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Abstract. A useful exact analytical solution of the Boussinesq equation is discussed and is the most
general solution presently available, and in particular yields a solution for a finite aquifer. It provides
insight into the physical processes arising during the exchange of water between an aquifer and a
free body of water of varying height as an application and extension of Barenblatt’s solution. We
also illustrate the value of such a solution to check numerical and approximate schemes.
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1. Introduction

The movement of water in an aquifer is represented by Boussinesq’s equation,

∂h

∂t
= K

S

∂

∂x

(
h
∂h

∂x

)
, (1)

whereh(x, t) represents the depth of the water table with respect to a horizontal
impervious layer. The boundary conditions are given byh(x,0) and

h(0, t) = H(t), (2)

∂h

∂t
(∞, t) = 0, (3)

for a semi-infinite aquifer, the case of a finite aquifer will be discussed later.
This problem can be interpreted as describing the interaction between a free

body of water of heightH in a channel located atx < 0 and an unconfined aquifer
located atx > 0, S being the specific yield andK the hydraulic conductivity.



340 J.-Y. PARLANGE ET AL.

We obtain a unique exact solution as the most general polynomial solution of
the form

K

S
(H − h) =

n∑
i=1

Ai(t)x
i . (4)

Substituting this solution in Equation (1),∂h/∂t is a polynomial of degreen,
whereas the RHS is a polynomial of degree 2n − 2. Thus, the highest value of
n must be such thatn = 2n − 2 orn = 2. Writing then

K

S
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2, (5)

Equation (1) gives
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and balancing terms inx0, x andx2 give

K

S
Ḣ = −A2

1+ 2A2
K

S
H, (7)

Ȧ1 = −6A1A2, (8)

Ȧ2 = −6A2
2, (9)

or, by integration, we finally obtain the solution

K

S
(H − h) =

√
K

S

β

t + αx +
x2

6(t + α), (10)

which includes known limiting cases as discussed below. Hereα andβ are two
arbitrary constants andH(t) is given by

H = 1.5β2

t + α [C(t + α)2/3− 1]. (11)

By changing the origin of time, we could always takeα = 0. However, this would
impose a spatial singularity for the initial profile so that we keepα explicitly in the
formulae.

In particular, the flux,q, atx = 0 is given by

q = H
√
K

S

β

t + α . (12)

Hence, ifβ > 0, water flows from the channel into the bank and the opposite, for
β < 0, and ifβ = 0, the interface atx = 0 is impervious to water movement. The
initial water table in the aquifer is then given by
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S
[H(0)− h(x,0)] =

√
K
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x + x2

6α
, (13)
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with

H(0) = 3β2

2α
(Cα2/3− 1). (14)

Two particular limiting cases are already known. (See Barenblattet al. (1990) and
the discussion in Chenet al. (1995).) One solution is obtained forβ = 0 and is
discussed below. The other forβ → ∞, β/α = 1, has also been discussed in
Hogarthet al. (1997) and givesh linearly dependent onx.

We will now consider the solution of Equation (10) for the three casesβ = 0,
β > 0 andβ < 0, separately.

Caseβ = 0
There is no water flux atx = 0. SinceH(t) cannot be zero for all times,Cβ2 must
be finite, e.g.,

3
2β

2C ≡ D > 0. (15)

Then from Equation (11)

H = D

(t + α)1/3 (16)

and from Equation (10)

K

S
(H − h) = x2

6(t + α). (17)

In particular the positionx0, such thath = 0 for x > x0, is given by

x2
0 =

K

S
6D(t + α)2/3. (18)

The solution forα = 0 corresponds to Barenblatt’s solution for no water in the
aquifer att = 0, except atx = 0, where

h(x,0) = 2

3
D

√
6DK

S
δ(x), (19)

whereδ(x) is a delta function with
∫∞

0 δ(x)dx = 1. Of course, fort > 0 orα > 0,
the solution is finite everywhere and for all times (but there is no real difference
between the solution forα = 0 andα > 0).

Figure 1 illustrates the results takingα = 0; h̄ = h/D for normalized height
andx̄ = x√S/KD for normalized distance. Then Equations (10) and (11) become,
without loss of generality

H̄ = t−1/3, H̄ − h̄ = x̄2

6t
. (20)
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Figure 1. Illustration of Barenblatt’s solution(α = β = 0) for early times (Figure 1a) and
longer times (Figure 1(b)). The dots represent the numerical results for the profiles and show
some numerical dispersion for early times (the solid line is the analytical result). In that case,
water redistributes in the aquifer and the wall atx = 0 is impervious. Times are indicated on
the profiles.

Also as an application of the method we plot profiles obtained by a standard nu-
merical method (Govindaraju and Koelliker, 1994) which shows excellent accuracy
except at very short time where some numerical dispersion is apparent at the wet-
ting front. As in Hogarthet al. (1997), who use the linear solution, we illustrate
here the importance of exact analytical results to validate numerical scheme to
solve the partial differential equation (1). Chenet al. (1995) also used Barenblatt’s
solution to check their numerical scheme of the ODE associated with Equation (1),
that is, when there is a similarity solution.
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We now discuss the cases forβ finite and nonzero. There are two different
physical situations depending on the sign ofβ.

Caseβ > 0
Taking

h̄ = hα

β2
, x̄ = x(S/K)1/2

|β| , τ = t

α
, (21)

as normalized variables, Equations (10) and (11) become, without loss of generality

H̄ − h̄ = x̄

τ + 1
+ x̄2

6(τ + 1)
(22)

and

H̄ = 3

2(τ + 1)
[Cα2/3(τ + 1)2/3− 1]. (23)

The only remaining parameter beingCα2/3 > 1. The case,Cα2/3 = 1, is especially
interesting as it leads toh(x,0) = 0 for all x. In that caseH(t) increases in time
from zero, reaches a maximum value and then decreases to zero but slowly enough
so thatq remains positive for all times. Figure 2 illustrates that case at timet∗ =
33/2−1, such thatH(t∗) is maximum. The numerical scheme shows little numerical
dispersion, but the linearized solution of Govindaraju and Koelliker (1994) shows
a significant discrepancy (this illustrates the value of an exact solution to check
numerical results).

Caseβ < 0
For this case water flows from the aquifer into the channel, so that for this case we
always have water in the aquifer, withC > 1. Using the same normalized variables
of the previous case Equation (10) becomes,H̄ being as above (Equation (23))

H̄ − h̄ = − x̄

τ + 1
+ x̄2

6(τ + 1)
, (24)

so that the solution here is formally the same as above if the former was applied
for x̄ < 0. The solution has an interesting property that for all times there is a fixed
position atx̄ = 3, where∂h̄/∂x̄ = 0, so that forx̄ < 3 water drains out from the
aquifer into the channel. Hence, the solution obtained here is also applicable to a
finite aquifer such that at̄x = 3 there is an impervious surface. Mathematically one
could formally reconstruct the solutions forβ 6= 0 by an appropriate translation of
the spatial coordinates from the caseβ = 0, that is, Barenblatt’s case. However,
the more direct approach used here makes the properties of the general solution far
more transparent, for example the solution for a finite aquifer.

Figure 3 illustrates the results forCα2/3 = 1. The numerical solution is in
excellent agreement with the exact one for all times.
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Figure 2. Caseβ > 0, Cα2/3 = 1, the time is chosen for the maximum height atx = 0. There
is minimal numerical dispersion but the linear approximation of Govindaraju and Koelliker
(1994) is significantly incorrect. In that case, water flows from the channel into the aquifer.

Figure 3. Caseβ < 0, Cα2/3 = 1, time is normalized so that at unit time the water level in
the channel is maximum. Profiles at different times are shown. In that case, the solutions for
x̄ < 3 andx̄ > 3 are independent. Forx̄ < 3, water flows out of the (finite aquifer) and dries
after an infinite time. For̄x > 3 the water redistributes itself in the aquifer, and is basically
Barenblatt’s solution.
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2. Conclusion

We have obtained an exact solution to the Boussinesq equation which extends and
includes, as particular cases, two earlier solutions. The merit of this solution is
that, it can describe water movement both in and out of an aquifer and includes the
case of a finite aquifer as well. The solutions will be useful to check approximate
(analytical) and numerical schemes.

References

Barenblatt, G. I., Entov, V. M. and Ryzhik, V. M.: 1990,Theory of Fluid Flows Through Natural
Rocks, Kluwer Academic Publishers, Dordrecht.

Chen, Z.-H., Bodvarsson, G. S., Witherspoon, P. A. and Yortsos, Y. C. 1995, An integral equation
formulation for the unconfined flow of groundwater with variable inlet conditions,Transport in
Porous Media18, 15–36.

Govindaraju, R. S. and Koelliker, J. K.: 1994, Applicability of linearised Boussinesq equation for
modeling bank storage under uncertain aquifer parameters,J. Hydrol.157, 349–366.

Hogarth, W. L., Govindaraju, R. S., Parlange, J.-Y., and Koelliker, J. K.: 1997, Linearised Boussinesq
equation for modeling bank storage – a correction,J. Hydrol.198, 377–385.


