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ABSTRACT

An analysis of dynamic Smagorinsky models is performed based on the Horizontal Array Turbulence Study
(HATS) dataset. In the experiment, two vertically separated horizontal arrays of 14 three-dimensional sonic
anemometers were placed in the atmospheric surface layer. Subgrid-scale (SGS) and resolved quantities are
derived from 2D filtering at a filter scale D and differentiation of filtered velocity fields. In a previous study
the Smagorinsky coefficient was computed directly from these data and found to depend on atmospheric(D)cs

stability and height above the ground. The present study examines the scale-invariant dynamic model of Germano
et al. and the scale-dependent dynamic model of Porté-Agel et al. and tests their accuracy in predicting and(D)cs

its dependencies on stability and height above the ground. The Germano identity uses a test filter at aD (in this
study a 5 1.75 is used). The coefficient is derived from various data test-filtered at this scale assuming that
the Smagorinsky coefficient is scale invariant. The results show that the scale-invariant dynamic model severely
underpredicts the coefficient and its trends whenever D is similar to, or larger than, the large-scale limit of the
inertial range (typically the smaller of the height above the ground z or the Obukhov length L). The scale-
dependent dynamic model uses a second test filter at scale a2D to deduce dependence of on the filtering(D)cs

scale. This model gives excellent predictions of and its dependence upon stability and height.(D)cs

1. Introduction

Three-dimensional simulations of atmospheric
boundary layer (ABL) flows at high Reynolds numbers
are feasible only on computational grids with a spacing
substantially larger than the Kolmogorov scale. In a
large-eddy simulation (LES; see, e.g., Deardorff 1970;
Moeng 1984; Mason 1994; Lesieur and Métais 1996)
the transport equations resolve all scales of motion larg-
er than the grid size D. Scale separation is achieved
through low-pass spatial filtering, which defines the
‘‘resolved’’ or ‘‘filtered’’ velocity as

ũ(x) 5 u(x9)F (x 2 x9) dx9. (1)E D

Here, FD is the (homogeneous) filter function for a scale
D. Subgrid scales (smaller than D) are parameterized
using subgrid-scale (SGS) models. The SGS model is
crucial for an LES to generate realistic turbulent fields
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in the ABL, especially in regions where the local in-
tegral scale is smaller than the filter scale D. SGS models
parameterize the SGS stress t ij, whose divergence enters
the filtered Navier–Stokes equations. The SGS stress,

t 5 u u 2 ũ ũ , (2)˜i j i j i j

is expressed in terms of velocity gradients by the Sma-
gorinsky model (Smagorinsky 1963):

1
Smag (D) 2˜ ˜) )t 2 t d 5 22n S , n 5 (c D) S , (3)i j kk i j T i j T s3

where S̃ij is the strain-rate tensor, | S̃ | 5 is its˜ ˜Ï2S Sij ij

magnitude, and nT is the eddy viscosity. When this clo-
sure is used in a traditional LES, needs to be spec-(D)cs

ified a priori.
It has often been remarked (Pope 2000; Meneveau

1994) that a single value of cannot simultaneously(D)cs

yield the correct SGS dissipation, SGS stress, and the
correct divergence of the stress (SGS force). Moreover,
it is well known that the SGS stress tensor is not de-
terministically aligned with the rates of strain and that
at a local level the Smagorinsky closure is highly un-
realistic (Bardina et al. 1980; McMillan and Ferziger
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1979; Liu et al. 1994; Bastiaans et al. 1998; Higgins et
al. 2003). Despite these limitations, the eddy-viscosity
closure is still the most widely used SGS model in at-
mospheric and engineering applications. The present
study focuses on how to dynamically obtain the model
coefficient, which directly affects the rate of SGS energy
dissipation.

Once the eddy-viscosity closure is accepted, the Sma-
gorinsky coefficient has to be chosen appropriately.(D)cs

Its magnitude determines the rate of kinetic energy dis-
sipation due to the SGS model. This SGS dissipation
rate PD is defined according to PD 5 2^t ij S̃ij&. The
dissipation predicted by the Smagorinsky model,

5 2^ S̃ij& depends upon and on the var-Smag Smag (D)P t cD ij s

iance of the resolved strain-rate tensor. Typically, the
resolved turbulence levels will be damped excessively
if is too large; conversely, if is too small, energy(D) (D)c cs s

pileup occurs at the smallest resolved scales of the tur-
bulence. This leads to anomalous statistics and can result
in numerical instabilities when a poor numerical method
is used.

In a traditional LES of atmospheric boundary layers,
is deduced from phenomenological theories of tur-(D)cs

bulence (Lilly 1967; Mason 1994). Stability dependence
of has traditionally been derived from theoretical(D)cs

models for the energy spectra (Hunt et al. 1988; Dear-
dorff 1980; Canuto and Cheng 1997). These studies
result in expressions relating with parameters char-(D)cs

acterizing the atmospheric stability (such as the Rich-
ardson number or Obukhov length L); typically, the
characteristic length scale D is found to decrease in(D)cs

stable conditions. Redelsperger et al. (2001) derive an
expression for the eddy-viscosity length scale as func-
tion of height and stability from experimental obser-
vations of energy spectra in blocked turbulence. A direct
empirical method to determine and its dependence(D)cs

upon physical flow parameters from field experimental
data was proposed in Porté-Agel et al. (2001a,b), which
expanded on earlier work of Porté-Agel et al. (1998,
2000b) and Tong et al. (1999). Data from two linear
arrays of sonic anemometers placed perpendicularly to
the flow in the ABL (Tong et al. 1998; Porté-Agel et
al. 2001a) were used to determine SGS model coeffi-
cients (for details, see section 2b). Among others, Porté-
Agel et al. (2001b) confirm from the data that the Sma-
gorinsky coefficient depends on height z, filter scale(D)cs

D, and atmospheric stability. In particular, decreases(D)cs

for small z/D. In a more detailed, recent study of the
Smagorinsky coefficient, Kleissl et al. (2003, hereafter
KMP) analyzed nearly 160 h of data from the Horizontal
Array Turbulence Study (HATS), a field experiment in
the ABL with 14 sonic anemometers in two arrays. KMP
quantified the decrease of with stability and prox-(D)cs

imity to the ground and proposed an empirical rela-
tionship for as a function of D/z and D/L. Sullivan(D)cs

et al. (2003) find that the measured values of collapse(D)cs

quite well when Lw, the length scale at the peak of the
spectrum of vertical velocity, is used to scale the filter

size. In LES, parameterization of as a function of(D)cs

Lw/D is feasible if Lw is known a priori or it can be
determined from energy spectra that are computed in
space (such as in LES with homogeneous boundary con-
ditions). Still, such parameterizations require knowing
empirical formulas for the coefficient as function of
Lw/D. In other words, even if one can obtain Lw from
the simulation’s spectra during an LES, a functional
form for as function of Lw must be prescribed, with(D)cs

an associated need for empirical coefficients. Along a
fundamentally different line of thinking, Germano et al.
(1991) proposed the ‘‘dynamic model.’’ Instead of pre-
scribing a priori as a function of flow parameters,(D)cs

this approach is based upon the idea of analyzing the
statistics of the simulated large-scale field (during an
LES) to determine the undetermined model parameters.
The dynamic model is based on the Germano identity
(Germano 1992),

L [ u u 2 ũ ũ 5 T 2 t . (4)˜˜i j i j i j i j i j

In the preceding, Lij is the resolved stress tensor and
Tij 5 2 is the stress at a test-filter scale aDu u ũ ũĩ j i j

[an overline denotes test filtering at a scale aD]. If(. .)
one applies this dynamic procedure by replacing Tij and
tij by their prediction from the basic Smagorinsky model
the result is

1
(D) 2L 2 d L 5 (c ) M ,i j i j kk s i j3

where

(aD) 2(aDc )s2 ˜ ˜ ˜ ˜) ) ) )M 5 2D S S 2 S S . (5)i j i j i j(D) 21 2(Dc )s

To proceed, the crucial assumption in the standard
dynamic model (Germano et al. 1991) is scale invari-
ance of the coefficient, namely,

(D) (aD)c 5 c .s s (6)

This step allows the only remaining unknown parameter
in Eq. (5), , to be obtained. The overdetermined sys-(D)cs

tem of equations can be solved by minimizing the square
error averaged over all independent tensor components
(Lilly 1992), and some spatial domain (Ghosal et al.
1995) or temporal domain (Meneveau et al. 1996). The
result is

^L M &i j i j(D) 2(c ) 5 . (7)s ^M M &i j i j

Here the symbol ^. .& denotes ensemble, time or spatial
averaging, depending on the context. In the derivation
[Eqs. (5)–(7)] we ignored that is a function of po-(D)cs

sition [see Ghosal et al. (1995) for a discussion of the
resulting integral equation]. The dynamic model has
been successfully applied to a variety of engineering
flows [see Meneveau and Katz (2000) and Piomelli
(1999) for reviews]. In general, it provides realistic pre-
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dictions of when the flow field is sufficiently re-(D)cs

solved, that is, the test-filter scale aD is smaller than
the local integral scale of turbulence.

In the context of ABL turbulence the dynamic Sma-
gorinsky model has been implemented in an LES by
Porté-Agel et al. (2000a). They examined the scale-in-
variance hypothesis and the dynamic model with an LES
of a neutral ABL. They found that near the wall stream-
wise energy spectra decay too slowly, indicating that the
dynamically determined coefficient is too small. In ad-
dition, by running four simulations at different resolu-
tions they demonstrated a clear scale-dependence of the
Smagorinsky coefficient ( ± ), which violates the(D) (aD)c cs s

scale-invariance assumption of the dynamic model [Eq.
(6)]. As a consequence, Porté-Agel et al. (2000a) pro-
posed a scale-dependent dynamic model. In addition to
a test filter at aD, a test filter at a2D (denoted by a hat
below) delivers another equation similar to Eq. (5):

1
(D) 2Q 2 d Q 5 (c ) N ,i j i j kk s i j3

where ̂ ̂̂ũ ũ ũ ũQ 5 2 and (8)i j i ji j

22 a D 2(a Dc )ŝ ̂ ̂2 ˜ ˜˜ ˜ )) ) )S S .N 5 2D S S 2 (9)i ji j i j (D) 2 21 (Dc )s

With this additional equation the scale-invariance as-
sumption can be relaxed. A new parameter b is defined
according to

(aD) 2(c )sb 5 . (10)
(D) 2(c )s

Under the assumption that b does not depend on scale,
Eqs. (5) and (9) can be solved for the two unknowns,

and b (Porté-Agel et al. 2000a). Note that this as-(D)cs

sumption is equivalent to assuming a power-law be-
havior ( )2 ; DF, or dimensionally appropriate,(D)cs

(aD) 2 (D) 2 F(c ) 5 (c ) a .s s (11)

For details on the computation of b see the appendix.
It needs to be emphasized that b is determined dynam-
ically from the resolved scales; the power-law behavior
in Eq. (11) is the only empirical assumption. Porté-Agel
et al. (2000a) applied the scale-dependent dynamic SGS
model to an LES of a neutral boundary layer and ob-
tained good agreement with observations for mean ve-
locity gradients and streamwise energy spectra.

The objective of the present study is to examine field
data at various length scales and determine whether the
dynamic model yields realistic predictions of the co-
efficient and its dependencies upon distance to the(D)cs

ground and atmospheric stability. Both the scale-in-
variant (Germano et al. 1991) and the more elaborate
scale-dependent forms (Porté-Agel et al. 2000a) of the
dynamic model will be examined. Note that a priori tests
do not always give the same results as those obtained

in LES numerical implementations. In LES numerical
discretization errors and feedback of the SGS model on
the resolved scales can affect the results. A forthcoming
paper by the authors will examine the applicability of
a priori results from the present paper to LES in more
detail. The current paper uses the same field data as
KMP, but the data are processed at a different set of
length scales to perform the various filtering operations
required for the dynamic models. We also investigate
how the averaging time scale influences the results. As
indicated in Eq. (7) the dynamic model requires aver-
aging of data. Knowledge of an appropriate averaging
time scale is relevant for the Lagrangian SGS model
(Meneveau et al. 1996), which determines the model
coefficient by accumulating weighted averages over flu-
id path lines. However, due to the experimental con-
ditions, only Eulerian averaging can be used in this
study.

The present paper is organized as follows. In section
2, we describe the field experiment and the data pro-
cessing techniques. Section 2 also contains a brief review
of the results of KMP: measured distributions of as(D)cs

function of height and stratification. Section 3 studies the
ability of the scale-invariant dynamic and scale-depen-
dent dynamic SGS models to reproduce the behavior of

. Conclusions are presented in section 4.(D)cs

2. Dataset and processing

a. The HATS dataset

In HATS two vertically displaced horizontal arrays
of 14 Campbell Scientific three-component sonic ane-
mometer–thermometers (CSAT3) were installed in the
atmospheric surface layer in the San Joaquin Valley
close to Kettlemen City, California, from 31 August
until 1 October 2000. The HATS experiment was de-
scribed in detail in KMP (Kleissl et al. 2003) and Horst
et al. (2004). The focus of KMP was to determine re-
lationships between and different relevant length(D)cs

scales: height above ground z, filter scale D, and the
Obukhov length L. Parameter L is defined as

32u*
L 5 , (12)

g
k ^w9u9&

uo

where u* 5 (2^u9w9&)1/2 is the friction velocity, u0 is
the mean air temperature, g is the gravitational accel-
eration, and k 5 0.4 is the von Kármán constant. Data
from two sensor setups were used to dynamically de-
termine the Smagorinsky coefficients. These setups are
presented in Table 1.

Figure 1 shows a schematic of the instrument setup
for arrays 1 and 2. To compute SGS quantities, the ve-
locity fields have to be spatially filtered in two dimen-
sions at a scale D. Since the velocities will also be
filtered at two larger scales, aD and a2D, D is chosen
to be smaller than the values used in KMP. Here we use
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TABLE 1. Array properties for the HATS experiment. Here, d 5
double-filtered array; s 5 single-filtered array; d0 5 displacement
height; dy 5 lateral instrument spacing; D 5 filter size.

Array
No.

Data
(h)

zd 2 d0

(m)
zs 2 d0

(m)
dy

(m)
D

(m)

D

z 2 dd 0
(2)

^ud&
(m s21)

1
2

46.0
38.7

3.13
4.01

6.58
8.34

3.35
2.17

6.70
4.34

2.1
1.1

2.46
2.72

FIG. 1. Experimental setup of HATS. Three-dimensional sonic an-
emometers are displayed as circles. The reference number of the
instrument is to the upper left and the measured or computed variable
at this location is to the right. (a) Unfiltered variables. Sample lateral
filter weights for a scale D are marked in gray below locations 1–2
and 9–11. (b) Variables filtered at scale D. Sample lateral filter
weights are displayed below locations 7, 9, and 11, which are hatched.
(c) Variables filtered at scale 1.75D.

FIG. 2. Contour plots of conditional PDF of ( )2, P( | D/L), forD,emp 2c cs s

array 2 (D/z ; 1.1). The contours show log10P( | D/L). The averaging2cs

time to compute is Tc 5 3.2 s ; 2.0D/^u&. The solid line is the(D)cs

empirical fit of Eq. (14). The dashed line shows ( )2 5 0.Dcs

twice the lateral instrument spacing as the basic filter
length, that is, D 5 2dy, where dy is the lateral spacing
of the sonic anemometers. As in Sullivan et al. (2003)
and Horst et al. (2004), convolutions with the top-hat
filter of width D are evaluated using the trapezoidal
integration rule. This is equivalent to using discrete
weights (0.5, 1, . . . , 1, 0.5)/(n 21) for data from n
sensors spaced in the lateral (y) direction. Note that
other options exist to define weights for discretely sam-
pled data. For instance, Vasilyev et al. (1998) use the
second moment of the filter’s discrete Fourier transfer
function to relate filter width with the weights. The dif-
ference among these methods is not large when con-
sidering the compounded two-dimensional filtering: in
the streamwise direction, the filtering occurs on the
much finer time-sampling grid (see later), and thus there
is negligible ambiguity how to relate filter width and
weight factors. This streamwise filter is responsible for
removing most of the SGS variance, rendering the ef-
fects of the less accurate cross-stream filters less im-
portant. A smooth Gaussian filter is used in the stream-
wise (x) direction, where 20-Hz sampling results in a
higher resolution with a spacing of 0.05 s ^u& m s21 ø
0.13 m, using Taylor’s hypothesis. The Fourier trans-
form of the Gaussian filter function ĜD 5 exp[2( D2/2k1

24)] is multiplied with the Fourier transform of each
8192 data points segment (;6.8 min) of the velocity
time series. Before the convolution, the mean of the
velocity time series is subtracted and a Bartlett window
is applied. Derivatives are computed from the filtered
time series. Due to edge effects of the filter and the
streamwise derivative, a segment of duration (a2D/2 1
dx)/^ud& is discarded from beginning and end of the time
series of all filtered variables. Then averages for various
time scales Tc are computed. For an analysis of filter
accuracy, see Horst et al. (2004) and Cerutti and Me-
neveau (2000).

Gradients are calculated with finite differences (FDs).
In the vertical direction (x3 5 z), the setup necessitates
a first-order one-sided FD ]ũ/]z | 5 (zs 2 zd)21[ũ(zs)zd

2 ũ(zd)]. In the horizontal directions, a second-order
centered FD scheme is used, for example, for the y
direction: ]ũi/]y | 5 (2dy)21[ũi(y0 1 dy) 2 ũi(y0 2y0

dy)]. Assuming Taylor’s hypothesis, the same formula
with dx 5 dy is used in the streamwise direction to
compute ]ũi/]x.

In order to depict the available data as a function of
stability and array, KMP divided the data into segments

of length 6.8 min. These segments were classified ac-
cording to stability, characterized in terms of Obukhov
length L, defined as in Eq. (12) and yielding a dimen-
sionless parameter D/L. The distribution of data by sta-
bility can be seen in KMP’s Fig. 2 for various heights
(characterized in terms of D/z). In the present paper we
use the same procedure and data classification. In the
following the procedures to compute the model coef-
ficient will be described in more detail.

b. Empirically determined Smagorinsky coefficient:
Procedures and results

The Smagorinsky coefficient is measured from the
field data by matching mean measured and modeled
SGS dissipations PD (Clark et al. 1979; KMP),
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FIG. 3. (a) Comparison of from array 1 of the present paper(D,emp)cs

(z 5 3.13 m, D 5 6.7 m) with from array 2 of Kleissl et al.(D,emp)cs

(2003) (z 5 4.01 m, D 5 8.68 m). The averaging time is Tc 5 6.8
min. (b) Comparison of from the present paper (symbols) with(D,emp)cs

empirical fits of Kleissl et al. (2003) mentioned in Eq. (14). Parameter
is obtained from Eq. (13) by averaging over the total time in(D,emp)cs

each stability bin.

˜^t S &i j i j(D,emp) 2(c ) 5 2 , (13)s
2 ˜ ˜ ˜) )^2D S S S &i j i j

where ^ & denotes Eulerian time averaging of HATS data
over a time scale Tc. KMP analyzed the behavior of

from HATS data as function of parameters D/z(D,emp)cs

and D/L. It was found that the data can be described by
a function of the form:

21 21/nnc D c D0 0(D,emp)c 5 c 1 1 R 1 1 . (14)s 0 1 2 1 2[ ] [ ]a L k z

Here, R is the ramp function. The parameters of Eq.
(14) were determined as n 5 3 and a 5 c0 5 0.135.

In the present paper, the filter size is half of that in
KMP. Figure 1a provides a sketch of the filtering pro-
cedures in the transverse (y or x2) direction. A three-
point top-hat filter with trapezoidal weights [0.25, 0.5,
0.25] is used in the lower array and a two-point filter
with weights [0.5, 0.5] is used in the upper array. In
the streamwise direction, the Gaussian filter is used as
described in the preceding section. Thus filtered veloc-
ities ũi, and SGS stresses t ij, at a scale D 5 2dy are
available at locations 7–13 and between locations 1 and
5 (Fig. 1b). As a result, the filtered strain-rate tensors
can be obtained at locations 9 and 11, using a second-
order centered FD in the horizontal and first-order one-
sided FD in the vertical directions, respectively. Since
t ij is available at these locations as well, the Smago-
rinsky coefficients are evaluated at locations 9(D,emp)cs

and 11. The results from these two locations are essen-
tially identical and only results from location 9 are pre-
sented.

A first question to address is whether the data ana-
lyzed at scale D 5 2dy provide results that are consistent
with those of KMP that were obtained at a larger scale,
using more sensors from each array. To compare our
results with KMP, data from array 2 (D/z ; 1.1) are
divided into stability bins from D/L 5 21 to D/L 5 5
and further divided into subsegments of length Tc 5
3.2 s. This corresponds roughly to a length scale Tc^u&
; 8.7 m, which is on the order of twice the filter scale
D ; 4.3 m. The empirically determined Smagorinsky
model coefficient is obtained by evaluating the(D,emp)cs

averages in Eq. (13) over time Tc. In order to isolate
the dependence on D/L, we compute the conditional
PDF of ( )2, P( | D/L) 5 P( , D/L)/P(D/L), whereD,emp 2 2c c cs s s

P(D/L) is the fraction of data contained in each D/L bin.
The ( )2 range [20.03 , ( )2 , 0.1] is divided intoD Dc cs s

260 bins. Figure 2 shows the conditional PDF of
( )2 using color contours. The figure confirms theD,empcs

results of KMP: decreases in stable conditions andD,empcs

its PDF shows a large spread in unstable conditions with
a considerable number of negative values. The most
likely value of corresponds well to the empirical(D,emp)cs

fit of KMP. Liu et al. (1995) obtained the eddy-viscosity
field without averaging and also found a highly variable

eddy-viscosity field with negative values, which causes
numerical instabilities in LES.

The comparison with KMP is repeated using a larger
averaging time scale Tc. Figure 3a shows a direct com-
parison of data from array 1 (D/z ; 2.1) of the present
paper with data from a better-resolved filter but same
D/z from array 2 of KMP for an averaging time scale
of Tc 5 6.8 min. The results agree very well, even
though they are obtained from two different arrays. The
agreement confirms that the curves collapse for a given
D/z, independent of the dimensional values of D or z.
Finally, in Fig. 3b we perform a comparison based on
the global time averages of SGS dissipations. Here we
average the terms in Eq. (13) over all data available in
each D/L bin, obtaining a single measured value of

in each bin. The coefficients are very close to(D,emp)cs

the lines that are the predictions from the fit of KMP.
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FIG. 4. Median q2 and spread (q3 2 q1)/q2 of the ( )2 distributionD,empcs

as a function of averaging time scale Tc for different stabilities: un-
stable (20.5 , D/L , 20.25), near neutral (0 , D/L , 0.25), and
stable (2 , D/L , 2.5). The data are from array 2.

Only in unstable conditions are the predictions about
;10% too small. Besides confirming the collapse of the
data, this comparison shows that the coarser filter res-
olution in the lateral direction (using only two or three
sensors) does not affect the prediction of .(D)cs

To provide a systematic description of the effects of
averaging time Tc upon the statistics of , the main(D,emp)cs

aspects of the PDF of are documented as func-(D,emp)cs

tions of Tc. Figure 4 displays the median of as(D,emp)cs

a function of Tc for different stabilities. As reported in
KMP, the median of is constant with averaging(D,emp)cs

time and much smaller in stable conditions than in un-
stable and neutral conditions. In unstable conditions the
median increases slightly with averaging time. A mea-
sure of the spread of the PDF is documented in terms
of the difference between third and first quartile nor-
malized by the second quartile. As expected, this mea-
sure decreases with increasing Tc, in neutral and unsta-
ble conditions. As reported in KMP, the decrease is
weaker in stable conditions, which can be attributed to
larger intermittency in stable conditions.

c. Scale-invariant dynamic model: Procedures

In order to obtain the dynamic model coefficient from
Eq. (7), filtered strain-rate tensors and velocity vectors
at a scale D have to be filtered at aD to evaluate Lij and
Mij. Usually a 5 2, but the limited maximum filter width
in the lateral direction requires us to use a 5 1.75 in
the present study. As shown in Germano et al. (1991),
the sensitivity of the dynamic coefficient to a is not
expected to be important. Figure 1b shows that S̃ij at a
scale D can be obtained at locations 7, 9, 11, and 13.
At locations 9 and 11 S̃ij is computed from centered
horizontal FD and one-sided vertical FD. At locations
7 and 13, the horizontal and the vertical FDs are one-

sided. A filter of size 1.75D is applied to ũi, S̃ij, | S̃ | ,
and | S̃ | S̃ij. The filter weight wi associated with a var-
iable (already filtered at scale D) at location yi, used to
compute a test-filtered variable at location yaD, is eval-
uated as follows: 5 | [yi 2 D/2, yi 1 D/2] ù [yaDw*i
2 aD/2, yaD 1 aD/2] | , where [yi 2 D/2, yi 1 D/2] is
the segment of length D surrounding the point yi, and
[yaD 2 aD/2, yaD 1 aD/2] is the segment of length aD
surrounding the point yaD. Variables yi and yaD are the
y coordinates of the instrument at location i and the test-
filtered variable, respectively. Weights are normal-w*i
ized so that they sum up to 1: wi 5 /S i . Thisw* w*i i

procedure gives weights of wi 5 [0.214, 0.571, 0.214]
for locations i 5 [7, 9, 11] and i 5 [9, 11, 13]. Using
the test-filtered variables, the time series of LijMij and
MijMij are computed at locations 9 and 11, averaged
over a time scale Tc, and divided to obtain using(D,dyn)cs

Eq. (7). Note that in defining a, we follow the prevalent
usage in practical implementations of the dynamic mod-
el of not taking into account the effects of compound
filtering (see, however, Najjar and Tafti 1996 for a dis-
cussion of effects of compound filters and a quantifi-
cation of its effects on LES using the dynamic model).

d. Scale-dependent dynamic model: Procedures

The scale-dependent dynamic coefficient is obtained
similarly to procedures described in section 2c. The fil-
tered strain-rate tensors and filtered velocity vectors of
Fig. 1b are now, however, filtered at a2D 5 1.752D.
The same weighting scheme as in section 2c produces
weights of wi 5 [0.18, 0.32, 0.32, 0.18] for strain-rate
tensors at locations [7, 9, 11, 13]. The resulting | ij,̂̃̃S | S
and | | are used to compute Nij, while andˆ ̂˜ ˆ˜ ̂S S ũ ũ ũij i j i

are used to compute Qij.
It is important to note that Nij is a function of b.

Parameter b is computed using procedures identical to
those in Porté-Agel et al. (2000a, hereafter POR). Six
coefficients of a fifth-order polynomial in b are obtained
from averaging products of strain rates and resolved
stresses over Tc, as described in the appendix [Eqs.
(A2)–(A10)]. Then the roots of the polynomial in b are
determined by the ‘‘roots’’ function in MATLAB (The
Mathworks Inc.). As argued in POR, only the largest
real root is physically meaningful. A time series of Qij

and Nij is obtained from Eq. (9) using the b value de-
rived from quantities averaged over Tc. Finally, the
scale-dependent dynamic procedure yields the coeffi-
cient at a scale D as ( )2 5 ^QijNij&/^NijNij&.(D,sd–dyn)cs

3. Smagorinsky coefficients determined from
dynamic SGS models

a. Scale-invariant dynamic model: Results

To begin, the scale-invariant, dynamically determined
Smagorinsky model coefficient is obtained ac-(D,dyn)cs

cording to section 2c by evaluating the averages over
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FIG. 5. Contours plots of the PDF of ( )2 conditioned on D/L forD,dyncs

array 2 (D/z ; 1.1). The contours show log10P( | D/L). The averaging2cs

time to compute is Tc 5 3.2 s ; 2.0D/^u&. The solid line is the(D)cs

empirical fit of Eq. (14). The dashed line shows ( )2 5 0.Dcs

FIG. 6. Smagorinsky coefficient as a function of D/L for(D,dyn)cs

arrays 1 and 2 and an averaging time of Tc 5 6.8 min.

FIG. 7. Comparison of (symbols) with empirical fits for(D,dyn)cs

of Kleissl et al. (2003) [Eq. (14)]. Variables are averaged over(D,emp)cs

all segments in each stability bin.

time Tc 5 3.2 s for array 2. Figure 5 shows the PDF
of ( )2 conditioned on D/L using color contours. It(D,dyn)cs

is apparent that the most likely value of ( )2 depends(D,dyn)cs

on stability. It is very close to zero for D/L . 1 and
increases strongly in near-neutral conditions (D/L ; 0).
In neutral and unstable conditions, the spread in the PDF
is large with a considerable number of negative values.
These trends are consistent with those of the empirical
coefficient reported in section 2b. However, comparing
the color contours with the line from the fit in Eq. (14)
and with the conditional PDF of in Fig. 2, it can(D,emp)cs

be seen that the dynamically determined coefficients are
too small, especially in conditions of stable stratification
(D/L . 0).

Figure 6 shows the empirically and dynamically de-
termined coefficient for a longer averaging time Tc 5
6.8 min and for arrays 1 and 2. At this averaging scale
too, the results confirm that the dynamic model predicts
a coefficient that is significantly smaller than .(D,emp)cs

Finally, the same results are obtained when performing
the averages over all available data as shown in Fig. 7,
where one value of is plotted for each D/L bin.(D,dyn)cs

The dynamic procedure predicts the correct basic
trends of the coefficient with stability (D/L) and height
(D/z), but the magnitudes of the coefficients are too
small by significant factors. In unstable and neutral con-
ditions, factors range from 2 to 5. In very stable con-
ditions this factor is as large as an order of magnitude
or more. Thus, the energy transfer (PD) from resolved
scales to SGS is too small, and in an LES using such
a model one would expect a high-wavenumber pileup
of energy in the spectra near the wall. This weakness
of the dynamic model was already observed in an LES
of the ABL (POR) in neutral conditions, and present
results suggest that this weakness would be exacerbated
in conditions of stable stratification.

The variability of is examined in Fig. 8 by(D,dyn)cs

plotting the quartiles of the ( )2 distribution for dif-D,dyncs

ferent averaging times Tc. The median of is very(D,dyn)cs

similar for Tc ranging from 0.05 s (no averaging) to
hours. The relative spread of the PDF decreases with
averaging time, which agrees with results from KMP
and Fig. 4 for .(D,emp)cs

In summary, the results for consistently show(D,dyn)cs

that the dynamic procedure underpredicts the Smago-
rinsky coefficient when D is close to, or exceeds, L or
z, or both. This deficiency is not surprising. As sug-
gested by the same empirical fit through the available
data for [Eq. (14)], for any fixed value of z or L(D,emp)cs

the coefficient is dependent upon D unless D K L and
D K z. Thus, the expected behavior of the coefficient
contradicts the basic assumption of scale invariance un-
derlying the dynamic model. This was already noted in
POR for the neutral case but D . z. The scale-dependent
dynamic model described in section 2d addresses this
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FIG. 8. Median q2 and spread (q3 2 q1)/q2 of the ( )2 distributionD,dyncs

as a function of averaging time scale Tc for different stabilities: un-
stable (20.5 , D/L , 20.25), near neutral (0 , D/L , 0.25), and
stable (2 , D/L , 2.5). The data are from array 2.

FIG. 10. Contour plots of conditional PDF of (a) b and (b)
( )2 from the scale-dependent dynamic model. The contours(D,sd–dyn)cs

show (a) log10P(b | D/L) and (b) log10P( | D/L). The averaging time2cs

to compute and b is Tc 5 3.2 s ; 2.0D/^u&. The dashed line in(D)cs

(a) shows b 5 0.327 [cf. Eq. (15)]. The dashed and solid lines in
(b) show ( )2 5 0 and the empirical fit of Eq. (14), respectively.Dcs

FIG. 9. Representative fifth-order polynomials P(b) from Eq. (A2)
for different stabilities and D/z ; 1.1. The squares mark the largest
roots b 5 0.593, 0.442, and 0.330.

problem. In the following section we analyze the data
to study whether the scale-dependent model yields more
realistic predictions of the coefficient compared to the
standard dynamic model.

b. Scale-dependent dynamic model: Results

Analysis for the scale-dependent dynamic model first
requires computation of the parameter describing scale
dependence of the Smagorinsky coefficient, b 5 ( )2/aDcs

( )2. Again, data from array 2 (D/z ; 1.1) are dividedDcs

into bins of different stabilities ranging from D/L 5 21
to D/L 5 5, and divided into subsegments of length Tc.
Parameter b is obtained according to section 2d.
Specifically, we use Eqs. (A2)–(A10). Averages such as

^ | | ij Lij& or ^ | | 2 & are evaluated over a timeˆ ˆ ˆ˜ ˜ ˜˜ ˜S S S S Sij ij

scale Tc. Figure 9 shows a few representative polyno-
mials P(b) for the case Tc 5 6.8 min for three values
of D/L. The largest root is the value of b that solves
the condition of Eqs. (A1) and (A2) (POR).

Parameter b is computed for the short-duration aver-
aging time of Tc 5 3.2, and b is obtained in each segment.
The conditional PDF of b is presented in Fig. 10a, where
the b range (0 , b , 1.5) is divided into 150 bins. Note
that b also depends on stability. In very stable conditions
most b values are close to 0.3. The lower bound of b
can be explained by considering the limit of for small(D)cs

L: } (D/L)21. Consequently,(D)cs

2(1.75D) 2 2(c ) (1/1.75D) 1sb 5 → 5 ø 0.327. (15)
(D) 2 2 1 2(c ) (1/D) 1.75s
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FIG. 11. Arrays 1 and 2 (a) b and (b) as a function of(D,sd–dyn)cs

D/L. The averaging time is Tc 5 6.8 min.
FIG. 12. (a) Scale-dependence parameter b for array 1 (D/z ; 2.1)

and array 2 (D/z ; 1.1). (b) Comparison of (symbols) with(D,sd–dyn)cs

empirical fits for of Kleissl et al. (2003) [Eq. (14)]. Variables(D,emp)cs

are averaged over all segments in each stability bin.
For D/L , 0.5, b increases and reaches a most likely

value of b ; 0.5. Recall that for scale invariance one
would expect a limiting behavior of b ; 1. Here we
obtain b , 1 since even in the neutral case D . z and
thus b , 1 for the reasons explored in POR. The data
analysis is repeated by increasing the averaging time Tc

to cover segments of length Tc 5 6.8 min, as well as
over very long averaging covering all data segments in
each stability bin. Results are shown in Figs. 11a and
12a, respectively. The observations from results for Tc

5 3.2 s (Fig. 10a) are confirmed since b is close to its
lower bound 0.327 for D/L . 1 and increases to values
between 0.5 and 0.7 in neutral and unstable conditions.
The parameter b is very similar for D/z ; 2.1 and for
D/z ; 1.1. The magnitude of b in the present analysis
compares well with Fig. 10 in POR. They obtain a sig-
nificant increase from b ; 0.5 at D/z 5 2 to b ; 0.65
at D/z 5 1.1 in neutral conditions (D/L 5 0), quite
consistent with present field measurement results. The
limit of large z/D (D K z), where the turbulence is better
resolved, cannot be verified with the HATS data for

which D is comparable or larger than z. Figure 13 shows
that the median of b is constant with averaging time
and the variability decreases with Tc.

The model coefficient, , predicted from the(D,sd–dyn)cs

scale-dependent dynamic model, is obtained by replac-
ing the measured b value in the expression for Nij (see
section 2d). The analysis is performed again using sev-
eral averaging times Tc 5 3.2 s, Tc 5 6.8 min, as well
as a large Tc encompassing all available data in each
bin. As before, results for Tc 5 3.2 s are presented in
terms of a conditional PDF for for the case(D,sd–dyn)cs

D/z ; 1.1 and 21 , D/L , 5 in Fig. 10b. The general
trend in the relationship with stability is similar to that
observed for in Fig. 5, but the spread in the PDF(D,dyn)cs

is considerably larger. Results from the intermediate
time scale Tc 5 6.8 min, in which b computed at that
time scale is used, are shown in Fig. 11b. Results clearly
show that the scale-dependent dynamic model predicts

quite well in unstable and neutral conditions. In(D,emp)cs
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FIG. 13. Median q2 and spread (q3 2 q1)/q2 of the (a) b and (b)
( )2 distributions as a function of averaging time scale Tc for dif-D,sd–dyncs

ferent stabilities: unstable (20.5 , D/L , 20.25), near neutral (0 , D/
L , 0.25), and stable (2 , D/L , 2.5). The data are from array 2.

stable conditions, the prediction is still improved com-
pared to the dynamic model (Fig. 6), but significant
scatter persists. Finally, we present results using the
longest Tc, by averaging over the entire dataset in each
stability bin. Results are shown in Fig. 12b. As can be
seen obtained from long time averaging predicts(D,sd–dyn)cs

and its dependence on stability and height quite(D,emp)cs

accurately.
The variability of is examined in Fig. 13b.(D,sd–dyn)cs

The variability is larger than for and it reduces(D,emp)cs

subsequently for Tc . 3.2 s. Also, in unstable conditions
the median increases significantly with averaging time
for Tc . 3.2 s. If a reasonable criterion is introduced
that requires the median of to differ less than(D,sd–dyn)cs

10% from the median of , then Fig. 13b suggests(D,emp)cs

that the Eulerian averaging time scale Tc should cor-
respond to at least 12.8 s, or about eight filter scales (8
ø 12.8^u&/D).

To confirm that we have obtained results that are

unique to turbulence signals under the present physical
conditions and do not occur for any time series of ran-
dom numbers, the procedure to compute dynamic and
scale-dependent dynamic coefficients is tested with a
time series of random velocity vectors. We generate
random velocity fluctuations by distributing 3D vectors
whose length is sampled from a uniform distribution in
[0, 1] m s21, and whose direction is uniformly distrib-
uted over a sphere. Both white-noise and colored-noise
signals (with a 25/3 energy spectrum for each velocity
component) are used. The resulting , , and(D,emp) (D,dyn)c cs s

feature symmetric PDFs with a strong peak at(D,sd–dyn)cs

( )2 5 0, that is, as expected random signals do not(D)cs

have the correlations between Lij and Mij associated with
net energy flux to smaller scales and a nonzero value
of the coefficient. The resulting PDF for b is positively
skewed, increasing for b . 0.327 and but reaching a
peak at b ; 0.45. This is significantly different from
the results of the present paper, where for example the
peak in P(b | D/L) for stable conditions in Fig. 10a is
narrow and much closer to 0.327.

4. Conclusions

Predictions of the scale-invariant dynamic SGS model
(Germano et al. 1991) and the scale-dependent dynamic
SGS model (Porté-Agel et al. 2000a) for the Smagorin-
sky coefficient have been tested a priori with a large(D)cs

dataset from two horizontal arrays of fourteen 3D sonic
anemometers in the atmospheric surface layer. Figures
14a and 14b summarize the results by comparing the
empirically determined with predictions from(D,emp)cs

scale-invariant and scale-dependent dynamic models for
both values of D/z considered. Clearly, the scale-in-
variance assumption of the dynamic model breaks down
when the filter size is large (D . z or D . L), resulting
in coefficients that are too small. In an LES of the ABL
this is expected to lead to unrealistic velocity profiles
near the surface and a pileup of energy reflected in flat
velocity spectra.

The scale-dependent dynamic model accounts for
scale dependence of the coefficient. As a result the pre-
dicted coefficient is close to the value measured by the
dissipation balance. It needs to be stressed that the ad-
ditional parameter introduced by the scale-dependent
dynamic model b is not empirically tuned, but rather
determined dynamically from the large scales. Despite
the resulting improvement in predicting the coefficient
that produces the correct SGS dissipation compared to
the scale-invariant dynamic model, it is reiterated that
even ‘‘perfect’’ prediction of the coefficient does not
increase the correlation between measured and modeled
SGS stresses. This deficiency of the eddy-viscosity clo-
sure is related to misalignment of the eigenvectors of
SGS stress and strain-rate tensors.

The results for the scale-dependent dynamic model
show that short time averaging yields predicted coef-
ficients that fluctuate greatly. This can be problematic
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FIG. 14. Smagorinsky coefficient as a function of D/L for dif-(D)cs

ferent SGS models. Variables are averaged over all segments in each
stability bin. (a) Array 1, D/z ; 2.1 and (b) array 2, D/z ; 1.1.

in implementations where the extent of averaging is
limited (e.g., flows in complex geometries). The data
also suggest that the scatter in the prediction is reduced
when the Eulerian averaging time scale is greater than
;8 times the time scale associated with the filter scale.
Such a time scale is somewhat larger than averaging
time scales usually employed in the Lagrangian dynamic
model (Meneveau et al. 1996). However, due to the
fundamental differences between Lagrangian and Eu-
lerian averaging the applicability of the result to La-
grangian averaging is uncertain and remains to be ex-
plored in simulations.
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APPENDIX

Evaluation of b

From the introduction it is known that ( )2 5(D)cs

^LijMij&/^MijMij& 5 ^QijNij&/^NijNij&. This equality can be
rewritten as

^L M &^N N & 2 ^Q N &^M M & 5 0,ij ij ij ij ij ij ij ij (A1)

which has two unknowns, b 5 ( )2/( )2 and u 5(aD) (D)c cs s

( )2/( )2. As shown in POR, one unknown can be2(a D) (D)c cs s

eliminated by assuming a basic functional form of the
scale dependence of the coefficient. A power-law as-
sumption ( )2 5 ( )2af yields u 5 b2. After sub-(aD) (D)c cs s

stituting, Eq. (A1) can be written as a fifth-order poly-
nomial in b:

2 3 4 5P(b) [ A 1 A b 1 A b 1 A b 1 A b 1 A b 5 0.0 1 2 3 4 5

(A2)

Above,

A 5 b c 2 b c , A 5 a c 2 b e , (A3)0 2 1 1 2 1 1 2 2 1

A 5 b d 1 b e 2 a c , A 5 a e 2 a e , (A4)2 2 1 1 2 2 1 3 2 1 1 2

A 5 2a d 2 b d , A 5 a d , (A5)4 2 1 1 2 5 1 2

where

2 2 4 2 ̂ ̂˜ ˜ ˜ ˜) ) ) )a 5 22a D S S L , a 5 22a D S S Q ,7 87 81 i j i j 2 i j i j

(A6)

̂2 2˜ ˜ ˜ ˜)) ) )7 8b 5 22D S S L , b 5 22D S S Q ,7 81 i j 2 i ji j i j

(A7)

̂ ̂4 4˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜) )) ) ) ) ) )7 8c 5 4D S S S S , c 5 4D S S S S ,7 81 2i j i j i j i j

(A8)
2 24 4 8 4 ̂ ̂ ̂˜ ˜ ˜ ˜ ˜ ˜) ) ) )d 5 4a D S S S , d 5 4a D S S S ,7 8 7 81 i j i j 2 i j i j

(A9)̂2 4 4 4 ̂ ̂˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜) ) ) ) ) ) ) )e 5 8a D S S S S , e 5 8a D S S S S .7 87 81 i j i j 2 i j i j

(A10)
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