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ABSTRACT

The Richardson model is a popular technique for stochastic simulation of daily weather variables, including
precipitation amount, maximum and minimum temperature, and solar radiation. This model is extended to include
two additional variables, daily mean wind speed and dewpoint, because these variables (or related quantities
such as relative humidity) are required as inputs for certain ecological/vegetation response and agricultural
management models. To allow for the positively skewed distribution of wind speed, a power transformation is
applied. Solar radiation also is transformed to make the shape of its modeled distribution more realistic. A model
identification criterion is used as an aid in determining whether the distributions of these two variables depend
on precipitation occurrence. The approach can be viewed as an integration of what is known about the statistical
properties of individual weather variables into a single multivariate model.

As an application, this extended model is fitted to weather data in the Pacific Northwest. To aid in understanding
how such a stochastic weather generator works, considerable attention is devoted to its statistical properties. In
particular, marginal and conditional distributions of wind speed and solar radiation are examined, with the model
being capable of representing relationships between variables in which the variance is not constant, as well as
certain forms of nonlinearity.

1. Introduction

Stochastic weather generators have been proposed as
one technique for simulating time series consistent with
the current climate as well as for producing scenarios
of climate change (Wilks 1992). In particular, such sim-
ulations have been used in assessments of the effects of
climate variability and change, primarily on managed
environmental systems (e.g., Mearns et al. 1997). Be-
cause of this recent attention, an awareness of the lim-
itations of these stochastic models is starting to develop
(Johnson et al. 1996; Semenov et al. 1998). Among
these limitations is the omission or inadequate statistical
treatment of weather variables that are not normally
distributed.

The reliance on one particular stochastic model,
termed the Richardson model or WGEN (Weather Gen-
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erator; Richardson 1981; Richardson and Wright 1984),
has been prevalent in climate impact studies. For in-
stance, Mearns et al. (1997) adapted this generator to
produce climate change scenarios as input to crop–cli-
mate models. The Richardson model simulates daily
time series of precipitation amount, maximum and min-
imum temperature, and solar radiation. Other weather
generators that resemble the Richardson model have ap-
peared, including one developed by Bruhn et al. (1980).
All these generators attempt to integrate individual sto-
chastic models for component weather variables, such
as those for precipitation (e.g., Katz 1977; Todorovic
and Woolhiser 1975) and temperature (e.g., Hansen and
Driscoll 1977). Note that Young (1994) proposed an
alternative approach based on resampling from the ex-
isting weather dataset (see also Rajagopalan et al. 1997).

Certain models of agricultural productivity and of nat-
ural ecosystems used in impact assessments require ad-
ditional weather variables such as wind speed and rel-
ative humidity (Easterling et al. 1992; Neilson 1995).
One of the extended versions of WGEN, known as
WXGEN (Erosion/Productivity Impact Calculator
weather generator; Nicks et al. 1990), does allow for
the nonnormal distributions of these two variables, but
wind speed is not linked to any of the other weather
variables, and relative humidity is linked only to pre-
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cipitation occurrence (Wallis and Griffiths 1995). Wind
speed and dewpoint (from which relative humidity can
be derived) are included in the weather generator GEM
(Generation of Weather Elements for Multiple Appli-
cations; Hanson and Johnson 1998), with dependence
being permitted among all the weather variables, but
assuming normal distributions for these two variables.

In the current paper, another extension of the Rich-
ardson model is devised, effectively a hybrid of
WXGEN and GEM, combining the individual improve-
ments of these two stochastic weather generators. The
additional weather variables daily mean wind speed and
dewpoint are included in the model. Whether daily wind
speed and dewpoint (as well as the other weather var-
iables) ought to be linked to precipitation occurrence is
determined, in part, through a model identification pro-
cedure. By using a power transformation to normality
(i.e., the square root), this extension allows for the pos-
itively skewed distribution of wind speed while still
permitting statistical dependence with the other vari-
ables. Instead of assuming normality as in WGEN, the
distribution of daily solar radiation is reexamined for
skewness, with transformations again being applied.
The extended model is fitted to weather data in the
Pacific Northwest, primarily in Eugene, Oregon. Still,
this form of weather generator can be viewed as a gen-
eral framework, applicable both to other regions and to
additional weather variables.

2. Modeling methodology

a. Richardson model

By way of review, the basic elements of the Rich-
ardson model/WGEN for time series of daily weather
variables are described briefly (Richardson 1981; Rich-
ardson and Wright 1984). As a slight simplification of
the approach taken in WGEN, any annual cycles in the
model parameters are ignored by restricting attention to
a single month at a time. Some of the properties of this
model also have been reviewed in Katz (1996) and
Wilks (1992).

Because the other weather variables are modeled con-
ditionally on precipitation occurrence, first the stochas-
tic model for precipitation is specified. Let {Jt : t 5 1,
2, . . .} denote the sequence of daily precipitation oc-
currence (i.e., Jt 5 1 indicates that the tth day is ‘‘wet’’;
Jt 5 0 is a ‘‘dry day’’) at a given site. To represent the
tendency of wet or dry weather to persist, it is assumed
that this process is a first-order, two-state Markov chain
(Katz 1977; Todorovic and Woolhiser 1975). This model
is characterized completely by the transition probabil-
ities

Pij 5 Pr{Jt 5 j | Jt21 5 i}, i, j 5 0, 1. (1)

The amounts of daily precipitation on wet days are
assumed to be conditionally independent given the se-
quence of occurrences of precipitation, with the gamma

as the common distribution. Some enhancements of
WGEN use other positively skewed distributions, such
as the mixed exponential in USCLIMATE (Program for
Daily Weather Simulation in the Contiguous United
States; Johnson et al. 1996) or the ‘‘skewed’’ normal in
WXGEN (Wallis and Griffiths 1995). Because this as-
pect does not enter into the manner in which the models
link the other variables with precipitation, and because
it already has received much study, it is not treated here.

Let Xt(k), k 5 1, 2, . . . , K, denote the daily weather
variables to be modeled conditionally on precipitation
occurrence. In WGEN, K equals 3 with, by convention,
Xt(1) denoting the maximum temperature, Xt(2) denot-
ing the minimum temperature, and Xt(3) denoting the
total solar radiation. Given the precipitation occurrence
state on the tth day, say Jt 5 i, the conditional distri-
bution of Xt(k) is assumed to be normal, with a mean
and variance of

m (k) 5 E[X (k) | J 5 i], andi t t

2s (k) 5 Var[X (k) | J 5 i],i t t

i 5 0, 1; k 5 1, 2, . . . , K. (2)

As a simplification, in WGEN the conditional mean and
variance of minimum temperature [i.e., mi(2) and (2),2s i

i 5 0, 1] actually are taken to be independent of the
precipitation occurrence state i. This constraint is not
necessarily imposed in the current paper, however. In
fact, Hayhoe (1998) found a dependence between min-
imum temperature and precipitation occurrence for
some locations in Canada, and Semenov et al. (1998)
allow for this dependence in another weather generator,
called the Long Ashton Research Station Weather Gen-
erator (LARS-WG).

Given the daily precipitation occurrence state Jt 5 i,
one defines the randomly standardized variable (termed
‘‘residual’’ by Richardson 1981) as

Zt(k) 5 [Xt(k) 2 m i(k)]/s i(k), k 5 1, 2, . . . , K.
(3)

In other words, it is not known a priori (i.e., before the
precipitation occurrence state is observed) which par-
ticular mean and standard deviation will enter into (3).
By assumption, the Zt(k) time series have standard nor-
mal distributions [denoted by N(0, 1)].

To permit autocorrelation in the individual time series
and cross correlations between the time series, a mul-
tivariate, first-order autoregressive [AR(1)] process is
assumed as a statistical model of the randomly stan-
dardized variables Zt(k), k 5 1, 2, . . . , K. That is,

Zt 5 AZ t21 1 et, et ; MVN(0, S). (4)

Here, Z t denotes the column vector of dimension K
whose elements are Zt(k), k 5 1, 2, . . . , K; Zt21 is the
corresponding vector containing Zt21(k); A is the K 3
K matrix of autoregression coefficients; and et is the
column vector of dimension K of error terms e t(k). As
indicated in (4), this error vector is assumed to have a
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TABLE 1. Daily weather variables.

k Variable Transformation Conditioning

1 Maximum
temperature

None Mean and std dev

2 Minimum
temperature

None Mean and std dev

3 Mean dewpoint None Mean and std dev
4 Mean wind speed Square root Mean only
5 Total solar

radiation
Square root (Jan),

reflected loga-
rithm (Jul)

Mean only

multivariate normal distribution (MVN) with mean vec-
tor zero, denoted by 0, and K 3 K variance–covariance
matrix, denoted by S.

The matrices A and S satisfy the equations

AM0 5 M1, S 5 M0 2 A ,
T

M1 (5)

where M0 and M1 are the lag-zero and lag-one cross-
covariance matrices [or, equivalently, cross-correlation
matrices because the Zt(k) are standardized] and T de-
notes the matrix transpose operator (e.g., Brockwell and
Davis 1991). That is, M0 is a symmetric matrix whose
elements are of the form

rkl(0) 5 Corr[Zt(k), Zt(l)], k, l 5 1, 2, . . . , K,
(6)

and M1 is a matrix (not necessarily symmetric) whose
elements are of the form

rkl(1) 5 Corr[Zt(k), Zt21(l)], k, l 5 1, 2, . . . , K.
(7)

In particular, the diagonal elements of M0 are all unity,
whereas those of M1 are the first-order autocorrelation
coefficients of the randomly standardized variables
Zt(k).

The so-called Yule–Walker estimators (Brockwell and
Davis 1991) of the parameters of the multivariate AR(1)
process (4) are obtained by first substituting the cor-
responding sample cross correlations into the matrices
M0 and M1. An estimator of the autoregression matrix
A then is obtained by solving the system of linear equa-
tions [first formula in (5)]. The estimator of the vari-
ance–covariance matrix S is obtained finally by substi-
tuting the estimator of A into the second formula in (5).
This estimation technique has the property of repro-
ducing all of the contemporaneous and lag-one cross
correlations (including the first-order autocorrelations)
among the randomly standardized variables Zt(k). Un-
like WGEN, the matrices A and S are not constrained
to be invariant with respect to geographical location and
time of year. Instead, they are fitted for a particular
location and assumed to be stationary within a given
month. Our approach is consistent with Hayhoe (1998),
who found that these matrices vary both seasonally and
regionally for locations in Canada, and with Richardson
(1982), who found seasonal and regional variations in
the United States, especially for the cross-correlation
coefficients (i.e., elements of M0).

b. Extension

In the extended version of the Richardson model, five
daily weather variables (i.e., K 5 5) are modeled con-
ditionally on precipitation occurrence (see Table 1 for
ordering convention). Daily mean dewpoint is treated,
because relative humidity can be derived from this var-
iable in combination with air temperature. Although
minimum temperature sometimes is used as a substitute
for dewpoint in estimating humidity, Kimball et al.

(1997) showed that there can be substantial differences
between these two variables, especially in arid or semi-
arid climates. Daily maximum and minimum tempera-
ture and dewpoint satisfy certain orderings (e.g., min-
imum # maximum), not automatically preserved by the
multivariate normality assumption in (4) (Jolliffe and
Hope 1996). If desired, such orderings could be imposed
on the simulated data through additional conditioning.

It is well known that the distribution of hourly or
daily mean wind speed is positively skewed, with the-
oretical distributions such as the Weibull having been
fitted. It is difficult to allow, however, for the temporal
or spatial correlations of wind speed time series as well
in such an approach. With a transformation to normality,
conventional multiple time series analysis still can be
applied to treat autocorrelations as well as cross cor-
relations with other variables. Brown et al. (1984), Car-
lin and Haslett (1982), and Haslett and Raftery (1989)
all applied the square root transformation to hourly or
daily mean wind speed before modeling temporal and/
or spatial correlations. Moreover, assuming that the
square-root-transformed wind speed is normally dis-
tributed effectively is equivalent to fitting a Weibull
distribution to the original observations (Brown et al.
1984; Carlin and Haslett 1982).

The distribution of daily total solar radiation has not
been examined closely in the development and appli-
cation of the Richardson model, at least in part because
of a lack of observations. In fact, WGEN (or WXGEN)
sometimes is used to manufacture time series of daily
radiation for locations without any measurements [al-
though Hayhoe (1998) cautioned against using WXGEN
for this purpose]. Daily radiation does not necessarily
have a normal distribution (Bruhn et al. 1980; Semenov
et al. 1998), and a transformation (square root or re-
flected logarithm) is applied in the current model.

3. Application

a. Data

The extended version of the Richardson model is fit-
ted to daily weather data at Eugene and Portland,
Oregon, for two months, January and July (in the midst
of the wet and dry seasons, respectively), over a period
of 30 yr, 1961–90. Precipitation occurs on relatively few
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FIG. 1. Observed conditional distribution of daily mean dewpoint
(8C) given a dry or wet day in Eugene in Jan.

FIG. 2. Same as Fig. 1 but for wind speed (m s21).

days in July (e.g., on only 81 out of 930 days in Eugene),
making the sample sizes small for certain conditional
statistics. To simplify the presentation, for the most part
the focus is on Eugene in January.

Some of the data, including solar radiation, were ob-
tained from the National Solar Radiation Data Base
(NSRDB) (National Renewable Energy Laboratory,
1992). Almost half of the radiation data for Eugene are
measured, with the remaining half being modeled from
observed or interpolated sky cover and derived aerosol
optical depths, whereas only about 15% of the radiation
data for Portland are measured. NSRDB gives the
amount of solar radiation received during an hour in
units labeled W h m22 (1 W h m22 5 3600 J m22).
These hourly amounts are summed to obtain daily totals
in units of W day m22.

b. Model identification

In this section, the form of transformation is specified
for the daily weather variables, mean dewpoint, mean
wind speed, and total solar radiation, to obtain a better
approximation to the normal distribution. Whether the
conditional mean and standard deviation of these three
variables (as well as those of maximum and minimum
temperature) ought to depend on precipitation occur-
rence also is considered. The form of transformation
and nature of conditioning, as eventually determined,
are summarized in Table 1.

Figures 1–3 show the observed conditional distri-
butions of these three daily weather variables given a
dry or wet day in Eugene in January (also July for
radiation). A tendency for higher dewpoint on wet days
is evident (Fig. 1). The shape of the two conditional
distributions is reasonably symmetric, with perhaps a
slight degree of negative skewness, especially given a
dry day. As for maximum and minimum temperature in
the Richardson model, no transformation will be applied
to dewpoint. In July, there is not as much dependence
of dewpoint on precipitation (figure not shown).

Higher wind speed tends to occur on wet days, with
a substantial degree of positive skewness being present
in the conditional distributions, especially given a dry
day (Fig. 2). The square root transformation will be
applied to wind speed, with a check on the appropri-
ateness of this transformation being provided in section
4b. In July, the conditional distribution of wind speed
similarly is positively skewed, but with not as much
dependence upon precipitation occurrence (figure not
shown).

A marked tendency for higher radiation on dry days
is evident, both in January and July (Fig. 3). The con-
ditional distribution given a wet day appears to be some-
what positively skewed in January (Fig. 3a). The square
root transformation will be applied to radiation in Jan-
uary, with a check again being provided in section 4b.
Note that Bruhn et al. (1980) also found evidence at
some other geographical locations of the conditional
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FIG. 3. Same as Fig. 1 but for daily total solar radiation (kW day
m22) for (a) Jan and (b) Jul.

distribution of radiation given a wet day being positively
skewed.

The shape of the conditional distribution of radiation
in July given a dry day is very different from that in
January, being substantially negatively skewed (Fig.
3b). A transformation of a form other than the square
root is required. After some trial and error, a reflected
logarithm was selected; that is, the transformation is of
the form ln(c 2 x), where x denotes radiation, and c is
a constant about which the logarithm is reflected. This
constant could be determined to be the theoretical upper
bound on daily total radiation, which is a function of
the latitude of the location and the time of year (e.g.,
Brutsaert 1982). Instead, the value of c 5 9 kW day
m22, somewhat smaller than this upper bound, yields a
better approximation to the normal distribution. Perhaps
this unusual distribution shape could be attributed to
precipitation occurrence not being an adequate surrogate
for cloudiness during the dry summer season in the
Pacific Northwest (in fact, morning cloudiness is com-
mon for days on which no precipitation occurs). Despite
the differences in the sources of radiation data, the same
forms of transformation were identified for Portland.

The appendix contains details about the model iden-
tification procedures, Akaike’s information criterion
(AIC) and the Bayesian information criterion (BIC), em-
ployed to determine whether the conditional mean and
standard deviation of the daily weather variables that
enter into (3) ought to vary with daily precipitation oc-
currence [see Katz and Parlange (1995) for a somewhat
analogous use of these model selection criteria]. These
criteria involve penalizing the goodness of fit of a model
for the number of parameters required to be estimated,
with the preferred model being the one with minimum
AIC or BIC statistic (BIC is somewhat more parsimo-
nious). Although these statistics are dimensionless, it is
possible to convert the BIC values into approximate
posterior probabilities.

For the following three candidate models, Table 2
gives the AIC and BIC statistics for the five weather
variables for Eugene in January (number of observa-
tions n 5 930):

model (i): m0(k) 5 m1(k), s0(k) 5 s1(k);

model (ii): m0(k) ± m1(k), s0(k) 5 s1(k); and

model (iii): m0(k) ± m1(k), s0(k) ± s1(k).

In all cases, both AIC and BIC indicate a need to vary
at least the conditional mean [i.e., model (i) of no de-
pendence on precipitation occurrence is never selected].
Nevertheless, the results are not completely clearcut
concerning whether the conditional standard deviation
ought to be varied as well. The results are similar for
Eugene in July, although the magnitude of the depen-
dence on precipitation occurrence is less for most var-
iables (but recall the paucity of wet days).

For the weather data from the Pacific Northwest an-
alyzed in this paper, the following conditioning strategy
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TABLE 2. Model identification statistics for Eugene in Jan.

k Variable Conditioning
No. of

parameters AIC BIC

1 Maximum temperature None
Mean only
Mean and std dev

3
4
5

2212.2
2157.4
2143.5*

2226.7
2176.8
2167.7*

2 Minimum temperature None
Mean only
Mean and std dev

3
4
5

2269.0
2058.0
2057.6*

2283.5
2077.3*
2081.8

3 Dewpoint None
Mean only
Mean and std dev

3
4
5

2157.8
1960.6
1917.5*

2172.3
1979.9
1941.6*

4 Wind speed (square root) None
Mean only
Mean and std dev

3
4
5

21685.4
21909.4*
21906.6

21670.9
21890.0*
21882.4

5 Radiation (square root) None
Mean only
Mean and std dev

3
4
5

3617.5
3427.3
3421.5*

3632.0
3446.6
3445.7*

* Denotes minimum value.

TABLE 3. Estimated conditional mean and standard deviation for
Eugene in Jan.

k Variable m̂ (k)0 m̂ (k)1 ŝ (k)0 ŝ (k)1

1 Maximum temperature (8C) 6.85 8.91 4.51 3.72
2 Minimum temperature (8C) 21.44 2.73 4.29 3.94
3 Dewpoint (8C) 20.04 4.15 4.94 3.60
4 Wind speed (m s21)1/2 1.67 2.10 0.414 0.414
5 Radiation (W day m22)1/2 38.3 31.9 6.64 6.64

is adopted. Both the conditional mean and standard de-
viation are varied for all three (untransformed) temper-
ature variables. For the transformed wind speed and
radiation, only the conditional mean is varied with pre-
cipitation occurrence (i.e., the standard deviation is held
fixed). This common conditional standard deviation, say
sD(k) [ s0(k) 5 s1(k), can be estimated directly
through construction of a randomly normalized variable.
Given a daily precipitation occurrence state Jt 5 i, one
can define the variable

Dt(k) 5 Xt(k) 2 mi(k). (8)

It follows that the standard deviation of the Dt(k) process
is sD(k). When constructing the Zt(k) time series, this
common standard deviation is substituted into the de-
nominator of (3). As will be seen in section 4b, con-
straining the conditional standard deviation of a trans-
formed variable is not as restrictive as it might appear
to be.

c. Fitted model

The parameter estimates of the extended version of
the Richardson model are presented for Eugene in Jan-
uary. Using the so-called transition counts (e.g., Katz
1977), the estimated transition probabilities for daily
precipitation occurrence [(1)] are

P̂01 5 0.303 and P̂11 5 0.748 (9)

(i.e., the conditional probability of a wet day is about
0.45 higher, given a wet day).

Table 3 lists the estimated conditional mean and stan-
dard deviation given precipitation occurrence, denoted
by and , respectively, for the other five dailym̂ (k) ŝ (k)i i

weather variables for Eugene in January. The mean is
higher on wet days than on dry days for the three tem-
perature variables. In the case of maximum temperature,
this result is not typical of other seasons or for other
regions (e.g., for Eugene in July its mean on wet days
is considerably lower, 21.48 vs 28.48C). The conditional
standard deviation of the three temperature variables
always is higher when the conditional mean is smaller.
For wind speed and radiation, the conditional mean and
common conditional standard deviation listed in Table
3 are based on the square-root-transformed data.

The symmetric matrix of estimated cross correlations
at lag zero [(6)] for Eugene in January, denoted by M̂0,
is given by

 1.000 0.731 0.827 0.104 0.077

1.000 0.909 0.196 20.266 
M̂ 5 1.000 0.031 20.263 . (10) 0

1.000 0.039 
1.000 

In recollection of the earlier discussion about minimum
temperature sometimes being employed as a substitute
for dewpoint, the highest contemporaneous cross cor-
relation is between these two variables (about 0.91). All
the contemporaneous cross correlations between square
root–transformed wind speed and the other variables are
relatively small, the largest being with minimum tem-
perature (about 0.20), which perhaps is consistent with
higher winds lessening the effects of radiational cooling
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[note that Hanson and Johnson (1998) found that cor-
relations are higher between wind speed and the dif-
ference in maximum temperature between the current
and previous day for some sites in complex terrain]. The
estimated contemporaneous cross correlations for Eu-
gene differ substantially with the season (e.g., the cor-
relation between minimum temperature and dewpoint
drops to only 0.69 in July), consistent with the findings
of Richardson (1982).

The corresponding matrix of estimated cross corre-
lations at lag one day [(7)] for Eugene in January, de-
noted by M̂1, is given by

 0.632 0.569 0.622 20.034 20.072

0.568 0.679 0.692 0.017 20.231 
M̂ 5 0.616 0.666 0.743 20.115 20.226 . 1

0.026 0.068 20.021 0.509 0.058 
20.014 20.106 20.133 0.149 0.333 

(11)

The highest first-order autocorrelation [i.e., diagonal el-
ements in (11)] is for dewpoint (about 0.74); the smallest
is for square root–transformed radiation (about 0.33).
The highest cross correlation [i.e., off-diagonal elements
in (11)] is for dewpoint leading minimum temperature
(about 0.69). Consistent with Richardson (1982), the
seasonal dependence of the autocorrelations is less sub-
stantial than that of the contemporaneous cross corre-
lations. Still, differences as great as 0.51 in July versus
0.68 in January arise for the estimated first-order au-
tocorrelation of minimum temperature.

The matrix of estimated autoregression parameters for
Eugene in January, denoted by Â, is obtained through (5):

 0.438 0.179 0.093 20.116 20.029

0.091 0.353 0.280 20.068 20.068 
Â 5 0.104 0.103 0.553 20.161 20.055 . 

20.021 0.014 20.023 0.507 0.038 
20.030 20.002 20.027 0.141 0.322 

(12)

For instance, the equation governing the stochastic mod-
el of the randomly standardized maximum temperature
variable [i.e., one of the components in (4)] is of the
form

Zt(1) 5 0.438Zt21(1) 1 0.179Zt21(2) 1 0.093Zt21(3)

2 0.116Zt21(4) 2 0.029Zt21(5) 1 et(1). (13)

In other words, among the five standardized weather
variables on the previous day, the most weight is as-
signed to maximum temperature, the least (in absolute
value) to radiation. In (13), e t(1) is the error term, a
random variable whose distribution is next considered.

The symmetric estimated variance–covariance matrix

for the error terms of the multiple AR(1) process, de-
noted by Ŝ, is also obtained through (5):

 0.557 0.292 0.349 0.143 0.142

0.501 0.387 0.214 20.158 
Ŝ 5 0.425 0.118 20.134 . (14) 

0.739 20.051 
0.868 

For instance, the error term that appears in (13) has a
normal distribution with a mean of zero and a variance
[i.e., one of the diagonal elements in (14)] of 0.557;
that is, e t(1) ; N(0, 0.557). This error term is contem-
poraneously correlated with the error terms for the four
remaining variables, with the highest correlation being
about 0.72 with the one for dewpoint [i.e., converting
the off-diagonal elements in (14) from covariances to
correlations].

4. Properties and use of model

a. Simulation

One of the primary purposes for the development of
the Richardson model and its extensions concerns the
production of artificial time series for daily weather var-
iables. The simulation algorithm for the extended ver-
sion of the Richardson model works in precisely the
same fashion as for the conventional model. To run the
simulations, the so-called Cholesky (or square root) de-
composition of the variance–covariance matrix of the
error terms in the multiple AR(1) model [(4)], Ŝ 5 BBT

,
is needed (Graybill 1969). Here the K 3 K matrix B is
of lower triangular form.

Using the estimated variance–covariance matrix in
(14), the estimated B matrix for Eugene in January is
given by

 0.747 0.000 0.000 0.000 0.000

0.391 0.590 0.000 0.000 0.000 
B 5 0.467 0.347 0.295 0.000 0.000 . 

0.192 0.236 20.180 0.784 0.000 
0.190 20.393 20.293 20.061 0.767 

(15)

To generate error terms with the desired variance–co-
variance matrix, one sets

et 5 B , ; MVN(0, I),e* e*t t (16)

where I denotes the K 3 K identity matrix. Because they
are statistically independent, it is straightforward to gen-
erate the elements of the vector.e*t

The only remaining detail concerns how to generate
the weather variables on the first day (i.e., t 5 1). The
transition probabilities of the Markov chain model for
the daily occurrence of precipitation [(1)] can be con-
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verted into the corresponding unconditional probability
of a wet day (e.g., Katz 1996),

p 5 P01/(P01 1 P10). (17)

The precipitation occurrence on the first day then simply
is generated from the distribution Pr{Jt 5 1} 5 p, in-
stead of using the transition probabilities.

The initial state of the multiple AR(1) process also
needs to be simulated. In (4), set Z0 5 0 and generate
a random error vector et ; MVN(0, M0), that is, using
the variance–covariance matrix for the vector of stan-
dardized weather variables rather than that for the vector
of error terms. In particular, the square root decompo-
sition of the matrix M0 would need to be determined, in
the same manner as was just illustrated for the matrix S.

b. Derived statistics

Both to help in understanding how a stochastic weath-
er generator functions and for certain applications, it
often is necessary to consider statistics other than those
explicitly modeled. As has been seen, the Richardson
model and its extensions are formulated in a conditional
form that is convenient for performing simulation stud-
ies. The corresponding unconditional form can be pref-
erable, for instance, in adjusting the model parameters
to obtain scenarios of climate change with the desired
statistical characteristics (Katz 1996).

In this extended version of the Richardson model,
both wind speed and radiation have been transformed
nonlinearly before being modeled statistically. The
question naturally arises of how to determine the cor-
responding statistical properties for the original, un-
transformed variables. The square root transformation
is applied to daily mean wind speed in both January
and July and to daily total solar radiation in January for
Eugene. In this case, let the original variable be denoted
by Yt(k) 5 (k). The modeled conditional mean and2X t

variance of the untransformed variable are related to the
corresponding conditional mean and common condi-
tional variance, (k) [see (8)], of the square root–trans-2s D

formed variable by
2 2E[Y (k) | J 5 i] 5 m (k) 1 s (k), andt t i D

2 2 2Var[Y (k) | J 5 i] 5 2s (k)[s (k) 1 2m (k)],t t D D i

i 5 0, 1, (18)

respectively (e.g., Katz and Garrido 1994; Katz 1999).
Analogous relationships hold for other transformations,
such as the reflected logarithm applied to radiation in
July.

To take wind speed at Eugene in January as an ex-
ample, the modeled conditional mean of the original
variable [(18)] is 2.95 and 4.60 m s21 on dry and wet
days, respectively. These values virtually are identical
to the observed values of 2.96 and 4.59. The modeled
conditional standard deviation for the untransformed
variable [(18)] is 1.40 and 1.76 m s21 on dry and wet

days, respectively. Despite the constraint on the con-
ditional standard deviation of transformed wind speed,
these values compare favorably to those observed of
1.48 and 1.72, with the square root transformation cap-
turing the effect of higher mean and variance on wet
days.

For radiation for Eugene in January, the modeled con-
ditional mean of the original variable is 1.51 and 1.06
kW day m22 on dry and wet days, respectively, likewise
essentially the same as the observed values of 1.52 and
1.06. The modeled conditional standard deviation is
0.51 and 0.43 kW day m22 on dry and wet days, re-
spectively, somewhat smaller in range than that ob-
served (0.54 and 0.39), but still producing the effect of
higher mean and variance on dry days. If the conditional
standard deviation of transformed radiation were per-
mitted to vary between dry and wet days, then this
observed range in standard deviations for the untrans-
formed variable effectively would be reproduced (i.e.,
modeled values of 0.55 and 0.40).

Next, the derivation of unconditional statistics for the
daily weather variables is treated. For Eugene in Jan-
uary, the estimated transition probabilities give an un-
conditional probability of a wet day p [(17)] of 0.546.
For the other daily weather variables that are not trans-
formed (i.e., maximum and minimum temperature and
dewpoint), the unconditional mean and variance, m(k)
5 E[Xt(k)], and s 2(k) 5 Var[Xt(k)], are related to the
conditional mean and variance by (Katz 1996)

m(k) 5 (1 2 p)m (k) 1 pm (k), and0 1

2 2 2s (k) 5 (1 2 p)s (k) 1 ps (k)0 1

21 p(1 2 p)[m (k) 2 m (k)] . (19)1 0

That is, the unconditional mean is a weighted average
of the two conditional means, whereas the unconditional
variance is not simply a weighted average of the two
conditional variances but includes another term reflect-
ing the variation in the conditional means. In the case
of transformed variables, the same sort of formulation
in (19) holds for the conditional mean and variance of
the untransformed variables (whose determination was
discussed previously). For wind speed for Eugene in
January, (19) yields an unconditional mean of 3.85 m
s21 and an unconditional standard deviation of 1.80 m
s21 (nearly the same as the observed values of 3.84 and
1.81, respectively). For radiation in January, the cor-
responding unconditional mean and standard deviation
are 1.27 and 0.52 kW day m22 (the same as the observed
values).

The unconditional (or marginal) distribution of a daily
weather variable in the Richardson model is a mixture
of two conditional distributions. For the three temper-
ature variables, this mixture consists of two conditional
normal distributions. In the case of the square root trans-
formation to normality, the unconditional probability
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FIG. 4. Modeled and observed unconditional distribution of daily
mean wind speed (m s21) for Eugene in Jan.

FIG. 5. Same as Fig. 4 but for daily total solar radiation (kW day
m22).

density function of the untransformed variable can be
expressed as (e.g., Katz and Garrido 1994)

f (y; k)

5 (1 2 p) f0[y; m0(k), 1 p f1[y; m1(k),2 2s (k)] s (k)],D D

fi[y; m i(k), 2s (k)]D

5 [(1/2)y21/2/sD(k)]f{[y1/2 2 m i(k)]/sD(k)},

i 5 0, 1. (20)

Here f denotes the standard normal N(0, 1) density
function. The application of (20) to produce modeled
unconditional distributions of the original, untrans-
formed variables is illustrated for wind speed (Fig. 4)
and radiation (Fig. 5) for Eugene in January along with
a comparison with the corresponding observed distri-
butions. In both cases, the square root transformation
adequately reflects the observed positive skewness,
with the fit being somewhat closer for wind speed than
for radiation. Note that the GEM weather generator
(Hanson and Johnson 1998) would represent these dis-
tributions as being approximately normal (technically,
a mixture of two normals).

Conditional distributions of daily mean wind speed
and total radiation, given either the value of the same
variable on the previous day or of another weather
variable on the same day, also are considered, dem-
onstrating the flexibility of the current modeling ap-
proach. In principle, the modeled conditional distri-

butions could be determined analytically in a similar
but somewhat more complex manner as that for the
unconditional distributions. Instead, the simulation
methodology described in section 4a is used. It is an-
ticipated that the observed conditional distributions of
wind speed and radiation will have a tendency for high-
er variability, the higher the mean (or median) is. With-
out the application of a power transformation, the mod-
eled conditional distributions essentially would be nor-
mal, with a mean that is related linearly to (and a var-
iance that is independent of ) the value of the variable
on which it is conditioned.

Figures 6–9 show certain statistics of the modeled
and observed conditional distributions of daily mean
wind speed and total solar radiation for Eugene in
January. For simplicity, only three quartiles (i.e., low-
er quartile, median, and upper quartile) of the con-
ditional distributions are plotted (with curves indi-
cating the model statistics and points for the obser-
vations). In particular, Figs. 6 and 7 give the condi-
tional distributions of wind speed (radiation) given
wind speed (radiation) on the previous day. It is ev-
ident that the power transformation technique cap-
tures the tendency of the observed conditional dis-
tributions to be more variable (i.e., as measured by
the interquartile range), the higher the median is. Fig-
ures 8 and 9 give the conditional distributions of wind
speed (radiation) given minimum temperature on the
same day. Again the relationship of higher variability
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FIG. 6. Modeled (mod) and observed (obs) conditional distribution
of daily mean wind speed (m s21) given wind speed on previous day
for Eugene in Jan. Lower quartile 5 LQ, median 5 Med, and upper
quartile 5 UQ.

FIG. 7. Same as Fig. 6 but for daily total solar radiation (kW day
m22) given radiation on previous day.

with higher median evident in the observations is cap-
tured by the model, with the somewhat nonlinear re-
lationships between the conditional quantiles of both
wind speed and radiation and the given value of min-
imum temperature being reasonably represented as
well. Note that the approach to modeling wind speed
and radiation in GEM (Hanson and Johnson 1998)
would be incapable of representing such relationships.

5. Discussion

An extended version of the Richardson model/WGEN
for time series of daily weather variables has been pre-
sented. The key to the extension is the transformation
of variables that are not normally distributed. In this
way, the serial and cross correlations with the other
variables still are taken into account. Among other
things, the flexibility of the technique in allowing for
relationships between variables in which the variance is
not constant, as well as for certain forms of nonlinearity,
is demonstrated. The approach is in the same spirit as
the original Richardson model, in that much of what is
known about the statistical features of individual weath-
er variables has been integrated into a single multivar-
iate model.

This extended form of the Richardson model has been

applied to weather data in the Pacific Northwest. As
such, the specific results obtained cannot necessarily be
generalized. Viewed as a general prescription for the
development of stochastic weather generators, however,
the same approach could be applied to other regions and
to other weather variables. For example, the technique
of transforming to achieve approximate normality still
should work, but the form of transformation employed
might differ.

Remaining issues include the treatment of the annual
cycle by means of a Fourier series approach as in
WGEN. For solar radiation, the shape of the distri-
bution is such that a different type of transformation
is required depending on the time of year in the Pacific
Northwest, making the Fourier series approach prob-
lematic. Still, we conjecture that the simplification of
applying the square root transformation at all times of
the year would constitute an improvement over the
current assumption of normality in WGEN. Moreover,
this issue of seasonal dependence in the form of trans-
formation may not arise in regions without any seasons
that are extremely dry.

Some fundamental limitations to stochastic weather
generators remain. In particular, such models some-
times have a marked tendency to underestimate the
interannual variance of monthly, seasonal, or annual
mean temperature and total precipitation (e.g., Han-
son and Johnson 1998; Semenov et al. 1998). To what
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FIG. 8. Modeled and observed conditional distribution of daily
mean wind speed (m s21) given minimum temperature (8C) for Eugene
in Jan.

FIG. 9. Same as Fig. 8 but for daily total solar radiation (kW day
m22).

extent this variance underestimation is attributable to
an oversimplified model for high-frequency variations
or to the lack of any provision for low-frequency var-
iations is a topic of ongoing research (Katz and Par-
lange 1998; Katz and Zheng 1999). Because most im-
pact assessments of climate change involve the weath-
er across a region, another issue concerns the fact that
most weather generators such as WGEN make no pro-
vision for the spatial dependence of daily weather
variables. Some exceptions include recent work by
Hutchinson (1995) and Wilks (1998, 1999).
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APPENDIX

Model Identification Procedure

The details of the model identification procedure are
similar to those in Katz and Parlange (1995). For pur-
poses of model selection, each of the five weather var-

iables Xt(k), k 5 1, 2, . . . , 5, in the generalized Rich-
ardson model is treated separately as a univariate AR(1)
model. The parameters to be estimated include the first-
order autocorrelation coefficient rkk(1), and the condi-
tional mean m i(k) and variance (k), i 5 0, 1, which2s i

possibly depend on precipitation occurrence. AIC and
BIC are of the form

AIC 5 22 lnL 1 2m and BIC 5 22 lnL 1 m lnn.
(A1)

Here the first term in both AIC and BIC, involving the
maximized log likelihood function lnL, is a measure of
the goodness of fit of the model. The second term, de-
pending on the number of model parameters m that must
be estimated and, in the case of BIC, the number of
observations n, is a penalty for the complexity of the
model.

For the three candidate models listed in section 3b,
the details concerning the calculation of AIC and BIC
are as follows.

a. Model (i)

In this case, m is equal to 3 [i.e., the parameters m(k)
[ m0(k) 5 m1(k), s 2(k) [ (k) 5 (k), and rkk(1)2 2s s0 1

need to be estimated], and the goodness-of-fit compo-
nent in (A1) can be expressed as
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22 lnL ø n ln{ [1 2 (1)]}.2 2ŝ (k) r̂kk (A2)

Here is the variance of the weather variable for2ŝ (k)
the entire sample (i.e., both dry and wet days). For this
model (as well as for the other two), is the sampler̂ (1)kk

first-order autocorrelation coefficient of the randomly
standardized time series Zt(k) [see (3) and (7)].

b. Model (ii)

In this case, m is equal to 4 [i.e., the parameters m0(k),
m1(k), (k) [ (k) 5 (k), and rkk(1) need to be2 2 2s s sD 0 1

estimated], and the goodness-of-fit component in (A1)
is of the same form as (A2) for model (i), except for

(k) being substituted in place of . Here (k)2 2 2ŝ ŝ (k) ŝD D

is the sample variance of the randomly normalized times
series Dt(k) [see (8)].

c. Model (iii)

In this case, m is equal to 5 [i.e., the parameters m0(k),
m1(k), (k), (k), and rkk(1) need to be estimated],2 2s s0 1

and the goodness-of-fit component in (A1) can be ex-
pressed as

22 lnL ø 2 2n ln{ŝ (k)[1 2 r̂ (1)]}0 0 kk

2 21 n ln{ŝ (k)[1 2 r̂ (1)]}.1 1 kk (A3)

Here, (k) is the variance of the weather variable for2ŝ 0

the subsample consisting of n0 dry days, and (k) is2ŝ 1

the variance for the n1 wet days.
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