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Abstract. The recession flow analysis of Brutsaert and Nieber [1977] extended by Troch et
al. [1993] to estimate aquifer parameters (saturated hydraulic conductivity and mean
aquifer depth) is examined by means of a numerical model. It is found to be reliable for
the estimation of the catchment-scale saturated hydraulic conductivity and mean aquifer
depth. Increasing the complexity of the synthetic watershed had no impact on the accuracy
of the estimated parameters.

1. Introduction

Brutsaert and Nieber [1977] presented a technique for the
estimation of the aquifer-scale saturated hydraulic conductivity
k which was extended by Troch et al. [1993] also to estimate the
mean aquifer depth D . The method utilizes streamflow reces-
sion hydrographs and some basic geomorphological properties
of the watershed (i.e., the total length of the streams and the
catchment area). The analysis is based on analytical solutions
of the one-dimensional Boussinesq equation describing the
transient behavior of an unconfined groundwater body under
Dupuit’s assumption (i.e., the hydraulic head is independent of
depth). A detailed description of the technique can be found in
the above-mentioned references. Below we briefly outline the
steps involved.

The Boussinesq equation, when the effect of capillarity
above the water table is neglected and the Dupuit approxima-
tion is invoked, describes the elevation of the transient ground-
water table h( x , t) above a horizontal impermeable layer

­h
­t 5

k
w

­

­ x S h
­h
­ xD (1)

where k is the (constant) saturated hydraulic conductivity of
the unconfined aquifer, w is the (constant) drainable porosity,
t is time, and x is horizontal distance. See Figure 1 for a
schematic cross section of this system. For a so-called fully
penetrating stream draining an initially saturated aquifer of
finite width B , there exists an analytical short-time solution to
(1) [see Polubarinova-Kochina, 1962, p. 507] when the ground-
water drainage is not yet influenced by the no-flow condition at
the edge of the aquifer. The resulting outflow rate (per unit
length) to the channel is [Polubarinova-Kochina, 1962, p. 507]

q~t! 5 0.332~kw!1/ 2D3/ 2t21/ 2 (2)

where D is the aquifer depth and t is time. When the recession
drawdown reaches the entire breadth of the aquifer (i.e., at
time t3 in Figure 1, where h(x, t) , D, everywhere), the long-time

solution becomes valid, reflecting the effect of the no-flow bound-
ary on the groundwater drainage [see Polubarinova-Kochina,
1962, p. 515–517]. The outflow rate for the long-time solution
can be expressed, as was first shown by Boussinesq [1903] and
later by Polubarinova-Kochina [1962, p. 517]

q~t9! 5
0.862kD2

BF 1 1 1.115 S kD
wB2D t9G 2 (3)

where B is the width of the aquifer and t9 is time with an origin
outside of the short-time solution range. The two equations for
the short- and long-time outflow rate contain the four param-
eters w , k , D , and B . Therefore, with observations of stream-
flow versus time and a priori estimates of any two of these
parameters the equations can be inverted to provide estimates
of the remaining two parameters. For example, if the values of
w and B were known, k and D could be estimated with use of
measured discharges at the outlet of the catchment. Equally,
one could choose to prescribe k on the basis of knowledge of
the aquifer material instead of w, but since the value of k may
range over some 11 orders of magnitude while the range for w
is only one order of magnitude [Domenico and Schwartz, 1998,
pp. 15 and 39] it is more useful to prescribe w [Anderson and
Woessner, 1992, p. 69]. Employing the definition of the drain-
age density [Horton, 1945] Rd (5LA21, where L is the total
length of the contributing streams and A is the area of the
watershed) an effective value of B can be obtained as B 5
(2 Rd)21 for natural watersheds. The value of w can be esti-
mated from available tables on the basis of knowledge of the
type of aquifer material.

The last obstacle before the direct application of the outflow
rate solutions for estimating k and D is the determination of
the time origin (i.e., the time when groundwater drawdown
begins). However, this is not generally known, so Brutsaert and
Nieber [1977] suggested that one should analyze the slope of
the hydrograph (dQ/dt) as a function of the discharge Q . For
both the short- and the long-time solutions for the outflow rate
the slope of the hydrograph can be expressed as

dQ
dt 5 2aQb (4)
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where Q(t) is the measured discharge and a and b are con-
stants [Brutsaert and Nieber, 1977]. From the solutions for the
outflow rate and appropriate expressions for Rd and B the
constants in (4) can be related back to the above mentioned
four parameters (w, k , D , and B) as

a1 5
4.532B2

kwD3A2 b1 5 3 (5)

for the short-time solution, and

a2 5
4.804k1/ 2L

wA3/ 2 b2 5
3
2

(6)

for the long-time solution [Brutsaert and Nieber, 1977; Troch et
al., 1993]. Equation (4) plotted as log (2dQ/dt) versus log
(Q) forms straight lines with slopes of 3 for the short-time and
1.5 for the long-time solutions with corresponding intercepts
a1 and a2, respectively.

When applying baseflow recession techniques in practice for
estimating aquifer parameters, it is very hard to check the
accuracy of the estimated values since, generally, they are not
known for heterogeneous systems such as watersheds. More-
over, when estimating the catchment-scale hydraulic conduc-
tivity by the Brutsaert-Nieber technique, the resulting values
are generally 1–2 magnitudes larger than their laboratory-
derived counterparts [Troch et al., 1993]. This is because the
catchment-scale estimate incorporates the effect of preferen-
tial flow, flow in macropores [Troch et al., 1993], and the pos-
sible high spatial autocorrelation of the conductivity values in
certain directions. By employing a numerical model for the
simulation of catchment behavior based on the numerical in-
tegration of the two-dimensional Boussinesq equation we are
in a position to control the parameters characteristic of the
watershed. Consequently, the baseflow recession estimates of
the catchment-scale parameters can readily be evaluated. This
type of comparison has not been performed for the Brutsaert-
Nieber recession flow technique, which motivated the present
work.

In this paper we investigate the performance of the Brut-
saert-Nieber [1977] recession flow analysis for aquifer-scale pa-
rameter (k and D) estimation using a numerical model when
the conditions required for the technique (i.e., the Dupuit
approximation is applicable where a fully incised stream drains
an initially saturated aquifer and where any effect of capillarity
on the groundwater drainage is negligible) are met. The focus T
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Figure 1. Schematic diagram of an unconfined aquifer with a
fully penetrating stream. The shape of the free groundwater sur-
face is shown through time following saturation of the aquifer.
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of our work is to check how the complex shape of a watershed,
heterogeneity of hydraulic conductivity, and a gently sloping
impermeable layer influence the estimated parameters.

2. Parameter Reliability Test
We test the robustness of the Brutsaert-Nieber [1977] reces-

sion flow analysis for estimating two catchment-scale parame-
ters (k and D) by comparison of the estimated parameters to
prescribed values employed in a numerical model. The analysis
is carried out in two stages. Since the analytical solution of the
1-D Boussinesq equation is strictly valid only for a rectangular
region we first model the transient unconfined groundwater
profile in a rectangularly shaped aquifer. The effect of spatial
variability of the saturated hydraulic conductivities, as well as
macroscopic anisotropy (i.e., high spatial autocorrelation in
certain directions), on the estimated catchment-scale parame-
ters is checked. Similarly, we test the effect of a gently sloping
impervious layer (when the Dupuit assumption can still be
applied) on the estimated watershed parameters. In the second
stage of analysis the above tests were repeated for a small
synthetic (nonrectangular) catchment with an area A of
576,200 m2.

In both cases the behavior of the transient unconfined
groundwater profile was simulated by numerically integrating the
two-dimensional Boussinesq equation [see, e.g., Verruijt, 1982]

­h
­t 5

1
w F ­

­ x S kh
­h
­ xD 1

­

­ y S kh
­h
­ yD G (7)

in a locally isotropic medium (i.e., k is a scalar) with either
homogeneous (i.e., k is constant in space) or heterogeneous
regional grid properties using a Crank-Nicholson implicit finite
difference scheme. A 10 by 10 m mesh was applied with 10 min
time increments. When a sloping impervious layer was em-
ployed during the analysis, the average slope did not exceed
1;100 in order to ensure the validity of the Dupuit assumption
[Verruijt, 1982].

The prescribed model parameters for the rectangularly

shaped aquifer and for the small watershed are displayed in
Table 1. The assigned saturated hydraulic conductivity values
are typical of a sedimentary material consisting of poorly
sorted sand [see, e.g., Domenico and Schwartz, 1998, p. 39].

In the heterogeneous case a conductivity value was assigned
to each cell in the model at random following a lognormal
distribution as generally observed in aquifers [see, e.g., Law,
1944; Nielsen et al., 1973]. In cases where the conductivities are
intended to display high spatial autocorrelation in certain di-
rections among cells (i.e., macroscopic anisotropy) the same
values of the conductivities were used as in the simple (i.e., no
preferred directions for k) heterogeneous case, except that the
conductivity values were rearranged among the cells. The in-
tent was to check the ability of the technique to quantify
effective properties in the presence of high spatial autocorre-
lation of hydraulic conductivities as often observed in aquifers.
For example, during sedimentation processes, certain direc-
tions (often alongside an ancient river bed) exhibit high spatial
autocorrelation of the physical parameters because of inter-
connected elongated fluvial channel-fill bodies [e.g., Fogg,
1986].

The simulations were initiated with saturated aquifers. For
both aquifers the water surface was set to zero in the channel
at all times, representing a fully penetrating stream. Figure 2
shows the geometry and the location of the streams in the
synthetic watershed case.

The model simulated the first 100 days of drawdown follow-
ing saturation of the unconfined aquifers. To make certain that
the numerical model worked correctly, the analytical solutions
of (1) were compared to the numerical solution of (7) for the
rectangular aquifer with constant k (see Figure 3) described in
Table 1 as case a (see Hornberger et al. [1970] for a similar
comparison). The two solutions overlap, except in the region
corresponding to the transition in the types (from short- to
long-time) of the analytical solutions. This is because the an-
alytical long-time solution is strictly valid only asymptotically,
and also, it requires an inverse beta function describing the
initial water table [Polubarinova-Kochina, 1962, p. 516]. The

Figure 2. The geometry of the synthetic catchment. Cell dimensions are 10 by 10 m.
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spatial distribution of the saturated hydraulic conductivities
(i.e., heterogeneous case) for the rectangular region (cases b
and c in Table 1, respectively), as well as the histogram of the
conductivity values, are presented in Figure 4. The same are
displayed in Figure 5 for the small synthetic catchment. The
elevation of the sloping impervious layer for the two types of
aquifer (cases d and e, respectively) is presented in Figure 6.

The numerical simulation results for 100 days of drought
recession (log (2dQ/dt) versus log (Q)) are given in Figure 7

for the rectangular aquifer and in Figure 8 for the synthetic
catchment. As can be seen in Figures 7 and 8, two straight lines
with slopes 3 (short-time solution) and 1.5 (long-time solution)
can be fit to the graphs in each case with a relatively wide
transition range between them. Because of the presence of this
broad transition zone, the fit of the straight lines is somewhat
arbitrary since the end of the short-time solution range, and
similarly, the start of the long-time solution range is not well
defined. The fitted equations are listed in Table 2. The esti-

Figure 3. Comparison of the analytical and numerical solutions of the Boussinesq equation for the rectan-
gular aquifer with constant saturated hydraulic conductivity and horizontal impervious layer: (a) Groundwater
discharge through time and (b) time rate of change in discharge versus magnitude of discharge.

Figure 4. The spatial distribution of the saturated hydraulic conductivities (their 10 base logarithms are
shown) (a) without and (b) with preferred directions in the rectangular aquifer case, as well as (c) their
histogram. Cell dimensions are 10 by 10 m.

SZILAGYI ET AL.: TECHNICAL NOTE1854



mated hydraulic conductivity (kest) and the estimated depth of
the aquifer (Dest) are obtained using the fitted constants a1

and a2 (see Table 1 for the resulting estimated values).
Table 2 also displays the accuracy of the estimated param-

eters. We note that in the most ideal case (case a: constant k ,
horizontal impervious layer) the relative absolute error (i.e.,

the s value) is ;25% for k and 10% for D . This might be due
in part to (1) uncertainties in the curve fitting procedure, (2)
the nonlinear nature of the equations involved, and (3) the
numerical model itself. However, the accuracy of the estimated
values does not deteriorate with increasing complexity of the
aquifer.

Figure 5. The spatial distribution of the saturated hydraulic conductivities (their 10 base logarithms are
shown) (a) without and (b) with preferred directions in the synthetic catchment case, as well as (c) their
histogram. Cell dimensions are 10 by 10 m.

Figure 6. The elevation (meters above stream level) of the sloping impervious layer for (a) the rectangular
aquifer and for (b) the synthetic watershed. Cell dimensions are 10 by 10 m.

1855SZILAGYI ET AL.: TECHNICAL NOTE



As one would expect, the estimated effective value of the
catchment-scale saturated hydraulic conductivity varies in ac-
cordance to the spatial distribution of k . Note that between
cases b and c the only difference is in the spatial distribution of
the conductivity values since the distribution function itself is
the same lognormal distribution (see Table 1) with the same
parameters in both cases. While the estimated conductivity

values in the heterogeneous cases (b, d, and e) with no pre-
ferred directions in the layering are much closer to the geo-
metric mean [in accordance with Domenico and Schwartz,
1998, p. 43] of the lognormal distributions, the estimated hy-
draulic conductivity value in the rectangular aquifer case,
where the layering is parallel to the groundwater flow, is closer
to the arithmetic mean [Maidment, 1993, p. 6.11]. A similar

Figure 7. The time rate of change in discharge versus magnitude of discharge obtained from the numerical
solution of the two-dimensional Boussinesq equation for the rectangular aquifer. The cases are a, constant
saturated hydraulic conductivity k; b, spatially variable k without preferred directions; c, spatially variable k
with preferred directions; d, constant k with sloping impervious layer; and e, spatially variable k with sloping
impervious layer.

Figure 8. The time rate of change in discharge versus magnitude of discharge obtained from the numerical
solution of the two-dimensional Boussinesq equation for the synthetic catchment. The cases are a, constant
saturated hydraulic conductivity k; b, spatially variable k without preferred directions; c, spatially variable k
with preferred directions; and d, spatially variable k with sloping impervious layer.

SZILAGYI ET AL.: TECHNICAL NOTE1856



shift in the estimated conductivity value cannot be observed in
the synthetic watershed case because there the layering is par-
allel in some parts, while in others it is perpendicular to the
groundwater flow.

3. Summary
We explored the performance of the Brutsaert-Nieber [1977]

recession flow analysis for estimating the catchment-scale sat-
urated hydraulic conductivity and the mean aquifer depth by
means of numerical simulation. The application of a numerical
model made it possible to have control over the parameters to
be estimated by the recession flow technique and to compare
the prescribed values with their estimates. Such a comparison
is generally not possible when the technique is applied in the
case of real watersheds because of the obvious heterogeneity in
the aquifer.

The effect of complex geometry, a gently sloping impervious
layer, and spatially variable saturated hydraulic conductivities
on the accuracy of the estimated catchment-scale parameters
was investigated. It was found that the accuracy of the esti-
mated parameters was not affected by the growing complexity
of the synthetic aquifer employed in the model.

On the basis of our numerical model experiment the inves-
tigated recession flow technique proved to be reliable to esti-
mate the catchment-scale saturated hydraulic conductivity k
and the mean aquifer depth D . If the conditions required for
the applicability of the Boussinesq equation are met, the tech-
nique is expected to provide reliable estimates of k and D in
practical applications.
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Table 2. The Best-Fit Equations for the Short- (dQ/dt 5 2a1Q3) and Long-Time (dQ/dt 5 2a2Q1.5) Numerical
Solutions in Figures 7 and 8 Plus the Relative Absolute Errors for the Saturated Hydraulic Conductivity k and the Mean
Aquifer Depth D Estimates

Rectangularly Shaped Aquifer Synthetic Watershed

Constant k 21.17 3 1022Q3, sk 5 9, 22.22 3 1026Q1.5,
and sD 5 4

21.35 3 1024Q3, sk 5 40, 21.27 3 1026Q1.5,
and sD 5 14

Spatially variable k 28.33 3 1023Q3, sk 5 51, 22.48 3 1026Q1.5,
and sD 5 0

21.07 3 1024Q3, sk 5 32, 21.13 3 1026Q1.5,
and sD 5 0

Spatially variable k with
preferred directions

24.07 3 1023Q3, sD 5 20, and 24.99 3 1026Q1.5 21.43 3 1024Q3, sD 5 5, and 21.05 3 1026Q1.5

Constant k with sloping
impervious layer

21.42 3 1022Q3, sk 5 30, 22.30 3 1026Q1.5,
and sD 5 10

not investigated

Spatially variable k with
sloping impervious layer

21.01 3 1022Q3, sk 5 58, 22.54 3 1026Q1.5,
and sD 5 15

21.40 3 1024Q3, sk 5 19, 21.23 3 1026Q1.5,
and sD 5 8

Relative absolute errors are in percent; sk 5 ukest 2 kmodukmod
21 , sD 5 uDest 2 D uD21; the subscript mod designates the modus.
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