe resolved scales of the simulation. A classic wall-damping
averaging is performegecall that in LES one must evaluate function was proposed by Mason and ThompSavhere the
the divergence of the modeled SGS stress tensor; therefor8GS mixing lengthA=c,,A is decreased close to the sur-
unphysical fluctuations in the coefficient can lead to signifi-face to merge smoothly with thk®~z behavior expected
cant errors, not to mention numerical instability if the coef-there. The resulting damping function is
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1 1 1 Usually, the use of this model makes the assumption of
N = 7\_8 + [K(Tzo)]“ ) scale invariance, i.eGgp=Cg 4 OF S=1. To o_b'Failj an opti-
mal value ofcg 5, the square errog;e;, is minimized con-

wherex is the von-Karman constaft=0.4) and\y=CsoA is  tracted over all tensor ternis Nevertheless, the local deter-
the mixing length away from the wafin a region of nearly  mination ofcs, at every grid point yields a highly variable
homogeneous isotropic turbulencén simulations using the coefficient that is numerically unstable, mainly due to a high
Lilly-Smagorinsky model in this study,, is taken as 0.16 frequency of negative values. Some averaging is hence
and a value of 2 is assigned m which fixes the damping needed to stabilize the coefficient. Ghd3ahowed that av-
function shapdalternative values ofi=1 andcsq=0.1 were  eraging over homogeneous spatial directions yields a system
also tested in other studies, see Porté-Agjedl* for more  that is consistent with the extraction of , from the filter
details. operation and that is equivalent to Lilly's expression aver-

Despite the use of this wall-damping functidwith  aged over homogeneous directions. Interestingly, Pope also
varying values ofc;o andn), the Smagorinsky—Lilly model showed that if the coefficient is optimized to minimi@a a
remains overdissipati?&®* and would require further de- least-square senseéhe dependence of relevant turbulence
tailed calibrations of the coefficient to yield more accuratestatistics on the grid scalk, the expression obtained is again
results. To avoid the need for such case-by-case calibratiogxactly Lilly's expressiort*

of parameters, the dynamic model of Germatal*® was In wall-bounded flows, horizontal planes are usually se-

proposed. lected as the homogeneous directions for averaging. In the
absence of homogeneous directions, the Lagrangian

A. The dynamic model approach’ can be used to average the coefficient over time

The dynamic modéf consists of using the smallest re- along fluid pathlines(the approach is further explained in

solved scales to measure the model coefficient during thg€¢: !l C below. However, for any type of averaging, de-
simulation. The model is based on a relation between SG80ted by bracketg, the Smagorinsky coefficient determined

stresses at different scalébe grid scaleA and a test filter PY & least-square error minimization @f;e;) can be written
scaleaA, where« is usually taken as)2expressed by the @S
following identity:

== __ CZ :M (7)
Lij:Tij_a-ij :Uin_aiuj. (3) s.A <MIJMI]>

. U . . -
I—![ere U'Jt Is the SthhS sttrets?_lienso;iag SCAC:,er s :Ee ggg Note that the contraction df;; with M;; eliminates the need
stress tensor at the test-iter sc an IS the to distinguish betweeh;; and LD sinceM;; is a deviatoric

. . . |] 1
stressi_te;nsor defined from scales intermediate betwesd racelesstensor in incompressible flows. With planar aver-
aA. " is the resolved stress tensor and can be compute

S . ing, this scale-invariant version of dynamic model will
exactly from the resolved velocity field using E@3). ging y

i o henceforth be denoted PASI.

Throughout the paper, a tild€) denotes the filtering opera-
tion at thg grid-scalé and. a bar() denotes test—fllterlng at g The planar-averaged scale-dependent dynamic
the test-filter scalexA, typically «=2. Later on, a caref)  mpodel
denotes the second test-filtering at a second test-filter scale ) )
o?A. Ensemble averaging will be denoted by brackéts To account for scale effects in the dynamic model, two
Brackets followed by dimensions subscripts will denote av-2Pproaches exist. If prior knowledge of the variationcof
eraging in all the indicated dimensions; for examgig,,is ~ With scale is av:sulab!e, the p.a,r,ametércan be prescribed
the velocity averaged over theandy directions. priori. Such a “semi-dynamic” approach with an imposed

Using the Smagorinsky model to express the deviatori®@rametes was tested by Meneveau and Lidheo capture
parts of SGS stresses at the scaleand @A and assuming scale dependence in the transition from LES to direct nu-
that the coefficient, , does not fluctuate strongly in space to Merical simulationDNS) (A — the Kolmogorov scale)) for

justify extracting it from the test-filtering operatiif® re-  finely resolved LES. nge approach was also used in simula-
sults in the following expressions: tions by Bou-Zeicet al.” for wall-bounded flows in the limit

S o where A tends to the local integral scale near the wall. In
T =op == 22,A%SS;, T =-2¢; ,(aA)SS;. (4  both studies, the semi-dynamic scale-dependent model was
. L shown to give better results than the scale-invariant model.
The superscripD d_en(_)tes the _dewaton@race_:-free part O_f The other option is to implement a fully dynamic formu-
fche tensor. Replacing in E() y|elds_an error in that |_dent|ty lation where the scale-dependence param@tiar measured
induced by the use of the Smagorinsky model. This error ISthrough an additional filtering operation. The latter approach
8 = Lﬁ-’ - (Tﬁ-’ -?ij) = LiEj’ - C§,AMij , (5) has been successfully implemented with the planar-averaged
dynamic approach for atmospheric boundary-lay&BL )
flows by Porté-Agelet al?? The main assumption used in
C A _ 2o &E T this model is that a power-law behavior describes the scale
Mij = 207[SIS; - @*BISIS ) ©® dependence of the coefficient, i.ex, ~A® or, in a dimen-
,BzcgaA/ciA is a parameter that accounts for possible scalesionally more appropriate formgsy=csa(A/a@A)?. As a
dependence of; . consequenceg3 evaluated as the ratio of coefficients at scales

whereM;; is given by
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aA and A is equal toB evaluated between scaledA and In the Lagrangian SGS model, the coefficiegf is ob-

aA (i.e., the power-law assumption is equivalent to the astained by minimizing the weighted time average of the local
sumption that the scale-dependence param@tex®? is it- error contractiorg;e; over pathlines; this weighted time av-
self scale-invariant—see discussion in Porté—AejeiI.zz). A erage can be written as

second Germano identity, written between scalemnd a’A

) t

yields E:J e;lz(t),t' Jey[z(t"),t' IW(t - t")dt’, (10
2. = (QiNip) ®) wherez(t") are the previous positions of the fluid elements
SAT(NGN) and W(7) is a relaxation function that typically allocates

larger weights to the more recent history of the coefficients
(i.e.,W(7) is a decreasing function aj. By filtering between

A and aA and using a scale invariant form of the Germano
identity, the coefficient is obtained by setting the variation of
E with respect tociA to zero:

where Q;; (the resolved stress tensor betwekrand a?A)
andN;; are given by

== 2.2 == <= t .
Qy =TT —TT;, N;=2A7|9S; - *BSS;]. (9 %:f Zaja—?J—W(t—t’)dt’ =0, (11)
acs,A - aCs,A

By equating the right-hand sides of Ed§) and (8), ) . . .
Porté-Agelet al?? obtained a fifth-order polynomial ig, ~ Which results in the following expression fof ,:
including ten terms(tensor contractions involving various

filtered strain-rates and resolved stress tensibiat need to C2p= M (12)
be averaged over directions of statistical homogerféithe = Jum
polynomial is solved foiB and the solution is then replaced where
in Eq. (7) to obtain a scale-dependent estimatecgf. This
implementation of the scale-dependent model, used in Porté- t
Agel et al,?? worked well with the planar averaging ap- jLM:f LijM;[z(t"),t' IW(t - t")dt’ (13
proach. -
and

C. The Lagrangian-averaged scale-invariant SGS
model t

jMM:f M”M”[Z(t,),t,]W(t—tl)dt, (14)

The requirement for homogeneous directions in the flow
field limits the use of the dynamic model to relatively simple
flows, excluding many practical flows in complex geom-

etries. Local formulations of the model have been . . . .
develope(f.s'37As outlined in Sec. I. the need to evaluate theevaluatlons of backward time integrals with forward

divergence of the SGS stress makes the highly intermitter{teIax"’.mOn'traInSport gquagfns. B.ased on DNS results and di-
coefficient fields, which often need to be clipped at zero mensional self-consistency,the time scaleT is chosen as

— -1/8 H H H
resulting from purely local dynamic determinations undesir—T_l'SA(‘Z'-'V' Jwm) ™" This choice .Of the time §cale offers
e practical advantage of allocating less weight to recent

able. Moreover, conceptually some averaging is needed to. tory : ing th del orif th i

recover the statistical basis of the eddy-viscosity méuél. 'si ory 'ﬁ_" I\l/lncreasmg t('a mqrhe st'mem “If e cftfjrretp |

An alternative approach, combining features from the local/@Ues OfLjVjj are negative. 1he ime scale 1S etiectively
infinite if 7\, reaches zero, thus preventing negative values

and averaged formulations, was developed by Meneetau . . :
al.2* The model averages the Smagorinsky coefficient in tirneof Csa- The relaxation transport equations thus obtained for

following fluid pathlines and hence it is called the Jim and Jyw are
Lagrangian-averaged scale-invariant modeé\Sl). The La- DJm  dTim
grangian averaging enforces to some degree the statistical =
basis that supports the use of an eddy-diffusion model and is
physically justifiable since turbulent eddies with sizes abougn(g
the grid scale are likely to be convected along fluid pathlines.
Meneveau and Lurifl also showed that the turbulent energy ~ DJwm _ dJum
cascade is most apparent when viewed in a Lagrangian frame Dt

of reference. The model is very well suited for the applica- (16)
tions with heterogeneous spatial conditions since it preserves

local variability, preserves Galilean invariance, and does not  Using first-order numerical approximations in space and
require homogeneous directions. It has already been applidine, these equations can be discretized and included rather
in LES of flows in complex domains such as flows in internaleconomically in an LES code. The resultant formulation to
combustion engine¥, flow over wavy walls® flows in  update from time-steprf’ to “n+1" at a grid point located at
thrust reverser& and flow of impinging jets® X is

For the weighting function, a choice of an exponential
form, W(t-t")=(1/T)e" /T allows replacing cumbersome

~ a 1
- X +0-VJIu= T_A(LijMij -Jm) (15

- 1
+0-VIum= T_A(MijMij = Jum)-
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jml(x) = e[M;; Mij]”"l(x) +(1-e)Tym(x =T AL), these terms relating to the test-filter scale dominate the error
term [Eq. (5)]. Using this observation and using=2, we
TI) = HEa[LMT™ 00 + (1= 2) 7y (x = T"AD}, may write
where C2op= T, (18)
' Jum
At/Tn n _1/8 . . H
&= AT - LT wTum) (17)  Similarly, for a=4, we write
and 2= 2 (19
’ INN
Hix) functi if x=0
X} = ramp function = .
P 1032 otherwise where
t
HereAt is the time step. Bilinear spatial interpolation is used jQN:f Q;jN;[z(t"),t" ]W(t - t")dt’ (20

to evaluate the previous values at positiorti"At, i.e., “up-

stream” of the grid point in question. The ramp function is d

needed to ensure that numerical inaccuragieainly due to

the discretization of the equatiordo not yield slightly nega- t o -

tive c;, values despite the choice of the time scale to avoid jNN:f NN [2(E), 1/ JWI(E - t)dit (21)
such occurrences, and to avoid infinities when evaluakihg -

For wall-bounded flow simulationésuch as LES presented HereQ; andN; are computed using their definitions given
later in this study, periodic boundary conditions fgf y and  in Eq.(9) and a value of3=1; however, the weighting func-
Juwm are used in the horizontal directions. At the lower andtion now involves exponential decay with a time constant,
upper boundaries, zero-gradiettomogeneous Neumann _
boundary conditions are imposed, i.e., the values at the Taa = LBA(JonIRN . (22

boundary are set equal to the values at the closest node insige e Lagrangian scale-dependent model the averggs

the domain. andZ,, are evaluated from two additional relaxation trans-
port equations:

N/ . 1
MiT- v Jon= T_(QijNij = Jon) (23
a

IIl. SCALE-DEPENDENT LAGRANGIAN DYNAMIC
MODEL

Implementation of the Lagrangian averaging approactnd
described in Sec. Il C with the scale-dependent method de- 4
scribed in Sec. Il B would require accumulating ten different
Lagrangian averagesee Sec. Il B and Porté-Aget al??),
as well as solving a fifth-order polynomial f@rat every grid  When they are discretized according to the same procedures
point in the domain. This is a prohibitively expensive proce-and approximations described in the preceding section, they
dure, and the choice of the proper polynomial root, if it ex-read
ists, is difficult due to the more noisy characteristics of La- e . .
grangian averaging compared to planar averaging. Hence, a <J/an(X) = £aalNjN; ") + (1 = &40) Tan(x = TAY),
simplified procedure that is better suited for Lagrangian av-
eraging is sought here TN ) = H{gaal QN 1™H(X) + (1 = £44)

The procedure is based on the observation that the dy- X 0 (X~ TMAD)}
namic model, in its scale-invariant formulatigne., using QN '

B=1 when evaluating\l;; (Eq. (6)], yields a coefficient that \yhere

corresponds to the test-filter scad@\ rather the grid-filter .

scaleA. That is to say, in practice one approximately obtains - At/Tya N = 1BA(T TR 8 (25)
a value suitable foc,, instead ofcs , when evaluating the BT eAyT M QNN

right-hand side of Eqg7) or (12) with M;; using8=1. This

effect has been observed to be true in numerical experimenf’

of scale dependence both when the coefficient increases with X if x=0

increasing scale, such as whanapproaches the Kolmog- H{x} = ramp function =
orov scale® and when the coefficient decreases with in-

creasing scale, e.g., whehis close to the integral scafé. Boundary conditions are similar to those used Gk,
This effect can be traced to the fact that, in the Germanand Jy\ (periodic in the horizontal directions and zero gra-
identity [Eq. (3)], the tensor terms relating to the test-filter dient at the lower and upper boundajida the source terms,
scaleaA are significantly greater than the terms relating toboth M;; and N;; are evaluated assuming that1 (which

the grid-filter scaleA (about 4 times greater #=2). Hence can be considered as a “first guess” in an iterative, explicit

jNN

~ 1
+U- VjNN:_TA(NijNij_jNN)' (24)
4

103 otherwise’
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procedure to take scale-dependence into acgobBndm the test-filtering operations to evaluate the local source terms

locally known approximate values of 5, andcs 4, the local  L;jM;;, M;Mj;, Q;iN;;, andN;;N;;, updating the four Lagrang-

i ij

value of 8 can be evaluated according to ian averages/im, Jum: Jon. and Jyy following Egs. (17)
B= 2 2 (26) and(25), and evaluating the local coefficient value to be used
SA4ATs24 in LES according to Eq(29).
Next, as in Porté-Ageét al,”? we use the assumption The same scale-dependent approach can obviously be

that 8 is scale invariant, i.e8=c2,,/c2,,=c2,,/c2, (which  used with planar averaging where the planar averaged coef-
amounts to postulating power-law dependence of the coeffificient at the grid-filter scale can be obtained using
cient as a function of scale, with arbitrary exponemve

y expon s (LgMOKM M)

may then solve for the unknown coefficient at scale = ) 30
0 ((QuNG MMy (50
2 _ 2 SN ANVI IV
Csa = G/, @1 ( (N N (L3 M) )

wheref is given by Eq.(26). The brackets denote planar averaging. This planar-averaged

In principle, 8 obtained from Eq(26) can vary between . ;
0 and infinity, depending on the local values obtained forscale-dependent model will be referred to as PASD. No clip-

Csan @nd cgoy. In practice, of course, some of these limits ping is needeq with the planar a_veraged approach since_ the
myay cause numerical difficulties. We have observed that irﬁ‘ cavy averaging ass_omated with the planar for”_‘“"?‘“"”
the limit of B (i.e., Whenc, ,, tends to zero whiles g eliminates the fluctuations that led to the need for clipping.
does nol, the local coefficient used in LES goes to zero

(smoothly and this limit does not pose any difficulties in

LES. However, whert, 44 tends to zero whileg,, does not, 1V. NUMERICAL CODE AND TESTS IN

B— 0, leading to very large values of, from Eq.(27). In  HOMOGENEOUS, HIGH-REYNOLDS NUMBER,

simulations, this may lead to numerical instabilities associBOUNDARY LAYER FLOWS

ated with viscous stability conditions being locally violated. o, Numerical code

Therefore, some clipping g8 away from zero is required to . ) , ,
allow simulations to proceed. We choose a lower limitgof The isothermal LES equations are solved in rotational
>0.125. The clipping limit is significantly below physically form to ensure anservanon of mass and kinetic energy of
expected limiting behaviors. As the ground is approachedhe inertial terms’
the mixing lengthy=Ac, is expected to become propor- s

tional to the integral scale. Therefore, close to the ground — =0,
Acgp~zor csp ~z/A. Therefore, as the wall is approached, Z
the average value g8 tends to . (32)
Z/(2A)? &*‘nj(@‘@i) :‘}&"'i(z((ﬁsAA)z@éj)"‘Ei-
B=CoonlCis~ e = A (28 4t ax; % pox o

. : HereF; is the mean streamwise pressure forcing. Note that in
Away from the wall, 5 is expected to increase t0 a mean g ghoye equations, the molecular viscous term is neglected
value of _at:')out 1. Hence, the clipping I|m|t_ of 0.125 aIIov_vs_ because the paper focuses on very high-Reynolds number
the coefficient to decrease locally to half its average miniq, s where viscosity is negligible at the resolved scales and
mum value. Note that this clipping limit already corresponds.the wall layer is modeledas opposed to resolving the vis-

to very severe scale dependence, namely, the eddy—viscosi(t:)éus sublayer, see P&Se The modified pressure term
coefficient at scalé\ being eight times larger than at scale

2A. B* =B+ (1U3)poig+ (124U (32)

No limit is imposed for highB, thus the allowable range ) "
is 0.125< B<. Tests with other clipping limits were con- IS cOmputed as usual from a Poisson equattvergence of
ducted(3 was clipped at 0.1 and 0.1BWithout significant MoMentum equation set to zero due to continuity condition
impact on the results. This was expected since it is observed 1he code uses a pseudospectral approach in the horizon-
in simulations that the clipping at 0.125 is only needed about?! directions. A second-order accurate centered-differences
15% of the time: the clipping limit cannot significantly affect SChéme, requiring a staggered grid, is used in the vertical

the results or be used as a tuning parameter to adjust ﬂ{grection. This en.tails storing the variables at heig'ldlspr
results. Therefore, the model coefficient to be used in thél +1/2dz wherej goes from 0 tdN (the number of vertical

simulation is obtained at every grid point and time step from@fid points. The fully explicit second-order accurate Adams-

the Lagrangian averaged quantities according to Bashforth schemg is used for time advancement. Aliasing
) errors can be detrimental to the accuracy of the SGS param-
2. = Cs.2n _ Jiml Tum 29) etrization since they affect the smallest resolved scales used
sS4 max3,0.125 JTonIvm to compute the dynamic Smagorinsky coefficient. To over-
maX(m,O.lZS) come this problem, the 3/2 riftis used to fully dealias the

convective terms. More details about some numerical aspects
In summary, the Lagrangian-averaged scale-dependenf the code(unrelated to the SGS modeatan be found in
dynamic model(LASD) involves test-filtering and second Refs. 7 and 8.
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TABLE I. Simulation parameters for homogeneous surface simulations.

Phys. Fluids 17, 025105 (2005)

Domain height

Domain lengthL and widthW

Mesh spacings

Wall roughness, imposed in lower boundary condition
Number of grid points

Initial conditions

Warm-up period

Forcing

Simulation time stepdt
Lagrangian model time step
Number of simulation time steps
Output sampling frequency

H

L=W=27H

dx=dy=2mdz

zo/H=10"

N3=64°

Mean velocity: logarithmic profile near the surface merging
smoothly with a zero-gradient profile at the top. Velocity
fluctuations: imposed random(yn space and among components

on the mean profile using a prescribed turbulent kinetic energy
profile (from results by Andreret al?).

Warm-up simulations are run until the normalized total stress
profile adjusts to a straight line reaching 1 at the surface and the
mean resolved kinetic energy is stable.

Imposed pressure gradiettt:/p) V p=u.?/H.
dtu./H=0.000 25(nondimensional time units
At=5dt

200 000

Every ten time steps

“Reference 43.

The boundary conditions in the horizontal directions arequirements are assessed when the coeffigdgnts updated
periodic. A stress free condition is imposed at the top of theevery fifth time step; this update frequency of the coefficient
domain by setting requires a time step for Lagrangian modsl[Eg. (17) and

Jan »=Ts = 0, (33 (25)] equal_to five times_ the time step of the LES caite

Tests for this study confirm that results obtained when updat-

where 1, 2, and Bor x, y, zin other parts of the paperefer g the coefficient every single time step and every fifth time
to the streamwise, cross-stream, and vertical directions, '&tep are similar.

spectively. At the bottom of the domain, the vertical velocity

is set to O at the surface. As a consequence of the staggergd
grid formulation, no boundary conditions are needed for the
horizontal velocities since they are only stored at a distance Simulations over a homogeneous rough surfaeéih

dz/2 above the surface. Stresses at the surface are imposednstant roughnesg, imposed through the stress boundary
through a local similarity theory formulatidh(see Piomelli condition at the lower surfagevere performed using: the
and Balara¥ for a review of wall modeling in LES How-  simple Smagorinsky or Smagorinsky-Lilly model with a
ever, velocities filtered at twice the grid scale are used tavall damping function(SMAG), the PASI, the LASI, the
compute the surface stress; this is needed to ensure that thaSD, and the LASD models. Table | details the parameters
average stress over the wall is close to the stress predicted by the simulations.

the classic log law. The need for this formulation and its  The ¢, coefficients computed by the different models
derivation are explained in the Appendix. The resulting law-(oy imposéd for the SMAG modglfor the homogeneous
of-the-wall formulation is surface simulations are compared in Fig. 1. Close to the sur-

Tests in homogeneous boundary layer flow

_ K 2 ) face, all the dynamic formulations predict a lower value for
mlXy) = - In[(dZ2)/z,] ([Gi(xy.dZ2)] Csa than the one assumed by the Mason—Thompson damping
_ ) function, whereas in the core of the flow they tend towards

the classic value between 0.1 and 0.22. Regardless of the
Subsequently, the stress is partitioned into its streamwise ar@veraging method, the scale-dependent formulation yields
cross-stream components in the usual manner: larger coefficients than the scale-invariant formulation, con-
= sistent with the fact that near the surface the coefficient in-
wall — Ui(X,y,dZ/Z) . . . .
75 (X,Y) = 7(X,Y) —= |, i= 1,2. (35) creases with decreasing scale. In addition, the planar aver-
17U aged formulations predict lowec;, than the equivalent

\r’ u2 + u:

A sharp spectral cutoff filter is used in the wall stress and-agrangian formulation away from the wall and a highgr
SGS computations. The fully scale dependent dynami@'ose to the wall. We have verified that the larger Lagrangian
model increases the computational cost by about 20% coniveraged mean coefficients occur due to infrequent large val-
pared to the Smagorinsky—Lilly model with imposed coeffi- ues ofcg, obtained locally that dominate the mean values
cient. Half of this increase is related to the dynamic compu+lotted but do not necessarily increase the mean SGS flux or
tations of the coefficient while the other half is related to themean dissipation to the same degree. Specifically, results pre-
Lagrangian averaging operations. These computational resented later will show that the average dissipation character-
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0.8 % 20 u N
*  SMAG
0.7t o PASI
06} 18( & LASI
+ PASD loss
05} o LASD =
16 [ oA
pr L * [o7AY
N 04 = <u> = (u*/k )In(z/zo) A
0.3 14}
0.2t
12+
0.1t
oL . o | G
0 0.2 0.3 . E .
c 10° 10% 10"
5,4 z/H
FIG. 1. Vertical profiles of the Smagorinsky coefficieftt )y, for the 0.5
different SGS eddy-viscosity models.
0.4rf

istics for the different models are not influenced significantly
by the averaging method but are much more sensitive to the 0.3}
scale-dependence of the model.

Next, we present mean velocity profiles resulting from
the simulations. For the homogeneous surface simulations, 0.2
the velocity profile is expected to be logarithmic close to the
surface(in the bottom 10%-20% of the simulation domjin 01}
following (U)=(u*/ k)In(z/z,). Figure 2 depicts the mean
velocity [Fig. 2(a)] and the nondimensional velocity gradient
(kzlu*)o(ly/ 9z [Fig. 2(b)] obtained using the different SGS 0
models. The solid black line in Fig.(® is the log law pre- ' = (xz/u*) &u) oz
diction with z,/H=10". The Smagorinsky model results in a !
high gradient near the wall. This is in agreement with theFIG. 2. (a) Normalized streamwise mean velocity profiles; the solid black
previous ﬁﬂdil’lg%‘z'32 suggesting that the model overdissi- line is the log law profile withz,/H=10"%, (b) nondimensional mean veloc-
pates resolved kinetic energy close to solid boundaries any gradients for different SGS models.
thus the total Reynolds stresses are too low there leading to
excessive mean velocity towards the core. Inversely, the two
scale-invariant formulationdASI and LAS) produce insuf-  slope of —=5/3. In the production rangk,;z< 1), the energy
ficient dissipation leading to low velocity gradients and low cascade is affected by the flow configuration. In wall-
streamwise velocity near the wall. On the other hand, théounded flows with neutral stability, there is evidence that
scale-dependent  formulations yield a value ofthe longitudinal(in the streamwise directiorenergy spec-
(kzlu*)&Uy/ 9z close to 1 near the surface suggesting thatrum of streamwise velocity in the production range follows
they are dissipating energy at a more appropriate rate anaslope of - 1*~*®We remark that there exists evidersee,
hence reproducing the log-law region more successfully thae.g., Refs. 47—49that thek™ regime does not extend over
the other models. Note also that the present plane averagsinificant ranges of wavenumbers, and thus the matter is not
scale-dependent results are slightly inferior to those preeonclusively settled from the data. Nevertheless, at the rela-
sented previousl§f. The discrepancy could be due to the facttively short range of scales afforded by the resolution level of
that, in Ref. 22, a fifth-order polynomial was solved f@r  our simulations, the expectation of an approxiniateregion
instead of the more approximate method employed herstill provides a useful criterion to test the various models.
based on Eq(30). Figure 3 depicts the longitudinal spectra produced by the

Reproducing the log-law region depends on the ability ofdifferent SGS models. The conclusions are similar to what
the SGS model to provide the correct dissipation rate close tavas discussed for the log-law prediction. With the Smagor-
the wall. However, a more complete insight into the energyinsky model, too much energy is dissipated and the spectra
dissipation characteristics of the SGS closure can be oldecay much too fast at high wavenumbers. The Lagrangian
tained by examining the streamwise velocity spectra. In thecale-invariant formulatiofLASI) gives spectra that are too
inertial subrangék,z> 1, wherek, is the wavenumber and z flat at small distances from the surface, indicating insuffi-
is the distance to the wallthe effects of viscosity, boundary cient energy dissipation and a buildup of energy at the small-
conditions, and large scale structures are not important aneist resolved scales. The spectra of the PASI model are not
the turbulence is essentially isotropic. The energy cascade shown here but depict underdissipation problems near the
this subrange follows the Kolmogorov spectrum yielding awall very similar to the LASI model results. The spectra for

z/H
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10° * (a) SMAG | 10° ¢ ‘ (c) PASD
> slope = -1: ~._slope = -1:
“._production ._production
10 . range ! 10" | .Jange
N wslope =-5/3:1 "y »slope = -5/3:
R 10° dnertial | %% 10° | “ inertial
N “subrange! | “\subrange
w’ w’
10" 107}
10% 107}
2 -1 0 1 -2 1 0 1 FIG. 3. Normalized streamwise spec-
19 19 K 18 L W 19 K 18 18 tra of streamwise velocity vk;z (the
12 1Z lines represent the spectra obtained at
heights z/H=0.008, 0.024, 0.04,
> 2 0.056, 0.087, 0.119, 0.151, 0.183,
10 (b) LASI 10 . (d) LASD 0.214, 0.246, 0.31, 0.373, 0.437, and
\\\s\lope =-1: . slope =-1: 0.5).
. production . production
10’ \\@e 10 L range
N slope =-5/3:1 T \ slope = -5/3:
'S 10° . inertial S 10 . Inertial
> Jsubrange]  © “.subrange
LL|: UJ:
10" 10"
10® 10°
10% 10" 10° 10' 107 10" 10° 10’
k 42 k 4z

the SMAG, LASI, and PASI models are most obviously in example. Quantitative comparison is difficult since the par-
error close to the wall, where the assumption of isotropicitioning of the stress into resolved and SGS components
homogeneous turbulence and the assumption of scale invagepends on the resolution and the SGS model used. The
ance clearly do not hold. The spectra obtained with thesffect of resolution can be easily observed in Fig. 4 where
LASD and PASD models follow the -1 and -5/3 slopesthe 128 resolution results in higher resolved streséasd

well in the two ranges. This confirms that a dynamic scalejgyer SGS stressesompared to the G4simulation. The

dependent formulation is important for non wall-resolving 5 stresses remain the same but the higher resolution simu-
LES in the vicinity of walls. Notice also that the LASD lation can resolve a larger part of these stresses

model_ls slightly less d|35|pat|ve than the_ PAS.D mode_l. The The variances of the resolved velocities for the different
same is true when comparing the scale-invariant versions of

: . resolutions are plotted in Fig. 5 versz/\. The results of the
the planar-averaged and Lagrangian-averaged mgtel diff N uti tch bl I Th fil |
holds for the results in this study and in Ref))24 iirerent resolutions match reasonably well. The profiies col-

lapse at smalk/ A whereas further up an increase in resolu-
tion leads to an increase in the resolved variances. The vari-
ances of the current LES results fall well within the range
reported by Andretet al**in their comparative study of four
ES codes. In addition, the results coincide well with the

C. Lagrangian scale dependent model detailed results

In the preceding section, basic results of the LASD
model were presented and compared with other SGS model
More comprehensive results obtained with the LASD mOdevariances reported by Porté-Aget 2122 in their LES of

are presented in this section along with an analysis of th%\BLrow with a planar scale-dependent dynamic model that

results sensitivity to the resolution of the simulation. The giff . hio " scale d
LES simulations over a homogeneous surface were run afSes a ditierent approach to ‘measure scale ependeaee

resolutions of 32, 64°, 96°, and 128. Sec.11B. o _

Figures 4a) and 4b) depict the resolved, subgrid-scale, We confirm that the mean coefficient determined from
and total stress profiles for the and 128 resolutions. As LASD is, to a good approximation in this case of neutrally
expected, close to the surface most of the stress is in the S@%ioyant homogeneous boundary layer flow, a universal func-
part while away from the wall most of the stress is resolvedtion of heightz when normalized with the filter scalke. The
The results are in qualitative agreement with many LES studvertical profiles of(cs,) computed at different resolutions
ies (see Ref. 22 or the comparative study in Ref. 43, forare plotted versug/A in Fig. 6. It is clear that, except for
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g , 5
(a) 64°
0.8 47
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\ “
< \ N
047 ar
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: . ; ; .
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FIG. 6. Collapse of the vertical profiles of the mean dynamic coefficient

obtained from LASD model for different resolutions when plotted against

(b) 128° ZIA.

0.8
sity functions(pdfs) of the dynamic coefficient at three dif-
0.6 ferent heights; for each height, the pdfs obtained from the
T four different resolutions are shown. The distribution has low
N standard deviation and meanzatdz/2, the mean as well as
0.4 the spread of the data increases further up. Consistent with
the pdfs of Lagrangian coefficients determined using the
0.2l scale-invariant dynamic model in wall-resolving LESthe
peaks of the pdfs are close to the mean values and the pdfs
. do not exhibit secondary peaks or unusual features. Also note
0 — — the spike in the pdf at zero associated with the use of a time
0 02 04 06 08 1 o o
5 scale that becomes infinite agtends to O; this is in agree-
Xyshear stresa / u, ment with the scale-invariant version of the motfel.
FIG. 4. Vertical profiles of the resolved stresﬁ]’ﬁv’)tvyyx (...), the subgrid- For the 32 resolution, considerable difference can be

scale stress (1) (+), and the total stressolid line,—): () 64° resolu- noted between the pdfs ztH/8 andz=H/4. For the higher

tion, (b) 128® resolution. resolution runs, this difference decreases; this is a direct con-
sequence of the decrease in the ratio of the grid scatethe
integral length scale-z, at a given height, as the resolution

is increased. Therefore, as the resolution increases, we note a
decrease in the height at which the turbulence near the grid-

small deviations for the 32simulation(due to the effect of
the top boundary condition in that casthe results collapse
well near the wall. scale approaches isotropy.

Next, the variability of the coefficient computed from Figure 8 depicts the probability density function of the
LASD is documented. Figure 7 depicts the probability den-scale-dependence paramet@rand the threshold of 1/8

15 18
10t 10
FIG. 5. Normalized variances of re-
ﬁ solved velocity components obtained
with the LASD model at different
5 5 resolutions.
0 0 -
0 0 0.5 1

<U?s/u? <V3siu? <ws/u?
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FIG. 7. Probability density functions
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above which it is clipped. Peaks of the pdfs are well abovemodel(about 10% more than the equivalent planar averaged
the clipping limit except az=dz/2 where the peak is close version. Moreover, one should consider whether the varia-
to the clipping limit; however, even az/2, most of theB  tions actually affect relevant parameters such as fluid veloci-
values occur above the clipping limit. A small increase in theties and stresses. These two questions will be addressed in
pdf can be noticed at the value of zero, caused by the use dliiis section where simulations over heterogeneous walls are
a Lagrangian model time scale to avoid negative values operformed using the LASD and the PASD models and com-
Cs4a, Which yields a slightly increased probability of 41 pared to experimental data. The other mod8IgIAG, LASI,

=0 [i.e., 8=0 according to Eq(26)]. and PAS]J, having already performed poorly in simulations

over homogeneous surfaces, will not be tested.
V. SIMULATIONS OF BOUNDARY LAYER FLOW OVER
A HETEROGENEOUS ROUGH SURFACE A. Bradley’s experimental setup

The previous results focused on flow over homogeneous The atmospheric boundary layer measurements by
rough surfaces and showed that the scale-dependent aBradley® have often been used to validate theoretical and
proach yields better results than the hoc Smagorinsky numerical models for flow over an abrupt change in surface
model or the scale-invariant formulations near the surfaceroughness'™>* Bradley measured the surface stréwsth
Nevertheless, the motivation for using a Lagrangian locallrag plates and the velocity profiles upstream and down-
model rather than a plane averaged model becomes apparestiteam of a sudden jump in surface roughness. The measure-
only when examining more complex, nonhomogeneousnents were performed over a tarm@urface roughness,
flows (i.e., when homogeneous directions are not available=0.002 cn). A patch with a higher roughne$s,=0.25 cn)
for averaging. was created inside the tarmac by laying artificial roughness

In the simulations over heterogeneous walls presentethats consisting of vertical spikes with reinforcing mesh in
below, while averaging over horizontal planes is possible, théetween.
streamwise direction is not homogeneous and hence the vari- For the low-to-high roughness transition measurements,
ability of the coefficient in that direction would be sup- the high-roughness patch was created at the downstream
pressed by planar averaging. In such flows, an importanénd of the tarmac and measured 2&20 m in the stream-
question is whether spatial variations in the coefficient aravise and cross-stream directions, respectively. The tarmac
great enough to justify the extra cost of the Lagrangiarhad an effective area upstream of the measurement of
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FIG. 8. Probability density functions
of the scale-dependence parameger
obtained dynamically from the LASD
approach, at different heights and dif-
ferent resolutionsfa) 32, (b) 643, (c)
96°, and(d) 128

134 mx 92 m in the streamwise and cross-stream directionsyhere the upstream conditions should not be very important.
respectively. For the high-to-low roughness measurementsn practice, since the upstream conditions outside of the tar-
the high-roughness patch was slightly shorter, measuringhac are unknown for the Bradley experiment, no better al-
22 m in the streamwise direction, and the patch was placeternative to define inflow conditions exist.

near the upstream end of the tarmac.
In the LES, in the cross-stream direction, a domain
width of 64 meters is simulated with a resolutidg=1 m.

Furthermore, the high-roughness patch is assumed to exten \$”Q:°u
over the entire cross-stream direction of the simulatian, Ny

infinitely wide patch. For the results examined in this work,
the cross-stream dimensions of the tarmac and the highE§
roughness patch have very little impact on the results; thisg S
was confirmed in LES tests not presented in this work that“:’
included rectangular patches of various widths. The compu- %
tational domain height i$1=20 meters, i.e., only the near-
surface layer of the ABL is simulated to allow for a high

=
u@ ¥

L=160m
Nx = 160 nodes

Flow direction

...--"""Hi.gh—to—low roughness|

transition

I
vertical resolution (dz=10 cm) that can capture internal  Aificial roughness

boundary layers originating at the transition between patche:"
of different roughness. Figure 9 depicts the computational
domain used to simulate conditions similar to Bradley's field
experiments. Two simulations were performed to reproduce
Bradley’s low-to-high and high-to-low roughness transitions.
Note that, due to the pseudospectral approach used in th
code, what is actually being modeled is an infinite sequence
of high-roughness and low-roughnd$armag patches. This
does not affect the comparison results since we look at stre

=22m,zo=0.25cm

low-to-high roughness transition

Tarmac
L=138m, zo=0.002 cm

.

|l
*

Tarmac

L

Artificial roughness

L =134 m, zo=0.002 cm L=26m, zo=0.25cm

and velocity at the roughness jump, very close to the walloughness transitions.

FIG. 9. LES parameters and simulation domain for reproducing Bradley’s
$eld experimental study of atmospheric surface layer flow over abrupt
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8 ' ' C. Mean velocity profiles
LES-LASD
1% low-to-high roughness| ——— LES-PASD || ; P ;
é 6 & o Bradiey data The streamwise velocity profiles produced by the LES

are compared to the profiles measured by Bradley at various
downstream distances. Following Bradley's approach, the
velocities are normalized by the value at some height outside
the internal boundary layer of the downstream pa&20 cm
for the low-to-high roughness transition and 112.5 cm for the
high-to-low roughness transitipnThis is necessary since
FIG. 10. Wall shear stress downstream of a low-to-high roughness jumpBradley’s data at different downstream distances are ob-
normalized by the equilibrium stress of the upstream surface: comparison dgined at different times and hence cannot be normalized by
LES results and Bradley's field data. u* (u* will not be constant at the various times the data are
acquired. Figure 12 depicts the comparison results. For the
low-to-high roughness transition, the two SGS models and
the experimental data agree very well. For the high-to-low
B. Mean surface shear stresses roughness transition, the two SGS models produce different

Bradley plotted the mean surface shear stress measuré@sults and the LASD data agrees better with the experimen-
downstream of the jump in roughness divided by the surfacéal data. This has been traced to a greater difference in SGS
stress directly upstream of the jump. This ratio eventuallydissipation between the two models over the low-roughness
relaxes downstream of the jump to the equilibrium valuesurface(compared to the difference over the high-roughness
corresponding to the downstream surface. The ratio mainlgurface as will be shown in the following section.
depends on the two surface roughness values. The LES has
to correctly predict this equilibrium ratio as well as the re- D- Coefficient variability over different patches and
laxation rate or the distance downstream of the jump wherds effects
the ratio reaches its equilibrium value. Since LES codes with |5 Fig. 13a), the value of the Smagorinsky coefficient
wall modeling “measure” the surface stress from the |aW'0f'averaged in the cross-stream direction and in tifagy), , is
the-wall using the velocity at the first grid point from the 5tteq for the simulation with the LASD model reproducing
wall, they cannot accurately predict the departure from equigyajey's data for the high-to-low roughness transition. The
librium of the stress ratio immediately after the roughness,efiient is divided by its average over horizontal planes,
jump. This is due to the fact that the first grid points AWaY (¢ )y to remove the effect of vertical variations and focus
from the wall do not lie in the internal equilibrium layer on horizontal variability. Up to 150%minimum is ~0.5 of
(IEL) of the downstream patch and hence are affected by th%ean and maximunﬁvl:a of meap variations betweén the
upstream patch. Since the first grid point is 5 ¢de/2) high-roughness and low-roughness patches can be observed

above the wall, one expects that the values of the stress ratio .
. ) near the ground, and the effect of surface heterogeneity ex-
will be affected by this source of error up to 5 m downstream

. 0 . X L
of the jump in roughneséabout 5 cm< 100, see Brutsadtt tends well into the lowest 10% of the domain. This sensitiv

for scaling approximations for the IBLFigures 10 and 11 Ity of g, to surface heterogeneity will not be captured by
the planar-averaged model resulting in a difference in the

depict the stress ratios measured by Bradley and simulate T o
by the LES for low-to-high and high-to-low roughness tran- GS dissipation produced by the two models. This difference

sitions, respectively. The LASD model results agree wellin estimating the SGS dissipation impacts the stress and ve-

with the experimental results, especially past the downstrearquc(;tylrzes_:ffl;[s g.rod.uce.d by ft hﬁ mLo :(Sale as ((jje?iglte.(; ig I;igs.h 1
distance of 5 m after which the flow is in equilibrium with an - The dissipation of the model divided by the

the underlying surface and the LES can accurately measufgSSipaﬂon of the PASD model is depicted in Fig(t)31t is

surface stress. The agreement between PASD model resufi$a" that the difference is more significant and extends
and experimental data is slightly less satisfactory. higher above the low roughness surfdcempared to the
difference above the high-roughness surface

r “s,equi

T/t

distance downstream of the roughness jump (m)

E. Sensitivity to grid resolution

Similar to the simulations over homogeneous surfaces,
different grid resolutions were tested for the heterogeneous
surfaces simulations reproducing Bradley's experiment. The
i results presented above pertain to the highest resolution used

librium

s requi

T 04 f Kl folow roughness| (Sl (160x 64200 nodes Two other resolutions were tested: a
o  Bradley data low resolution of 80< 32X 100 nodes and a medium resolu-
2 : 10 15 20  tion of 120X 48x 150 nodes. The results showed a consis-
distance downstream of the roughness jump (m) tent improvement in the reproduction of Bradley’s experi-

mental he grid resolution was incr ; thi li
FIG. 11. Wall shear stress downstream of a high-to-low roughness jum ental data as the 9 d resolutio as increased, this applies

normalized by the equilibrium stress of the upstream surface: comparison 3pr pOth the PASD and LASD subgrid Sc_a|e quels. In this
LES results to Bradley’s field data. section, we only present the results obtained with the LASD
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2 | high-to-low roughness o | low-to-high roughness
o
€15 Eqs FIG. 12. Evolution of velocity profiles
N N after an abrupt change in surface
roughness: comparison of LES results
T 1 to Bradley’s field data.
0.5 057
(b) e (e)
0 — : : 0=
0.4 0.6 0.8 1 0.4 0.6 0.8 1
u/uz=112_5 m 2-1 m downstream of the jump u/uz=220 om 10-42 m downstream of the jump
3 - - © 3
LES-LASD LES-LASD
2.5t —— LES-PASD 25t —— LES-PASD
O  Bradley data O  Bradley data
2 | low-to-high roughness 2 | high-to-low roughness
E 15}
N
1 L
0.5f
(©
0 0
0.4 0.6 0.8 1 0.4 0.6 0.8 1
u/u 4.32 m downstream of the jump u/u 10.2 downstream of the jump

z=220 cm z=112.5cm

model. Figures 14 and 15 depict the wall shear stress dowrfer the medium resolution is significant and little further im-
stream of a low-to-high and high-to-low roughness jumpsjprovement is obtained by passing to high resolution; this
respectively. One observes that as the resolution decreasssggests that the results are converging to the experimental
and the first grid point moves further away from the wall, thedata as the resolution is increased. This type of roughness
stress profile becomes flatter. jump (high-to-low) is much more sensitive to the numerical
Figure 16 shows the velocity profile adjustment at aboutetails and the SGS model used.
four meters downstream of the roughness jump. For the low-
to-hlgh transmon., all re§olutlons are ablg tq cgpture the eXy| CONCLUSIONS
perimental velocity profile rather well; this is in agreement
with the results of the sensitivity to the SGS model. For this A scale-dependent dynamic subgrid scale model has
type of transition, the LES seems to be able to capture thbeen formulated based on the Lagrangian time-averaging ap-
velocity profile regardless of the numerical details and theroach (LASD). The model extrapolates the Smagorinsky
SGS model. On the other hand, for the high-to-low rough-coefficient measured dynamically at two test-filter scales to-
ness transition, the results from the low resolution simulatiorwards the grid-scale where the coefficient is unknown and
do not match the experimental data well. The improvemenheeded for LES. Results show that the model performs well
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FIG. 13. (Color). Sensitivity of SGS model to surface roughness for a high-to-low roughness tran&igiot of the dynamic coefficient for the LASD
model, (b) SGS dissipation predicted by the LASD modHl, ,sp) divided by the SGS dissipation predicted by the PASD m@Hgl,sp).

in reproducing the log-law region in high-Reynolds numberimposed coefficient since the dynamic coefficient need not
boundary layers that do not resolve the viscous sublayehe updated at every time step of the LE®re we updated it
where scale-dependence is important. The model performet every fifth time step, but this choice depends on Courant—
better than other SGS models tested here, including thEriedricks—Lévy stability constraints of particular simulation
Smagorinsky—Lilly model with a prescribed wall damping parameters

function, and the scale-invariant dynamic model. Streamwise To test the model in an inhomogeneous flow under con-
velocity spectra indicate that the LASD model yields moretrolled conditions, it has been applied to LES to compare
accurate mean SGS dissipation properties. The model pravith the experimental field results of BradF@yfor high-
duces only a moderate increase in computational cost on tHieeynolds number boundary layer flow over a roughness dis-
order of 20% (compared to the Smagorinsky model with continuity. The experimental results consist of stress and ve-

8 : 0.4 . .

—+— LES-LASD-HR e
£6 —— LES-LASD-MR | | . §> |
2 ——e— LES-LASD-LR E
H o  Bradley data £ |
é E g —+— LES-LASD-HR

L < B —+— LES-LASD-MR
= 1 «” 0.1F high-to-low roughness — & LES-LASD-LR |1
low-to-high roughness o Bradley data
0 L ‘ L 0 . L
0 5 10 15 20 0 5 10 15 20
distance downstream of the roughness jump (m) distance downstream of the roughness jump (m)

FIG. 14. Wall shear stress downstream of a low-to-high roughness jumpflG. 15. Wall shear stress downstream of a high-to-low roughness jump
normalized by the equilibrium stress of the upstream surface: sensitivity temormalized by the equilibrium stress of the upstream surface: sensitivity to
grid resolution for the LASD SGS model. HR is for high resolutid®0 grid resolution for the LASD SGS model. HR is for high resolutid®0

X 64x 200, MR is for medium resolutiori120x 48 150), and LR is for X 64x 200, MR is for medium resolutiori120x 48 150), and LR is for

low resolution(80x 32X 100). low resolution(80x 32X 100).
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APPENDIX: A LOCAL LAW-OF-THE-WALL
FORMULATION

In this appendix, an improved local law-of-the-wall is

E s introduced. The common approach used in LES of high-
N Reynolds number boundary layer flow where the viscous
1} sublayer is not resolvéd®®*is to impose the law-of-the-

wall in a strictly local sense:
0.5 1 ]2
— 2,2
0 . . , (b) Tw= [In(z/zo)} (U7 +15). (A1)
0.4 0.6 0.8 1
UM,_, ) 5 o 4 M downstream of the jump Herex is the von-Karman constaf#=0.4) andz=dz/2. 7, is

the kinematic stress/p (the squared friction velocijyat the
FIG. 16. Evolution of velocity profiles after an abrupt change in surfacewall. The use of this relation imposes an average stress ob-
roughness: sensitivity to grid resolution for the LASD SGS model. HR is fortgined from LES:
high resolution(160x 64X 200, MR is for medium resolutior{120x 48
X 150), and LR is for low resolutiof80x 32 100).

2
K
= | [ n2)
However, the log law was developed and validated to be

locity measurements downstream of the roughness jump. The " :
ed in an average sense, i.e.,

LES was successful in predicting wall stress adjustment as %S
function of downstream distance. Similarly, the velocity pro- log\ _ K 2 )
files from LES data coincided well with the experimental (7)== In(z/z,) (@y%,
data at several downstream distances included in the analy-

sis. Results obtained with the Lagrangian model matched th&/here the mean cross-stream compor{@iit is zero. Since
experimental data better than results obtained with théhe velocity atz=dz/2 fluctuates(Ts) > (tiy)* (Schwartz in-
equivalent planar-averaged model. This difference wagquality and (7o) >(n9%). Therefore, imposing the wall
traced back to the sensitivity of the Smagorinsky coefficienstress in a local formulation leads to increased average
to the roughness height of the underlying surface. This serstresses for a given near-wall velocity. In LES with pre-
sitivity affects the SGS dissipation rate and cannot be capscribed pressure gradient and mean stress, this would yield a
tured by the planar-averaged formulation. This indicates thaglower flow near the surface.

a local formulation, such as the Lagrangian one, is better A potential solution is to divide the stress into a mean

(A3)

suited for simulations of flows in complex geometries. contribution and a local contribution similar to the approach
used to impose a velocity gradient at the surface. The local
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