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Abstract. Orthonormal wavelet expansions are applied to surface-layer measurements of vertical 
wind speed under various atmospheric stability conditions. The orthonormal wavelet transform 
allows for the unfolding of these measurements into space and scale simultaneously to reveal the large 
intermittent behavior in space for the turbulent production wavenumbers. Both Fourier and wavelet 
power spectra indicated the existence of a - 1  power law for the vertical velocity measurements 
at the production wavenumbers. The - 1 power law in the turbulent production range was derived 
from surface-layer similarity theory. A dimensionless skewness structure function is applied to the 
wavelet decomposed vertical velocity field to trace the destruction of the shear- or buoyancy-induced 
anisotropy under various stability conditions. The structure skewness function revealed shear- or 
buoyancy-induced eddy asymmetry dependence on stability at each scale within the - 1 power-law 
wavenumber range with more isotropy during propagation from smaller to larger wavenumbers. The 
asymmetry of these events at the turbulent production wavenumbers appeared very localized in space, 
as well as in scale, and could be described with a simple eddy-overturning model. It is demonstrated 
that the wavelet transform is suitable for such analysis. 

1. Introduction 

It is well recognized that the statistical characteristics of atmospheric surface-layer 
(ASL) turbulent flow can be assumed to depend on the following dimensional 
parameters: 1) the friction velocity u,  = ( T p - 1 )  1/2, 2)  the buoyancy parameter 
/3 = gT, and 3) the sensible heat flux (H = pep(w'T')) and the latent heat flux 
(LyE = pLv(w'q')), where 7- is the surface shear stress = p(w'u'), w' and u' 
are the fluctuations of the vertical and horizontal velocity, respectively, about the 
mean values, (.) is the averaging operator, p is the air density, 9 is the gravitational 
acceleration, 7 = T-1 is the coefficient of thermal expansion (assuming air is an 
ideal gas), T is the mean absolute temperature of the surface layer, cp and Lv are 
the heat capacity and the latent heat of vaporization, respectively, and q~ and T t 
are the specific humidity and temperature fluctuations around the mean values, 
respectively (e.g., Monin and Obukhov, 1954; Monin and Yaglom, 1971, Ch. 4; 
Bmtsaert, 1982, Ch. 3, 4). 

A recent study by Kader and Yaglom (1991) based on the work of Zilitinkevich 
(1971), Betchov and Yaglom (1971), and Kader and Yaglom (1984) suggests that 
the ASL is comprised of three sublayers that have a self preserving turbulence 
structure. These sublayers are 1) forced convective or dynamic sublayer, 2) dynamic 
convective, and 3) free convective. 
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The forced convective sublayer occurs when z << ILl, where z is the height 
above the ground surface and L is the Obukhov length defined by 

L = pu3* 

where k = 0.4 is the von Karman constant. Within the forced convective sublayer, 
the buoyancy parameter/3 can be excluded from the list of dimensional variables. 
The free convective sublayer occurs when z >> ILl with u,  omitted from the list of 
dimensional variables. The dynamic convective sublayer occurs at moderate values 
of ( = - z / L  and all three dimensional variables are important. The distinction 
between these sublayers allows for separate universal formulation of the Fourier 
power spectrum and co-spectrum (Eij) of the velocity components (i = 1,2, 3; j = 
1,2, 3) for wavenumbers (K) that are dynamically important and much smaller 
than the Kolmogorov dissipation scales (Kader and Yaglom, 1991). 

For the vertical velocity fluctuations w r (i = 3, j = 3), the Fourier power 
spectrum E33(K) within the various sublayers has a universal power-law behavior 
given by (Kader and Yaglom, 1991): 

t~(1) 1(-5/3 
E33( 1[ ~) : "~33 .,1 fo r  b ~  ) < 1(  <[ a~13 ) For z << L, (2) 

,o, 331"2(1)/i"-111 for d~13 ) < I6 < b~13 ) 

/~33(i(]---- C~i)t( -5/3 fo rb~  2) < I~" < a~ 2) 
~(2) ~,,--5/3 For z >> ILl, (3) 
v33  ~ for d~ 2) < t (  < b~ 2) 

C(3)K-5/3 a 33) 
33 * for b~33 ) < K < ~ 0(i), 

E33(K) = n(3)~,--1 "-'33 ~ for d~33 ) < I f  < b~ ) For 
(4) 

where a33 is the wavenumber at which the inertial subrange terminates, b33 is the 
wavenumber at which the inertial subrange commences, and d33 is a wavenumber 
at which energy is injected. It is now accepted that the energy cascade from lower 
to higher wavenumbers is the most important dynamical process through which 
the memory of the energy injection at production scales is lost and the universality 
of flow structure, as described by Kolmogorov's theory (1941), results at higher 
wavenumbers (Yamada and Ohkitani, 1991a,b; Lesieur, 1987, pp. 96--100; Argoul 
et al., 1989; Kraichnan, 1991; Monin and Yaglom, 1975, Ch. 8). For the forced 
and dynamic convective sublayers, (2) and (4) indicate that the injection memory, 
characterized by the asymmetry in the production scales, disperses as the energy 
cascades to higher wavenumbers following a - 1  power law spectral behavior. 
When the cascading energy extends to inertial subrange wavenumbers, the flow 
becomes locally isotropic and the eddy asymmetry due to turbulent production is 
lost (Monin and Yaglom, 1975; Ch. 8). 
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As shown by Tennekes and Lumley (1972; p. 264) and Kader and Yaglom 
(1991), the occurrence of the - 1 power law at the production scales can be derived 
from dimensional arguments by noting that the spectrum of velocity for the small 
wavenumber range has units of (m s-  1 )2 m. Therefore, the spectrum of the vertical 
velocity E33(K) for large scales, based on Monin-Obukhov (1954) similarity 
theory with velocity and length dimensions scaled by u. and z, results in 

- -  ( 5 )  

where X(-) is a dimensionless universal function. For the case when z << ILl (i.e., 
Iz/LI --+ 0),  the stability parameter is no longer important (near neutral conditions). 
Therefore, X(.) depends only on the product K z .  In addition, if we assume that 
large-scale disturbances are greater than z, and that their statistical regime will not 
alter for moderate changes in z, then the spectrum E33(K) is no longer dependent 
on z. Hence, if K z  is small enough, we can eliminate z from (5) by requiring 

E33(I() A33 
u 2 - K z '  

(6) 

which yields E33(K) = A33u 2 K -1, where A33 is a universal constant (Kader 
and Yaglom, 1984, 1991). The occurrence of a power-law behavior at production 
wavenumbers has been observed in many studies. The - 1 power law was originally 
derived by Tchen ( 1953) for the longitudinal velocity spectrum E11 ( t ( )  within the 
boundary layer of a flat plate. However, Tchen (1953) concluded that the spectra 
E22(t() and E33(I() will not exhibit a - 1 power law since no production occurs 
in these two directions (at least for neutral density stratification). Perry and Abell 
(1975) and Perry et al. (1986) experimentally demonstrated the occurrence of a 
K -1 power law for the longitudinal velocity spectrum E l i ( K )  in fully developed 
pipe-flow turbulence, but precluded its existence for E33, while Koroktov (1976) 
observed an E l l ( K )  ~ t ( - I  in channel flows. Antonia and Raupach (1993), using 
rough-wall boundary-layer wind tunnel measurements demonstrated the existence 
of a - 1 power law for both El 1 and E33. Recently, a spectral large-eddy simulation 
(LES) of decaying isotropic turbulence convecting a passive temperature admixture 
was performed by Metals (1991) and Metals and Lesieur (1992) to study the spec- 
tral properties of turbulence at small waveumbers. In Metals (1991) and Metals and 
Lesieur (1992) a - 1 power law was computed at the production end of the temper- 
ature spectrum for nearly one decade, which agrees with temperature wavelet and 
Fourier spectral measurements performed by Katul and Parlange (t 994) and Kader 
and Yaglom (1991) in the atmospheric surface layer. Other studies, summarized in 
Raupach et al. (1991), also report the occurrence of a - 1 power law at production 
wavenumbers in rough-wall turbulent boundary layers under neutral conditions. 
However, Raupach et al. (1991) and Antonia and Raupach (1993) postulated that 
the - 1 power law does not exist in the atmospheric surface layer due to buoyancy 
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forces. This controversy regarding the existence of a - 1 power law in the spectrum 
of the vertical velocity has been the main motivation for this study. 

The objectives of this study are 1) to investigate the possible existence of a - 1 
power law in the vertical velocity power spectrum, and 2) to describe the spatial 
structure of the vertical velocity for the scales corresponding to the - 1 power law. 
For that purpose, we make use of orthonormal wavelet decomposition proposed by 
Meyer (1989), Daubechies (1988; 1992) and Mallat (1989a,b) to explicitly probe 
the spatial structure of turbulence within the - 1 power law for the vertical velocity. 
It is demonstrated that the orthonormal wavelet transform, in conjunction with a 
simple eddy-overtuming model, can be used to trace the evolution of the eddy injec- 
tion asymmetry in space and scale as larger wavenumbers are approached. Spatial 
details regarding shear-dominated and buoyancy-dominated interaction within the 
-1  power law subrange are considered. The formation of shear-generated eddy 
overturning and buoyancy generated updraft-downdraft events are first identified 
from dimensionless statistical measures such as the structure skewness at various 
scales. These events are examined in the space/scale domain using w p time series 
measurements at 80 cm above a uniform bare soil surface. 

2. Wavelet Transforms 

Wavelet transforms are recent mathematical tools based on group theory of square- 
integrable functions that allow the decomposition of functions, signals, fields, or 
operators into space and scale (Farge, 1992 a). Continuous wavelet transforms 
were introduced by Grossmann and Morlet (1984, 1985) and have been applied 
to turbulence by many investigators (see, e.g., Farge, 1992a,b; Farge et al., 1992; 
Everson et al., 1990; Argoul et al., 198y, Barcy et al., 1991; Liandrat and Moret- 
Bailly, 1990; Mahrt,1991). The continuous wavelet transform has proved to be 
an effective tool in studying singularities (Farge, 1992a; David, 1992), fractal 
structure of turbulence (Everson et al., 1990), or identifying coherent motion in 
turbulence measurements (Collineau and Brunet, 1993). However, the continuous 
transform may not be advantageous if the interest is in energy aspects of turbu- 
lence because the kernel functions are not mutually orthogonal and no immediate 
physical meaning can be associated with the expansion coefficients (Yamada and 
Ohkitani, 1990; 1991a,b). Moreover, the continuous wavelet transform forms an 
overcomplete basis that can bring ahout undesired formal relations between the 
wavelet coefficients themselves (Yamada and Ohkitani, 199 la,b; Meyer, 1989). In 
brief, orthonormal wavelet expansions are the discrete version of the continuous 
wavelet transforms, but they form a complete basis with mutually orthogonal ker- 
nel functions (Meneveau, 1991a). This allows a clear and conventional physical 
interpretation of the expansion coefficients from the energetic point of view when 
applied to turbulence measurements (e.g., Yamada and Ohkitani, 1990; 1991a,b; 
Meneveau, 199 la,b; Katul and Parlange, 1994). 
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2.1. CONTINUOUS WAVELET TRANSFORMS 

As shown by Grossmann et al. (1989), the continuous wavelet transform of a real 
square integrable signal f(x) with respect to a real integrable analyzing wavelet 
~p(x) may be defined as 

l+ g V~ j_~ ~p f(t) dt, (7) 

where a is a scale dilation, b is a position translation, W(b, a) is the wavelet 
coefficient at position b and scale a, and Cg is a finite constant defined by 

/_+oo 
Cg = Iti1-11~*(t()[ 2 e l f ,  (8) 

O O  

where K is the wavenumber and ~ is the Fourier transtorm of ~(x) given by 

= / / J  dy. (9) 

If ~(x) is a suitable analyzing wavelet, it satisfies the following conditions (Farge, 
1992a): 1) the admissibility condition which requires that 

+ ~ ( y )  dy = 0, (10) 

2) the similarity condition which requires the scale decomposition to be obtained 
by translation and dilation of one function, and 3) the invertibility condition which 
requires at least one reconstruction formula for recovering the original signal 
exactly from its wavelet coefficients. Hence, any square integrable function f(z)  
can be recovered from the wavelet coefficients by the reconstruction formula 

f +~ db da 

A popular example of a continuous wavelet is the second derivative of a gaussian 
given by ~(x) = (x 2 - 1)exp(-z2/2) .  The wavelet transform is commonly 
compared to a microscope with the optics constructed by ~/, the enlargement given 
by a, and the position given by b (Liandrat and Moret-Bailly, 1990; Collineau and 
Brunet, 1993). 

2.2. ORTHONORMAL WAVELET EXPANSIONS 

Much of this material is presented in Katul and Parlange (1994); however, for 
completeness the main findings are given here. For actual turbulence measure- 
ments, discrete wavelet transforms are preferred since f(x) is generally sampled 
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at only discrete points xj depending on the resolution of the sensor and the sam- 
pling frequency (see Mallat, 1989a,b; Madych, 1992). Therefore, it is necessary 
to discretize the scale and space domain of (7). It should be mentioned that the 
discretization of (7) is not arbitrary since conservation of the amount of information 
in the signal (Daubechies, 1988) is required to form a complete and mutually ortho- 
gonal basis. As shown by Daubechies (1988; 1992, pp. 10) and Mallat (1989 a,b), 
using a logarithmic uniform spacing for the scale discretization with increasingly 
coarser spatial resolution at larger scales (i.e., the position index is dependent on 
the scale index), a complete orthogonal wavelet basis can be constructed. These 
basis functions are given by 

a; / '  (12) 

where m and j are variable scale and position indexes, respectively, a0 is the 
base of the dilation and b0 is the translation length in units of a~.  Note how the 
translations are dependent on the scale dilations. The simplest and most efficient 
case for practical computations is the dyadic arrangement resulting in a0 = 2 and 
b0 = 1 (Daubechies, 1992, pp. 10; Chui, 1992, pp. 4; Mallat, 1989a,b). Hence, all 
scales along octaves 2 "~ and translations along 2"~j contribute to the construction 
of f(xj) = f(j) using 

m = ~  i = + ~  

f(j) = ~ ~ W(~O[i]9('~)[i- 2"~j], (13) 
rnml i-------oo 

where g('~)[i] is the discrete version of the wavelet function ~p(x) at scale m. Details 
regarding the discretization of ~b (x) are discussed later. The discrete function g('~)[i] 
satisfies the discrete orthogonality condition 

(14) 

where ~ij is the Kronecker delta function. The discrete wavelet coefficients at scale 
index m and position index i can be obtained by the convolution 

j - - - -+~ 

W('~-)[i] = ~ g ( ~ ) [ i -  2"~j]f(j). 
j z  - - O 0  

(15) 

They satisfy the conservation of energy condition 

j = - - ~ o  m = l  i = - - ~  

(16) 
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which is similar to Parseval's identity in Fourier series (Chui, 1992, pp. 12). In the 
above derivation, it was assumed that f ( j )  extends to oc. In general, the number 
of observations defining f ( j )  is finite and the summations in the above equations 
should not extend to infinite domains. If N = 2 M is the number of observations 
(i.e., N is an integer power of 2), then the scale index m can vary from 1 to M 
= log2(N) and the position index at scale ra varies from 1 to JV 2 -'~. Note how 
an increase in scale results in a reduction of spatial resolution (e.g., at m = 1, we 
have N / 2  coefficients, at m = 2 we have N/4 coefficients, at m = M we have 1 
coefficient). Also note that the above arrangement conserves the number of wavelet 
coefficients (=N - 1) required to decompose a signal or a discrete function defined 
over the N points. 

This dyadic arrangement is well suited for turbulence studies since the small- 
scale features of the turbulent flow, which change rapidly compared to the large- 
scale features, are characterized by more wavelet coefficients (Meneveau, 199 la,b). 
The decomposition of f ( j )  and the determination of the wavelet coefficients is 
generally carried out by an efficient pyramidal scheme known as multiresolution 
analysis. 

2.3. MULTIRESOLUTION ANALYSIS 

In this section, multiresolution analysis developed by Mallat (1989a,b) within the 
framework of Meyer's notion of orthogonal wavelet basis is briefly reviewed. This 
review is intended to illustrate how g ('~)[i] can be obtained from r  and how the 
computation of the wavelet coefficients is carried out. 

In general, turbulence-measuring devices can only sample a continuous process 
f (z)  at finite resolution dy (assumed unity for normalization purposes in this 
section). Following Meneveau (1992a) it can be shown that there exists a set of 
orthonormal basis functions ~(~ - i) that, by translation only, generate f (z)  
using 

i------boo 

f(x) = ~ s(~162176 - i) dx, (17) 
iz--~O 

where s ('~=~ [i] is defined by the convolution 

s('~:~ i] = /2+oo f(x)r - i) dx. (18) 

In practice, r  is selected to have a fast decay away from the origin and to satisfy 
the orthonormality condition 

f + ~  r176 - i)r176 - j )  dx = 5ij, (19) 



8 8  G.G. KATUL AND M. B. PARLANGE 

so that s(~=~ [i] represents discrete samples of f ( x )  at unit resolution (i.e. for scale 
index ra = 0) on a mesh i of unit size (in practice the mesh size is dy). Note also 
that the samples s(~=~ are collected in an orthogonal manner. Consider f (x )  
at a coarser resolution R~ = 2 "~ denoted by f (~)(x) .  Analogous to (17), f(m)(x) 
can be computed from the convolution 

i=+oo  

f(m)(x) = ~ s(~)[i]r - 2~i) ,  (20) 
i ~ - o o  

where s(~) [i] is given by 

= - 2 i) d x ,  ( 21 )  

and r is the dilated version of r which is given by 

r = 2 -~ /2 r  (~ ~ -  . (22) 

Consider the basis function at scale (m + l) which is completely embedded in 
scale (m). Mallat (1989a,b) demonstrated that the coarse-grained version .s('~+l) [i] 
can be obtained from s (~) [j] using 

j=+~  
s('~+l)[i] = ~ h[j - 2i]s(m)[j], (23) 

jz--OQ 

where h[u] is defined by 

=  )dy. (24) 

Similarly, the wavelet coefficients at scale (m + 1) can be obtained from s("~) by 

j=zr-c~ 

W('~+I)[i] = ~ g[j - 2i].s('~)[j]~ (25) 
j ~ - -  o<3 

where 9In] is defined by 

which corresponds to the wavelet function ~(x) dilated by a factor of 2 and 
sampled by the smoothing function 6(x). The filters h(u) and 9(u) are known as 
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*h(u) 
.- --'-, - - - - j  

*h(u)  

*h(u) ,~ ~ W 3 -  

I I '  
/ . *g(u)  

w-ii 
*g(u) 

~sM i 

-iwM 

I Sample every other value 

* h(u) �9 Convolution with Fil ter h 

�9 g(u) �9 Convolution with Filter g 

sM - Signal at resolution M 
wM-Waveret Coefficients at resolution M 

Fig. 1. Mallat's multiresolution pyramidal algorithm to obtain the wavelet coefficients as well as the 
coarse-grained signal at various scales from the Quadrature Mirror Filters h(u) and g(u). 

the Quadrature Mirror Filters (QMF). Examples of QMFs for various compactly 
supported wavelets (i.e., wavelets that are zero everywhere except for a few points) 
are given in Daubechies (1992) and Katul and Parlange (1994). Equations (23) and 
(25) indicate that the coarse-grained version of f ( j )  and the wavelet coefficients at 
a certain scale can be computed from the preceding finer scale. Figure l illustrates 
Mallat's (1989a,b) multiresolution algorithm for obtaining the wavelet coefficients 
and the coarse-grained series. We note in Figure 1 that h(u) acts as a low pass 
filter which smooth the original series while 9(u) acts as a high pass filter that 
retains information lost in the smoothing. The algorithm stops when the signal 
reduces to a point. The algorithm presented in Figure 1 is general enough to allow 
implementation of various orthonorrnal wavelets such as the Daubechies wavelets 
(Daubechies, 1988) or the spline wavelets constructed by Battle-Meyer-Lemafie 
(see, e.g., Lemarie, 1988; Battle, 1987, 1992; Chui, 1992, pp. 177-214). However, 
for the case of the Haar wavelet (Haar, 1910), the scheme of Figure l reduces to a 
simple and efficient algorithm that does not require any convolution computations 
due to the compactness of the QMF of the Haar wavelet. Appendix A presents a 
fast wavelet algorithm (FWT) to compute the wavelet coefficients as well as the 
coarse-grained signal for the Haar wavelet. The Haar wavelet is adopted in this 
study since it has excellent localization in physical space (one vanishing moment) 
when compared to other wavelets. 
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2.4. PROPERTIES OF ORTHONORMAL WAVELETS 

Some properties of orthonormal wavelets are summarized below and more details 
are found in Meneveau (1991a). 

1) All wavelet bases are orthonormal so that 

f+oc @(m)( x _ 2mi)z)(n)( x _ 2'~J) dx = ~i j~mn;  (27) 
J--c~ 

2) The wavelet bases are perpendicular to the smoothing or sampling function 
so that 

/ ~  r  - - 2 ~ j )  = 0; (28) 2~i )~(~) (x  dx 

3) The smoothing or sampling function is orthonormal to itself at any scale m so 
that 

f + 5  0('~)(x - 2'~i)O('~)(x - 2"~j) = 5ij. (29) dx 

Note that condition (2) suppresses undesired relations between the sampling func- 
tion and the wavelet function. 

2.5. SPATIAL STATISTICS OF TURBULENCE 

From (16), the variance of the signal in terms of the wavelet coefficients can be 
computed from the conservation of energy 

m = M  i=N 

= Z Z 2, 
rr~=l i=1 

(30) 

where N is the number of observations, and M = log2(N ), m is the scale index 

( 1 , 2 , . . . ,  M),  and i is the position index. The total energy T (~) contained in scale 
R~ = 2 ~ dy is given by 

i=2M-m 

T ( ~ ) =  N - '  ~ (W('~)[i]) 2. (31) 
i=1 

The wavenumber K corresponding to scale R.~ is defined as 27r(R.~) -1. There- 
fore, the wavelet power spectral density function (energy per wavenumber) at 

wavenumber K is the ratio of T(E "~) to AI (  = (27r2 -'~ dy -1 ln(2)) which, after 
some simplification, reduces to 

E ( I f )  = ( (w(m)[i])  2) 2--~nn(2) ' (32) 
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where (.) is averaging in space over all values of i (not to be confused with time 
averaging). The spatial standard deviation about this power spectrum can also be 
computed from 

dy 
SDE(/()  : (~in-n(2)) [(w(m)[i]4)- ((W('~)[i])2]'/2" (33) 

A plot of E ( K )  and E(I() + SDE(t() gives a compact representation of the energy 
and its spatial variability at each scale. Such a representation is referred to as a 
"dual spectrum" (see Meneveau, 1991 a,b). Also, other spatial statistical measures, 
such as the Flatness Factor (FF), can be computed for wavenumber K using 

FF([() = ((W(m)[i])4) (34) 
((W('O[i])2) 2" 

3. Dimensionless Structure Skeweness 

Having introduced the wavelet transform as a tool for decomposing the turbu- 
lence measurements into space and scale, we focus on statistical measures that are 
employed to identify the nature of the eddy asymmetry and its propagation through 
the production range to higher wavenumbers. The asymmetry of the motion as well 
as the degree of anisotropy of turbulence at scale R~  = 2 ~ dy, in relation to the 
mean shear, can be examined using the structure skewness (SS) defined by 

: + 7) = (35) 

where w (m)' (x) is the fluctuation of the vertical velocity (obtained from the multi- 
resolution decomposition previously described) at position x = (2 "~ dyj)  and scale 
2 "~ dy. Here dy (= V dr) is determined from Taylor's (1938) hypothesis, where V 
is the mean horizontal wind speed, and dt is the sampling time interval. 

As shown by Mahrt and Gamage (1987), the magnitude of SS can be interpreted 
with regard to the general anisotropy and intermittency of the flow at that scale. 
The sign of SS can be interpreted as a result of two possible mechanisms (see 
Figure 2): 1) negative SS resulting from localized shear overturning events at 
the present scale, and (2) positive structure skewness due to localized individual 
updraft-downdraft events active at the present scale (for further details, see Mahrt 
and Gamage, 1987). 

4. Experiments 

Experiments were carried out over a 500 m • 500 m uniform bare soil surface with 
a momentum roughness height z0 of 2 mm (Katul and Parlange, 1992; Parlange 
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IDEALIZED MODELS FOR STRUCTURE SKEWNESS 

1) Shear Overturning 

dw /dx  ~ 0 

Shear generated overturning 

result ing in negative structure 

skewness for eddies of scale a 

2) Drafts 

b 
dw/dx  > 0 

, 

Updrafts and downdraf ts  contr ibut ing 
to posi t ive structure skewness 

for eddies of size a 

Fig. 2. Two possible interpretations for the sign of the structure skewness. The first case is due to 
shear overturning resuking in a negative structure skewness. The second is due to updraft-downdraft 
events resulting in a positive structure skewness. 

and Katul, 1992). A Campbell Scientific one-dimensional sonic anemometer (path 
length = 15 cm) situated at z = 80 cm above the ground was used to monitor the 
fluctuations in the vertical velocity. The sampling frequency was set to f~ = 10 Hz. 
Two 28-min experiments (N = 16,384) were carried out under unstable and stable 
atmospheric stability conditions as shown in Table I. Since this study is concerned 
with wavelet transforms as variance decomposition statistical tools, it is important 
to check the level of variance error due to the finite duration of the sampling period. 
As shown by Lumley and Panofsky (1964, pp. 37), for a given sampling period Tc 
the approximate error (e) in the variance measurement can be determined from 

/ 2  ( ( w ' ) 2 )  -f 1 
(36) 

where It is the integral time scale determined by integrating the area under the 
autocorrelation function up to the first zero crossing (see Sirivat and Warhaft, 
1983). Using the computed integral time scales reported in Table I, and using a 
sampling period of 28 minutes, the maximum error in the variance level is less than 
4% for both experiments. Supporting measurements of temperature and humidity 
fluctuations using a fine wire chromel constant thermocouple (0.0127 mm) and a 
krypton hygrometer (path length = 1.105 cm) were also carried out to obtain the 
sensible and latent heat fluxes, respectively. An estimate of u. was obtained from 
a Young triaxial light propeller anemometer situated at 3 m (distance constant = 1 
m, sampling frequency = 1 Hz). These measurements ( u . , / / ,  and LyE) were used 
to estimate the Obukhov length during each experiment. Mean horizontal wind 
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TABLE I 

Meteorological conditions during the two experiments. The net radiation (R~) was measured by a 
Frischen type net radiometer, the soil heat flux (G) was measured by a Thomtwaite soil heat flux 
plate, and the air temperature (at 80 cm) was measured by a Campbell Scientific temperature probe. 
The time (PST) indicates the start of the 1-D sonic anemometer experiment. Also, the variance in 
w'  (Var(w')) and the computed integral time scales (IT) from the autocorrelation function for each 
experiment are tabulated. Taylor's hypothesis can be used to convert integral time scales to integral 
length scales 

Day Time Run R,~ G To V u, H L IT z/L Var(w') 
1992 HHMM No. W m  -2 W m  -2 ~ m s -1 m s  - I  W m  -2 m s m 2 s - 2  

280 1332 1 328.7 105.8 32.0 1.72 0.16 173.1 - 2 . 4  1.3 -0 .33  0.044 

285 2139 2 -85 .5  -40 .3  16.6 1.71 0.064 -4 .76  -5 .1  0.5 0.16 0.014 

speed was measured at 80 cm by a 3-cup photochopper anemometer (sensitivity = 
+ 0.2 m s- l) .  The turbulent intensity at 80 cm for both experiments was <0.5 and 
Taylor's (1938) frozen turbulence hypothesis was used (see Lumley, 1965; Powell 
and Elderkin, 1974; Stull, 1988, pp. 6). 

5. Results and Discussion 

The vertical velocity fluctuations as a function of time are shown for unstable 
(Figure 3a) and stable (Figure 3b) atmospheric stability conditions. It is apparent 
from Figures 3a and 3b that the magnitude of the vertical velocity fluctuations are 
much larger for unstable than for stable conditions. No apparent trend in the mean 
vertical velocity was observed for either of  the 28-min experiments. 

5.1.  FOURIER AND WAVELET SPECTRA 

The Fourier power spectra for N = 16384 observations (per experiment) were 
computed by dividing the signal into 32 sections, cosine tapering 5% on each side, 
and averaging the power (energy per unit wavenumber) at each wavenumber (see 
Shumway, 1988; Press et al., 1992). The Fourier power spectra for unstable and 
stable atmospheric stability conditions are shown in Figures 4a and 4b, respectively. 
The existence of a power law consistent with a - 1  exponent for both stability 
conditions is observed for at least 1 decade (see Figures 4a and 4b). The regression 
model Log(E) = A Log(K) +/3 was used to determine the best fit line through the 
measurements presented in Figures 4a and 4b. The results are shown in Table II. 
The -5 /3  power law commonly noted in atmospheric measurements (e.g., Kaimal 
et al., 1972) was not observed in the Fourier spectra presented in Figures 4a and 
4b for the 10 Hz sampling frequency. To further investigate the absence of the 
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Fig. 3a. Measurements of the vertical velocity fluctuations for experiment 1 at z = 80 cm (2( = 
16384) for unstable atmospheric conditions. 
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Same as Figure 3a but for experiment 2 and stable atmospheric conditions. 

-5 /3  power law, we determined the maximum normalized frequency (f~) using 
f ~ z / ( U )  (=10 • 0.8/1.7 = 4.8). The vertical velocity spectra (E~3) of Kaimal et al. 
(1972) show a clear inertial subrange for fn > 5, which is larger than the maximum 
f~ in this study. Hence, the absence of a - 5/3 power law appears to be due to 1) low 
sampling frequency and 2) the closeness of the measurement height to the ground 
surface. Several other wavenumber criteria regarding the commencement of the 
inertial subrange have been proposed. As shown by Monin and Yaglom (1975, pp. 
457), a true inertial subrange exists when nt z / ( U )  ~ 10, where nt is the minimum 
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Fig. 4a. Fourier power spectrum of the vertical velocity fluctuations for experiment 1 (unstable 
conditions). Taylor's hypothesis was used to convert the time domain to the wavenumber domain. 
The - 1 power law is also shown. 

frequency necessary to capture the lower limit of the inertial subrange. However, 
Kaimal et al. (1972) showed that an inertial subrange can exist when n ~ z / I U  ) ~ 5 
for unstable conditions and 10 for stable conditions. For both experiments, if we 
set nl = f~ (i.e., the frequency corresponding to the smallest resolvable scales 
by the instrument), then f ~ z / I U  ) ~ 4.8 which is less than 10. It appears that the 
Kaimal et al. (1972) criterion appears to underpredict the wavenumber at which the 
inertial subrange exists. We note that using X-probe measurements, Busch (1973) 
also showed that the Kaimal et al. (1972) inertial subrange wavenumber limits are 
rather small. 

The two vertical velocity signals collected are decomposed into space and scale 
using the Multiresolution algorithm presented in Appendix A. This resulted in 
log2(16384) = 14 octaves (i.e., the scale domain is discretized by 14 points) for 
each experiment. The Haar wavelet spectra for both stability conditions are shown 
in Figure 5a. Notice from Figure 5a that the area under the wavelet spectrum for 
the unstable case is much larger than for the stable case. Similar to the Fourier 
power spectra, a - 1  power law relationship was observed in the Haar wavelet 
power spectra for one decade (see Figure 5a and Table II). Notice that the wavelet 
spectra are computed over a wider wavenumber range (compare the abscissa of 
Figures 4a and 5a) than the Fourier power spectra. Generally, to obtain a reliable 
estimate of the Fourier power spectrum, windowing and tapering are necessary. In 
contrast, windowing should be avoided when computing wavelet spectra since the 
spatial location of events is critical to the decomposition. Generally, windowing or 
averaging distorts the space-scale relation between the wavelet coefficients. 
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TABLE 1I 

The existence of a - 1 power law. Regression analysis on the model log[E(K)] = A log[K] + B for 
both Fourier and Wavelet Spectra is presented. The coefficient of correlation (rz), the standard error 
of estimate (SEE) as well as the wavenumber range ( I ~ n  - Kmax) used in the regression analysis are 
displayed for both experiments 

Day Time Run Minimum Maximum Slope Intercept r 2 SEE 
1992 HHMM No. Wavenumber Wavenumber (A) (B) 

(m -1) (m -1) 

Fourier Spectra 
280 1332 1 4.62 18.48 -0.994 -2.06 0.32 0.22 
285 2139 2 4.62 18.48 -1 .02 -2.55 0.30 0.24 
Wavelet Spec~a 
280 1332 1 2.309 18.48 -0.98 -1.99 0.998 0.019 
285 2139 2 2.309 18.48 -0.99 -2 .42 0.999 0.032 

5.2. SPATIAL STATISTICS OF THE POWER AT PRODUCTION WAVENUMBERS 

In  s t u d y i n g  the spa t i a l  va r i a t i on  o f  the  ene rgy  in space ,  w e  depa r t  f rom M e n e v e a u ' s  

(1991,a)  d u N - s p e c t r a l  r ep resen ta t ion .  In s t ead  o f  p r e se n t i ng  the dua l  spec t ra  as 
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2.50 

2.25 

2.00 

1.75 

1.50 

~'1.25 
L.) 

1.00 

0.75 

0.50 

0.25 

0.00 
1 0-2 

�9 Unstable 

. . . . . . .  i I i , r "  , ' 

2 3 4 2 3 4 2 3 4 
1 0-1 1 0 o 1 01 

Wavenumber k (m'D 
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E(k) + SDE(E), we define a dimensionless coefficient of variation CV(E) 
given by 

CV(K)  - SDE(I() [(W(m)[i] 4) --((W(m)[i])2)2] 1/2 
2) (37) 
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density function of a zero-mean and unit variance Gaussian process. The ordinate axis is logarithmic 
to emphasize the tails of Pr(y). 

A plot of CV(K) as a function of K displays the relative spatial dispersion of the 
power around its mean value at wavenumber K. Recall that Fourier power spectra 
assume that the power is uniformly distributed in space with CV(K) = 0 for all 
K.  Figure 5b shows the variation of CV(K) for both stability conditions. Notice 
that for both cases, CV(K) > 1, indicating that the spatial variation of the power 
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(SDE(K)) is larger than its mean value E(K). Also, it is evident from Figure 5b 
that CV(K) increases with increasing K indicating increased spatial fluctuation 
in the power at smaller scales. In order to check whether stability influences the 
spatial fluctuation of the power at production wavenumbers (K ,-~ 2 m-1 to 18 
m - l ) ,  we compare the magnitudes of CV(K) for the two signals in Figure 5b. 
This comparison may indicate that spatial fluctuation in the power is larger for the 
unstable than for the stable case. 

5.3. SPATIAL STATISTICS OF THE GRADIENT AT FRODUCTION WAVENUMBERS 

The statistical properties of the vertical velocity gradient at wavenumber K can be 
investigated using the wavelet flatness factor given by (34). Recall that the Haar 
wavelet transform amplifies the horizontal differences in the signal (see Appendix 
B). Hence, the dimensionless wavelet flatness factor is the same for differences 
or gradients since the division by the scale (a) required to convert differences 
to gradients in (34) cancels out. The variation of the wavelet flatness factor as 
a function of K is presented in Figure 5c for both stability conditions. Notice 
in Figure 5c that the wavelet flatness factor is nearly 3 (i.e. nearly Gaussian) 
for wavenumbers smaller than the production wavenumbers. Also, from Figure 
5c notice that the wavelet flatness factor increases with increasing wavenumber 
for both stability conditions. This indicates that the gradients (as approximated 
by the wavelet transformed coefficients) tend to be non-Gaussian at the smaller 
scales (or larger wavenumbers), although the vertical velocity is nearly Gaussian 
for both stability conditions (see Figure 5d). The probability density of the vertical 
velocity, normalized hy the root-mean square velocity in the vertical, is displayed in 
Figure 5d for both stability conditions. The flatness factors corresponding to these 
probability distributions are 3.15 (unstable) and 3.35 (stable), which are smaller 
than the wavelet flatness factors for production wavenumbers (FF ,,~ 5). In order 
to investigate the influence of atmospheric stability on the spatial distribution of 
the velocity gradients, we consider the wavelet flatness factors for both stability 
conditions. For production wavenumbers (2 m - l - 1 8  m- l ) ,  the wavelet flatness 
factor is larger for unstable than for stable conditions (Figure 5c). This indicates 
that the magnitudes of the gradients for unstable conditions are larger and appear 
more frequently in the vertical velocity signal than for stable conditions. 

It is important to check whether the increased activity at smaller scales (i.e., 
increased CV and FF) noted in Figures 5c is a manifestation of the wavelet 
transform or a property of the turbulence signal. For that purpose, a comparison with 
a random Gaussian signal having the same probability distribution as experiment 1 
was carried out. The details are presented and discussed in Appendix B. We remark 
(see Appendix B) that the increased activity at smaller scales is a property of the 
measured turbulence signals and not a manifestation of the orthonormal wavelet 
transform. 
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5.4. WAVELET STRUCTURE SKEWNESS 

The wavelet structure skewness is computed for various separation distances and 
scales using (35). We terminated the scale-axis at 10.88 m in order to have a 
statistically significant number of points (exceeding 512 points) for each averaging 
operation in (35). Also, these scales (0.34 m-10.5 m) correspond to the production 
scales in which the - 1 power law was observed in the spectra of Figure 5a. Figure 
2 is used to interpret the physical mechanism responsible for the sign of the wavelet 
structure skewness (SS). 

5.4.1. Experiment 1: Unstable Conditions 
Figure 6a shows that buoyancy-generated turbulence is dominant in this case. This 
experiment is characterized by larger turbulent kinetic energy in the vertical than 
the other experiment (see Table I). The magnitude of the induced asymmetry (as 
characterized by SS) at the larger scales decays as larger and larger wavenumbers 
are approached. The decay of the buoyancy production asymmetry in the scale 
domain seems to be local and much more rapid when compared to Figure 6b. 

5.4.2. Experiment 2: Stable Case 
Experiment 2 was conducted under stable atmospheric conditions in which weak 
turbulent activity was noted. Unlike the unstable case, Figure 6-B indicates strong 
shear overturning with large asymmetry even for many scales that are smaller 
than z -1. As expected, updraft-downdraft events are non-existent under stable 
conditions (S S is always negative) and the influence of the ground surface appears 
to affect scales as small as z/2. This suggests that the anisotropy generated by shear 
production at the injection wavenumbers is still present, at least for the sampling 
frequency used in this experiment. 

6. Conclusions 

This study has focused on the spatial structure of the vertical velocity at production 
wavenumbers for unstable and stable stability conditions. It has been shown from 
dimensional arguments that the vertical velocity spectrum follows a - 1  power 
law for wavenumbers comparable to production scales. Vertical velocity spectra 
measurements in the atmospheric surface layer confirmed the existence of the 
- 1 power law for at least one decade. The use of orthonormal wavelets allowed 
decomposition of the measurements into space and scale. Contributions of each 
scale as well as the associated spatial variability were studied using dual spectra. 
It was found that a large spatial variation in the power exists and increases as the 
wavenumber increases. The spatial standard deviations in the power may be as 
large as three times the mean power within the - 1 power-law spectral behavior. 

The probability density functions of the vertical velocity for both stability con- 
ditions are found to be Gaussian. However, using the wavelet flatness factor, it 



T H E  SPATIAL S T R U C T U R E  OF T U R B U L E N C E  

21 7 .60  

1 9 9 . 5 0  

1 8 1 , 3 9  

163 .29  

14-5.18 

127 .08  

E 
v 

~, 108 .97  
s 
t -  

9 0 . 8 7  

7 2 . 7 6  

5 4 . 6 6  

3 6 . 5 5  

18 .45  

0 . 3 4  
0 . 3 4  

S t r u c t u r e  Skewness  2 8 0 / 1 3 3 2  

~,,,~ u.O0 - 

/ 0 . 1 0  ~ / --0.t0 -t 

o , o r  ~ < ~  
-- " ~ 0.00 

: o o o  - o , o -  

oo ( ._  % o.~o~_ 
~ 0 . 1 0  ~'~.----..---~-- 0.20 
_ o , o  - - - - - - - - -  g : ; ~  

~ O.O0 ~ 0 1 

/ "  _ -o.~ -o "-I 

/ ~o .'~~ 

- / - -  0.00 ~ 0 . 0 0  

~.0 0 ~-~ 0.~0 _ _  ~ - - -  0 . 1 0  I%fo.oo 
1.66 2 .98  4 .29 5.61 6 .93 8 ,25  9 .56  10 .88  

ScQle (m)  

101 

Fig. 6a. The wavelet structure skewness as a function of separation distance and scale for experiment 
1 (unstable conditions). The contour plot was formed by simple linear interpolating. The production 
scales in which a - 1 power law occurs vary between 0.34 and 2.73 m. 

has been demonstra ted that the horizontal gradients, at the product ion wavenum-  
bers, are not Gaussian.  The wavelet  flatness factor generally increased, as the 
wavenumber  increased indicating bigger  and more  frequently occuring large hor- 

izontal gradients at smaller  scales (within the product ion spectrum). In order to 
check whether  the increased turbulent activity at smaller  scales (within the pro- 
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duction spectrum) is due to the wavelet transform or a property of  the measured 
vertical velocity, we performed a similar analysis on a synthetic signal. Hence, 
wavelet  analysis was applied to a gaussian, random, ~-correlated, synthetic signal 
with the same mean and variance as the measured turbulence signal. The results 
indicated that the flatness factor of the artificial signal is consistent with gaussian 
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statistics at all wavenumbers. Therefore, what is revealed by the wavelet transform 
is a characteristic of turbulence and not of the transformation used. 

A dimensionless structure skewness was used to identify the nature of the 
anisotropy within t h e -  1 power-law production scales. It was noted that the nature 
of the anisotropy within the - 1 power law is dependent on whether shear-over- 
turning or updraft-downdraft events occur (and hence stability). 
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Appendix A: Fast Wavelet Transform for the Haar Basis 

In this Appendix, a simple and fast algorithm to compute the Haar wavelet coeffi- 
cients is reviewed. More details are found in Beylkin et al. (1991, 1992).The Haar 
basis with hj,k(x) = 2 -J /2h (2 -Jz  - k) with j,  k E Z, is 

[1  f ~  1/2 1 
h ( x ) =  - 1  for 1 / 2 _ < x <  1 . (38) 

0 elsewhere. 

The wavelet coefficients w(J+I) (k )  and the coarse-grained signal S(J+I)(k) at 
scale j + 1 can be determined from the signal S (5) at scale j using 

w(J+1)(k) = i ) -  s(J)(2k)J, (39) 

1 [s(j)(2k _ 1) + 5'(J)(2A.)], (40) = 

k = 0 to 2 M - j - I  - 1, and M = log2(N), where A T is the number of samples. The 
above procedure, which is the basis for Fast Wavelet Transforms, requires about 
N computations in comparison with the N log 2 N computations for Fast Fourier 
Transforms (FFT). 

Appendix B: Comparison Between Turbulence and Gaussian Random 
Signals 

In this appendix, we apply the orthonormal wavelet transform to a random signal 
having the same mean and variance as the turbulence signal of experiment 1, 
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which has a near gaussian behaviour. This comparison illustrates how the wavelet 
transform is capable of revealing some of  the turbulence features in space and scale 
in relation to a 3-correlated gaussian random process whose statistical and spectral 
properties are well known (e.g., Gelb, 1974, pp. 43; Lumley, 1970). In Figure 7a, 
the frequency distribution of w p (experiment 1) as well as a gaussian distribution fit 
for the same mean and variance are shown. Using the fitted distribution, a sequence 
of 4096 random numbers are generated; these are shown in Figure 7b (see Press et 
al., 1990, pp. 203). The Multiresolution algorithm of Appendix A is then applied 
to this artificial signal and the wavelet spectrum as well as the flatness factor at 
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various wavenumbers are computed. Figure 7c shows the dual spectrum of  the 
random signal and the turbulence signal (experiment 1). Note that the power  is 
uniform in the random signal as is typical of  gaussian white noise processes. Also 
note that the standard deviation about the power is constant at every scale, unlike 
the turbulence signal which exhibits a distinct power-law behavior and variations in 
standard deviations that are wavenumber  dependent. Figure 7d shows the flatness 
factor at each scale for the artificial and the turbulence signal. For the artificial 
signal, the flatness factor is scattered around the line F F  = 3 at all wavenumbers,  
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while the turbulence  signal indicates a sys temat ic  increase in flatness fac tor  as 

the w a v e n u m b e r  increases,  indicat ing intensified spatial in termit tency at h igher  

w a v e n u m b e r s  (even though  the probabi l i ty  dis tr ibut ion o f  w p for  exper iment  1 is 

near ly  gauss ian  as noted  in Figure  5d; see also She, 1991). 
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