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Longitudinal velocity measurements above a uniform dry lakebed were carried out to investigate the applicability of
the random sweeping decorrelation hypothesis to thermally stratified turbulent flow. The higher order velocity structure
functions of order m were measured and modeled using the sweeping decorrelation hypothesis. In order to reduce the
influence of Taylor’s frozen hypothesis on the assessment of the sweeping decorrelation hypothesis, two dimensionless
quantities, developed by Praskovsky et al. (1993), were used. Based on these dimensionless quantities, the sweeping
decorrelation hypothesis predictions agreed well with the higher order structure function measurements. Assumptions
inherent in the sweeping decorrelation hypothesis were also considered. It was found that strong interaction existed
between the energy containing scales and the inertial subrange scales, indicating that the sweeping action alone does not
fully describe the higher order structure function. Also, local temperature-velocity interactions were measured and found
to be significant thus weakening the validity of the sweeping decorrelation hypothesis. However, these two interaction
mechanisms appeared to be opposite in sign and counteracted each other.

1. Introduction

The statistical structure of the inertial subrange is commonly derived from dimensional argu-
ments proposed by Kolmogorov (1941) (referred to in this study as K41). In K41, the velocity
spectrum is taken to be a function of only the mean rate of energy transfer per unit mass (assumed
to be identical to the mean turbulent kinetic energy (TKE) dissipation rate per unit mass <¢)), and
the wavenumber (K). These dimensional arguments result in the well known — 5/3 power law

E(K)=C,{e?3 K 3, (1)

where C, is the Kolmogorov constant.
In order to test whether these dimensional arguments also hold for higher order velocity spectra
in the atmosphere, Dutton and Deaven (1972) considered the spectra of algebraic powers of
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velocity fluctuations defined by
Ly —<uiyry = E9(K) dK., (2)

where E“(K) is the power spectrum of order (m), { > is the averaging operator, and u; are the
velocity fluctuations about the time averaged velocity components U;. Here, subscript i = 1, 2, and 3
represent the longitudinal, lateral, and vertical directions, respectively, and <{u;» = 0. Dutton and
Deaven argued that if (1) holds, then the same dimensional analysis should be applicable to E"™(K)
within the inertial subrange. This dimensional analysis results in

E(r[n)(K) — Cm<":>2m 3 K (2m + 3) 3’ (3)

where C,, are constants to be determined (C, is the Kolmogorov constant). Hence,
EM~K PP EP~K T2 et

To investigate the validity of (3), Dutton and Deaven measured higher-order spectra (up to
m = 4) for all velocity components at four different elevations above the land surface. The
measurements were carried out in the atmospheric surface layer (ASL), the atmospheric boundary
layer (ABL), and for clear air turbulence (CAT) conditions. They found that the higher-order
(m > 1) velocity spectra depart significantly from predictions by (3) and appeared to follow the
— 5/3 power law in the inertial subrange for all m. Dutton and Deaven interpreted these results as
evidence that an inertial subrange, in the atmosphere, 1s not only defined by {¢) and K. Motivated
by the results of Dutton and Deaven, Van Atta and Wyngaard (1975) investigated the higher-order
velocity spectra of ABL measurements over the ocean. They showed that, for a Gaussian velocity
distribution, the higher order velocity spectra follow

EG) (K) = m* (1 x3x5x.x 2m— Dudm ! E‘,}l_' (K). 4

Notice that the above equation is different from (3) since it involves {u?) in the inertial subrange
(and not simply <¢> and K). Notice that for m = 1, (4) is consistent with K41. Measurements of
higher order velocity spectra in the ABL over the ocean seem to confirm (4) despite some observed
departure from Gaussian velocity distributions (see Van Atta and Wyngaard, 1975).

A related problem was studied by Tennekes (1975) who investigated the relationship between the
Eulerian and Lagrangian velocity spectra for isotropic zero-mean turbulent flow. Tennekes (1975)
assumed that small eddies (i.c. eddies much smaller than the energy-containing eddies) are
transported past a Eulerian observer without any dynamical distortion (here after referred to as
sweeping). As suggested by Tennekes. these arguments are analogous to Taylor’s (1938) frozen
turbulence hypothesis. Unlike Taylor's hypothesis, the transport of the small scales is not related to
the mean flow but to the energy content of the larger eddies. That the small eddies are not distorted
by the energy containing eddies can be attributed to the absence of any statistical interaction
between the two scales of motion. The absence of such an interaction is central to the concept of
inertial energy-cascade. Tennekes found that if this “sweeping™ action occurs, then the large scale
eddies must be directly contributing to the kinetic energy per unit mass of the smaller scales within
the Eulerian inertial subrange (i.c. the small scales are in motion because of the kinetic energy of the
larger scales). Therefore, the kinetic energy per unit mass of the larger scales ({u?)) should be
considered in the dimensional analysis of the inertial subrange in the Eulerian framework. Based
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on this argument. the Eulerian frequency spectra for u;* may be described as
EQ(f) = 2:¢ed? >yt 35, (5)

where f is the frequency. and » are unknown constants to be determined. The fact that {u?)
influences the dynamics of the inertial subrange has important implications to turbulence models.
This is due, in part, to the fact that current approaches to modeling velocity and scalar statistics in
the inertial-subrange assume complete independence between the energy-containing eddy motion
and the inertial subrange. Tennekes (1975) supported his arguments regarding the importance of
sweeping by comparing the differences between the Eulerian and Lagrangian correlation time
scales from low Reynolds number isotropic grid generated turbulence measurements reported by
Comte-Bellot and Corrsin (1971). and Shlien and Corrsin (1974). Tennekes’s arguments are also in
agreement with the data reported by Van Atta and Wyngaard (1975).

Interest in the Tennekes (1975) hypothesis (hereafter referred to as the sweeping decorrelation
hypothesis (SDH)) was renewed by the theoretical study of Yakhot et al. (1989). Based on
renormalization group theory (RNG) analysis (see €.g. McComb. 1991), Yakhot et al. (1989) found
that E'~ K~ 73, which can also be obtained from straightforward extension of the original
Kolmogorov scaling arguments as was earlier done by Dutton and Deaven (1972). That is, RNG
analysis seems to support the arguments leading to (3). The — 5/3 power-law generally observed in
the higher order velocity spectra may be due to the use of Taylor’s hypothesis (see Yakhot et al.,
1989; Praskovsky et al., 1993). Based on the RNG analysis, Yakhot et al. concluded that sweeping,
in the sense of Tennekes (1975). is not important for the Eulerian inertial subrange.

The same topic was considered in great depth by Praskovsky et al. (1993). Based on high
Reynolds number wind tunnel shear and mixing layer velocity measurements, they concluded that
the scaling arguments in (4) or (5) appear to match the measurements. However, important
assumptions leading to the SDH were violated. Namely. Praskovsky et al. (1993) measured strong
interaction between the energy-containing scales and the inertial subrange scales. The presence of
this interaction has important consequences for both large-Eddy simulations (LES) and energy
cascade models. For example, current LES neglect this interaction at the outset. Furthermore, this
interaction has important consequences on energy cascade models, intermittency corrections to
Kolmogorov's theory (sec c.g. Kuznetsov et al. 1992), and local isotropy assumptions. This
interaction also implies that the SDH cannot be exact since this interaction implies that the small
scales are distorted by the larger scales. Table 1 summarizes results from several numerical
experiments related to the applicability (and adequacy) of the sweeping decorrelation hypothesis.
Many more theoretical investigations based on order of magnitude analysis or numerical simula-
tions of the Navier-Stokes equations (NS) have been reported in the literature but will not be
reviewed here.

It is these issues and the important experimental findings of Praskovsky et al. (1993) that
motivated the present investigation of the higher-order spectra and the random sweeping decor-
relation hypothesis in the unstable ASL. In this study. 56 Hz triaxial sonic anemometer velocity
measurements were carried out at 2-3 m above a uniform dry lakebed that extends some 14 km in
the North--South direction and 4 km in the East-West direction for a wide range of atmospheric
stability conditions. In the ASL, the temperature disturbances are typically large even when the net
sensible heat flux is small. These large temperature fluctuations can potentially induce significant
deviations from the SDH predictions since the eddies that are transported past a Eulerian observer
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Summary of some sweeping decorrelation hypothesis (SDH) investigations

Authors

Analysis

Key conclusion

Yakhot et al. (1989)

Renormalized group
theory (RNG)

Sweeping is not important for the Eulerian higher
order velocity power spectrum.

Nelkin and Order of magnitude SDH is: (a) invalid if TKE spectrum scales as static
Tabor (1990) analysis of NS Pressure spectrum (see Monin and Yaglom, 1975

pp. 407), and (b) valid if TKE spectrum scales as K ~33
Chen and Numerical RNG analysis is ill-suited for analyzing the
Kraichnan (1989) simulations importance of sweeping.
Sanada and Numerical The sweeping time (characterizing the small scale
Shanmugasundaram simulations of NS convection by the large energy containing scale) is

(1992) more important than the local inertial eddy-turnover
time in determining the form of the TKE spectrum in
isotropic turbulence.

The inertial eddy-turnover time is dominant in high
Reynolds number decaying turbulence.

McComb et al. (1989) Numerical

simulations of NS

The analysis performed to assess the validity of SDH and resulting key conclusions are also listed. NS stands for
Navier Stokes equations.

are not only distorted by large-scale/inertial subrange interaction (as confirmed by Praskovsky
et al., 1993) but also by the local velocity/thermal interaction.

The specific objectives of this study are : (i) to assess the adequacy of the SDH in ASL flows using
the structure function approach, and (ii) to examine the assumptions intrinsic to the SDH using the
methods developed by Praskovsky et al. (1993) with emphasis on large-scale/small-scale interac-
tions with possible thermal distortions over a wide range of atmospheric stability conditions. First,
we briefly review the SDH using the structure function approach.

2. Higher order spectra and structure functions

The higher order structure function D"(r) as defined by Dutton and Deaven is given by
D™ (ry = (Lt (xy + r) — uf (x)]*), (6)
where x, 1s the coordinate direction along the mean horizontal wind speed, and r is the separation

distance along x; between two points in the inertial subrange. Replacing the velocity difference
Au; = ufx; + r) — udx;) in D"™(r) and expanding, we obtain

D™ (ry = ([(u; + Au)" — w1
m2ui™ 2Autd + mAm — D<u?m SAudd
+mim — 1)fs(Tm — 1)<u2" *Aut) + ... (7)
To avoid confusion, we note the difference between the higher order structure function in (6) and (7)

and the traditional nth order structure function defined by D™ (r) = (Au}>.
Praskovsky et al. (1993), demonstrated that (7) reduces to

D™ (r) = m*[u™ < [uslxy + 1) — wi(x 1%, ®)
if the following assumptions are invoked:

[l
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(1) K41 and all assumptions associated with K41 (e.g. local isotropy, high Reynolds numbers) are
valid so that the traditional structure function scales as

Au™y = C, (&> ry™ 3. 9)

(i) The SDH is valid. This hypothesis is necessary to simplify terms involving {u*Au!) in (7). In
general, these terms can be expanded as

Ui Aupy = AU + pry 0, (10)

for any arbitrary powers k and [, with the correlation coefficient p, ; defined by

k Uk L !
Prr = <(ui <ul>)(Aul <Au1>)> (11)

T 0

and o, is the root-mean square value of any variable x defined by

o, = [{(x = D] (12)

The “sweeping’ event is based on the assumption that large scale and inertial subrange scales are
statistically independent (i.e. no dynamical distortion of inertial subrange scales as they sweep past
a Eulerian observer). Praskovsky et al. (1993) showed that this assumption leads to p, , = 0 if the
following arguments are invoked: (i) Ay; is a characteristic velocity for the inertial subrange eddy
motion. (i1) u; is a characteristic velocity for the large scale eddy motion.

Hence, with p, ; = 0, quantities involving {u*Au!> simplify to {u¥> (Au!>. Upon Fourier trans-
forming (8), one obtains the higher order velocity spectra E™(K)

EP(K) = m*ul?™ S EW(K), (13)

Based on K41, the inertial subrange energy spectrum is given by EK) = C,{¢>**K 733 50 that
(13) reduces to

E(im) (K) — C1m2<“({2m '2)><8>2 3(K)7 5 3. (14)

which shows that the higher order velocity spectra within the inertial subrange are influenced by
the large scale energy (e.g. (u7™ ?>), and the power-law behavior (i.e. — 5/3) is independent of the
order (m) in agreement with Van Atta and Wyngaard (1975).

3. Experimental setup

An experiment was carried out on June 22 29, 1993 over a dry lakebed (Owens lake) in Owens
Valley, California. The lakebed is contained within a large basin bounded by the Sierra Nevada
range and the White and Inyo Mountains. The experimental site is located on the northeast
portion of the lakebed (elevation = 1100 m). The site’s surface is a smooth heaved sandy soil
extending uniformly in excess of 10 kilometers in all directions. The three velocity components and
temperature (T') were measured using a triaxial ultrasonic anemometer (Gill Instruments, Model
1012R2). Sonic anemometers measure the three velocity components by sensing the effect of wind
on the transit times of sound pulses traveling in opposite directions across a known instrument
path distance dy( = 0.149 m in this study). The sonic anemometer is suited for this experiment since
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it 1s relatively free of calibration nonlinearities, atmospheric contamination problems and calib-
ration drifts, and time lag responses. As shown by Wyngaard (1981), the main disadvantage of sonic
anemometers is the wavenumber distortion due to averaging along the finite sonic path. This
distortion is restricted to wavenumbers in excess of 2n/dy( = 42.2 m ™~ !). The sampling frequency (f;)
and the sampling period (T',) were 56 Hz and 15 minutes, respectively, resulting in 50400 measure-
ments per velocity component. Taylor’s (1938) hypothesis was used to convert the time domain to
space or wavenumber domain. We focus here on two runs that represent near-neutral and unstable
atmospheric conditions. These two runs were selected because the (i) velocity time series can be
decomposed without ambiguity into a mean and a fluctuating part, (i) turbulent intensity was
relatively small when compared to other runs, (iii) resolved inertial subrange by the sonic
anemometer extends over two decades of scales, and (iv) integral time scales were very small (3%)
when compared to the sampling period. These criteria were necessary to (i) eliminate any ambiguity
regarding steadiness in the mean meteorological conditions and the contribution of turbulence to
the time series, (ii) ensure the validity of Taylor’s hypothesis, at least for inertial subrange scales, (i11)
ensure the availability of a significant number of sample points for power-law determination within
the inertial subrange, and (iv) ensure the convergence of time averaging to ensemble averaging.
Figs. la and 1b display the time series (N = 50400 points) of the longitudinal velocity and
temperature for these two runs. Notice in Fig. 1a that peak to mean velocity ratios of up to 2.0 were
measured. It is evident from Fig. 1b that the temperature fluctuations for Run 1 (unstable
conditions) were much larger in magnitude than for Run 2 (near-neutral) and exhibit a ramp-like
pattern consistent with many shear-flow experiments.

The measured turbulence conditions for these runs are displayed in Table 2. In Table 2, the
integral length scale (L,). the Taylor microscale (4), and the Kolmogorov dissipation scale (r) were
estimated from

WUy [ _aUD e
_ T el VAN =|-— 5
Lu <u%> J\O <M1([ + T)U] (r)> dT« /. <[(’:ul///at]2>l!2’ n [<L>] ? (1 )

where v is the air kinematic viscosity. For determining L,, the integration in (15) was carried out up
to the first zero crossing as discussed in Sirivat and Warhaft (1983). The determination of the time
derivative in £ was carried out after a cubic spline interpolation scheme was applied to the velocity
time series. It should be noted that the validity of Taylor’s hypothesis, the local isotropy assump-
tion, and the insuflicient sampling resolution may strongly influence the accuracy of A. However,
this is not very crucial since 4 is only reported here to provide an estimate of the Taylor microscale
Reynolds number (Re;) for comparisons with other studies. This information is not needed for
evaluating the SDH as long as Re; is sufficiently large.

To further compare our results with other studies, the dissipation rate was estimated from the
local isotropy relation

&) = 15v{[u,; Cx ], (16)

The space derivative can be computed from the time derivative using Taylor’s hypothesis. Due to
the volume averaging of the sonic anemometer, the {¢)> estimated from the mean square velocity
gradient might be smaller than the true vaiue. Hence, we also estimated the dissipation rate using
() with C; = 0.55 (see e.g. Kaimal and Finnigan, 1994, and Wyngaard and Pao, 1972) to assess the
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Fig. 1. (a) Longitudinal velocity time series measurements for Runs 1 {upper), and 2 (lower). (b) Air temperature time
series measurements for Runs 1 (upper) and 2 (lower).

adequacy of (16). The agreement between the two dissipation rate estimates was good considering
that the sonic path length (d, = 0.149 m) is comparable to / (see Table 2). Fig. 2a shows the
measured power spectra for Runs 1 and 2 as well as the Kolmogorov spectrum. The dissipation
rate in Fig. 2a was determined from (16). Fig. 2a suggests that the — 5/3 power law covers at least
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Table 2
Summary of measured mean meteorological and turbulence conditions

Run description

Run # 1 2
Day of year (1993) 178 180
Starting time (PDST) 08:33 07:42
Mcan meteorological conditions

Net radiation (R,). Wm * 227 94
Sensible heat flux {H), Wm * 105 38
Long. velocity (U}). ms ! 1.86 4.09
Mean air temperature (T,). C 34.8 26.3

Turbulence statistics

Root-mean square velocity (a,;). ms ! 0.665 0.533
Root-mean square velocity (0,,), ms ! 0.589 0.530
Root-mean square velocity {(a,3), m's ! 0.270 0.211
Root-mean temperature (o), C 0.51 0.18
Mean Dissipation Rate ((¢> x 10*) m? s ?

(1) Using local isotropy relation 25 33
(1) Using power spectrum (E, ) 31 4.1
Turbulent intensity (1) 0.36 0.13

Length scales

Mcasurement height (2). m 30 225
Obukhov length (Lye). m —25 — 132
Integral length scale (L,). m 61 43
Taylor microscale (/). m 0.257 0.139
Kolmogorov dissipation scale (y). mm 1.22 1.01

Flow properties

Reynolds number (Re;) 11.398 4953

Scale separation (L,/) x 10° 0.50 0.43
Atmospheric stability parameter (27 Lye) —1.2 —0.17
Inertial subrange (m) 0.15 25 0.15—10

The experiment starting time is in Pacific daylight saving (PDST).

two decades of wavenumbers. Also, it does suggest that the estimate (&) is sufficiently accurate for
the purpose of this study. In Fig. 2b the measured power spectra for the temperature time series are
also presented. It should be noted that departures from K41 scaling (i.e. — 5/3 power law) is noted
in Fig. 2b for the temperature time series. A summary of these estimates is presented in Table 2.

Finally, from Table 2. we note that the atmospheric stability parameter (z/Lyo) varied by about
an order of magnitude. Here, Lyg 1s the Obukhov length given by

R)
— pug,

= 17
kg[H/coT,] (17)

MO
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Fig. 2. (a) Longitudinal velocity power spectra £,(K) from Runs 1 and 2. To permit comparison, Run 2 was shifted by
two decades along the ordinate axis. The dissipation rate in E(K) = C;{&>**K =33 (dotted line) was estimated from the

local isotropy relation. (b) Same as (a) but for the temperature time series.

where u, is the friction velocity, H is the sensible heat flux, T, is the mean air temperature, g is the
gravitational acceleration. k( = 0.4) is Von Karman’s constant, p is the air density, and ¢, 1s the
specific heat capacity of dry air under constant pressure. Other supporting measurements such as
net radiation (R,), H. and T, are also presented in Table 2. Further details regarding the
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experimental setup and the use of the sonic anemometer to measure the temperature fluctuations
can be found in Katul et al. (1994 a,b).

4. Results and discussion

The results and discussion section is divided into three parts. The first part identifies the inertial
subrange that is used to investigate the SDH for Runs 1 and 2; the second part presents an
assessment of the SDH for a wide range of atmospheric stability conditions; and the third part
examines possible statistical interaction between large and inertial scales. Recall that the SDH
neglects this interaction. and hence, this analysis investigates an important assumption.

4.1. Identification of the inertial subrange

The inertial subrange was identified from the dependence of the traditional third order structure
function on r using

QAuy)*y = — 2o (18)

(see Landau and Lifshitz. 1987 Monin and Yaglom, 1975 Ch. 8). The identification of the inertial
subrange using the traditional third order structure function is more accurate than the — 5/3
power spectrum approach since:

(1) Internal intermittency does not affect the scaling.

(1) The third order structure function is a higher moment than the power spectrum (second
moment) and is therefore more sensitive to small deviations from inertial subrange behavior (see
e.g. Anselmet et al., 1984).

(1) The convergence of the measured third order structure function to (18) requires a much
larger sample size than the convergence of the power spectrum to (1). Hence, the convergence of the
measured {(Au,*> to the result in (18) serves as an indirect check on the adequacy of the sample size.

(1iv) The log-intercept in (18) can also serve as an independent check on the estimated dissipation
rate from (16).

Figs. 3a and 3b display the measured {Aui) and the inertial subrange as identified by (18) for
Runs 1 and 2, respectively. Eq. (18) with (&> determined from the local isotropy relation is also
shown (dotted line). Good agreement between (18) and the measured (Au3 ) is noted. The measured
{Auiy at small r( < 0.15 m)is not reliable due to possible sonic anemometer distortions. Hence, we
restrict the statistical analysis to r larger than dy( = 0.149 m). The inertial subrange limits (dotted
vertical lines) as well as L, are also displayed in Figs. 3a and 3b.

4.2. Evaluation of the sweeping-decorrelation hvpothesis and higher-order spectra

The higher order spectra for Runs 1 and 2 arc displayed in Figs. 4a and 4b for m = 2-4,
respectively. These higher order spectra are formally defined by

™t x

E‘é'f’(.f)=J G ut + nye 2dr (19)

- r
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Fig. 3. (a) Identification of the inertial subrange for Run 1 using the dependence of the third order structure function

({Aut) on r. The dotted line is the (Aul> = — 4:5Ceyr. The dissipation rate is from the local isotropy relation. The

inertial subrange scales are between the two vertical lines. For r < 15 ¢m. the sonic anemometer distortion due to finite
path length becomes critical. (b) Same as (a) but for Run 2.

where fis the frequency. and v is the time lag. However, the calculations of the higher order spectra
were carried out as follows. (i) Construct the 17 time series from u, time series measurements. (it)
Subtract the mean {u}) to generate a zero-mean u’ time series. (iii) Determine the power spectrum
for the series in step 2. (iv) Band average the results of step (3) for smoothing the spectra to better
reveal power-laws.
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Fig. 4. (a) The evolution of the higher order spectra E™ as a function of wavenumber K for m = 2 to 4 for Run 1. For
comparison with RNG power-law predictions, the — 5/3 power law is also shown (dotted line). (b) Same as (a) but for
Run 2.

In our study, the power spectrum was calculated by dividing the 50400 u7 points into 6 windows,
each of length 8192 points, cosine tapering 5% on each window side, fast fourier transforming the
time series measurements within each window using FFT, computing the amplitudes of the Fourier
coefficients per unit wavenumber for all wavenumbers in each window, and then averaging the
spectra of all six windows. The frequency was converted to wavenumber (K) using Taylor’s
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hypothesis (K = 2nf/U ). The higher order spectra of Figs. 4a and 4b clearly do not support the
scaling arguments E*'~ K~ 73, EP'~ K73, "~ K" and appear to exhibit a near — 5/3 power
law for inertial subrange wavenumbers in agreement with other higher order spectra reported by
Dutton and Deaven (1972) and Van Atta and Wyngaard (1975). Although these spectra do not follow
EP~K 73 ES~K 3 E®~ K ''3 they do not prove the validity of the SDH.

As discussed in Praskovsky et al. (1993), a better quantity for assessing the validity of the SDH is

D(m)(r)
oy - L 20
) T Sk b =m0 (20)

/

The above equation is derived from the ratio of (6) to (8). Notice that (20} is not as sensitive to
Taylor's frozen hypothesis as the higher-order spectra defined by (19). This insensitivity can be
attributed to the differencing operation in the numerator and denominator. Any distortion caused
by Taylor’s hypothesis affects both numerator and denominator, and hence, must have less
influence on their ratio. If the SDH is valid, then d"™(r) = 1 for all r within the inertial subrange.
Figs. Sa, 5b, and Sc show the variation of d with r for Runs 1 and 2 within the inertial subrange
for m = 2,3, and 4, respectively. We should note that (20) involves two separate averaging
operations, one in the numerator and the other in the denominator, and therefore might still be
partially sensitive to Taylor’s hypothesis. What is important to note in Figs. 5a to 5c is that d"™(r} is
systematically less than unity. Based on the structure function approach utilized in section 2, d""(r)
should be greater than unity within the inertial subrange since the SDH neglects all but the first
term in (7). If these terms are significant, then (6) must be larger than (8) for all r within the inertial
subrange and d"(r) must be larger than unity. The data presented in Praskovsky et al. (1993)

2 3 2 3

10-3 10-2 101 100
/Ly

Fig. 5. (a) The variation of ¢"™(#) as a function of r for m = 2 and Runs 1 (empty circle) and 2 (empty square). The vertical
dotted lines denote the inertial subrange. The sweeping decorrelation is valid if d™ () = 1. The labeling is performed
once for every 100 sequential measurements. (b) Same as (a) but for m = 3. (¢) Same as (a) but for m = 4.
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Fig. 5. (continued)

(spectfically Fig. 2 in their study) confirms d"(r) is always greater than unity, which is not in
agreement with Figs. 5a 5c. Possible local velocity-temperature interactions may be responsible
for the reduction in d" and will be discussed in the following section.

In order to compare our results with the laboratory data of Praskovsky et al. (1993), another
dimensionless measure for assessing the adequacy of the SDH is computed

mon /LT + 1) — uf(x)]? 1 B
grin) = <[u1 (x +7) — u, (.\‘)]2> [mz<uf"' 2>J =1 @D
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and invokes assumptions identical to (20). However, a key advantage to (21) is attributed to the one
averaging operator that also involves differencing in the numerator and denominator, respectively,
at the same location x (or time t). Thus the influence of Taylor’s hypothesis on g"™(r) must be even
smaller than its effect on d'™ (or negligible). Also, since g™ involves one averaging operator, it is
more sensitive to atmospheric stability effects than d"(r) . Figs. 6a-6¢ show the variation of
g™ with r in the inertial subrange for m = 2, 3, and 4, respectively. For small m, g"™ is nearly
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Fig. 6. (a) Same as Fig. 5a but for y"(r). (b) Same as Fig. 5a but for m = 3 and g"™"(r). {¢) Same as Fig. 5a but for m = 4
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Fig. 6. (continued)

unity for all values of r in the inertial subrange and agrees with the g™ data in Praskovsky et al.
(1993). It is interesting to note that the ¢"™ deviations from unity are systematically higher for
near-neutral conditions (Run 2) when compared to the unstable conditions (Run 1). This point
deserves further analysis and is discussed in the following section.

We note that the variation of d"™ and ¢ within the inertial subrange are of the same magnitude.
Hence, errors due to Taylor’s hypothesis are small since Taylor’s hypothesis cannot influence both
quantities in the same fashion. Figs. 6a and 6b also indicate that as m increases, some deviations
from unity are noted for the larger inertial subrange scales. We investigate next whether these
deviations from unity are due to large-scale/inertial-scale interaction and/or local thermal/velocity
interactions.

4.3. Large-scale inertial-scale interaction

The interaction between the large scale excitation and the inertial scale excitation within inertial
subrange r can be evaluated from the correlation coefficient

_ b — ) (B~ CAuy)y

[

Pr.i (22)

If this correlation is significant, then quantities involving {u*Au!> do not simplify to (u¥>{Au!> and
the sweeping decorrelation hypothesis of (8) is no longer valid. For that purpose, we computed
p2.2 and p, 4 as a function of r for both runs. The evolution of these correlations with r for both
runs are shown in Figs. 7a and 7b for m = 2 and 4. respectively. It 1s evident from these figures that
the correlations are not small and are in fact very comparable to the dimensionless correlations
reported in Praskovsky et al. (1993).
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Fig. 7. (a) The evolution of the correlation coefficient p,, () as a function of r for m = 2 for Runs 1 (open circle) and
2 (open square). The inertial subrange scales are bounded by the two dotted vertical lines. The sweeping decorrelation
hypothesis assumes that p,, , = 0 for all m. (b) Same as (a) but for m = 4.

For that purpose, we define the following dimensionless ratio:

_ (pm.m) [

Ut Ay

This ratio is simply the ratio of the first to the second term of the right hand side in (10). That is,
R, measures the ratio of the distortions due to large-scale/inertial-scale interactions to the sweeping

R (r) (23)
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Fig. 8. The evolution of R{™r) as a function of r for m = 2 and Runs | (open circle) and 2 (open square). The sweeping
decorrelation hypothesis assumes that R(r) = 0.

motion. For the sweeping decorrelation hypothesis to be valid, this ratio must be negligible.
Hence, R, directly measures the bias in the SDH predictions due to large-scale/inertial-scale
interactions (affects the numerator of R.). In Fig. 8, R(m = 2) is shown for Runs 1 and 2. Notice
that for Run 2, this ratio increased up to 0.2 indicating partial distortions due to large-scale/inertial
subrange interactions at the upper limit of the inertial subrange, which also agrees with Praskovsky
et al. (1993) data. The large-scale/inertial subrange interaction suggests that d(r) should be larger
than unity for all values of r within subrange, which is not in agreement with the results from
Figs. 5a Sc. This motivated us to consider the thermal effects on the local velocity field in the below
section.

4.4. Thermal distortions

The above derivation thus far neglected all possible interaction between the velocity and
temperature fields within the inertial subrange. We should note here that in the ASL, thermal
fluctuations are relatively large even for neutral stratification ({u3T ) ~0). These temperature
disturbances can modify the small scale eddies as they sweep past a Eulerian observer (see e.g.
Katul and Parlange. 1994). From previous studies, it is not clear how important these distortions
are. One approach for assessing the importance of thermal distortion on the inertial subrange eddy
motion is to consider the correlation

k k l i
() = AT (AT ) (Au; <Au.>)>. (24)

O AT 0 A
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Fig. 9. Comparison between large-scale inertial-scale interaction and local velocity/thermal interaction within the
inertial subrange. The evolution of p, v = (ulAuL>/[6,164, 1) (open symbols) and par ad = (AT Aui>/[6a704u1])
{closed symbols) as a function of r for Runs 1 (circle) and 2 (squarc). The inertial subrange is also shown. The sweeping
decorrelation hypothesis assumes that p, s, = par.a. = 0 for all r within the incrtial subrange.

where AT = T(x + r) — T(x). If this correlation is significant (for any k and /), then significant
distortion of the small-scale eddies occurs due to the temperature fluctuations as they sweep past
a Eulerian observer. We also note here that the SDH requires the validity of K41, and central to
K41 is the local isotropy assumption. In a locally isotropic velocity field, the velocity differences are
uncorrelated with differences of any scalar (see e.g. Monin and Yaglom, 1975). In Fig. 9, we show
the dimensionless quantity (AT'Au!>/(6a110x,) as a function of r for Runs 1 and 2. For
comparison purposes. we also show the dimensionless quantity {u}Au} >/(6,104,1). Recall that the
SDH assumes that (u}Au' > = (AT'Aul> = 0. Notice in Fig. 9 that both correlations are signifi-
cant. Clearly, some distortions due to large-scale/inertial subrange interaction as well as thermal
disturbances exist. However. what is important to note in Fig. 9 is the sign of these correlations. It
appears that one distortion mechanism partially counteracts the other distortion mechanism. In
essence, the large scale velocity acts to strain the small scale eddies along the horizontal direction
while the local thermal disturbances act to distort them in the vertical direction.

5. Conclusions

This study investigated the random sweeping decorrelation hypothesis using the structure
function approach. Velocity measurements that exhibit a long inertial subrange, as identified by the
third order structure function, were used. These measurements were carried out above a uniform
dry lakebed with a uniform fetch exceeding 10 km. It was found that the higher order spectra (up to
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m = 4) exhibit a well defined — 5/3 power law. These findings are in agreement with previous
atmospheric boundary layer studies over the land and ocean. The sweeping decorrelation hypothe-
sis was examined using two dimensionless quantities that were developed by Praskovsky et al.
(1993) to reduce the influence of Taylor's frozen hypothesis. It was found that the sweeping
decorrelation hypothesis predictions of the higher-order structure functions overestimated the
measurements by 10-30% within the inertial subrange. Although a 10-30% deviation between
measurements and predictions may not be large in ASL flows, the direction of this deviation was
different from laboratory flows. It was demonstrated that SDH predictions should underestimate
the measured higher order structure function, which was contrary to what was measured. Because
of this result, two key assumptions, intrinsic to the derivation of the sweeping decorrelation
hypothesis, were tested. These assumptions were (i) the absence of large-scale/inertial subrange
interaction, and (i1) the absence of any eddy-motion distortions due to thermal disturbances. The
latter is usually absent in laboratory experiments. Statistical measures were developed to isolate
and investigate these two assumptions. It was found that both of these assumptions were violated
in the ASL for neutral and unstable atmospheric conditions. The fact that these two assumptions
were violated demonstrate that the SDH cannot be exact for ASL flows. The apparent agreement
(10--30%) between the SDH predictions and measurements was attributed to the counteracting
nature of these two distortions.
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