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Abstract. Atmospheric measurements from several field experiments have been combined to de-
velop a better understanding of the turbulence structure of the stable atmospheric boundary layer.
Fast response wind velocity and temperature data have been recorded using 3-dimensional sonic
anemometers, placed at several heights (≈1 m to 4.3 m) above the ground. The measurements were
used to calculate the standard deviations of the three components of the wind velocity, temperature,
turbulent kinetic energy (TKE) dissipation and temperature variance dissipation. These data were
normalized and plotted according to Monin–Obukhov similarity theory. The non-dimensional turbu-
lence statistics have been computed, in part, to investigate the general applicability of the concept
of z-less stratification for stable conditions. From the analysis of a data set covering almost five
orders of magnitude in the stability parameterζ = z/L (from near-neutral to very stable atmospheric
stability), it was found that this concept does not hold in general. It was only for the non-dimensional
standard deviation of temperature and the average dissipation rate of turbulent kinetic energy thatz-
less behaviour has been found. The other variables studied here (non-dimensional standard deviations
of u, v, andw velocity components and dissipation of temperature variance) did not follow the
concept ofz-less stratification for the very stable atmospheric boundary layer. An imbalance between
production and dissipation of TKE was found for the near-neutral limit approached from the stable
regime, which matches with previous results for near-neutral stability approached from the unstable
regime.
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1. Introduction

Monin–Obukhov similarity (Monin and Obukhov, 1954) for the atmospheric
boundary layer (ABL) under unstable stability has been extensively studied (see
Businger et al., 1971; Wyngaard et al., 1971; Kaimal et al., 1976; Kader and
Yaglom, 1990). There is a long history of field experiments contributing to the con-
tinuing development of Monin–Obukhov similarity (e.g., Takeuchi 1961; Businger
et al., 1971; Wyngaard and Coté, 1971; Merry and Panofsky, 1976; Nieuwstadt,
1984a; Sorbjan, 1986; Brutsaert, 1992, Parlange and Katul, 1995; Mahrt et al.,
1998). The experimental results for unstable conditions are extensive and are
routinely used in applications (Parlange et al., 1995). Considerably fewer stud-
ies exist that cover the very stable boundary layer, even though this is of great
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practical importance (Mahrt, 1998). Some insight into the structure of the stably
stratified ABL has been gained through several studies (e.g., Caughey et al.,
1979; Nieuwstadt, 1984a,b; Smedman, 1988) and a number of more recent ex-
perimental investigations on Monin–Obukhov similarity under stable stability have
been published (e.g., Dias et al., 1995; Dias and Brutsaert, 1996; Forrer and Rotach,
1997; Howell and Sun, 1999; Mahrt, 1999). Similarity under stable stratification
remains less well studied. Progress in understanding boundary-layer turbulence
under stable stability is made more slowly than for the unstable case due to its
sensitivity to drainage forces generated by even slight terrain slopes (Caughey
et al., 1979), low-level jets, the influence of gravity waves (Finnigan, 1999) and
other mesoscale motions (e.g., cold air drainage and meandering motions) (Mahrt,
1998). Knowledge of the turbulence structure under stable atmospheric conditions
remains of great importance, especially for applications in air pollution. Other areas
that will greatly benefit from an improved description of the stable atmospheric
boundary layer include flux-dissipation methods for heat and momentum calcula-
tions (Parlange et al., 1999) and numerical modelling of the boundary layer with
large-scale models or large-eddy simulation (LES) models.

In this work, extensive data sets from several field experiments are combined to
study Monin–Obukhov similarity under stable stratification. The stability range
considered here extends to strong atmospheric stability relative to most other
field observations. Under strong stability, Monin–Obukhov similarity theory sug-
gests that all turbulence statistics become independent of the heightz above the
ground. In this study we examine that suggestion, sometimes referred to asz-less
stratification (Wyngaard and Coté, 1972).

2. Background

2.1. MONIN–OBUKHOV SIMILARITY

Monin–Obukhov (hereafter M–O) similarity theory for the ABL was developed
for a stationary atmospheric surface layer over horizontally homogeneous terrain.
The structure of turbulence is determined by the kinematic surface stressτ0/ρ, the
buoyancy parameterg/ 〈θ〉 , the surface heat flux

〈
w′θ ′

〉
0, and the height above

groundz, whereτ0 is the surface shear stress,ρ is the air density,g is acceleration
due to gravity,w′ is the vertical velocity fluctuation,θ ′ is the temperature fluc-
tuation and〈·〉 denotes the averaging operation. These parameters are needed to
define the velocity, temperature and length scales. Generally the friction velocity
u∗, the temperature scaleθ∗, height above groundz and the Obukhov lengthL are
chosen as surface-layer scales. They are defined as follows:

u∗ = (τ0/ρ)
1/2 = (− 〈u′w′〉0)1/2 , (1)
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θ∗ =
− 〈w′θ ′〉0
u∗

, (2)

L = −u
3∗ 〈θ〉

kg 〈w′θ ′〉0 , (3)

whereu′ is the longitudinal velocity fluctuation andk (= 0.4) is von Karman’s
constant.

Dimensional analysis shows that an atmospheric turbulence property or stat-
istics, such as gradients, variances and covariances, when properly scaled, are
universal functions of the stability parameterζ (= z/L) (Brutsaert, 1999). The ex-
act forms of these functions are not predicted by theory and have to be determined
through field experiments.

It is often useful to consider the limits of surface-layer similarity under ex-
treme unstable (so-called ‘free convective’) or extreme stable (‘z-less’) stability
conditions. Here we focus on the case of very stable stratification. For this limit it
has been suggested thatz is no longer of importance (Monin and Yaglom, 1971)
and it was apparently first termed ‘z-less stratification’ by Wyngaard and Coté
(1972). Under strong stable stratification, the existence of large-scale turbulent
fluctuations becomes impossible (since these fluctuations would have to expend
too much energy in performing work against the gravity forces), and turbulence
can exist only in the form of small scale eddies (Monin and Yaglom, 1971, p.
437). If stable stratification increases even further, the eddy size should be limited
entirely by stability and not by the distance from the surface. The three remaining
parameters are the kinematic surface stressτ0/ρ, the buoyancy parameterg/ 〈θ〉
and the surface heat flux

〈
w′θ ′

〉
0.

2.2. BUDGET EQUATIONS FOR TURBULENT KINETIC ENERGY AND

TEMPERATURE VARIANCE

The time averaged turbulent kinetic energy budget equation per unit mass for
stationary flow over a homogeneous surface is

− 〈u′w′〉 ∂U
∂z
+ g

〈
w′θ ′

〉
〈θ〉 −

∂
〈
ew′

〉
∂z
− 1

ρ

∂
〈
p′w′

〉
∂z

= ε, (4)

whereU is the mean longitudinal velocity,e = (1/2)
(
u′2 + v′2 + w′2

)
is the TKE,

p′ is the fluctuating component of pressure andε is the mean dissipation rate of
TKE (Stull, 1988). The first two terms on the left hand side represent the production
rates of turbulence by shear and buoyancy, respectively. The third term on the left is
the divergence of vertical turbulent flux and the fourth term describes the transport
due to pressure. The term on the right hand side is the viscous dissipation term.
Equation (4) is non-dimensionalized by multiplying (4) withkz/u3∗:

φm − z

L
− φt − φp = φε. (5)
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Numerous studies have been carried out to find an expression for the dimen-
sionless shear (Dyer and Hicks, 1970; Businger et al., 1971; Högström, 1988;
Beljaars and Holtslag, 1991; Howell and Sun, 1999). A linear relation for the shear
production of the formφm = 1+ β (z/L) is usually used to fit observations over
the entire stable range. This form also satisfies the concept ofz-less scaling for
the limit of very strong stability (Wyngaard and Coté, 1972). A universal value for
the constantβ has yet to be found under stable conditions. For the dimensionless

dissipationφε Wyngaard and Coté (1971) suggestedφε =
[
1+ 2.5(z/L)3/5

]3/2
.

Another form,φε = 1+5(z/L)was given in Kaimal and Finnigan (1994) assuming
the normalized dissipation rate to be unity for neutral conditions. It is often argued
that, for neutral stability, buoyant destruction (z/L) and the transport terms (φt and
φp) are equal to zero and therefore shear production equals dissipation. It has been
found in a number of studies that this is not the case (Högström, 1990a; Frenzen
and Vogel, 1992; Albertson et al., 1997).

In the stable surface layer the contribution of the individual terms in (5) is often
assumed to beφm ' φε andφt ' 0, and therefore transport due to pressure has
to balance buoyant destruction. But as Kaimal and Finnigan (1994) point out, the
question of energy balance in the stable layer remains unresolved. In particular,
uncertainty exists for the very stable stratified boundary layer and in the present
work we address some of these unresolved issues.

For steady, horizontally homogeneous flow the budget equation for temperature
variance (actually the budget forθ ′2/2 to be consistent with the form of the TKE)
is

− 〈w′θ ′〉 ∂2
∂z
− 1

2

∂
〈
w′θ ′2

〉
∂z

= εθ , (6)

where the first term is the average production rate (2 is the mean air temperature),
the second term represents the flux divergence of the temperature variance andεθ
is the mean dissipation of the temperature variance (Stull, 1988). Equation (6) can
be non-dimensionalized bykzu∗/

〈
w′θ ′

〉2
to obtain

φh − φT = φεθ . (7)

Functional relationships for the dimensionless production of temperature vari-
anceφh have been proposed. A commonly used form isφh = 1 + γ (z/L). No
universal value for the constantγ has been found yet. Often, the transport term
is found to be negligible compared toφh and φεθ (Wyngaard and Coté, 1972;
Champagne et al., 1977; Panofsky and Dutton, 1984). This leads to an even more
simplified budget for the temperature variance:φh − φεθ = 0. We will focus in our
study on the dissipation of temperature variance.
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2.3. METHODS TO DETERMINE MEAN DISSIPATION OFTKE, ε AND

TEMPERATURE VARIANCE, εθ

In order to evaluate the mean dissipation of turbulent kinetic energyε, direct or
indirect methods can be used. Direct methods require measurements that extend
to very small scales, preferably to the Kolmogorov microscaleη (∼ 1 mm in the
ABL) to obtain meaningful results. In this study we will resort to the so-called
indirect methods, and will use second- and third-order structure functions to obtain
ε andεθ .

The second- and third-order longitudinal structure functions (Duu andDuuu) and
the second-order temperature and mixed velocity-temperature structure functions
(Dθθ andDuθθ ) of locally isotropic turbulence are related through

Duuu (r)− 6ν
dDuu (r)

dr
= −4

5
〈ε〉 r, (8)

Duθθ (r)− 2χ
dDθθ (r)

dr
= −4

3
〈εθ 〉 r, (9)

whereν is the kinematic viscosity of air,χ is the molecular diffusivity for heat,ε
is the turbulent kinetic energy dissipation rate per unit mass,εθ is the dissipation
rate of the temperature variance andr is the separation distance in the longitudinal
direction (Yaglom, 1949; Monin and Yaglom, 1975, pp. 395–401). These equations
are satisfied for sufficiently large Reynolds and Peclet numbers. In the surface
layer, an appropriate Reynolds number isRe = u∗z

ν
≈ O

(
105

)
. Since the Peclet

number and the Reynolds number are related byPe = ν
χ
Re the requirements for

the above equations (8) and (9) to be valid are certainly met in the ABL. For the
limit r � η (which corresponds to the inertial subrange), viscous friction and
molecular thermal conduction are negligible, which simplifies (8) and (9) to

Duuu (r) = −4

5
〈ε〉 r, (10)

Duθθ (r) = −4

3
〈εθ 〉 r. (11)

We draw our conclusions from the results obtained with the third-order structure
functions, as opposed to the second-order structure functions, since the numerical
coefficients in (10) and (11) are exact (von Karman and Howarth, 1938). The
use of second-order structure functions requires one to choose values for the free
constants involved, which would add uncertainty to the analysis.

Using these results and combining them with the definition of the third-order
structure function which represents the averaged cubed velocity differences over
lag r (Monin and Yaglom, 1975, Ch. 8)

Duuu (r) =
〈
(u (x + r)− u (x))3〉 , (12)
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the mean dissipation rate of TKE,ε can be calculated. Similarly, the mean dis-
sipation rate of temperature variance,εθ can be obtained. The mixed third-order
structure function, representing the product of the longitudinal velocity difference
and the squared temperature difference as a function of lagr, is given by

Duθθ (r) =
〈
(u (x + r)− u (x)) (θ (x + r)− θ (x))2〉 . (13)

Combining (11) and (13) yields the mean dissipation rate of temperature variance.

3. Experiments

For all five experiments considered in this study 3-dimensional sonic anemometers
have been used to measure the three velocity components (u, v,w) and the air tem-
perature (θ). The two types of sonic anemometers used for these experiments were
a Gill triaxial ultrasonic anemometer (Gill Instruments/1012R2) with a pathlength
dsl = 0.149 m and a Campbell Scientific CSAT3 sonic anemometer (dsl = 0.1
m). The basic working principle for sonic anemometers of this type is that the air
movement effect on the transit time of sound pulses travelling in opposite directions
across a known instrument path lengthdsl is measured. This is, the wind velocity
vector projected on the acoustic path is measured. A disadvantage of the sonic
anemometer is the wavelength distortion due to line-averaging along the sonic path
dsl. According to Kaimal (1986), the distortion is confined to wavelengths smaller
than 2πdsl (= λd), and in order to obtain undistorted spectral response, this limiting
wavelength will be taken into account for the analysis.

Table I shows a summary of the experiments. The total number of runs used
for this study is 479. The Davis data have been collected at the Campbell Tract re-
search field at the University of California at Davis and the Iowa data were obtained
during a field experiment in Amana, Iowa. The sites were flat fields with long fetch
(between 400 m and 700 m) in the upwind direction and with varying surface cover
(bare soil, grass and beans). This will allow us to draw conclusions from the results
without the possible bias by data collected at one site with a specific surface cover.

This extensive data compilation for a wide range of stable atmospheric condi-
tions (more than five orders of magnitude in the stability parameterz/L) provides
more insight into the behaviour of atmospheric turbulence for the stable case.
But one has to be aware of uncertainties arising from different sources and their
influence on the results. Therefore great care has to be taken while performing
the experiment to limit the sources of possible errors and uncertainties. For the
data presented in this study, the recording time for individual runs was between 20
and 30 minutes, which guarantees a large enough sample size of the flux carrying
eddies. Depending on the recording frequency, this results in samples ranging from
roughly 20,000 to 100,000 data points per run. For an increasing number of data
points one can expect more reliable results from the statistical analysis. On the
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TABLE I

Summary of experiments.

Davis 1994 Davis 1995 Davis 1996 Iowa 1998 Davis 1999

sensor height [m] 1.54 1.07 and 0.96 1.7 1.63 to 4.14 1.79 to 4.32

Sampling frequency [Hz] 21 21 18 20–60 20

Sampling period [min] 20 20 20 30 30

Number of runs 48 130 41 53 207

Surface cover beans bare soil; beans bare soil grass bare soil

Canopy height [cm] 13 0 to 15 – 15 –

other hand, stationary atmospheric conditions are required to satisfy the general
applicability of surface-layer similarity theory. Therefore a sampling period has
to be chosen that is long enough to allow for reliable statistics and short enough
to fulfill the stationary condition and to avoid flux sampling problems, which are
often met under stable conditions (Nieuwstadt, 1984a; Mahrt, 1985; Högström,
1988; Howell and Sun, 1999). Every run has been inspected individually to prevent
erroneous results arising from trends in the dataset or unsteady conditions during
the run.

4. Results

4.1. TURBULENCE STATISTICS

To guarantee the suitability of the conversion from the time domain to the space
domain using Taylor’s (1938) frozen turbulence hypothesis the turbulence intensity
(T I = σu/ 〈u〉, whereσ denotes the standard deviation) of each run has been
computed. It has been suggested that Taylor’s hypothesis should be valid when the
turbulence intensity is small compared to the average wind speed (Wyngaard and
Clifford, 1977; Stull, 1988; Peltier et al., 1996) and this criterion has been applied
successfully in several studies (e.g., Kiely et al., 1996; Albertson et al., 1997, Katul
et al., 1997; Tong et al., 1998, 1999; Porté-Agel et al., 1998, 2000, 2001). Data files
with T I > 0.5 have been rejected to satisfy the requirement for the applicability
of Taylor’s hypothesis. This screening reduced the number of files for the analysis
from originally 479 to 446. The coordinate system has been aligned with the mean
wind for each file. The velocity scaleu∗ was computed from the longitudinal stress,
as defined by (1).

Figure 1 shows the normalized standard deviation of theu-velocity component
as a function of the stability parameterζ = z/L. The data suggest that the scaled
u-standard deviation is constant up toζ ≈ 0.1. The constant value forσu/u∗ in
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this weakly stable region was found to be 2.3. This is in agreement with the value
(= 2.3) obtained by Smedman (1988), and also agrees well with the data in Hsieh
and Katul (1997) (their Figure 15b). For very stable conditions,σu/u∗ increases
strongly. This behaviour has also been observed by other researchers (Smedman,
1988; De Bruin et al., 1993; Chu et al., 1996; Hsieh and Katul, 1997). For strongly
stable stratification the turbulent motion is damped (u∗ becomes small) and for
increasingζ the stabilizing effect dominates. The turbulent eddies are no longer
directly influenced by the surface and the length scalez becomes unimportant. This
stable limit was termed ‘localz-less stratification’ (Wyngaard and Coté, 1972).
The data presented in this study show constant behaviour only forζ . 0.1, where
both the velocity standard deviationσu and the friction velocityu∗ increase with
height in the same manner, and departs from being constant for stronger stability.
To cover the entire stability regime with one single expression for all three velocity
components, a general expression to describe the functional relationshipσα/u∗ =
f (z/L), whereα represents the three velocity components, was chosen,

σα

u∗
= a + b (z/L)c . (14)

By performing a least squares analysis the parameters for theu-velocity com-
ponent were found to bea = 2.3, b = 4.3 and c = 0.5. This reduces to
σu/u∗ = 2.3 in the limit z/L = 0, as desired. The plot of (14) with these fitted
coefficients is presented in Figure 1.

Figure 2 shows the normalized values for thev-velocity standard deviation for
the same range of stability as in Figure 1. As for theu component, the ratioσv/u∗
remains constant forζ . 0.1. This is followed by a transition regime. Beyond that
the normalizedv-standard deviation does not showz-less behavior but increases
rapidly. The value for the constant range for weaker stability was found to be 2.0,
somewhat larger than Smedman’s result, which was 1.7. The least squares analysis
gave the following parameters for the functional relationship (14) between the nor-
malizedv-velocity standard deviation and the stability parameterz/L: a = 2.0,
b = 4.0 andc = 0.6. Again, the constant value is retained for the neutral limit
(ζ = 0). The fitted curve is plotted in Figure 2.

The third turbulence property considered is the standard deviation of the vertical
velocity. Whereas only few published data sets for theu andv components exist,
results for thew component can be found frequently in the literature (e.g., Merry
and Panofsky, 1976; Kondo et al., 1978; Nieuwstadt, 1984a; Smedman 1988; De
Bruin et al., 1993; Chu et al., 1996; Mahrt et al., 1998). Even though the scaling
behaviour of thew component seems to be relatively well known, uncertainties
still exist under strong atmospheric stability. In Figure 3 the standard deviation of
thew componentσw, normalized withu∗, is plotted versusζ (= z/L). In this case,
the values ofσw/u∗ approach a constant value of 1.1 forζ . 0.1. Again, we find a
transition regime and for stronger stabilityσw/u∗ begins to increase (forζ > 0.1).
The values for the universal expression (14) were obtained to bea = 1.1, b = 0.9
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Figure 1. u-velocity standard deviation normalized with friction velocityu∗. Symbols represent
data from field experiments in Davis 1999 (circles), Iowa 1998 (upward pointing triangles), Davis
1996 (squares), Davis 1995 (diamonds) and Davis 1994 (downward pointing triangles); solid line
represents best fit.

andc = 0.6, which is plotted with the data in Figure 3. Dias et al. (1995) give a
review of the values found for the constant (termedAw) under stable conditions.
Upon computing an average value for those results obtained by different authors
we findAw = 1.32, slightly larger than the value found here (a = 1.1).

The plots for the three velocity components strongly support the scaling laws
obtained, in particular for two reasons: (1) The large dataset (446 runs) covers
a very broad range ofζ from near neutral to very stable conditions (ζmax = 32.9)
with qualitatively very little scatter. (2) The data were collected over various terrain
(bare soil, beans and grass). This excludes bias due to environmental conditions in
the field.

Högström (1990b) suggests that the general increase of the normalized standard
deviation of the velocity fluctuations is due to the contribution of non-turbulent
mesoscale motions (‘inactive turbulence’) to the variances. This hypothesis was
supported by the results obtained by Mahrt et al. (1998), in which the variables
were recomputed using a 100-s averaging period instead of the original 5-min
averaging period, in order to eliminate the non-turbulent motion. This resulted in a
smallerσV /u∗ (whereV = [u′2+ v′2]1/2) for largeζ values. Also, the relationship
betweenσw/u∗ andζ remained the same, suggesting that the increase in variance
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Figure 2.v-velocity standard deviation normalized with friction velocityu∗ (symbols are the same
as in Figure 1).

is mainly due to horizontal motions. To fully accept this hypothesis, more studies
are needed. It is yet not clear if the effect can be explained by horizontal motions.
In the present work, the coordinate system has been aligned with the mean wind,
reducing〈v〉 to zero. However, the fluctuating components both increase for strong
stable conditions.

It should be noted here, that the functional relationshipσw/u∗ = f (ζ ) is
possibly influenced by self-correlation betweenσw and u∗, as was pointed out
by Mahrt et al. (1998). In Figure 4 the standard deviation of the vertical velo-
city fluctuation is shown as a function of the friction velocity. The relationship is
almost linear. Sinceu∗ is used to normalize the standard deviation and appears in
the Obukhov length (defined in (3)), the correlation between those two parameters
might be partly due to self-correlation.

We continue our discussion on surface-layer scaling under stable conditions by
presenting the results for the normalized standard deviation of temperature as a
function of ζ in Figure 5a. For near-neutral conditionsσθ/θ∗ increases strongly,
whereas it levels off for increasingζ . Since the vertical scale forσθ/θ∗ is large
due to the strong increase for near-neutral conditions, the results are re-plotted on
a smaller scale where the largest values have been omitted (Figure 5b). It can be
seen from this figure that the scatter is larger than for the velocity fluctuations, but
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Figure 3.w-velocity standard deviation normalized with friction velocityu∗ (symbols are the same
as in Figure 1).

σθ/θ∗ becomes independent ofz for increasingζ . The constant value for the nor-
malized temperature standard deviation was found to be 3.0; this value should be
viewed with caution due to the large scatter observed in the data. Other researchers
found values fairly close to this result. For example, Wang and Mitsuta (1991) and
Nieuwstadt (1984a) also found a value of 3.0 and De Bruin et al. (1993) found the
constant to be 2.9. The large increase towards neutral conditions can be explained
by considering the temperature scale, which is defined asθ∗ = −

〈
w′θ ′

〉
/u∗. The

magnitude of the heat flux decreases for decreasing stability, which leads to large
values forσθ/θ∗ when the neutral limit is approached. An expression for the func-
tional relationship betweenσθ/θ∗ andz/L, which includes the effect of weak heat
flux for near-neutral conditions, is

σθ

θ∗
= a (z/L)b + c, (15)

with a = 0.05, b = −1 andc = 3, which is plotted along with the data in Figure
5a, b.

Next, the variation of the negative sensible heat flux with stability is further
studied. Figure 6 shows

〈
w′θ ′

〉
as a function ofz/L. As was mentioned before,

the heat flux decreases for near-neutral stability. For the other limit, under very
stable atmospheric stratification, vertical movement is suppressed by a damping
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Figure 4.Standard deviation of the vertical velocity componentσw versus the friction velocityu∗
(symbols are the same as in Figure 1).

buoyancy effect and therefore the downward heat flux also decreases for very
strong stability and nearly vanishes. In between those limits there exists a region
of relatively strong downward heat flux. From the analyzed data this region was
approximated to be 0.003. z/L . 0.6 (see Figure 6). Mahrt et al. (1998) found
a height dependence for the maximum downward heat flux, which occurred at
z/L = 0.6 for data collected at 10-m height and atz/L = 0.02 for a height of
3 m. Another study by Malhi (1995) revealed a maximum value for the heat flux
at z/L = 0.2. The results were based on data collected atz = 9 m in a nocturnal
boundary layer in Niger, West Africa. In light of these results the dataset considered
here also shows height dependence of the maximum downward heat flux. For the
Davis 1995 data (diamonds in Figure 6), where the sensor height was lowest for
all data considered in this study (see Table I),− 〈w′θ ′〉max occurs approximately
at z/L = 0.007. In contrast to this, the Davis 1994 data (downward pointing
triangles in Figure 6), collected at a height 1.54 m, reveal a maximum downward
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Figure 5a. Temperature standard deviation normalized with friction velocityθ∗ (symbols are the
same as in Figure 1).

Figure 5b.Same as Figure 5a, but rescaled (symbols are the same as in Figure 1).
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Figure 6.Heat flux
〈
w′θ ′

〉
as a function ofz/L (symbols are the same as in Figure 1).

heat flux atz/L = 0.07, which agrees with the value obtained by Mahrt et al.
(1998), but it should be noticed that a second maximum occurs at weaker stability
(z/L ≈ 0.008). Upon removing the data taken during the field experiments in
Davis 1994 and 1995 (low instrument heights), we obtain Figure 7 showing the
remaining data collected at heights ranging from 1.63 m to 4.32 m. The maximum
downward heat flux occurs forz/L = 0.15. This compares well with the result
of Malhi (1995), even though the height difference between the two studies is
significant. It is argued here that a height dependence for− 〈w′θ ′〉max exists, and
that the maximum value for downward heat flux does not have universal character.

The cross correlation between vertical velocity fluctuations and temperature
fluctuationsrwθ

(= 〈w′θ ′〉 / (σwσθ)) (see Figure 8) shows qualitatively the same
behaviour as was seen for the heat flux. The maximum is shifted towards stronger
stability and occurs at roughlyz/L = 0.08. The important fact that can be deduced
from Figure 8 is the decrease ofrwθ for both limits, near neutral and strongly
stable respectively, and a region of strong correlation in between those limits.
In near-neutral stability the temperature fluctuations become very small and the
temperature stratification almost vanishes, resulting in a weak cross correlation
rwθ . The small values ofrwθ for very stable stratification need to be considered
independently. In this case, where turbulence is very weak, large-scale motions
(e.g., gravity waves) with low correlation between vertical velocity and temperature
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Figure 7.Same as Figure 6 but Davis 1994 and Davis 1995 data have been removed and only data
for z ≥ 1.63m is shown (symbols are the same as in Figure 1).

fluctuations predominate. The results obtained here can be viewed as an extension
to the cross correlationrwθ dependence on stability shown in Kaimal and Finnigan
(1994, p. 20). From the arguments used above it should be clear that−rwθ should
become very small for the near-neutral and very stable limit. The cross correlation
in between these limits does not take on a constant value for our data, as was
suggested in Kaimal and Finnigan (1994).

4.2. DISSIPATION OF TURBULENT KINETIC ENERGY AND TEMPERATURE

VARIANCE

In Figure 9 a typical plot of the third-order structure functions for longitudinal
velocity and temperature is shown. They follow a scaling slope of 1 for a wide
range of lagr, clearly indicating the existence of an inertial subrange. We apply an
upper and lower limit to the lag in order to assure that the data for the calculations
stem from the inertial subrange. The lower scale limit is based on Wyngaard’s
(1981) sonic-anemometer distortion criterion (r = dsl) and the upper limit isr =
z/2, being a good approximation for the first 10 m of the atmospheric boundary
layer (Kaimal, 1986). The third-order structure function for velocity has been used
to delineate the inertial subrange, as it is considered to be a more stringent test
of inertial subrange scaling than the second-order form (Anselmet et al., 1984;
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Figure 8.Cross correlation between vertical velocity and temperature fluctuations (symbols are the
same as in Figure 1).

Kiely et al., 1996; Albertson et al., 1998). We use the third-order structure function
forms of Kolmogorov’s (1941) inertial subrange scaling to determine the average
dissipation rates of turbulent kinetic energy and temperature variance.

First, we present the normalized average dissipation rate of TKEφε, perhaps
the most important but least discussed term in the normalized TKE equation (Fren-
zen and Vogel, 1992). Upon computing the average dissipation rate for all 446
runs according to (10) and (12) (the third-order structure function approach) and
normalizing these values tou3∗/kz, we obtain dissipation functionsφε over a wide
range of stability. This is shown in Figure 10. Both the second- and third-order
structure function approaches have been used to compute the dissipation rate of
TKE. We place more confidence on the results obtained with the third-order struc-
ture function, because the constant involved is exact (−4/5). However, the resulting
normalized dissipation rates show the same behaviour for both methods. For brev-
ity, we do not present the results for the second-order structure function. For weak
stability φε remains approximately constant, followed by a short transition period.
Thereafter,φε increases strongly with increasing stability. The arguments made
in the case of velocity and temperature fluctuations for the state of very stable
stratification also apply for dissipation. It has been proposed thatz is no longer
important for the stable limit (Monin and Yaglom, 1971). A generally accepted
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Figure 9. Third-order structure function for longitudinal velocityDuuu and mixed third-order
structure function for temperatureDuθθ .

prediction form for the normalized average dissipation rate isφε being proportional
to the stability parameter:

φε = A+ γ z
L
. (16)

The additive constantA is taken to be one in most cases, assuming production
equals dissipation for neutral atmospheric conditions. Kaimal and Finnigan (1994)
report the constantγ = 5. An important point to be discussed here is that the
data shown in Figure 10 do not suggestφε to be unity for neutral stability. As
a consequence, production does not equal dissipation for neutral conditions. This
was also shown by other researchers. Högström (1990b) finds the near-neutral dis-
sipation rate of TKE to be approximately 25% larger than the production rate, and
Frenzen and Vogel (1992) report dissipation to be about 15% less than production.
Both Högström, and Frenzen and Vogel, find that the Kansas data, analyzed by
Wyngaard and Coté (1971), after re-evaluation, show that dissipation is less than
production for near-neutral conditions. In a recent paper, Albertson et al. (1997)
analyzed surface-layer data under neutral and unstable conditions. They found that
in the neutral limit, the average dissipation rate of TKE was best described as being
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Figure 10.Normalized dissipation rate from third-order structure function (longitudinal velocity)
(symbols are the same as in Figure 1).

constantφε = 0.61. This agrees very well with the data of this study, as can be seen
from Figure 10. The continuous scaling function that best fits the data is

φε = 0.61+ 5
z

L
. (17)

This function is plotted along with the data in Figure 10. The findings made
are very satisfying in a number of ways. The expression found for the normalized
average dissipation rate fits the observations over a stable range of more than five
orders of magnitude. It also connects the unstable and stable sides of the stability
regime. The result found by Albertson et al. (1997) that a constant value of 0.61
close to neutral best representsφε is a very good match to our data. Furthermore,
our observations support an imbalance between production and dissipation near
neutral, as was found by others. This imbalance has to be attributed to the flux
divergence and pressure transport terms in order to close the TKE budget.

Consider the relative contribution of the two terms on the right hand side in
Equation (16). For weak stability the first term on the right hand side dominates.
The second term on the right hand side becomes important for more stable regimes.
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For the limit of very strong stabilityA becomes very small compared toγ (z/L)
and can be neglected. Using the definition ofφε we obtain

φε = ε kz
u3∗
= γ (z/L) (18)

and

ε
kL

u3∗
= γ, (19)

which demonstrates that the average dissipation rate of TKE obeys the concept of
z-less stratification. Inserting the definition forL (3), thenε = −γ g

〈θ〉
〈
w′θ ′

〉
, which

states that dissipation equals a constantγ times the buoyant destruction. For our
dataγ = 5 provides a reasonably good fit.

We will now consider the dissipation of temperature variance. As for turbulent
kinetic energy, the mixed third-order structure function approach has been chosen
to obtain the dissipation rate. In order to calculate the average dissipation rate
of temperature variance,εθ with the second-order structure function, the average
dissipation rate of TKE,ε must be known and a choice has to be made for the free
constant that is involved. This adds uncertainty to the calculations and therefore we
place more confidence on the results obtained with the mixed third-order approach.
Figure 11 shows the resulting average dissipation rate of temperature variance,
normalized bykzu∗/

〈
w′θ ′

〉2
. Interestingly,φεθ is constant for almost the entire

stability range covered by the observations. The large values for very weak stability
(ζ < 0.01) are due to the very small heat flux for near neutral conditions. Because

φεθ

(
= εθkzu∗/

〈
w′θ ′

〉2)
is constant, the concept ofz-less stratification does not

apply in this case, since thez dependence does not vanish for the very stable limit.
The normalized dissipation rate of temperature variance does not increase with sta-
bility. The large scatter does not allow us much confidence in the average value for
this constant behaviour; at best it can be said thatφεθ = 1 is a reasonable choice to
describe the entire data set (except for near neutral conditions) (see Figure 11). The
assumptionφh − φεθ = 0 in the surface layer does not hold ifφh = 1+C (z/L) is
applied, which is a commonly used scaling function for the normalized production.
Several values for the constantC have been suggested, e.g.,C = 5 (Dyer, 1974) or
C = 7.8 (Högström, 1988). However, becauseφh is a function that increases with
stability, the imbalance between production and dissipation also increases for large
z/L, given that the dissipation remains constant, as was found in the present work.
There are two possible explanations for this discrepancy. One is that the transport
term becomes important for the stably stratified boundary layer. If the stability
functionφh is linearly increasing with stability there has to be a third component
to close the budget. The other explanation is thatφh does in fact behave differently.
Sinceφh has not been evaluated in this study no clear statement can be made about
this puzzling behaviour. Howell and Sun (1999) calculatedφh for a broad range
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Figure 11. Normalized dissipation rate from mixed third-order structure function (temperature)
(symbols are the same as in Figure 1).

of stability. They found that it increases with stability and levels off at around
z/L = 0.5. The constant value forφh for strong stability is difficult to identify
due to large scatter (their Figure 7), but it seems to exceed the value found in the
present study forφεθ . This suggests that the transport term becomes important in
this stability regime. But further experimental investigations are certainly needed
to confirm this conclusion.

5. Conclusions

Fast response data from measurements of the three wind velocity components and
the air temperature in the surface layer using 3-dimensional sonic anemometers
have been analyzed to gain insight into the structure of the stable ABL. Each
individual run has been screened for the suitability of Taylor’s frozen turbulence
hypothesis to convert the data from the time to the space domain. Only runs with
a turbulence intensity less than 0.5 have been selected, which resulted in a total
number of 446 runs used for analysis. The applicability of Monin–Obukhov simil-
arity theory under stable atmospheric conditions has been investigated. Moreover,
we examined the validity of the concept ofz-less stratification (Wyngaard and
Coté, 1972) in the limit of very strong stability. The concept ofz-less stratification
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implies that the turbulent eddies are no longer directly influenced by the surface as
the atmosphere becomes very stable. It has been found that the non-dimensional
standard deviations of the three velocity componentsu, v andw do not satisfy this
criterion. For weak stability (ζ . 0.1) the normalized velocity standard deviations
σα/u∗, with α beingu, v andw, are constant. For increasing stability theσα/u∗
increased strongly. In contrast to this result, the non-dimensional standard deviation
of temperatureσθ/θ∗ approaches a constant value for largez/L, being independent
of z in the very stable regime.

Our suggested fit for the normalized velocity standard deviations (14) captures
the quick transition of these variables from being constant in the weakly stable
region to a form that increases withz/L for very strong stability. For the non-
dimensional standard deviation of temperature an expression (15) has been found
that represents the data over the entire stable regime.

The average dissipation rate,ε of turbulent kinetic energy and the average dis-
sipation rate of temperature variance,εθ have been calculated using the second-
and third-order structure function approaches. The third-order approach must be
viewed as being superior to that using the second-order structure function, since no
free constants are involved. Therefore the conclusions drawn were based on results
obtained with the third-order approach. It has been found that the non-dimensional
average dissipation rate of TKE,φε does becomez-less for the very stable limit.
On the other hand, the non-dimensional average dissipation rate of temperature
variance,φεθ does not support the concept ofz-less stratification.

The extensive data set used here, covering a stability range of about five or-
ders of magnitude of the stability parameterζ , revealed that the concept ofz-less
stratification is not valid in general.

It has also been found that there is an imbalance between production and dis-
sipation of TKE for the neutral limit. For the TKE budget to reach closure, the
transport terms have to be taken into account, a result which is in agreement with
Albertson et al. (1997).
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