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Abstract.

Stochastic models are fitted to time series of hourly precipitation amounts.

These models are extensions of a form of chain-dependent process commonly fit to daily
precipitation amounts. The extensions involve allowing hourly intensities to be
autocorrelated and allowing the model parameters to possess diurnal cycles. These models
are applied to two quite different sets of hourly precipitation data: July at Denver,
Colorado, for which diurnal cycles are substantial; and January at Chico, California, for
which a relatively high degree of persistence is present. The temporal aggregation
properties of the hourly models (e.g., for 12-hour or daily total precipitation) are
examined, and the role of the extensions in improving these properties is quantified. On
this basis, it is argued that generalizations of chain-dependent processes could be
competitive with, if not superior to, so-called conceptual models of the precipitation

process.

1. Introduction

Much research has dealt with the stochastic modeling of
gauge-based precipitation measurements, especially when ag-
gregated to daily totals [e.g., Todorovic and Woolhiser, 1975].
For instance, a chain-dependent process is one particular sto-
chastic model that is popular for time series of daily total
precipitation [Katz, 1977a, b]. Less effort has been devoted to
precipitation data on shorter timescales (e.g., hourly), with the
most prevalent approach being based on so-called conceptual
(or physically based) models, which involve chance mecha-
nisms (e.g., clustering) by which “storms” arise (originated by
LeCam [1961]). Another approach, closely related to concep-
tual modeling, starts with a storm and disaggregates the data
through use of a hyetograph [Huff, 1967]. Of course, individual
storms are not actually observed in practice. Instead, either the
parameters of the conceptual model are indirectly estimated
through temporally aggregated precipitation data [Obeysekera
et al., 1987], or the operational definition of a storm is simply
taken to be a period of consecutive hours, say, during which
measurable precipitation occurs (or some variant thereof)
[Garcia-Guzman and Aranda-Oliver, 1993].

The direct application of conventional stochastic models,
such as a chain-dependent process, to time series of hourly
precipitation amounts has not been as successful. Either the
assumptions that have been made to simplify the analysis are
quite unrealistic, such as taking hourly intensities to be inde-
pendent [Nguyen and Rousselle, 1981], or a structure is imposed
to allow for such dependence that makes the model too com-
plex for straightforward analysis [Nguyer, 1984]. Brown et al.
[1985] presented evidence that the conditions imposed by an
ordinary chain-dependent process are inappropriate for hourly
precipitation.
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Nevertheless, a wealth of information is available in hourly
precipitation data sets, the shortest timescale of aggregation
for which observations are available with relatively long histor-
ical records at a large number of sites [Collander et al., 1993].
Modeling precipitation observations directly in the form in
which they are available has some advantages, especially for
parameter estimation. The incompatibility of effectively con-
tinuous time conceptual models with the inherently discrete
observations is avoided [Foufoula-Georgiou and Guttorp, 1986],
although some discrete clustering models for precipitation oc-
currences do exist [Foufoula-Georgiou and Lettenmaier, 1986;
Smith, 1987]. Moreover, from an information-theoretic point
of view, it is of interest to characterize probabilistically the
future evolution of the precipitation process through use of
only the past and present observations. In this regard, Elsner
and Tsonis [1993] have applied entropy measures to examine
the predictability of hourly precipitation.

In the present paper, we demonstrate how a chain-dependent
process can be generalized in a manner that is more realistic
for sequences of hourly precipitation amounts but is still con-
sistent with conventional models for daily precipitation totals.
These extensions include allowing the hourly intensities to be
dependent, by a technique based on power transformations
that keeps the resultant model tractable. Also, Fourier series
techniques are employed to allow for diurnal cycles in the
model parameters in a parsimonious manner. This modeling
approach is applied to two hourly precipitation data sets with
quite different characteristics.

2. Extensions of Chain-Dependent Processes

A chain-dependent process for hourly precipitation consists
of two component processes: (1) an occurrence process (i.e.,
the sequence of wet or dry hours) and (2) an intensity process
(i.e., the sequence of precipitation amounts on wet hours).
Such models were originally fitted to time series of daily pre-
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cipitation amounts by Katz [1977a] and Todorovic and Wool-
hiser [1975].

2.1. Occurrence Process

The hourly occurrence process {J,(h): h = 1,2, -+, 24;
t =1,2,+--} is defined as
J(h) = 1 if hth hour of rth day is wet )

J.(h) = 0 otherwise,

where a “wet hour” refers to one on which measurable pre-
cipitation occurs. We adopt the obvious conventions that
TA(25) = J,1(1), J,(26) = 1,.4(2), -+, J(0) = J,_,(24),
J(—1) =J,_,(23), --+ . Itis assumed that the process J, (k)
constitutes a two-state, first-order Markov chain with transition
probabilities

Pyh) =Pr{J(h + 1) =jUdh) =i}  i,j=0,1 (2)

that possibly depend on the hour 4. For simplicity, the transi-
tion probabilities in (2) are not allowed to vary with the day ¢
(i.e., no seasonal cycles). A generalization to higher than first-
order Markov chains is treated in section 4.

The probability that the kth hour of the day is wet (i.e., that the
occurrence process takes on state 1), (k) = Pr {J,(h) = 1}, is
the solution to the recursion

m(h + 1) = Py(h) + i (h)[Puh) — Pou(h)] (3)
h=1,2,---,24,

with the convention that m,(25) = ,(1). This linear system of
24 equations in 24 unknowns can be solved algebraically; al-
ternatively, (3) can simply be iterated starting with a trial value
for (1), as convergence to the solutions is very rapid. Given
the 7, (k), the first-order autocorrelation coefficient between
the Ath and (2 + 1)th hours of the occurrence process,
p1(h) = Corr [J,(h), J,(h + 1)], can be expressed as

pi(h) = [Pi(h) — Poy(){my(B)[1 — Wl(h)]}m

Amh + D1 - mh + D]V 4)

h =1, 2,--+, 24, Diurnal cycles in the transition probabil-
ities (2) produce corresponding cycles in the wet hour proba-
bilities via (3) and in the autocorrelation via (3) and (4). These
expressions, (3) and (4), can be derived by probabilistic argu-
ments, through conditioning on whether the Ath and (h +
1)th hours of the day are dry or wet. They are natural gener-
alizations of those for a two-state, first-order Markov chain
with constant transition probabilities [e.g., Katz and Parlange,
1993].

2.2.

Let X,(h) denote the precipitation amount on the 4th hour
of the rth day. IfJ,(k) = 1, then X,(k) > 0 and is referred to
as an intensity. Again, the convention is adopted that
X,(25) = X,..(1), X,(26) = X,,1(2), -, X, (0) =
X,_1(24), X,(—-1) = X,_1(23), -+ . These hourly intensi-
ties have means and variances denoted by

pi(h) = E[X(R)|J(h) = 1]
[o1(h)]? = Var [X(R) | (h) = 1],

but generally possess positively skewed rather than symmetric
distributions. For simplicity, the means and variances in (5) are

Intensity Process
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not allowed to vary with the day ¢ (i.e., no seasonal cycles). To
allow for skewness, the intensity distribution is taken to be a
power transformation of the normal. That is, given J,(h) = 1,

Xih) = [X(h)F forsomep, 0 <p <1, (6)

has a normal distribution with mean (k) and variance
[o75(R)]?, written N(u7(h), [07(R)]?). This power trans-
form parameter p is assumed to be independent of the hour 4.

On a daily timescale, it is usually assumed [e.g., Katz, 1977a]
that the amounts of precipitation are conditionally indepen-
dent given the occurrence process (i.e., the amounts of precip-
itation on consecutive wet days are independent). On an hourly
timescale, it is important to allow for the possibility that the
intensities are actually dependent. To do so, the power-
transformed intensities within a given wet spell (i.e., a run of
consecutive wet hours) are modeled as a first-order autore-
gressive (i.e., AR(1)) process. Suppose that two consecutive
hours, say the ~2th and (A + 1)th hours of the ¢th day, are wet
(ie., J(h) = 1 and J,(h + 1) = 1). Then a first-order
autocorrelation coefficient ¢7 is introduced into the trans-
formed intensity process by

Zih + 1) = $1Z1h) + e(h + 1),
where

Zih+ D) =[X{h+1) - pih+ Dl/eih +1) (7)

1=0,1

and the uncorrelated error term e,(h + 1) is N[0, 1 —
(¢%)?]. Note that this AR(1) process can be viewed as termi-
nating whenever a wet spell ends and regenerating (i.c., with a
new initial state) when the next wet spell starts. For simplicity,
the transformed intensity autocorrelation ¢ in (7) is assumed
to be independent of the hour 4. Even though the hourly
intensities are autocorrelated, if these hourly amounts were
aggregated to daily totals, then the daily “intensities” (i.e., a
wet day is defined as one in which one or more hours is actually
wet) would have little or no autocorrelation, consistent with
the usual assumptions for stochastic models for daily precipi-
tation [e.g., Katz and Parlange, 1993)].

2.3. Combined Process

Some relationships exist among the various parameters of a
chain-dependent process. For instance, the unconditional
mean and variance of hourly precipitation amounts X, (k) are
given by

p(h) = E[X(h)] = mi(h)pi(h),
[a(h)]* = Var [X,(h)]
= Wl(h)[iﬁ(h)]z + m(h)[1 — 771(11)][#«1(}1)]2-

These two expressions can be obtained by probabilistic argu-
ments, through conditioning on whether or not the 4th hour of
the day is wet. When temporal aggregation properties are
studied in sections 3 and 4, the variance of precipitation totals
(e.g., over a half day or an entire day) will also be considered.
Any such variance expressions would be more complex than
that for an ordinary chain-dependent process, both because of
diurnal cycles in the parameters and because the hourly inten-
sities are autocorrelated.

(8)
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3. Denver Hourly Precipitation

Time series of hourly precipitation at Denver, Colorado,
during the month of July for the period 1949-1990 are mod-
eled. These observations are part of an hourly precipitation
data set for the United States that has been critically assessed
by Collander et al. [1993]. Summer precipitation in this region
(i.e., near the eastern edge of the Rocky Mountains) is pre-
dominantly of local convective origin. Consequently, substan-
tial diurnal cycles in hourly precipitation statistics would be
anticipated [e.g., Wallace, 1975]. Moreover, a relatively high
degree of persistence in precipitation regimes would not nec-
essarily be expected. Obseysekera et al. [1987] and Rodriguez-
Tturbe et al. [1987, 1988] all used hourly precipitation from this
region to estimate the parameters and to evaluate the perfor-
mance of conceptual models.

3.1. Model Fitting

To model the diurnal cycles in the occurrence process, the
logistic transformations [e.g., Neter et al., 1983, pp. 361-367] of
the transition probabilities, Py,(k) and P,(k), are repre-
sented as cosine waves (i.e., with both phase and amplitude
unknown). Such a model can be most conveniently fit in the
following form:

In (Py(h)/[1 — Py(h)]) = A; + B, cos [(27h)/24]

+ C;sin [(2mh)/24]  i=0, 1. 9)

This transformation has the convenient property of automati-
cally constraining the smoothed transition probabilities to fall
within the interval (0, 1). The unknown parameters, 4;, B,
and C;, in (9) are estimated by using weighted least squares
(see (A2) in Appendix A), a special case of fitting a generalized
linear model [McCullagh and Nelder, 1983]. A similar approach
has been employed by Stern and Coe [1984] and Woolhiser et al.
[1993] to fit seasonal cycles to the transition probabilities for
Markov chain models of daily precipitation occurrences.

Likewise, the mean and standard deviation of the hourly
transformed intensities, uj (%) and o’ (k), are represented as
cosine waves:

with) = A, + B, cos [(27h)/24] + C,, sin [(27h)/24],
(10)
oi(h) =A,+ B, cos [(2mh)/24] + C, sin [(2wh)/24].

The unknown parameters, 4,,, B,,, C,, A,, B, and C,, in
(10) are estimated by using weighted least squares (see (A5) in
Appendix A and also Bell and Reid [1993]). The method of
estimating the first-order autocorrelation coefficient of the
transformed intensities, &7, is also discussed in Appendix A.
Finally, the value of the power transform parameter p is iden-
tified by using trial values, p = 1/2, 1/4, 1/8, ---, and se-
lecting the value that minimizes Hinkley’s index of symmetry
[e.g., Katz and Parlange, 1993]. ,

The Bayesian information criterion (BIC) is employed to
identify which of the individual parameters require diurnal
cycles and whether the intensities are autocorrelated [e.g., Katz
and Parlange, 1993]. This procedure requires that the maxi-
mized likelihood function be obtained for each candidate
model (see Appendix A for a description of the techniques by
which these likelihood functions are calculated). For clarity in
presentation, the occurrence and intensity processes are
treated separately in the model identification exercise.
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Table 1. Model Identification of Hourly Precipitation
Occurrence Process and Parameter Estimates of Optimal
Model for July at Denver (24 X 31 X 42 = 31,248
Observations)

Diurnal
Cycle?

_ Log Likelihood Number of
Py Py Function Parameters BIC
no no —3244.3 2 6509.4
no yes —3243.3 4 6528.0
yes no —3021.7 4 6084.71
yes yes —3020.6 6 6103.4

Optimal model: Py,(h): Ay = —4.4414, B, = —0.5435, C, =

—1.3503; P,,(h) = 0.4965 (i.e, 4, = —0.0141,B, =0, C, = 0).
tMinimum.

Table 1 summarizes the results of applying the BIC to iden-
tify the most appropriate model of the hourly precipitation
occurrence process for July at Denver (see (A4) of Appendix
A). The optimal model (i.e., minimum BIC value) allows for a
diurnal cycle in one transition probability Py, (%), but not in
the othér P, (%) (Akaike’s information criterion (AIC) [e.g.,
Katz and Parlange, 1993] also chooses this model as optimal).
The second best model allows both transition probabilities to
possess diurnal cycles and is much superior to the model with
no diurnal cycles.

Also included in Table 1 are the parameter estimates for the
optimal model of the hourly precipitation occurrence process.
Figure la shows the model curve, along with the observed
individual hourly values, for the transition probability Py, (k).
Because the inverse of the logistic transformation has been
applied to convert (9) back into probabilities (see (A3) of
Appendix A), the curve shown is no longer a cosine wave. This
model curve has a range of over an order of magnitude, from
a minimum probability of about 0.003 at 5 A.M. to a maximum
of about 0.048 at 5 P.M. Only an apparent diurnal cycle with
very small amplitude is evident in the observed hourly values
for P,,(h) (not shown). _

It is more natural to interpret the diurnal cycles of the
occurrence process in terms of the alternative parameters, the
probability of a wet hour 7 (k) and the hourly persistence
pi(h). Using (3) and (4), 7,(k) and p, (%) can be determined
for the optimal model listed in Table 1. For the probability of
a wet hour, Figure 1b shows the derived model curve along
with the observed individual hourly values. Again, the model
curve has a range of over an order of magnitude, from a
minimum probability of about 0.006 at 7 A.M. to a maximum
of about 0.083 at 6 P.M. The corresponding derived curve (not
shown) for the hourly persistence p, (%) likewise matches the
observations well, ranging from a minimum correlation of
about 0.40 at 1-2 P.M. to a maximum of about 0.57 at 1-2 A M.

Table 2 summarizes the results of applying the BIC to iden-
tify the most appropriate model of the hourly precipitation
intensity process for July at Denver (see (A6) of Appendix A).
To achieve approximate normality, the selected value of the
power transform parameter is p = 1/8 in (6). This value of p
was first obtained through pooling the intensities for all hours
into one sample (i.e., ignoring any diurnal cycles) and subse-
quently checked by examining the distribution of the trans-
formed intensities with the fitted diurnal cycles for p% (k) and
o;(h) removed. The optimal model according to the BIC (as
well as for the AIC) allows for autocorrelated intensities (i.e.,
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Figure 1. Observed and model probabilities for hourly pre-

cipitation occurrence process in July at Denver. (a) Transition
probability Py, (%); (b) probability of wet hour (k).

&7 # 0), as well as permitting diurnal cycles in both the mean
and standard deviation of the transformed intensities, p7 (k)
and ¢ (k). The next best models are the other two that permit
o7+ 0. _

Also included.in Table 2 are the parameter estimates for the
optimal model of the hourly precipitation intensity process.
Figures 2a and 2b show the model curves, along with the
observed individual hourly values, for the transformed inten-
sity mean 7 (%) and transformed intensity standard deviation
o3 (h), respectively. It is more natural to interpret the diurnal
cycles of the intensity process in terms of the hourly means and
standard deviations, w,(#) and o,(k), for the original, un-
transformed intensities. These means and standard deviations
are each functions of both p%(#) and oj(k), depending as
well on the power transform parameter (p = 1/8 in this
example). By combining the general relationship between the
central and noncentral moments of a distribution [Stuart and
Ord, 1987, pp. 72-73] with that for the central moments of a
normal distribution [Johnson and Kotz, 1970, p. 47], the corre-
sponding curves for the untransformed means and standard
deviations can be determined from the model curves for the
transformed statistics. See Katz and Garrido [1994] for an ex-
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ample of this calculation. Figure 2c includes the derived model
curve for the mean intensity w, (%), ranging from a minimum
of about 0.76 mm at 5 A M. to a maximum of about 2.16 mm
at 5 P.M., and Figure 2d includes the corresponding curve for
the intensity standard deviation o;(k), ranging from about
0.67 mm at 5 A.M. to about 3.28 mm at 5 P.M. It is noteworthy
that the amplitude of the diurnal cycle for o, (k) is even
greater than that for u,(%#). Because of transformation bias,
these model curves necessarily do not match the hourly ob-
served values as well as for the directly fit transformed inten-
sities (Figures 2a and 2b).

Finally, the fit of the power transform distribution to the
hourly precipitation intensities is illustrated, making use of a
closed-form expression for the density function [Katz and Gar-
rido, 1994; Wilks, 1993]. For the two examples (i.e., 5 and 11
P.M.) shown in Figure 3, it is evident that the high degree of
positive skewness exhibited by the observations is captured
reasonably well by this particular distribution. The discrepan-
cies at the lowest possible recorded precipitation intensity
value are at least partially attributable to this discretization of
the rain gauge measurements.

3.2. Aggregation Properties

One way to evaluate any stochastic model for the hourly
precipitation process is to study how well it fits precipitation
totals over longer timescales. It is straightforward to compute
aggregation properties on the basis of the hourly occurrence
process, even when the transition probabilities (equation (2))
of the first-order Markov chain possess diurnal cycles. In par-
ticular, the lengths of dry and wet spells are of considerable
interest and naturally reflect the presence of diurnal cycles in
the transition probabilities.

Let N;(h) denote the length of a dry (i = 0) or wet (i = 1)
spell starting on the Ath hour (i.e., a run of consecutive dry (or
wet) hours). The probability that a dry (or wet) spell starting
on the Ath hour lasts at least / hours can be represented as a
product of transition probabilities:

-2

Pr{N(h) =1} =[] Puh +) 1=2,3,---;i=0,1,
0

(11)

If the transition probability involved does not have diurnal
cycles, then (11) reduces to Pr {N,(h) = I} = P}/, 1 = 2,

Table 2. Model Identification of Hourly Precipitation
Intensity Process and Parameter Estimates of Optimal
Model for July at Denver (996 Wet Hours)

Diurnal

Cycle? Log Likelihood
I Function, In Number of

ur o] T #0? (mm*&)? Parameters BIC
no  no no 1832.6 2 —3651.4
no  no yes 1865.8 3 —3710.9
yes  no no 1843.8 4 —3659.9
yes  no yes 1876.4 5 —3718.3
yes  yes no 1869.9 6 —3698.4
yes  yes yes 1909.3 7 —3770.2%

Optimal model: wi(h): 4, = 097057 mm"®, B, = —0.00823

mm', C, = —0.03733 mm"%; o (h): A, = 013537 mm'®, B, =
~0.00574 mm"8, C, = —0.03714 mm'%; ¢* = 0.3838.
FMinimum.
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Figure 2. Observed and model statistics for hourly precipitation intensity process in July at Denver. (a)
Transformed intensity mean w*(k); (b) transformed intensity standard deviation oj(%); (c) mean intensity

i1(R); (d) intensity standard deviation (k).

3, -+ - . The probability that a specific time period is dry or wet
is easily obtained from (11). For instance, the probability of a
dry day (i.e., all 24 individual hours being dry) is given by [1 —
m1(1)] Pr {Ny(1) = 24}, which reduces to (1 — ;) P33
with no diurnal cycles.

Under the generalizations of a chain-dependent process nec-
essary to adequately model the Denver hourly precipitation
data, it is more difficult to analyze the properties of total
precipitation. Let the precipitation amount totaled over a time
period of H hours starting at the ~th hour of the ¢th day be
denoted by

Sk, H) = X(h) + -+ + X{h + H — 1). (12)

Of course, the mean of total precipitation is simply the sum of
the individual hourly means. That is,

E[S:(h: H)] = Wl(h)m(h)

+otm+H— D +H-1), (13)

which reduces to Hm,p; with no diurnal cycles.

Recall [e.g., Katz and Parlange, 1993] that for an ordinary
chain-dependent process (i.e., with no diurnal cycles and
¢7 = 0), the variance of total precipitation is approximately

Var [Si(h, H)]

~H(mot + (1 — m)pil(1 + p)/(1 = ppD.  (14)

This expression can be extended to the case of correlated
intensities (i.e., ¢7 # 0) (see Appendix B and section 4), but no
simple expression can be obtained with diurnal cycles present.
Consequently, a simulation approach is relied on to determine
the model distribution of total precipitation (and, in particular,
its variance).

Table 3 summarizes the aggregation properties of some of
the candidate stochastic models of the hourly precipitation
process for July at Denver. In addition to the optimal model
(i.e., model 3 in Table 3, with parameter values listed in Tables
1 and 2), models with no diurnal cycles but with intensities
either autocorrelated (i.e., model 2) or not autocorrelated (i.e.,
model 1) are evaluated. The hourly precipitation observations
have been totaled over two periods of length 12 hours, morning
(A.M.) and afternoon (P.M.), as well over the entire 24 hours
of the day.

First the aggregation properties of the hourly occurrence
model for Denver are treated, recognizing that whether or not
¢7 # 0 has no bearing (i.e., models 1 and 2 are identical).
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Making use of (11) and its variants, Table 3 includes the model
probability of wet periods (i.e., a period during which at least
one hour is wet). Without the diurnal cycle in the transition
probability Py, (%), these probabilities are the same for both
A.M. and P.M. and necessarily far off the observed values of
about 0.045 for A.M. and 0.273 for P.M. With a diurnal cycle
in Py,(#), the A.M. and P.M. probabilities are much closer to
the observed values, however slightly too high. The model
probability of a wet day is again somewhat too high (observed
value of about 0.299), with the incorporation of a diurnal cycle
not resulting in any improvement.

The role of diurnal cycles in the optimal model for the
occurrence process at Denver is further explored by consider-
ing the lengths of dry and wet spells. Calculated by using (11),
Figure 4a shows how the diurnal cycle in P, (4) produces wide
variations in the probability distribution of dry spell lengths
depending on the hour 4 on which the spell begins. For exam-
ple, the probability that a dry spell lasts at least 15 hours ranges
from about 0.67 to about 0.91 depending on whether it starts at
10 AM. or 10 P.M. Because of a lack of sufficient data to
examine the empirical distribution of spell length stratified by
hour of the day, simply the overall measure of mean spell
length is considered. Figure 4b shows the mean dry spell length
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for the optimal model, along with the observed values, as a
function of the hour on which the spell starts. This curve
appears relatively flat compared with those in Figure 4a, be-
cause the fact that dry spells typically last one or more days
attenuates the diurnal cycle in Py, (k). It is evident that the
model tends to overestimate the mean dry spell length, with
the model means ranging from about 50.0 hours at 1 P.M. to
about 59.1 hours at 10 P.M. According to the optimal model,
the mean length of wet spells should not have -a diurnal cycle
because the transition probability P,(4) is constant (see Ta-
ble 1). The optimal model produces a mean wet spell length of
(1 = Pyy) "' =~ 1.99 hours, virtually the same as the observed
value of 1.97 hours.

Next the aggregation properties of the stochastic models for
Denver hourly precipitation (i.e., models 1-3 in Table 3) are
examined for the distribution of total precipitation amounts.
Obtained by (13), the values in Table 3 include the mean of
total precipitation. With the diurnal cycles in both 7, (%) and
w1(h) being ignored, model 1 produces identical means for
both A.M. and P.M. totals, necessarily far off the observed
values of about 0.11 mm for A.M. and 1.43 mm for P.M. As the
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dry hours) in July at Denver as function of hour on which spell
starts. (a) Model probability of equaling or exceeding spell of
specified length; (b) observed and model mean spell lengths.
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intensity autocorrelation has no bearing on the mean, model 2
generates the same mean totals as model 1. The means for the
optimal model 3 come much closer to the observed A.M. and
P.M. means but are still not identical because of the bias
induced by fitting the mean p%(h) of the power transformed
intensities (equation (6)) (as opposed to the original data). For
the daily totals, the means of all three models necessarily come
reasonably close to the observed value of about 1.54 mm.

The model standard deviation of total precipitation amounts
is not directly calculated because of its complexity, but rather
approximated by a Monte Carlo simulation experiment (con-
sisting of 4000 days of hourly precipitation being generated for
each of the three models). These simulated standard devia-
tions of total precipitation are also listed in Table 3. With the
diurnal cycles in Py, (h), u’i(k), and o (k) all being ignored,
the standard deviations produced by model 1 are far off the
observed values of about 0.91 mm for A.M. and 4.80 mm for
P.M. For model 2 the effect on the standard deviation of
allowing for autocorrelated intensities is swamped by the con-
sequences of leaving out the diurnal cycles. The A.M. and P.M.
standard deviations produced by optimal model 3 come much
closer to the observed values but still are substantial underes-
timates. For the daily totals, all three models underestimate
the observed standard deviation of about 4.89 mm, with the
incorporation of autocorrelated intensities or diurnal cycles
each contributing only a slight increase.

Figure 5 shows the simulated distribution of total precipita-
tion for the optimal model as well as the empirical distribution
at Denver. It is evident that the model is able to effectively
capture the marked difference in A.M. (Figure 5a) and P.M.
(Figure 5b) distributions. The shape of the model-simulated
distribution of daily totals closely resembles that observed
(Figure 5¢), despite the underestimation of variance (see Table
3). Because the P.M. period constitutes the dominant part of
the diurnal cycle, Figures 5b and 5c are very similar. Again, the
discrepancies at the lowest observed precipitation intensity
value may be attributable to discretization.

4. Chico Hourly Precipitation

Time series of hourly precipitation at Chico, California, dur-
ing the month of January for the period 1949-1981 are mod-

Table 3. Aggregation Properties of Models for July Hourly
Precipitation at Denver

Standard
Deviation of

Probability Mean Total Total

Time Period of Wet  Precipitation, Precipitation,
and Length  Modelf Period mm mm

AM. (12 hours) 1 0.1949 0.660 2.310
2 0.1949 0.660 2.394
3 0.0768 0.138 0.731
(observed) (0.0453) (0.111) (0.911)
P.M. (12 hours) 1 0.1949 0.660 2.310
2 0.1949 0.660 2.394
3 0.3234 1.293 3.418
(observed) (0.2734) (1.431) (4.799)
Day (24 hours) 1 0.3415 1.319 3.354
2 0.3415 1.319 3.467
3 0.3689 1.431 3.499
(observed) (0.2987) (1.542) (4.890)

+Model 1, no diurnal cycles, ¢7 = 0; model 2, no diurnal cycles, éF
# 0; model 3, optimal (see Tables 1 and 2).
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Figure 5. Model simulated and empirical distribution of pre-
cipitation amounts in July at Denver totaled over (a) A M., (b)
P.M,, and (c) day.

eled [Collander et al., 1993]. Because months with any missing
observations were excluded, only 23 years remain. Records
exist after 1981 but were eliminated because of a switch in the
type of rain gauge. Winter precipitation in this region (ie.,
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Table 4. Model Identification of Hourly Precipitation
Occurrence Process for January at Chico (24 X 31 X 23 =
17,112 Observations)

Markov Log Likelihood Number of
Chain Order Function Parameters BIC
1 —2605.1 2 52297
2 —2401.2 4 4841.4
3 —2320.7 8 4719.5¢
4 —2295.2 16 4746.4

Optimal model: Pygey = 0.0144, P.yyy = 0.1687, P01 =
0.2724, Pyro1 = 0.3896, Py = 0.6981, Pyyq; = 0.7194, Pyory
= 0.8207, P,,,; = 0.8387.

FMinimum.

west of the Sierra Nevada) is strongly related to large-scale
atmospheric circulation patterns [Redmond and Koch, 1991].
Hence diurnal cycles of substantial magnitude would not be
expected [Wallace, 1975], and precipitation regimes might be
relatively persistent.

4.1. Model Fitting

Diurnal cycles are evidently not present in any of the model
parameters (i.e., transition probabilities of the first-order
Markov chain and mean and standard deviation of the trans-
formed hourly intensities; recall (9) and (10)). However, the
assumption of a first-order Markov chain for the hourly occur-
rence process does not appear to be tenable. Consequently,
higher than first-order Markov chains are also fitted, but still
without diurnal cycles in the transition probabilities. General-
izing (2), a kth-order Markov chain (k = 2) is characterized
by transition probabilities

Pi(l)"'i(k+1) = Pr {J,(/’l + 1) - l(k + 1)|
J(h)y =i(k), -+, J(h =k + 1)=1i(1)}, (15)

i(1),++-, i(k + 1) = 0, 1. The transition probabilities in
(15) are estimated in a manner completely analogous to the
first-order case, and the BIC can again be employed to select
the optimal order of Markov chain [Kasz, 1981]. We note that
Pattison [1965] fit higher-order Markov chains to hourly pre-
cipitation occurrences in California.

Table 4 summarizes the results of applying the BIC to select
the order of the Markov chain model of the hourly precipita-
tion occurrence process for January at Chico. The optimal
order is k = 3, with a fourth-order model being second best.
Also listed in Table 4 are the estimated transition probabilities
for the third-order model. According to this model, the esti-
mated probability that the next hour is wet ranges from a
minimum of about 0.014 to a maximum of 0.839, depending on
whether the preceding 3 hours were all dry or all wet. Besides
requiring a more complex dependency structure than for Den-
ver in July (i.e., third order versus first order), the hour-to-hour
persistence of precipitation occurrence is much greater, with a
first-order autocorrelation coefficient of about 0.79.

Table 5 summarizes the results of applying the BIC to de-
termine whether the hourly intensity process for January at
Chico needs to allow for autocorrelation (i.e., whether ¢ # 0).
The likelihood function involved is a special case of (A6) in
Appendix A. As a value for the power transform parameter,
p = 1/8 is selected by Hinkley’s index of symmetry (the same
as for Denver in July), and the model that allows the intensities
to be autocorrelated is identified as superior. The estimated
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Table 5. Model Identification of Hourly Precipitation
Intensity Process for January at Chico (1885 Wet Hours)

Log Likelihood
Function, In Number of
$1 # 0? (mm8) Parameters BIC
no 3912.9 2 —7810.6
yes 4186.0 3 ~8349.3+

Optimal model: pf = 1.0024 mm'5, ¢f = 0.1253 mm'8, ¢} =

0.5484.

first-order autocorrelation coefficient for the transformed in-
tensity process is about 0.548, somewhat greater than for Den-
ver (about 0.384). Finally, Figure 6 shows that the positively
skewed shape of the observed hourly intensity distribution is
captured well by the fitted power transform distribution.

4.2, Aggregation Properties

Even with a higher-order Markov chain, it is straightforward
to derive aggregation properties for the hourly occurrence
process. For a third-order Markov chain, the probability of a
dry day is

Pr{J(h) =0,h=1,2,+++,24} = (1 — m) PooPoooPabc» (16)

where the lower-order probabilities in (16) (i.e., 7, Pgo,
Pyoo) can be derived from the given third-order transition
probabilities, P;(1y ... ;cay, in (15) [e.g., Lioyd, 1974].

Not having diurnal cycles in the parameters removes one
obstacle to analyzing the aggregation properties of total pre-
cipitation amounts. In particular, with a first-order Markov
chain, the approximate effect on the variance of total precipi-
tation of introducing autocorrelation among the hourly trans-
formed intensities (7) can be seen. Generalizing (14),

Var [S(h, H)] = H{mo{[(1 + Pud1)/(1 — Pudy)]
+ (1 — m)pdl + p)1 — ) a7

where the parameters of the Markov chain are related by P,
= 7, + (1 — my)p, (see Appendix B for an outline of the
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Figare 6. Density function of fitted power transform distri-
bution and empirical distribution for hourly precipitation in
January at Chico.
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derivation of (17)). Here ¢, denotes the first-order autocorre-
lation coefficient between the original, untransformed hourly
intensities, and it is evident that ¢, > 0 serves to increase the
variance of total precipitation relative to the situation in which
¢, = 0.

If the hourly intensities were not autocorrelated, then an
analytical expression for the variance of total precipitation can
be obtained for higher than first-order Markov chains. The
basic idea is to employ a state space representation of a higher-
order Markov chain as a first-order chain with vector states and
to apply the more general expression for the variance of the
sum of a chain-dependent process with a Markov chain having
more than two states [Katz, 1977b]. This expression involves
the inverse of a matrix and is not reproduced here [see Klug-
man and Klugman, 1981]. Instead, a simulation approach is
again relied on to determine the distribution (and variance) of
total precipitation for the Chico model.

Table 6 summarizes the aggregation properties of some of
the candidate stochastic models for the hourly precipitation
process for January at Chico. Because none of the candidate
models involve diurnal cycles, only daily total precipitation is
considered. Using (16), Table 6 includes the probability of a
wet day as determined by the optimal third-order Markov
chain (see Table 4), as well as for a simpler first-order Markov
chain. This model probability is only slightly too high, whereas
the first-order model produces much too high a value (com-
pared with the observed value of about 0.321).

The mean daily total precipitation is necessarily approxi-
mately correct no matter what the form of model (observed
value of about 4.04 mm). The corresponding model standard
deviation is determined by the same type of simulation ap-
proach as for Denver (i.e., 4000 days of hourly precipitation
amounts are generated for each model). Both the incorpora-
tion of autocorrelated intensities and the change from first- to
third-order Markov chain lessen the tendency to underesti-
mate the observed standard deviation of about 9.62 mm. Fi-
nally, Figure 7 compares the simulated and observed distribu-
tions of daily total precipitation, with the shapes of the two
distributions being similar in spite of the underestimation of
variance.

5. Discussion

Various ways in which chain-dependent processes may be
extended to more adequately model time series of hourly pre-
cipitation amounts have been demonstrated. These extensions
include autocorrelated intensities, diurnal cycles in the model
parameters, and higher-order Markov chains for the occur-
rence process. A flexible modeling approach has been advo-

Table 6. Aggregation Properties of Models for January
Hourly Precipitation at Chico

Standard
Type of Model Deviation of
—————— Probability Daily Total
of Wet Mean Daily Total Precipitation,
Order ¢ +#0? Day  Precipitation, mm mm
1 no 0.4849 4.029 6.738
1 yes 0.4849 4.029 7.400
3 no 0.3697 4.029 7.925
3 yes 0.3697 4.029 8.244
(observed) (0.3212) (4.042) (9.619)
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Figure 7. Model simulated and empirical distribution of
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cated. It is appropriate for fitting precipitation totaled over
timescales different than hourly, as well as consistent with
conventional models for daily precipitation. In spite of the
generalizations required, many theoretical properties of the
models can be determined by either analytical formulas, recur-
sive numerical methods, or simulations. Furthermore, the form
of such models is convenient for generating synthetic precipi-
tation time series, needed as inputs in many hydrologic appli-
cations.

Attention has been devoted to the performance of these
stochastic models when hourly precipitation is aggregated
(e.g., to daily totals), being comparable in some respects and
superior in others to conceptual models. Islam et al. [1990] and
Rodriguez-Tiurbe et al. [1987, 1988] established that virtually all
conceptual models tend to underestimate the variance of daily
total precipitation and are unable to reproduce the relative
frequency of wet days unless they are “tuned” by using the
appropriate daily sample statistics. Similar deficiencies have
been encountered here for chain-dependent models. Never-
theless, the chain-dependent process approach is clearly supe-
rior in its ability to reproduce the marked diurnal cycles char-
acteristic of precipitation in certain regions and seasons. The
conceptual models employed have generally ignored these cy-
cles even when they are well known to exist (e.g., for Denver in
late spring or summer), in part because their incorporation
would make already difficult parameter estimation problems
more complex, if not infeasible. As illustrated here, explicit
treatment of diurnal cycles is required in order to adequately
reflect statistics such as the length of dry or wet spells. In
summary, while conceptual models should still play an impor-
tant role in the physical understanding of the precipitation
process, for practical purposes chain-dependent processes do
have some clear advantages.

Future work would deal with an examination of ways in
which chain-dependent processes could be further extended to
produce improved aggregation properties. For instance, the
underestimation of the variance of daily total precipitation
might be attributable to failing to produce a high enough
degree of persistence in occurrences on a daily timescale. In
this regard, it might be feasible to fit higher than first-order
Markov chain models to the hourly occurrence process for
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Denver while still retaining any diurnal cycles in the transition
probabilities. Another approach could involve fitting stochastic
models for hourly precipitation conditional on large-scale at-
mospheric circulation patterns. When applied to daily precip-
itation, this approach has been shown by Katz and Parlange
[1993] to yield a superior overall model, at least in terms of
model variance for monthly total precipitation.

Appendix A: Likelihood Functions for
Model Identification

This appendix outlines the general procedure for estimating
parameters and obtaining likelihood functions for the various
forms of models fit to the time series of hourly precipitation
amounts.

Al. Occurrence Process
Al.1. Fitting the logistic model.
estimator of P;(h) is

Pq(h) = ”ij(h)/ni~(h),

The maximum likelihood

(A1)

where n;(h) denotes the number of times in the sample of
observations of precipitation occurrences that a transition
from state i on the Ath hour of the day to state j on the (& +
1)th hour occurs and n;.(h) = n;o(h) + n, (k). To fit the
logistic model, these estimates P;,(h), h = 1,2, +++, 24, are
substituted into the left-hand side of (9). The model is fitted by
weighted least squares, with the weights being given by [see
Neter et al., 1983, pp. 361-367; McCullagh and Nelder, 1983]

wih) = n (k) Pa(R)[1 — Py(h)}]. (A2)

Again the estimates £,,(h) determined by (A1) are substituted
into (A2). Once the estimates of the parameters A4,, B;, and C;
have been obtained, the smoothed values of the transition
probabilities P;; (%) can be determined through the inverse of
the logistic transformation (i.e., left-hand side of (9)). That is,

(A3)

Al.2, Likelihood fanction. The logarithm of the likelihood
function, say L ({J,(%)}), for a first-order Markov chain with
diurnal cycles in the transition probabilities can be expressed as

In LT} = 2, ny(h) In Py(h).

Ljsh

ifx=1In[p/(1 —p)], thenp = e"/(1 + €%).

(A4)

The maximized log likelihood function is obtained by substi-
tuting the smoothed estimates of the transition probabilities
P;(h), as described in part Al.1, into (A4).

A2. Intensity Process

A2.1. Fitting the cosine wave. First the mean hourly trans-
formed intensities w’(k), & = 1, 2, +++, 24, are estimated by
the corresponding sample means. To fit the cosine wave, these
estimates are then substituted into the left-hand side of (10).
Because these sample means are based on unequal sample
sizes, the model is fitted by weighted least squares, with the
weights being given by

w(h) = n.(h). (A5)

The cosine wave for the standard deviations of the hourly
transformed intensities oj(h), & = 1, 2, +»+, 24, is fit in an
analogous manner, using the same weights (AS). The only
complication is that the sample standard deviations are com-
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puted about the cosine wave for the mean hourly transformed
intensities, not about the individual hourly sample means (i.e.,
the estimate of o} (%) is a function of the estimate of u’(4)).
Finally, the estimate of the first-order autocorrelation coeffi-
cient for the hourly transformed intensities ¢ is based on the
cosine waves for both the hourly means and standard devia-
tions (i.e., the estimate of ¢} is a function of the estimates of
wi(h) and o (h)).

A2.2. Likelihood function. The logarithm of the likelihood
function, say L({Xi(h)}), for the hourly transformed inten-
sity process, with diurnal cycles in the means and standard
deviations and with first-order autocorrelation, can be ex-
pressed as

24

In LUXHR)}) = —(1/2) 2, ng(h ~ 1) In {[a}(h)]%}
1

24

= (1/2) 3, ny(h — 1) In {[%(R) 11
1

- (D1

Here the convention is adopted that n,;(0) = n,;(24). The
maximized log likelihood function is obtained by substituting
the smoothed estimates (i.e., cosine wave) of the standard
deviations oj(h), as described in part A2.1, along with the
estimate of the first-order antocorrelation coefficient ¢} into
(A6). Strictly speaking, the joint likelihood of all the parame-
ters is not necessarily maximized because of the sequential
manner in which the optimization is performed.

(A6)

Appendix B: Variance Derivation

The approximate expression (17) for the variance of total
precipitation S,(%, H) is now derived. No diurnal cycles in any
of the parameters are permitted, with the occurrence process
being a first-order Markov chain. The hourly intensities within
a wet spell are assumed to constitute an AR(1) process with
parameter ¢, (for convenience, the autocorrelation is intro-
duced into the original intensities rather than into the power-
transformed process as in (7)). By conditioning on the states of
the occurrence process (i.e., J,(h), J.(h + 1), -+, J.(h +
1)), it is straightforward to show that the autocovariance func-
tion for the time series of hourly precipitation amounts can be
expressed as

Cov [X(h), X(h +1)] = m0%(P11¢1)

+m(1 = mypdt  I1=1,2,---. (B1)

Substitution of (B1) into the general asymptotic expression for
the variance of a sum of a stationary process [e.g., Brockwell
and Davis, 1991, p. 219] yields (17).
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