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Analysis of land surface heat fluxes using

the orthonormal wavelet approach

Gabriel G. Katul' and Marc B. Parlange?

Hydrologic Science, University of California, Davis

Abstract.

Heat fluxes under unstable atmospheric conditions are measured and analyzed

using orthonormal wavelet expansions. Both wavelet and Fourier power spectra display a
—1 power law that can be derived from dimensional arguments for latent and sensible
heat flux in the turbulent production subrange. The wavelet expansion is used to
investigate the spatial structure of the heat fluxes for those scales that exhibit a —1 power
law. Dimensionless statistical measures which provide spatial information at different
scales are developed and applied to the sensible and latent heat flux measurements.
Deviations from Gaussian statistics were observed at the turbulent production subrange.
The large flux events (both positive and negative) in the heat flux signals contribute
directly to the energy and spatial structure of the —1 power law. The wavelet transform is
used to identify the scale of turbulent action directly responsible for the tails observed in
the horizontal gradient probability density function of both heat fluxes.

1. Introduction

To describe the turbulent transport mechanisms of latent
heat (L E) and sensible heat (H) fluxes into the atmosphere
it is important to characterize the properties of the energy-
containing eddies. It is well recognized that the turbulent ed-
dies in the atmosphere are intermittent, local, and nonperiodic
and produce large fluctuations [Gao et al., 1989]. At any instant
in time the heat fluxes can be decomposed as

Lw'q' =L{wq")+LE

pCWw'T" = pClw'T"y + H' M
where w', T', and g’, are the turbulent fluctuations of the
vertical velocity, temperature, and vapor density, respectively,
angle brackets denote the time-averaging operation, L , is the
latent heat of vaporization, p is the air density, ¢, is the specific
heat capacity, and H' and L E' are fluctuations about the time
averages. The fluctuations /' and L E’ display extreme vari-
ability and can be orders of magnitude larger than the mean
turbulent flux. Improved understanding of flux variability is
useful for better parameterization of sensible and latent heat
fluxes from the land surface.

The objectives of this study are (1) to quantify spatial prop-
erties of H' and L E' at different scales using wavelet trans-
forms and (2) to examine possible dynamical (local and global)
similarities between I’ and L £’ using direct field measure-
ments.

To quantify space-scale relations, a representation that de-
composes turbulent flux measurements into contributions of
different scales as well as different locations is needed. This
representation requires basis functions that behave like local-
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ized pulses rather than extended waves (e.g., Fourier kernel).
If additional requirements such as self-similarity are imposed,
specific basis functions, known as wavelets, are then generated.
Thus wavelet transforms are well suited for the first objective.

In the second objective, global similarity is defined in terms
of the entire measured flux time series with no attention paid
to particular events. By local similarity we mean similarity of
specific local events, for example, large flux changes over short
time periods. In this study, measurements of vertical velocity,
temperature, and vapor density at 80 cm above a uniform bare
soil surface are analyzed. These measurements permit a direct
estimate of H' and L E’ in time (which can be converted to
space using Taylor’s hypothesis).

2. Wavelet Transforms

Wavelet transforms are recent mathematical tools based on
group theory of square integrable functions (i.e., functions with
finite variance) that decompose signals, functions, or operators
into space and scale. Wavelet transforms are classified under
two broad categories: (1) continuous wavelet transforms, and
(2) discrete wavelet transforms [Chui, 1992, pp. 13-22]. Dau-
bechies [1992, p. 7] further classifies the discrete wavelet trans-
forms as (1) redundant discrete systems (also known as
frames), and (2) orthonormal wavelet expansions. In the fol-
lowing section, continuous wavelet transforms are introduced,
and a description of orthonormal wavelet expansions is given.

2.1. Continuous Wavelet Transforms

Continuous wavelet transforms were introduced by Gross-
mann and Morlet [1984, 1985] and have been applied to various
turbulence measurements [Argoul et al., 1989; Liandrat and
Moret-Bailly, 1990; Everson et al., 1990; Barcy et al., 1991, Farge,
1992b]. These studies demonstrate the usefulness of continu-
ous wavelet transforms in detecting singularities and fractal
structure in turbulence measurements.

The continuous wavelet transform of a real square integra-
ble function f(x) with respect to a real integrable analyzing
wavelet ¢(x) may be defined as
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1 + _
Wb, a)=C, W—zj w(%)f(t) it (2)

where a is a scale dilation, b is a position translation, and C v
is defined by

Cﬁj [~y (k)| dk < e 3

Here k is the wavenumber and ¢* is the Fourier transform of
P(x) given by

¥ (k) =J W(y)e™ dy. €

The function $(x) is an analyzing wavelet if it satisfies the
following three conditions [Farge, 1992a; Grossmann et al.,
1989]: (1) The admissibility condition, which requires that

f P(y) dy =0 (5)

(2) the similarity condition, which requires the scale decom-
position to be obtained by translation and dilation of one
unique function ¢(x) [Farge, 1992a], and (3) the invertibility
condition, which requires at least one reconstruction formula
for recovering the signal from its wavelet coefficients. The
function f(x) may be recovered from the wavelet coefficients
by

B e x—b dx da
f(x) — Cg 1/2 a 1/2¢,< ) W(ll b) )
0 —o

Further details regarding continuous wavelet transforms can
be found in many references [e.g., David, 1992; Chui, 1992].
Yamada and Ohkitani [1990, 1991a, b} showed that continuous
wavelets are not very effective in investigating energy aspects of
turbulence because the kernel functions are not mutually or-
thogonal. The nonorthogonality brings about formal relations
between the wavelet coefficients, and hence no immediate
physical interpretation can be associated with the wavelet co-
efficients [Yamada and Ohkitani; 1990, 1991a, b).

(6)

2.2. Orthonormal Wavelet Expansions

Some of the material presented in this section is also dis-
cussed by Katul and Parlange [1994]. For completeness we
present the main points and key results. For actual turbulence
measurements, discrete wavelet transforms are preferable
since f(x) is generally known at only discrete points x;. This
requires the discretization of (2) in the scale and space domain.
The discretization of the domain of (2) is not arbitrary since
conservation of the amount of information in the signal is
necessary. As shown by Daubechies [1988, 1992, p. 10] and
Mallat [1989a, b], using a logarithmic uniform spacing for the
scale discretization with increasingly coarser spatial resolution
at larger scale, a complete orthogonal wavelet basis can be
constructed with

b
l//[,] (y) = a_m/zl//(—joﬂ) (7)
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where m and j are variable scale and position indices, respec-
tively, a, is the base of the dilation, b, is the translation length
in units of a’, and (m) is used as a scale index (not to be
confused with power m). The simplest and most efficient case
for practical computation is the dyadic arrangement resuiting
ina, = 2 and by, = 1 [Daubechies, 1992, p. 10; Chui, 1992, p.
4; Mallat, 1989a, b; Meyer, 1989]. All scales along octaves 2"

and translations along 2™j contribute to the construction of
f(x;) = f(j) using

m=% j=-+»

> X welilg™li - 27)

m=1 i=—»

fG) = (8)

where gU[i] is the discrete version of the wavelet function
P(x) at scale m. Notice how the translations are dependent on

the dilations. The discrete wavelet function g[{] satisfies the
orthogonality condition ’

k=+

> 9"k — 2719k — 271 = 88,

o= —o0

(9

where §;; is the Kronecker delta function. The discrete wavelet
coefficients at scale index m and position index i can be com-
puted by

i=+o

WLl = X g™l - 271 10) (10)
and they satisfy the conservation of energy condition

jEt= m=+% {=+%

2= X X (11

j=—x m=1 i=-»

Notice that this is similar to Parseval’s identity in Fourier series

1 "
z?f |fx)Pdx = 3 Jef (12)
0 n=—o
where c¢,, are the Fourier coefficients defined by
1 27
¢y =5 J f(x)e ™ dx (13)
0

In practice, the number of heat flux measurements are finite,
and the summations in the above equations do not extend to
infinity. To modify the above equations for a finite number of
observations, let N = 2* be the number of observations (i.e.,
N is an integer power of 2). The scale index m then varies from
1to M = log, (N), and the position index at scale m varies
from 1 to N X 277, Note that this definition implies that as
the scale increases, the spatial resolution becomes much
coarser (e.g., atm = 1, we have N/2 coefficients, at m = 2 we
have N/4 coefficients, at m = M we have 1 coefficient). Note
also that the above arrangement conserves the number of
wavelet coefficients (=N — 1) required to decompose the
turbulence signal defined over N points. This dyadic arrange-
ment is well suited for turbulence studies, since the small-scale
features of the turbulence signal, which change rapidly com-
pared to the large-scale features, are characterized by more
wavelet coefficients. A simple procedure to determine the
wavelet coefficients is discussed next.
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2.3. Determination of the Wavelet Coefficients

Following Mahrt [1991], the Haar [1910] wavelet is well
suited for capturing rapid changes in turbulence signals due to
its locality in physical space. Since locality in physical space is
critical for the present study, we choose the Haar basis as our
analyzing wavelet. The Haar basis y(x) = (¢~ Y?)¢[(x —
b)/a], where a = 2" and b = 2" fori, m &€ Z, is given by

P(x) =1 D=x<i
P(x) = —1 %Sx<1

PF(x) =0

As shown by Beylkin et al. [1991, 1992], for this basis function
the wavelet coefficients W™ (k) and the coarse-grained
signal S¢"* (k) at scale m + 1 can be determined from the
signal SO at scale m by using

(14)

elsewhere

1
Wiy = i [SU(2i = 1) = $™(2i)] (15)

A 1 _
SUIk) = 57 [SV(2k — 1) + SP(2K))

(16)
form=0toM —1,i =0to2¥ ™ ' — 1, and M = log,
(N), N is the number of samples (integer power of 2). For the
Haar wavelet, S is a low-pass filtered function obtained
by a simple block moving average. The wavelet coefficients and
coarse-grained signal may be calculated by the following pyra-
midal algorithm discussed by Katul and Parlange [1994]:

1. Beginning with m = 0, use (9) and (10) to calculate the
signal §¢* and the coefficients W< at the first scale by looping
over i from 0 to 2M~! — 1. This will result in S and W vectors
of length N/2.

2. Repeat step 1 with m = 1 to calculate the next coarser
scale’s pair of vectors S2 and W? (each of length N/4).

3. Repeat for larger scale m up to M — 1 to produce a
series of S and W vectors of progressively decreasing length.
Note that at m = M — 1 the coarse-grained signal converges
to a point.

This algorithm yields N — 1 Haar wavelet coefficients that
define the orthonormal wavelet transform of the measured
heat flux signal. The above pyramidal procedure constitutes
the basis for fast wavelet transforms (FWT) and requires about
N computations in comparison to the N log, N computations
for fast Fourier transforms (FFT). Recall from (11) that the
N — 1 discrete Haar wavelet coefficients satisfy the conserva-
tion of energy condition.

3. Experimental Setup

Measurements of H and L E were carried out at the Uni-
versity of California, Davis, Campbell Tract research site (el-
evation above sea level, 18 m), which extends some 500 m X
500 m. These measurements were made in the atmospheric
surface layer above a uniform bare soil field with a momentum
roughness height (z,) of 2 mm. Further details on the field site
are presented by Katul and Parlange [1992] and Parlange and
Kartul [1992]. A Campbell Scientific one-dimensional sonic an-
emometer (model CA27; sonic path length, 15 cm), an ultra-
violet krypton hygrometer (model KH20; path length, 1.105
cm), and a fine wire chromel constantan thermocouple (thick-
ness, 0.0127 mm) were positioned at 80 cm above the ground
surface to measure w', g', and 7', respectively. The fine wire
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Table 1. Summary of Meteorological Conditions During
Study
Parameter Value
Day of year (1992) 280
Local time 1332
Uy, Mms™? 0.217
H, Wm™? 173.18
LE, Wm™? 35.4
T,, °C 31.8
RH, % 9.95
R,, Wm? 346.1
G, Wm™2 114.1
Obukhov length, m -5.8

The friction velocity (#.) was estimated from a Young triaxial
propeller anemometer, the mean air temperature (7,) and mean air
relative humidity (RH) were measured at 80 cm using a Phys-Chem
nonlinear thermistor and humidity transducers, the net radiation (R,,)
was measured by a Fritshen type total hemispherical sensor, and the
soil heat flux (G) was measured by a Thornwaite soil heat flux plate
placed at 0.3 cm below the ground surface. The Obukhov length
(= —pu’ [kg(H/c,T, + 0.61 L E/L_)]™") is also displayed, where
k = 0.4 is the von Kdrm4n constant, g = 9.81 m s is the gravita-
tional acceleration, and ¢, = 1005 J kg™' K™' is the specific heat
capacity of dry air.

thermocouple measures the difference between the air tem-
perature and a large time-constant (1 hour) temperature
probe, which is inside the CA27 base mount. The resolution of
the thermocouple is 0.005°C. The krypton hygrometer (model
KH20) measures the absolute vapor density in the air with a
resolution of 0.031 g m™>. Details regarding the theory of
operation of these sensors may be found in the works by Friehe
[1986], Kaimal [1986], and Tanner [1988]. The instruments
were logged at 10 Hz using a 21X Campbell Scientific mi-
crologger, and the data were transferred to a Hi-level Chrome
(70 ps) tape every 5 s. The experiment was carried out on day
of year 280 in 1992 (at 2:32 p.m.). The sampling duration for
the experiment was 27.3 min (i.e., N = 16,384 data points).
The mean wind speed (U) was 1.7 m s~ . Note that the com-
bination of f = 10 Hz, (U) = 1.7 m 5™}, and z = 80 cm
satisfies the dimensionless frequency (fz/(U)) criteria pro-
posed by Kaimal et al. [1972], McBean [1972), and Monin and
Yaglom [1975, pp. 456-457] for adequately resolving wave-
numbers responsible for scalar transport given by

107 < (fz/{UY) = 4.71 < 10. (17

In addition, since the turbulent intensity (u'/(U)) was less
than 0.5, Taylor’s {1938] hypothesis can be used to convert time
measurements to space measurements [Lumley, 1965; Powell
and Elderkin, 1974; Willis and Deardorff, 1976; Wyngaard and
Clifford, 1977]. A summary of the meteorological conditions is
presented in Table 1.

4. Spatial Statistics of Heat Fluxes

In this section we introduce statistical tools that utilize wave-
let coefficients for characterizing the spatial variation of “en-
ergy” of the measured heat fluxes. In this study “energy” is
considered to be the variance of the heat fluxes.

4.1.

The variance of a signal, in terms of the wavelet coefficients,
can be deduced from (11),

Wavelet Spectra
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where N is the number of observations (power of 2), M is log,
(N), m is the scale index, and i is the position index. The total
energy T contained in scale R,, = (2™dy) is given by
i=oM-m
Te=N"' 2 (WL

i=1

(19)

For comparing the wavelet and Fourier power spectra, we
define a wavenumber corresponding to scale R,, as

K = 270/R,,. (20)

The power spectral density function, defined as the total en-
ergy per unit wavenumber, is obtained at wavenumber k,,, by
dividing (19) with Ak,, = (2m)27™"(dy) ! In (2) to give

dy

E(k,) = (W™D 2710 2)

(21)
where angle brackets denote the space average over all values
of i. Notice that the wavelet power spectrum is obtained by
averaging many squared wavelet coefficients in space at each
wavenumber. The standard deviation for this spatially aver-
aged energy at wavenumber k,, can be computed from the
wavelet coefficients using

d
SDs(kn) = 5 oy LD = (P (22)

A plot of E(k,,) and E(k,,) + SDg(k,,) gives a compact
representation of the energy and a measure of its spatial vari-
ability at each scale. This type of representation is known as the
“dual spectrum” [Meneveau, 1991a, b]. Another useful mea-
sure of the spatial variation of energy is the coefficient of
variation (CV) defined by

CV(K,) = SD(K,,}JE(K,,) (23)

Notice the difference between the wavelet and the Fourier
energy spectra. Due to the global nature of Fourier transforms,
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the energy at each wavenumber is distributed uniformly in
space so that SD, = 0. However, depending on the variability
of the energy in space, wavelet transforms generally exhibit a
positive SDy;. '

4.2. Spatial Statistics of Turbulence

The wavelet skewness SF(k,,) and the wavelet flatness fac-
tors FF(k,,),

SK(ky) = (WKW
FF(k,,) = (WD YK LiDH "

(24
(25)

can be computed at each scale k,,,. These dimensionless factors
are used to characterize the spatial statistics (e.g., deviations
from Gaussian properties) of the wavelet coefficients.

The wavelet transform amplifies the changes in the flux
signal rather than the absolute magnitude of the flux events.
This is important for the identification of sharp changes in the
flux measurements. The wavelet skewness and wavelet flatness
factors are also statistical measures of the horizontal gradients
in the flux signal since converting a difference to a gradient
simply requires the division by a characteristic scale. This char-
acteristic scale cancels out in both ratios of (24) and (25).
Hence the wavelet skewness is a dimensionless measure of the
magnitude and the sign of the preferred direction of the hor-
izontal gradients, while the wavelet flatness factor measures
the importance of large spatial gradients in the flux signal at
scales k,,,. These spatial differences in the flux signal arise due
to rapid transient turbulent motion that simultaneously
changes the scalar as well as the vertical velocity fluctuations.
Finally, the wavelet flatness factor defined in (25) differs from
the conventional central moment flatness factor. The central
moment flatness factor measures the importance of extreme
flux events in relation to the mean fiux (i.c., sensitive to the
magnitude of flux events), while the wavelet flatness factor
measures the importance of rapid changes in the flux measure-
ments.

5. Results and Discussion

The time series of the sensible and latent heat fluxes are
presented in Figure 1. Notice that the fluctuations about the
mean flux can be 1 or 2 (in the case of L E) orders of mag-
nitude larger than the mean flux. The integral timescales of
both fluxes are 0.5- s, which is smaller than the individual
integral timescales of w', T', and g’ (see Table 2). The sim-
ilarity between the flux integral timescales suggests some sim-
ilarity between H' and L [E' at production scales.

Table 2. Integral Timescale Summary
Variable Timescale, s Length Scale, m
w' 1.1 1.87
T 2.9 4.93
q' 39 6.63
w'T’ 0.50 0.85
w'q’ 0.50 0.85

The integral timescale was calculated from integrating the area
under the autocorrelation function up to the first zero crossing. The
integral timescales of the fluxes are also shown. Integral length scales
are calculated from integral timescales using Taylor’s hypothesis.
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5.1.

In Figure 2, a comparison between the Fourier power spec-
tra and the Haar wavelet spectra for H' and L E' is presented.
The agreement between the wavelet spectrum and the Fourier
power spectrum is well within the scatter of the Fourier power
spectra. The Fourier spectrum was computed by square win-
dowing 2048 points, cosine tapering 5% each window side, and
then averaging the eight resultant power spectra [Press et al.,
1990]. The wavelet power spectrum was computed by (1) using
the pyramidal algorithm defined in (15) and (16) to obtain the
Haar wavelet coefficients in space and scale and (2) using (25)
in conjunction with the wavelet coefficients from step 1 to
obtain the wavelet power spectrum at wavenumber k,,,. Notice
in Figure 2 that a —1 power law exists in the power spectra at
the wavenumber (=7.4 m™") which corresponds to the integral
length scale (=0.85 m) (see Table 2). The —1 power law in the
flux spectra can be derived from similarity theory, which is
considered next.

Following Tennekes and Lumley [1972], the dimensionless
power spectrum for H' and L _E' at small wavenumbers can be
written

Wavelet Spectra

Eq
(peiw'T")) %z

ELIE’

= Fi{Kz) (Lv<qul>)ZZ

=F LIE(KZ )
(26)

where F( ) are universal functions that depend on the di-
mensionless wavenumber Kz. The application of (26) is re-
stricted to wavenumbers for which viscosity is not important.
These wavenumbers correspond to dynamically important
scales that are comparable to the integral length scale. At these
scales, variables affecting the mean flow become important.
Using the height independent arguments proposed by Kader
and Yaglom [1990, 1991] for E;; and E; g allows (260) to be
written

Ey Gy
(e, TN%Z ~ (Kz)

ELUE’ _ CL,E
(Liw'g N2 (Kz)

(27)

so that the flux power spectra are proportional to K~ !, and Cp,
and C,  are universal constants. Using the spectra of Figure
2, we determined C;; and C; . to be 1.14 and 1.8, respectively.

—— Ffourier
=1
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Figure 2. Comparison of Fourier (solid line) and wavelet
(circles) power spectra for both heat fluxes. The —1 power law
(thick line) is also shown.
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Figure 3. The coefficient of variation (CV) as a function of
wavenumber for sensible and latent heat flux.

5.2. Spatial Statistics of Turbulence

In this section two aspects of the spatial statistics of the
turbulent fluxes are presented: (1) energy (or flux variance)
and (2) horizontal gradients. In Figure 3 the coefficient of
variation (CV) is shown as a function of K, for both latent and
sensible heat fluxes. The coefficient of variation was computed
(1) using the pyramidal algorithm defined by (15) and (16) to
obtain the wavelet coefficient and (2) applying (23) to the
coefficients obtained in step 1. Notice in Figure 3 that CV was
larger than unity, indicating that the variability in the flux
energy is much greater than the mean value. Also, CVs for H'
and LE’', within the —1 power law range, are very similar,
while for other scales marked differences in CV are observed.
Recall that CV involves the averaging of the fourth power of
the wavelet coefficients at position index (i) for scale index
(m). Hence CV is very sensitive to local events (at scale m)
occurring in space. Similarity in CV between the flux signals
indicates statistical similarity in local events at scale (m).
Therefore this analysis indicates that local similarity between
H'’ and LE" does hold (as was assumed in (26), (27), and (28)).
This becomes more evident in Figure 4, in which the wavelet
skewness and flatness factors for the sensible and latent heat
fluxes are shown. The wavelet skewness and flatness factors
were computed applying (23) and (24). Notice in Figure 4 that
the wavelet flatness factor is much larger than 3, indicating
strong non-Gaussian statistics in the flux signals (at least within
the —1 power law range). These large flatness factors in both
flux signals suggest that the tails of the probability density
function (pdf) of the horizontal gradients extend beyond a
Gaussian behavior. To illustrate this in Figure 5, we compare
the pdf’s of both heat flux gradients with a Gaussian pdf. The
pdf in Figure 5 was computed by (1) applying Taylor’s hypoth-
esis to convert the time domain to a space domain, (2) approx-
imating the gradient by differencing adjacent points in both
heat flux signals, (3) normalizing the differenced signals to
have a zero mean and unit variance, and (4) computing the
frequency distribution of the normalized series using 200 bins
(recall N = 16,384). The ordinate axis shown in Figure 5 is

~ logarithmic in order to emphasize the behavior at the tails.

Notice the similarity between the latent and sensible heat flux
gradient pdf’s, especially at the tails.

The eddy sizes contributing to the tails of the pdf’s in Figure
5 can be estimated using the wavelet skewness and flatness
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Figure 4. Wavelet skewness (SK) and flatness factors (FF) as
a function of wavenumber K for sensible and latent heat flux.

factors (see Figure 4). The largest wavelet flatness factor cor-
responds to wavenumbers within the —1 production subrange
where most negative wavelet skewness occurs (see Figure 4).
This suggests that these scales contribute most to the tails in
Figure 5.

6. Conclusions

The usefuiness of orthonormal wavelet expansions in ana-
lyzing the spatial structure of atmospheric surface layer heat
fluxes is examined. The advantage of wavelet decomposition is
its capability of decomposing the heat flux into “flow indepen-
dent wavelets” for various wavenumbers and positions. By flow
independent wavelets we mean that a wavelet basis is selected
that is independent of the flow dynamics.

It was found that the latent and sensible fiux Fourier and
wavelet spectra exhibit a —1 power law at wavenumbers com-
parable to the integral length scales. The —1 power law in both
fluxes was derived using dimensional arguments. These argu-
ments are based on similarity between the latent and sensible
heat flux fluctuations about the mean turbulent fluxes. Due to

100 ¢
E . n
3 o LE
Gaussian
101 ..
s
5 102
o
]
2
E 103 |
<
.
104 |
E <)
105 L . L )
15 12 9 12 15

Figure 5. Horizontal gradient probability density function
(pdf) for normalized heat fluxes (y). The normalized sensible
and latent heat fluxes have zero mean and unit variance. The
Gaussian pdf (solid line) is also shown.
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the spatial localization of the Haar basis, we considered the
spatial statistics of the wavelet coefficients at wavenumbers
corresponding to the —1 power law. We defined and utilized
three space-scale statistical quantities: (1) the coefficient of
energy variation, (2) the wavelet skewness, and (3) the wavelet
flatness factor. It was found that these wavelet spatial statistics
for sensible and latent heat fluxes were comparable over the
—1 power law range. The fact that these statistics are compa-
rable suggests a space-scale statistical similarity in local events
for both fluxes. We utilized the wavelet skewness and flatness
factors to identify the importance of localized events on the
tails of the horizontal gradient probability density function of
the fluxes. It was found that scales within the —1 power law
range directly contribute to the widening of the tails of the
gradient probability density function.

Acknowledgments. The authors would like to thank Chia Ren Chu
and John Albertson for helpful discussions, David Buscagli for his
programming assistance, Mike Mata for his help in maintaining the
field, and Roger Shaw and Larry Mahrt for helpful discussions. This
work was supported in part by the National Science Foundation (EAR-
93-04331), Kearney Foundation, Water Resources Center (W-812),
USGS, and UC Davis superfund (5 P42ES04699-07).

References

Argoul, F., A. Arneodo, G. Grasseau, Y. Gagne, E. J. Hopfinger, and
U. Frisch, Wavelet analysis of turbulence reveals the multifractal
nature of the Richardson cascade, Nature, 338, 51-53, 1989.

Barcy, E., A. Arneodo, U. Frish, Y. Gagne, and E. Hopfinger, Wavelet
analysis of fully developed turbulence data and measurement of
scaling exponents, in Turbulence and Coherent Structures, edited by
O. Metais and M. Lesieur, pp. 203-215, Kluwer Academic, Norwell,
Mass., 1991.

Beylkin, G., R. Coifman, and V. Rokhlin, Fast wavelet transforms and
numerical algorithms, I, Commun. Pure Appl. Math., XLIV, 141-183,
1991.

Beylkin, G., R. Coifman, and V. Rokhlin, Wavelets in numerical anal-
ysis, in Wavelets and Their Applications, edited by M. B. Ruskai, G.
Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L.
Raphael, pp. 181-210, Jones and Bartlett, Boston, Mass., 1992.

Chui, C. K., An Introduction to Wavelets, 264 pp., Academic, San
Diego, Calif., 1992.

Daubechies, I., Orthonormal bases of compactly supported wavelets,
Commun. Pure Appl. Math., XLI, 909-996, 1988.

Daubechies, 1., Ten Lectures on Wavelets, CBMS-NSF Regional Conf.
Ser. Appl. Math., vol. 61, 357 pp., Society for Industrial and Applied
Mathematics, Philadelphia, Pa., 1992.

David, G., Wavelets and Singular Integrals on Curved Surfaces, 109 pp.,
Springer-Verlag, New York, 1992.

Everson, R., L. Sirovich, and K. R. Sreenivasan, Wavelet analysis of
the turbulent jet, Phys. Lett. A, 145, 314-322, 1990.

Farge, M., Wavelet transforms and their applications to turbulence,
Annu. Rev. Fluid Mech., 24, 395-457, 1992a.

Farge, M., The continuous wavelet transform of two dimensional tur-
bulent flows, in Wavelets and Their Applications, edited by M. B.
Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer,
and L. Raphael, pp. 275-302, Jones and Bartlett, Boston, Mass.,
1992b.

Friehe, C., Fine scale measurements of velocity, temperature, and
humidity in the atmospheric boundary layer, in Probing the Atmo-
spheric Boundary Layer, edited by D. H. Lenschow, pp. 29-38,
American Meteorological Society, Boston, Mass., 1986.

Gao, W., R. H. Shaw, and K. T. Paw U, Observation of organized
structure in turbulent flow within and above a forest canopy, Bound-
ary Layer Meteorol., 47, 349-378, 1989.

Grossmann, A., and J. Morlet, Decomposition of Hardy functions into
square integrable wavelets of constant shape, SIAM J. Math. Anal.,
15, 723-736, 1984.

Grossmann, A., and J. Morlet, Decomposition of functions into wave-
lets of constant shape, and related transforms, Mathematics + Phys-



KATUL AND PARLANGE: LAND SURFACE HEAT FLUXES

ics, Lectures on Recent Results, edited by L. Streit, World Scientific,
Singapore, 1985.

Grossmann, A., R. Kronland-Martinet, and J. Morlet, Reading and
understanding ‘continuous wavelet transforms, in Wavelets: Time-
Frequency Methods and Phase Space, edited by J. M. Combes, A.
Grossmann, and P. Tchamitchian, pp. 2-20, Springer- -Verlag, New
York, 1989.

Haar, A., Zur Theorie der orthogonalen Funktionensysteme, Math.
Ann., 69, 331-371, 1910.

Kader, B. A., and A. M. Yaglom, Mean fields and fluctuation moments
in unstably stratified turbulent boundary layers, J. Fluid Mech., 212,
637-662, 1990. '

Kader, B. A, and A. M. Yaglom, Spectra and correlation functions of
surface layer atmospheric turbulence in unstable thermal stratifica-
tion, in Turbulerice and Coherent Structures, edited by O. Metais and
M. Lesieur, pp. 387-412, Kluwer Academic, Norwell, Mass., 1991.

Kaimal, J. C., Flux and profile measurements from towers in the
boundary layer, in Probing the Atmospheric Boundary Layer, edited
by D. H. Lenschow, pp. 19-28, American Meteorological Society,
Boston, Mass., 1986,

Kaimal, J. C., J. Wyngaard, Y. Izumi, and O. Cote, Spectral charac-
teristics of surface layer turbulence, Q. J. R. Meteorol." Soc., 93,
305-317, 1972.

Katul, G. G,, and M. B. Parlange, A Penman-Brutsaert model for wet
surface evaporation, Water Resour. Res., 28, 121-126, 1992.

Katul, G. G., and M. B. Parlange, On the active role of temperature in
surface-layer turbulence, J. Atmos. Sci., 51, 2181-2195, 1994.

Liandrat, J., and F. Moret-Bailly, The wavelet transform: Some appli-
cations to fluid dynamics and turbulence, Eur. J. Mech., B, Fluids, 9,
1-19, 1990. '

Lumley, J., Interpretation of time spectra measured in hlgh intensity
shear ﬂows Phys. Fluids, 6, 1056-1062, 1965.

Mahrt, L., Eddy asymmetry in the shear heated boundary layer, J.
Atmos. Scz 48, 472-492, 1991.

Mallat, S., A theory for multiresolution signal decomposition: The
wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11,
674-693, 1989%a.

Mallat, S., Multiresolution approximations and wavelet orthonormal
bases ofLZ(R), Trans. Am. Math. Soc., 315, 69-87, 1989b.

McBean, G. A., Instrumentation requirements for eddy correlation
measurements, J. Appl. Meteorol., 11, 1078-1084, 1972.

Meneveau, C., Analysis of turbulence in the orthonormal wavelet
fepresentation, J. Fluid Mech., 232, 469-520, 1991a.

Meneveau, C., Dual spectra and mixed energy cascade of turbulence in
the wavelet representation, Phys. Rev. Lett., 11, 1450-1453, 1991b.

2749

Meyer, Y., Orthonormal wavelets, in Wavelets: Time-Frequency Meth-
ods and Phase Space, edited by J. M. Combes, A. Grossmann, and P.
Tchamitchian, pp. 21-37, Springer-Verlag, New York, 1989.

Monin, A. S., and A. M. Yaglom, Statistical Fluid Mechanics, vol. 11,
edited by J. Lumley, 874 pp., MIT Press, Cambridge, Mass., 1975.

Parlange, M. B,, and G. G. Katul, An advection-aridity evaporation
model, Water Resour. Res., 28, 127-132, 1992.

Powell, D., and C. E. Elderkin, An investigation of the application of
Taylor’s hypothesis to atmospheric boundary layer turbulence, J.
Atmos. Sci., 31, 990-1002, 1974,

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes: The Art of Scientific Computing, 702 pp., Cam-
bridge University Press, New York, 1990.

Tanner, B. D., Use requirements for Bowen Ratio and Eddy Correla-
tion determination of evapotranspiration, paper presented at the
1988 Specialty Conference of the Irrigation and Drainage Division,
Am. Soc. Civ. Eng., Lincoln, Neb., 1988.

Taylor, G. L., The spectrum of turbulence, Proc. R Soc., A, CLXIV,
476-490, 1938

Tennekes, H., and J. Lumley, A First Course in Turbulence, 300 pp.,
MIT Press, Cambridge, Mass., 1972.

Willis, G. E., and J. Deardorff, On the use of Taylor’s translation
hypothesis for diffusion in the mixed layer, Q. J. R. Meteorol. Soc.,
102, 817-822, 1976.

Wyngaard, J. C, and S. F. Clifford, Taylor’s hypothesis and high-
frequency turbulence spectra, J. Atmos. Sci., 34, 922-929, 1977.

Yamada, M., and K. Ohkitani, Orthonormal expansion and its appli-
cation to turbulence, Prog. Theor. Phys. Prog. Lett., 83, 819823,
1990.

Yamada, M., and K. Ohkitani, Orthonormal wavelet analysis of tur-
bulence, Fluid Dyn. Res., 8, 101-115, 1991a.

Yamada, M., and K. Ohkitani, An identification of energy cascade in
turbulence by orthonormal wavelet analysis, Prog. Theor. Phys., 86,
799-815, 1991b.

G. G. Katul, School of the Environment, Duke University, Durham,

NC 27706.
M. B. Parlange, Hydrologic Science, 131 Veihmeyer Hall, University

of California, Davis, CA 95616. (e-mail: mbparlange@ucdavis.edu)

(Received July 5, 1994; revised December 14, 1994;
accepted December 29, 1994.)



