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Abstract. Longitudinal velocity and temperature measurements above a uniform dry lakebed were 
used to investigate sources of eddy-motion anisotrnpy within the inertial subrange. Rather than 
simply test the adequacy of locally isotropic relations, we investigated directly the sources of 
anisotropy. These sources, in a daytime desert-like climate, include: (1) direct interaction between 
the large-scale and small-scale eddy motion, and (2) thermal effects on the small-scale eddy motion. 
In order to explore these two anisotropy sources, we developed statistical measures that are sensitive 
to such interactions. It was found that the large-scale/small-scale interaction was significant in 
the inertial subrange up to 3 decades below the production scale, thus reducing the validity of 
the local isotropy assumption. The anisotropy generated by thermal effects was also significant 
and comparable in magnitude to the former anisotropy source. However, this thermal anisotropy 
was opposite in sign and tended to counteract the anisotrnpy generated by the large-scale/small- 
scale interaction. The thermal anisotropy was attributed to organized ramp-like patterns in the 
temperature measurements. The impact of this anisotropy cancellation on the dynamics of inertial 
subrange eddy motion was also considered. For that purpose, the Kolmogorov-Obukhov structure 
function equation, as derived from the Navier-Stokes equations for locally isotropic turbulence, was 
employed. The Kolmogorov-Obukhov structure function equation in conjunction with Obukhov's 
constant skewness closure hypothesis reproduced the measured second- and third-order structure 
functions. Obukhov's constant skewness closure scheme, which is also based on the local isotropy 
assumption, was verified and was found to be in good agreement with the measurements. The 
accepted 0.4 constant skewness value derived from grid turbulence experiments overestimated our 
measurements. A suggested 0.26 constant skewness value, which we derived from Kolmogorov's 
constant, was found to be adequate. 

1. Introduction 

The mechan i sms  by  which  a scalar  is t ranspor ted  within the a tmospher ic  surface 

layer  (ASL)  are o f  great  impor tance  in surface h y d r o l o g y  and l and-a tmosphere  

interact ion studies. In particular, desert- l ike regions  pose  unique p rob lems  in 

descr ibing these mechan i sms  since the day t ime sensible heat  flux ( H )  f rom the 

ground,  as well  as the air temperature  fluctuations,  are large c o m p a r e d  to m o r e  

temperate  envi ronments .  However ,  i rrespective o f  the envi ronment ,  all A S L  flows 

are charac ter ized  by  a long inertial subrange  that extends over  two or  more  

decades  o f  turbulent  scales o f  mot ion.  Within  the inertial subrange,  turbulent  

energy  is nei ther  p roduced  nor  dissipated but  s imply  cascades  d o w n  to smaller  

and smaller  scales. 

A useful feature o f  the inertial subrange  is the isotropic nature o f  the eddy  

mot ion  that permits  simplif ications to the statistical descr ipt ion o f  these scales o f  

Boundary-Layer Meteorology 72: 123-148, 1995. 
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motion. Within the framework of Kolmogorov's (1941) theory (hereafter referred 
to as K41), it is argued that the many energy cascade steps eliminate all the 
turbulent production eddy-motion anisotropy and result in a locally isotropic 
turbulence structure. Therefore. the study of isotropy in the inertial subrange is 
important to many ASL transport phenomena, turbulence closure models, and 
energy-cascade models. 

The wide inertial subrange in ASL flows is typically attributed to the high 
Reynolds number and associated wide scale separation between turbulent produc- 
tion (at Lu) and viscous dissipation (at r/) (for many ASL flows L~/~l ~ 105). 
Here, L~ is the integral length scale of the longitudinal velocity fluctuations, 
~](= [//3/@)]1/4) is the Kolmogorov microscale, u(= 1.5 x 10 5 m 2 s - l )  is the 
kinematic viscosity of air. e(= u[Oui/Oxj + Ouj/Oxd 2) is the turbulent kinet- 
ic energy dissipation rate, u.i are the turbulent velocity fluctuation components 
(~1 = 'g -~2  = ~). and  ~3 = w) ,  X l ( =  x ) ~ x 2 (  = y) ,  and x3(= z) and x3(= z) are  

the longitudinal, lateral, and vertical directions, respectively (in this study, both 
meteorological and tensor notations are used), and (.) is the time averaging oper- 
ator (assumed to be identical to the ensemble averaging operator). The wide 
separation between L~ and ~/ensures that the transfer of turbulent kinetic energy 
(TEL from production to dissipation, cascades over many intermediate scales. It 
is expected that all the anisotropy in the eddy motion associated with the tur- 
bulent production (mechanical or thermal) should diminish during this energy 
cascade. 

In the past two decades, various laboratory studies (e.g,. Mestayer, 1982; 
Sreenivasan. 1991) have suggested that a long inertial subrange, in the sense of 
K41, may not necessarily result in isotropic eddy motion for inertial subrange 
scales (referred to as small scales in this paper). It is now recognized that the 
breakdown of local isotropy is. in part, attributed to direct interaction between the 
energy-containing scales and the small scales (see e.g., Mahrt, 1989; Sreenivasan 
et al., 1979). Furthermore, laboratory experiments (e.g., Antonia and Van Atta, 
1975) as well as field studies (e.g., Antonia and Chambers, 1980) have demon- 
strated that small-scale anisotropy may also occur due to thermal influences. 
Yet, despite the potential sources of anisotropy, results regarding the validity of 
local isotropy were obtained from the Kansas experiments (Kaimal et al., 1972) 
and many other ASL experiments (see Monin and Yaglom, 1975, Ch. 8). More 
recently, direct numerical simulations of open channel flow by Kim and Antonia 
(1993) indicate that local isotropy is achieved even at moderate Reynolds num- 
ber with no apparent inertial subrange. Table I summarizes results from several 
laboratory and ASL experiments related to the existence of local isotropy in the 
inertial subrange. Many more experiments have been reported in the literature 
but will not be reviewed here. Also, it should be noted that the methods used to 
evaluate local isotropy varied across different studies (see e.g., Van Atta, 1991 
for consequences). 
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TABLE I 

Summary of some local isotropy experiments 

Reference Experiment/Conditions Inertial subrange 

Monin and Yaglom (1975) 
Kaimal et al. (1972) 
Mestayer (1982) 
Sreenivasan et al. (1979) 
Van Atta (1991) 

Van Atta (1991) 
Antonia and Raupach (1993) 

ASL flows (land and ocean) 
Stable and unstable ASL flows 
Heated boundary layer 
Heated axisymmetric jet 
Stably-stratified wind tunnel boundary 

layer 
Neutral wind tunnel boundary layer 
Neutral wind tunnel boundary layer 

Isotropic 
Isotropic 
No isotropy 
No isotropy 
No isotropy 

Isotropic 
No isotropy 

It is these conflicting results that have motivated the present study. In par- 
ticular, we consider the various mechanisms responsible for anisotropy in the 
inertial subrange. If the interaction between large and small scales is important, 
and/or if the influence of temperature on the inertial subrange isotropy is signif- 
icant, then studying the inertial subrange of a desert-like environment is ideal 
for this investigation. Such environments possess two desirable features: (1) the 
Reynolds number is very large and ensures a wide inertial subrange, and (2) the 
surface heating, sensible heat flux, and temperature variance are all very large. 

An experiment was carried out above a uniform dry lakebed (Owen's Lake) 
in Owen's Valley, California. Simultaneous longitudinal velocity and temperature 
measurements were carried out above the lakebed surface to investigate the sta- 
tistical structure of the inertial subrange of the longitudinal velocity. The specific 
objectives of our investigation are to study (1) the interaction between the large- 
scale and small-scale eddy motions along the longitudinal direction, (2) the influ- 
ence of temperature on the inertial subrange of the longitudinal velocity, and (3) 
the influence of anisotropy on equations that utilize local isotropy simplifications 
to the dynamics of inertial subrange eddy motion. The Kolmogorov-Obukhov 
structure function equation is a good surrogate for investigating (3) since it is rig- 
orously derived from the Navier-Stokes (NS) equations following local isotropy 
simplifications. Finally, we discuss the performance of some closure assumptions 
of this equation. 

2. Theory 

The dynamic equation relating the second- and third-order structure functions, 
as derived from NS equations for locally isotropic turbulence, is given by 

d (1) 4 
D 3 ( r ) -  6u D2(r) =-~ 
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where D*~(r) = ([u(x + r) - u(x)]n), and r is the separation distance along the 
longitudinal direction (see Monin and Yaglom, 1975: pp. 401-403). In deriving 
(1), it was assumed that the statistical state of the small-scale eddies (i.e., scales 
much smaller than L~) are independent of the macro-structural flow properties. 
Also, as discussed in Monin and Yaglom (1975: p. 402), it was assumed in (1) 
that the temperature and velocity differences (AT and Au), for r much less than 
L~,, are independent. That is, at the small scales, temperature is a passive scalar 
and does not interact with the velocity field. Throughout this study, we shall 
assume that at any time instant, the longitudinal velocity (U) and air temperature 
(Ta) can be decomposed, without ambiguity, into time averages ((U), (T)) and 
fluctuations about these averages (u, T). Thus, at time t, U(t) = (U) + u(t) and 
Ta(t) = (T) + T(t). An important asymptotic result that follows from (1) is the 
behavior of D3(r) in the limit when r >> r/and u is very small. This is given by 

z~ 
D3( ) (2) 

which agrees well with K41 scaling [Dn(r) c< ((e)r) n/3] for n = 3. In general, 
(1) is not closed since it involves two unknown functions: D2(r) and D3(r). To 
close (1), one must introduce a hypothesis to express one unknown as a function 
of the other unknown. Obukhov (1949) proposed a simple closure hypothesis 
known as the hypothesis of constant skewness, and thus, established a relation 
between D2(r) and D3(r). Obukhov's constant skewness hypothesis assumes that 
the skewness 

D3(r) 
S ( r ) -  [D2(r)]U2, (3) 

is a negative constant independent of r. The value of this constant (ISI) was deter- 
mined experimentally to be 0.2-0.5 (see footnote Landau and Lifshitz, 1986: pp. 
128; Katul et al., 1994a; Townsend, 1975: p. 98). With this closure assumption, 
(1) simplifies to 

d 4 ISI[D2(r)] 3/2+6u D2(r) = N(e)r, (4) 

which is only a function of D2(r). Hence, if (e) is known, (4) can be used to solve 
for D2(r), and then (3) can be used to compute D3(r). Again, we remark that ISI 
cannot be a constant if local isotropy is violated (see Landau and Lifshitz, 1986: 
p. 128). Notice here the key difference between (1) and K41. In K41, the statis- 
tical properties of locally isotropic turbulence were investigated by dimensional 
analysis which do not require the explicit use of the fluid dynamics equations, 
while (1) was derived from NS equations by invoking the local isotropy assump- 
tion to simplify various dynamical terms and determine the universal constants 
(see Monin and Yaglom, 1975: pp. 401-403 for derivation). In the results and 
discussion section that follows, we focus on the performance of (3) and (4) as 
well as the onset of local isotropy. But first, we present the experimental setup. 
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3. Experimental Setup 

The measurements discussed in the present study were carried out on June 27, 
28, and 29 (1993) over a uniform sandy dry lakebed (Owen's lake) in Owen's 
valley, California. The lakebed (elevation = 1100 m) is contained within a larger 
basin bounded by the Sierra Nevada range and the White and Inyo Mountains. 
The surface is a uniform heaved sandy soil extending some 11 km in the North- 
South direction and 4 km in the East-West direction (see Katul, 1994; Katul et al., 
1994b). The predominant wind direction was along the North-South direction. 

The three velocity components were measured using a triaxial ultrasonic 
anemometer (Gill Instruments/1012R2). Sonic anemometers achieve their fre- 
quency response by sensing the effect of wind on the transit times of sound 
pulses traveling in opposite directions across a known instrument path distance 
dsz(= 0.149 m in this study). The sonic anemometer is well suited for field exper- 
iments since it is relatively free of calibration nonlinearities and atmospheric con- 
tamination drifts. As discussed by Friehe (1986), Suomi and Businger (1959), 
and Wyngaard (1981), the primary disadvantage of sonic anemometers is the 
wavenumber distortion due to averaging along the finite sonic path dsz. This 
distortion is restricted to wavenumbers in excess of 27r/dsz (=42.2 m-1 in this 
study) (see Wyngaard, 1981). The sampling frequency (f~) and the sampling peri- 
od (Tp) were 56 Hz and 15 rain, respectively, resulting in 50,400 measurements 
per velocity component. The 56 Hz sampling frequency is the maximum achiev- 
able frequency by the Gill sonic anemometer. The short sampling period was 
necessary to insure steady state mean meteorological conditions. Taylor's (1938) 
hypothesis was used to convert time increments to space increments (dr = - (U}  
dt). We note that some distortion occurs for r < ds1 and we limit our analysis to 
r > dsl but show the full range of measurements. From this experiment, twenty 
15-rain runs were collected under unstable and stable atmospheric stability con- 
ditions (see Katul, 1994 for further details). Here, we focus on three unstable 
atmospheric stability runs that exhibited: (1) at least 1.5 decades of inertial sub- 
range as identified by the third-order structure function, (2) a turbulent intensity 
not exceeding 0.4 to insure the applicability of Taylor's hypothesis (see Stull, 
1988: p. 6), (3) a temperature standard deviation in excess of 0.1 ~ to insure 
adequate thermal agitation, and (4) a clear and identifiable time average to permit 
decomposition into a mean and a fluctuating part without ambiguity. 

The temperature was determined from the speed of sound c~ using 

=  RdTa, (5) 

where Rd(= 287.04 J Kg -1 K -1) is the gas constant of dry air, and ct(= 1.4) is 
the ratio of the molar specific heat capacities of air at constant pressure to that 
at constant volume. The variations of U and Ta for all three runs are shown in 
Figures la, lb, and lc, respectively. Notice that a linear trend is apparent in the 
temperature time series of Figure 1 c, and therefore, the temperature measurements 
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Fig. ]a. Time variation of the sonic anemometer measured longitudinal velocity and temperature 
for Run ~1 (z/L,~o = - l . 06 ) .  The sampling frequency is 56 Hz and the sampling period is 15 
min (N = 50,400). 

for Run D3 were de-trended. The mean meteorological and turbulence conditions 
are presented in Table II. In Figure lb (Run ~2), velocities up to 14 m s ~ (peak- 
to-mean ratio = 2.3) and air temperatures up to 47.5 ~ (peak-to-mean ratio = 
1.15) were recorded. 

To check how well the sonic anemometer captures the temperature fluctua- 
tions, a comparison between temperature determined from the sonic anemometer 
and temperature measured by a fine wire thermocouple (TC diameter = 0.0127 
mm and placed 60 cm east of the sonic anemometer) is shown in Figure 2a. The 
temperature measurements from the sonic anemometer are de-meaned. The TC 
measurements are shifted by 10 ~ to permit comparison. The sampling frequen- 
cy in Figure 2a was 10 Hz and the height above the ground surface was 2.5 m. 
Notice that all major events are captured well by both instruments. The power 
spectra for both signals are compared in Figure 2b. The TC spectrum is shifted 
by one decade along the ordinate to permit comparison at the high frequency end. 
At the low frequency end, both instruments are in excellent agreement. However, 
at the high frequency end, the TC spectrum appears to "level off" due to limited 
resolution (indicative of white noise). The sonic-anemometer temperature spec- 
trum did not level off. This comparison demonstrates that the sonic anemometer 
temperature measurements are adequate for our study (see also Katul, 1994). 
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Fig. lb. Same as Figure la but for Run ~2 (z/LMo = 1.40). 
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TABLE II 

Summary of measured mean meteorological and turbulence conditions 

Run description 
Run ~ l 2 3 

Day of year (1993) 178 179 180 

Time (PDST) 08:53 17:10 07:42 

Mean meteorological conditions 
Net radiation (R~), W m 2 

Sensible heat flux (H), W m -2 

Long. velocity (U1), m s -1 

Air temperature (T,), ~ C 

227 245 94 

105 175 38 

1.86 6.16 4.09 

34.8 43.7 26.3 

Turbulence statistics 
Root-mean square velocity (cry), m s -1 0.665 

Roobmean square velocity (cry), m s -1 0.589 

Root-mean square velocity (~r~), m s -~ 0.270 

Root-mean square temperature (crT), ~ 0.51 

Friction velocity (zL.), m s 1 0.15 

Buoyant production rate (Pb X 103), m 2 s -3 3.03 

Mechanical production rate ( /~ • 103), m 2 s -3 2.85 

Total production rate (P  • 103), m 3 s -3 5.88 

Mean dissipation rate ((e) x 103), m 2 s -3 

Method II: Local isotropy 2.5 

Method III: Power spectrum 3.1 

Turbulent intensity (I~) 0.36 

Length scales 
Height (z), m 

Obukhov length (Lr~o), m 

Integral length scale (L~), m 

Integral length scale (LT), m 

Taylor microscale (A), m 

Kolmogorov dissipation scale (r/), mm 

Flow properties 
Reynolds number (Rea )  

Scale separation (L~/rl) x 105 

Stability parameter (z/LMo) 
Inertial subrange (m) 

3.0 

-2 .8  

61 

35 

0.26 

1 . 2 2  

11,398 

0.50 

- 1 .06  

0.15-25 

1 .79  

1 .73  

0.41 

0.72 

0.17 

4.9 

3.9 

8.8 

11.6 

14.3 

0.29 

3.5 

-2 .5  

272 

33 

0.25 

0.73 

29,702 

3.70 

- 1 .40  

0.15-100 

0.533 

0.530 

0.211 

0.18 

0.18 

1.13 

6.37 

7.5 

3.3 

4.1 

0.13 

2.25 

-13 .2  

43 

10 

0.14 

1.01 

4953 

0.43 

- 0 . 1 7  

0.15-10 
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Fig. 2a. Comparison between thermocouple (TC) and sonic anemometer measured temperature. 
The TC is 60 cm away but at the same height. 
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Fig. 2b. Comparison between thermocouple (TC) and sonic anemometer power spectra. The two 
spectra were computed from the time series of Figure 2a but separated by one decade to permit 
comparison at large wavenumbers. 

Figures la,  lb ,  and lc  clearly indicate ramp-l ike  structures in the temperature  

t ime series for all three stability cases (see Table II). As noted by Sreenivasan 

et al. (1979), these structures are commonly  observed in shear flow experiments  

and are absent when the mean shear is zero. Therefore,  these structures are typ- 
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Fig~ 3. A 500 m section of the temperature record of Run ~2 to illustrate the ramp-like pattern 
and the sharp edges (AB). For comparison purposes, the magnitude of the velocity and temperature 
integral length scales (L~ and LT) are also shown. Taylor's hypothesis was used to convert time 
increments to space increments. 

ically present in a desert-like environment during daytime conditions. To further 
illustrate the characteristics of these ramp-like patterns in the temperature mea- 
surements, we show in Figure 3 a small section of the record from Run ~2 (~500 
m) where Taylor's hypothesis was used to convert time to distance. Notice in 
Figure 3 that the size of the large ramp structure is about 100 m (~thickness 
of ASL) which is in agreement with many other ASL experiments (see Stull, 
1988: pp. 442-446 for a review). Our interest in these structures stems from the 
conclusions of Sreenivasan et al. (1979), who demonstrated that the sharp edges 
of these ramps have important consequences on the isotropy of inertial subrange 
thermal motion. 

The characteristic turbulence length scales are summarized in Table II, where 
L~, the temperature integral length scale (LT), the Taylor microscale (I), and r/ 
were estimated from 

(u) 
LT - / (T(t + T)T(t) > d7, 

Jo 

L~ (u 2) ]o {u(t + T)u(t) > d'r, 

), =  ru(U} (6) 
{ 1/2' 
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(see Tennekes and Lumley, 1972: pp. 66-67). For determining L~, and LT, the 
integration was carried out up to the first zero crossing as discussed by Sirivat 
and Warbaft (1983). Notice in Table II that both L~ and L r  are smaller for the 
near neutral run (Run ~3) when compared to the unstable runs (Runs 1 and 2). 
Also notice that LT (for Run ~2) is smaller than the typical ramp-like thermal 
structure of Figure 3. 

The local isotropy assumption and the insufficient sampling resolution great- 
ly influence the accuracy of A (= 0.14 m - 0.26 m). However, the magnitude 
obtained in this study is comparable to other reported values. For example, Yama- 
da and Ohkitani (1991) found that A = 0.31 m at 15 m, and Bradley et aI. (1981) 
found that A varied between 0.06 and 0.14 m for unstable atmospheric condi- 
tions. The mean dissipation rates in Table II were estimated using three methods 
as discussed in Appendix 1. 

The maximum turbulent intensity (Iu) is about 0.36 (see Table II), which is 
not very large (see Stull, 1988: p. 6). Hence, Taylor's (1938) hypothesis does 
not cause significant distortion, at least for inertial subrange scales (e.g., Lumley, 
1965) for all three runs. Other supporting mean meteorological measurements 
such as net radiation (Rn), H, and mean air temperature (T) are also presented 
in Table II for all three runs. Notice from Table II that the stability parameter 
(z/LMo) varied by one order of magnitude. Finally, this experiment differs from 
many laboratory investigations because: (1) turbulence is produced in the vertical 
(buoyant production) and horizontal (shear production) directions for all three 
runs, (2) the Taylor microscale Reynolds number (Re;~ = A ~ / r ,  N t0 5) is larger 
than in most laboratory flows, and (3) the scale separation between turbulent 
production and dissipation is also very large (~  10 6) resulting in a wide inertial 
subrange (1.5-3 decades). 

4. Results and Disussion 

The results and discussion are presented in two parts. The first part evaluates the 
performance of (4) and the validity of the constant skewness hypothesis. This 
evaluation is important since any anisotropy within the inertial subrange adverse- 
ly affects the performance of (3) and (4). The second part investigates some of 
the mechanisms potentially responsible for anisotropy in the inertial subrange. 
Namely, assumptions involving the interaction between the large scale turbulent 
motion and the small scales, and the interaction between the temperature and 
small scale velocity fluctuations. Our analysis diverges from previous investiga- 
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Fig. 4a. Validation of Obukhov's constant skewness hypothesis. The line IS] = 0.4, suggested in 
Landau and Lifshitz (1986), is also shown (dotted line). The upper, middle, and lower figures are 
for Runs 1, 2, and 3, respectively. 

tions since the interest is in the source of anisotropy rather than the consequence 
of anisotropy on well established isotropic relations. 

4.1. ASSESSMENT OF THE CONSTANT SKEWNESS HYPOTHESIS 

As noted earlier, the constant skewness hypothesis cannot be valid for anisotropic 
eddy motion. The validity of the constant skewness hypothesis of (3) was directly 
checked by determining S(r)(= D3(r)[D2(r)] -3/2) for all r within the inertial 
subrange. The identification of the inertial subrange is discussed in Appendix 2. 
These results are summarized in Figure 4a, which displays the variation of S(r) 
with r. From Figure 4a, the accepted IS] = 0.4 (dotted line) slightly overestimates 
our measurements for Runs 1 and 3. We should note here that the accepted 0.4 
value was obtained from grid turbulence measurements (see Lesieur, 1987: p. 
93) rather than ASL measurement. Direct numerical simulations at moderate 
Reynolds number by Kerr (1990) yielded an IS I = 0.5, while Townsend (1976) 
suggested a range of ISI values between 0.22-0.30, which agrees better with the 
data in Figure 4a. Monin and Yaglom (1975: pp. 471-472) report a range of ISI 
from many ASL experiments between 0.2-0.45. For that purpose, we decided 
to derive a relation between ISI and some well established inertial subrange 
constanL 
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In Appendix 3, a relation between ISI and the Kolmogorov constant (C1 = 
0.55) is derived, resulting in an ISI = 0.25. This value is also in agreement with 
the range reported by Townsend (1976) and Van Atta and Chen (1970) for the 
oceanic ASL. The measured sign of S is also negative within the inertial subrange 
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and is consistent with the fact that net energy transfer TE is being directed from 
the large scales to the small scales. The necessity of this becomes evident if we 
rearrange (2) as 

5 D3(r) (7) 
TE=@)- 4 r 

Since the net dissipation is always positive in turbulent flows, then from (7), 
D3(r) must be negative, and following from (3), S must also be negative as 
D2(r) is positive. The good agreement between predictions and measurements 
of ISI noted in Figure 4a indicates that: (1) the constant skewness hypothesis 
may be a valid working approximation for ASL flows, and (2) the 0.25 value 
for I SI is reasonable. Having reinforced the validity of the closure assumption in 
(3), we solve (4) for D2(r) using Run 52 as an illustration: 
(1) D~(0) = 0. 
(2) [sL = 0.25. 
(3) (e} = 0.012 m a s 3 (see Table II and Appendix 1). 

The integration of (4) was carried out via a fourth-order Runge-Kutta method 
with a step size of r//10. A comparison between D2(r) predicted from the inte- 
gration of (4) and D2(r) measured by the triaxial sonic anemometer is shown 
in Figures 4b (for Run ~2). Using the D2(r) predicted from (4) and the constant 
skewness hypothesis (with 1S1=0.25), the magnitude of D3(r) was calculated and 
compared with the sonic anemometer measurements in Figure 4c. Good agree- 
ment between measured and predicted D2(r) and D3(r) is apparent in Figures 
4b and 4c except for r < 0.5 m (for Run ~2). Similar results were obtained for 
Runs 1 and 3 (not shown here). Since (1) and the constant skewness hypothesis 
both rely on the local isotropy assumption, one may be inclined to conclude from 
these results that local isotropy is a valid assumption in the ASL. We consider 
the anisotropy next. 

4 . 2 .  DEPARTURES FROM LOCAL ISOTROPY 

In this section, we focus on possible departures from isotropy at the small scales 
due to: (1) the large-scale/small-scale interaction, and (2) thermal influences 
on the longitudinal velocity fluctuations. The local isdtropy assumption in (1) 
requires the absence of any interaction between the large and small scales of the 
velocity field, and (2) the absence of any interaction between the temperature 
and velocity field. If such interaction exists, then the anisotropy of the large- 
scale eddy motion (or any thermal inhomogeneity) induces anisotropy on the 
small-scale eddy motion directly. 

To study these interactions, we construct specific statistical quantities based 
on the following argument: at any position x, the velocity of the small-scale eddy 
motion (eddies of size v), within the inertial subrange, is characterized by the 
velocity difference [z5~ = u(x + r) - u(x)] over separation r. A comprehensive 
study regarding the validity of this characteristic velocity scale can be found in 
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Praskovsky et al. (1993), Frisch et al. (1978), and Monin and Yaglom (Chap. 8). 
We assume that this argument can be extended to temperature as well. 

4.2.1. Large-Scale and Small-Scale Longitudinal Velocity Interaction 
A measure of the net interaction between the large-scale and the small-scale 
motions (characterized by Au) is given by the correlation coefficient Pu,za~ 

( ( u ( x )  - ( u ( x ) ) ) ( A u ( x ,  r )  - ( •  r ) ) ) )  
= , (8) 

Ou Oz5 u 

(see Praskovsky, 1992; and Praskovsky et al., 1993), where o-x is the standard 
deviation of the flow variable x and is given by 

~x : ( ( X - -  (X))2) 1/2. (9) 

The absence of net interaction between large- and small-scale eddy motions 
requires P~,zx~ to be zero. Figure 5a displays p~,zXu as a function of r for sepa- 
ration distances up to Lu for all three runs. Notice that p~,a~ is not zero within 
the inertial subrange for any of the three runs. To gage the importance of these 
correlations in the inertial subrange, one may compare them to the correlation at 
r = L~, the scale at which the maximum interaction is likely to occur. Notice in 
Figure 5a, that even after three decades of scale cascading (e.g., Run ~2), Pu,Au 
diminished by one order of magnitude only. Although Runs 1 and 3 did not have 
such an extensive inertial subrange, the same conclusion holds. Our data were 
not adequate to test whether Pu,za~ approaches zero for r ~ ~/, but it appears to 
approach that limit gradually for all three runs. This analysis supports the con- 
clusions of Sreenivasan (1991) that anisotropy exists at the small scales despite 
the existence of an extensive inertial subrange. Using an orthonormal wavelet 
decomposition of the velocity field, Katul et al. (1994b) also found that localized 
interactions between large scales and small scales can significantly impact the 
statistical structure of the inertial subrange in agreement with the above results. 
If we adopt the argument that this anisotropy is significant, at least for a wide 
range of scales within the inertial subrange, then we are left with the apparent 
contradiction as to why (1) and closure assumptions based on local isotropy agree 
with the measurements in ASL experiments. This question is addressed next. 

4.2.2. Longitudinal Velocity-Thermal Interaction at the Small Scales 
A measure of the net interaction between the small-scale temperature field and 
the small-scale longitudinal velocity field is given by the correlation coefficient 

PAT,  A u  

{(AT(z, r) - {AT(x, r ) ) ) ( A u ( x ,  r )  - {z3u(x, r)))) 
pAT, Au(r) = (10) 

OAT(Yz2u 
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The absence of any net interaction requires PAT, Zlu to be zero. As shown by 
Monin and Yaglom (1975: pp. 99-105), in a locally isotropic turbulence field, 
PAT, Au must vanish. Therefore, we use this correlation to measure local thermal 
effects on the longitudinal inertial subrange eddy motion. Figure 5b displays 
PzaT",z~u as a function of r for separation distances up to Lu for all three runs. 
Notice that pz~:r,a~ is again not zero within the inertial subrange and is actually 
comparable in magnitude to P u , ~  of Figure 5a for all three runs. 

However, what is important to note in Figure 5b is the sign of this correlation. 
While pu,zx~ is positive, pzxT, z~u is negative, indicating that the anisotropy due 
to the temperature-velocity interaction counteracts the anisotropy due to large- 
scale/small-scale velocity interactions. This in agreement with the isotropy study 
reported by Kaimal et al. (1972). In Kaimal et al. (1972), local isotropy was 
attained very rapidly for strongly unstable conditions, especially when the sta- 
bility parameter ( z /LMo)  < -2 .  This was not the case for stable conditions (see 
Figure 22 in Kaimal et al., 1972). Here, LMO is the Obukhov length given by 

-p~ 
LMO - , (11) 

where u .  is the friction velocity, k(= 0.4) is Von Karman's constant, 9(= 9.8 m 
s -2) is the gravitational acceleration, z is the height above the ground, and p is the 
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air density. The key difference between the stable case and the strongly unstable 
case (z/LMo < --2) is the relative contributions of buoyant production to the 
turbulent kinetic energy (TKE). In the case of (z/LMo) < --2, thermal effects 
become important (H is large) and the present analysis reveals that the effect 
of one anisotropy source is reduced by an opposing anisotropy source (at least 
along the longitudinal direction). Notice in Kaimal et al. (1972) that when stable 
conditions prevail (and therefore the sign of the thermal anisotropy reverses), 
local isotropy is not attained within the range of wavenumbers resolved by their 
sonic anemometer data. In the stable scenario, both sources of anisotropy have the 
same sign and produce a superimposed effect (along the longitudinal direction). 
Similarly, Van Atta (1991 ) found that buoyancy forces are dynamically important 
in the inertial subrange for stable stratification. This is a key difference between 
many neutral laboratory experiments (where pzxr,z~u = 0) and ASL experiments 
(where pn%au ~ 0). Let us illustrate this point further using the Reynolds stress 
equations with the horizontal homogeneity assumption. These equations are given 
by 

1 0(u  2} O(U1) 1/pOUl x 1 0(?~3 u2} / 0 U l  0 U l }  
2 0 t  - - - - ( U l U 3 } ~ + p \  ~X / 2 O ~  U\~XjOXj ' (12) 

10(u 2} _ 1/pOU2 \ 10(u3u~) / Ou2 0u2 \ 
( 1 3 )  

_ 1/pOU3 x 3 10(u 3) 
2 0 t  T a p \  Oz / 2 0 z  

/ OU 30U 3 \ 10(u3p} 
- u  - -  /2 (14) 

\ Oxj Oxj p Oz ' 

where p is the pressure perturbation. The sum of (12), (13), and (14) gives the 
time evolution of TKE. Notice in (12) and (14) that TKE for unstable ASL flows 
is produced in two directions, one due to shear, and the other due to buoyancy. 
Also notice that both temperature and the sensible heat flux (u3T} directly influ- 
ence the turbulent production in the vertical. Therefore, temperature and sensible 
heat flux can impact the u-component through the pressure-velocity gradient cor- 
relations. This component is absent in neutral ASL flows. It is worthwhile here 
to identify the significance of possible sources of large-scale thermal anisotropy 
on the local structure of the velocity field. 

4.2.3. Influence of Large-Scale Thermals on the Small-Scale Eddy Motion 
A measure of the net interaction between the large-scale temperature field and 
the small-scale longitudinal velocity is given by the correlation coefficient pT, zaz, 

- - (zSu(x, 
pT, Au(r) = (15) 

O'TO'Au 
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The absence of any net interaction between the large-scale temperature and 
small-scale velocity fluctuations requires PT, zau to be zero. If this correlation is 
finite, then the anisotropy characterizing the large-scale thermal motion, namely 
the ramp-like structure of Figure 3, directly contributes to the small-scale eddy 
motion of the longitudinal velocity. This can be achieved if one considers the 
production term in (14). The pressure-redistribution term in (14) is directly influ- 
enced by the sensible heat flux and T, and this influence might be translated to 
the small-scale longitudinal eddy motion in (12). The pressure redistribution is 
thought to diminish this anisotropy and isotropy should prevail within the inertial 
subrange. Hence, any interaction between T and Au  indicates that local isotropy 
is not achieved. The production source in (14), which is anisotropic, translates to 
the inertial subrange of (12). Figure 5c displays PT, zau as a function of r for sep- 
aration distances up to L~ for all three runs. Notice that PT,zau is not zero within 
the inertial subrange and is very similar to Figure 5b even for the near-neutral 
case (Run 3). 

4.2.4. Influence of Large-Scale Thermals on the Small-Scale Thermal Motion 
I twas  pointed out by Sreenivasan et al. (1979) that ramp-like structures (similar 
to Figure 3) directly contribute to the inertial subrange of the temperature field, 
and therefore, may directly contribute to inertial subrange anisotropy in the Ta 
measurements. Based on the methodology previously proposed, this interaction 
should result in significant correlation between T and AT. That is, 

,or, aT(r )  = {(T(x) - ( T ( x ) } ) ( A T ( x ,  r) - { A T ( x ,  r)})}, (16) 
~TTO-A T 

should be significant. In Figure 5d, we show PZ~T,T as a function of r for r 
up to L~ and for all three runs. Notice that this correlation is a maximum at 
sizes comparable to the ramp-like size of Figure 3 (~100 m). To explore the 
hypothesis that this correlation is due to the ramp-like patterns in Figure 3, as 
suggested by Sreenivasan et al. (1979), let us compare these correlations with 
those of a signal in which the ramp-like pattern is very well defined. 

The influence of ramp-like patterns on the small-scale thermal motion may 
be better understood if one considers an artificial ramp-like temperature signal, 
such as the one depicted in Figure 5e, and if one computes P~T,T for that 
signal In Figure 5e (upper), we show the artificial ramp-like temperature signal 
perturbed by some white noise and the correlation coefficient pAT,T (lower figure) 
corresponding to that signal. The ramp size of 10 units is approximately uniform 
throughout the signal: Notice the similarity between the correlations of Figures 
5e and 5d. This comparison suggests that the finite correlation between AT 
and T in Figure 5d may be due to the ramp-like patterns noted in Figure 3, and 
therefore, agrees with earlier conclusions by Sreenivasan et al. (1979). Therefore, 
this analysis suggests that T affects A T  through the ramp-like organized structure 
and Au through the pressure-redistribution term. 
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5. Conclusions 

This study has examined the structure of the inertial subrange from velocity and 
temperature measurements above a uniform dry lakebed in a desert-like environ- 
ment. The longitudinal velocity measurements exhibit an inertial subrange that 
extends about 1.5-3 decades, which is adequate for isotropy investigations. It 
was found that the Kolmogorov-Obukhov dynamic structure function equation 
derived from Navier-Stokes for locally isotropic turbulence reproduced the mea- 
sured second- and third-order structure functions well. Also, Obukhov's constant 
skewness hypothesis was in good agreement with the measurements. The sug- 
gested 0.4 constant skewness value appears to be large. A relation between the 
constant skewness and Kolmogorov's constant indicated that an IS I = 0.25 is 
more reasonable for ASL flows. This 0.25 value also matches our data better. 
However, these formulations rest on the assumption that the ASL turbulence is 
locally isotropic. Rather than check the adequacy of local isotropy relations as is 
commonly performed, we investigated directly the possible sources of anisotropy. 

We noted that in a daytime desert-like climate, the sources of anisotropy are 
due to (1) direct interaction between the large and small scales, and (2) ther- 
mal effects on small-scale eddy motion. The second source is absent in many 
laboratory experiments. In order to explore these two anisotropy sources, we 
developed statistical measures that are sensitive to such interactions. These sta- 
tistical measures are simple and very convenient to apply. Using these measures, 
we found that the large-scale/small-scale interaction was significant in the iner- 
tial subrange, thus weakening the local isotropy assumption. It was found that 
the anisotropy generated by thermal effects was also significant and compara- 
ble in magnitude to the large-scale/small-scale interaction anisotropy. However, 
the thermal anisotropy source was opposite in sign, and thus, counteracted the 
anisotropy generated by the large-scale/small-scale interaction. 
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Appendex 1: Estimation of the Mean Dissipation Rate 

In this study, the mean dissipation rate was used in (1) the Kolmogorov-Obukhov 
structure function equation, (2) estimating the Taylor microscales, and (3) estimat- 
ing the Kolmogorov microscale. This appendix discusses how the mean dissipa- 



144 6. G. KATUL ET AL. 

tion rate was determined. Due to the limited resolution of the sonic anemometer, 
the dissipation rate was estimated using three distinct methods. 

Method 1: production methods 
By estimating the turbulent production rate (mechanical and buoyant) and assum- 
ing that the mean production rate is identical to the mean dissipation rate, one 
can estimate (e} from the similarity relation 

@} = ee(Z/LMO)u3* 
kz ' (17) 

where ee(-) is the stability correction function for the mean dissipation. As shown 
in Panofsky and Dutton (1984: p. 268), the stability correction function r is 
given by 

LMO (18) 

The quantity z/LMo is simply the ratio of the buoyant production (Pb) to the 
mechanical production (Ps), where Ps and Pb are given by 

3 9H 
P8 = u. P b -  - (19) 

k Z ' pep ra 

Hence, from the measured u . ,  H,  and Ta, the dissipation rate can be computed. 
In Table I, we report Ps, Pb, and P8 +Pb (= It}). This method is very convenient 
since no gradient measurements are required. However, the key assumption is the 
steady-state energy transfer so that the rate of turbulent production is identical 
to the rate of viscous dissipation. 

Method H: local isotropy relations 
As shown in Tennekes and Lumley (1972: p. 66), for locally isotropic turbulence, 
(e} is given by 

@} = 15~'{ ~1X1)//0UI~2 ). (20) 

The space derivative can be computed from the time derivative and Taylor's 
hypothesis. Cubic spline interpolations are applied prior to the derivative estima- 
tiono 

Method III: inertial subrange power spectrum 
The dissipation rate can also be calculated directly from the power spectrum E~ 
using 

Eu(K) = C1 Ir -5/3, (21) 
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TABLE III 

Estimation of the Mean Dissipation Rate using Method III. The regres- 
sion model (Log(Eu) = A Log(K)+/3)  is used. The Coefficient of Deter- 
mination (R2), the Standard Error of Estimate (SEE), and the number of 
data points used (n) are also shown. Deviations from the - 5 / 3  power 
law in the slope are used to determine the intermittency exponent (/z) as 
discussed in Yakhot et al. (1989) 

Run ~ A /3 R 2 SEE n @) • 10 3 

1 - 1.79 - 1.45 0.93 0.20 4086 14.3 0.37 

2 - 1 . 7 9  -1 .93  0.94 0.19 4086 3.1 0.37 

3 - 1 . 7 9  -1 .85  0.94 0.20 4086 4.1 0.37 

(see Kaimal and Finnigan, 1994: p. 36; Lumley and Panofsky, 1964: p. 164; 
McComb, 1990: p. 83; Garrat, 1992: p. 71). This method assumes that K41 is 
vaIid with TE = (e). A key disadvantage of this method is the need for a reliable 
estimate of CI. 

To determine (e), the velocity power spectrum was first calculated (not shown 
here). The maximum number of data points that yielded a slope close to -5 /3  
were used to estimate the intercept of the regression model Log Eu = A Log 
K +/3. Here B = Log (C1 (e)2/3). Table III displays the regression statistics used 
to estimate the dissipation rate of Method III. Notice in Table III that the slopes 
are larger (in magnitude) than -5 /3 .  These deviations from the -5 /3  slope are 
due to intermittency effects intrinsic to the dissipation rate (Kolmogorov, 1962; 
Monin and Yaglom, 1975; Katul et al., 1994a,b). The estimated intermittency 
factor (#) from runs 1-3 is also shown in Table III. These intermittency factors 
are in agreement with earlier values (# = 0.2 - 0.5) reported in the literature and 
appear to be independent of stability (see Monin and Yaglom, 1975: Chap. 8; 
Katul et al., 1994a,b for review). 

Methods I and III do not require explicit evaluation o f  the time derivative. 
Hence, if the dissipation rate from all methods compares well, the reliability of 
the estimated Taylor microscale (that is strongly dependent on the accuracy of 
((OUl/Ot)2)) can be independently verified. From Table I, the dissipation rates 
estimated from Methods II and III are in closer agreement when compared to 
Method I. Despite these differences, all methods predicted the correct magnitude 
of the dissipation rate. Since Method II provides a direct and explicit estimate 
of (c) from the NS equations for locally isotropic turbulence, we decided to use 
the dissipation values from this method. 
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Appendix 2: Identification of the Inertial Subrange 

The inertial subrange for all three runs was identified using the third-order struc- 
ture function given by 

4 
= ( [ u ( z  + r )  - u ( z ) ]  3) = (22) 

The following procedure was used in the identification scheme (see e.g., Figure 
4c). 
(1) Compute D3(r) for r up to L~. 
(2) Using /e} determined from Method II of Appendix 1 and Table II, plot the 
line 
(3) Identify departures from that line. The upper separation distance at which 
significant departure is noted marks the upper limit of the inertial subrange. 
(4) The lower limit of the inertial subrange was set to dst = 0.149 m. 

Identifying the inertial subrange using the third-order structure function (rather 
than the usual -5 /3  power law from the power spectrum) has the following 
advantages: 

(a) Intermittency does not affect the identification scheme (see Appendix 1). 
(b) The third-order structure function is a higher moment than the power 

spectrum (second moment) and is therefore more sensitive to small deviations 
from inertial subrange scaling. 

(c) The convergence of D3(r) to - 4 / 5  (e}r requires a much larger sample size 
than the convergence of E,, to C1 (e} 2/3 K -5/3. Also, this convergence is more 
sensitive to the local isotropy assumption. (D3(r) is an odd moment compared 
to E,, which is an even moment.) 

The inertial subrange identified from this procedure is presented in Table II 
for all three runs~ 

Appendix 3: Relation between the Structure Skewness and Kolmogorov's 
Constant 

As discussed earlier, the uncertainty in the structure skewness is very large (0.2- 
0.5) with an 0.4 suggested value based on grid turbulence measurements. It is 
therefore convenient to relate IS] to some well known constant in the ASL. 
The structure skewness S(= D3(r)[D2(r)]-3/2) can be related to Kolmogorov's 
constant C1 (see Appendix 1) for a locally isotropic turbulence if 
(1) K41 is valid so that D2(r) = Cs@}2/3r 2/3, where C8(= 4C1) is the Kol- 
mogorov constant based on the second-order structure function definition (see 
Kaimaland Finnigan, 1994: p. 64). 
(2) D3( r )=  - 4 / 5  (e}r. 
(3) Intermittency corrections (#) to K41 (at second order) are negligible. 
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Hence ,  with D3( r )  k n o w n  f rom the asympto t ic  result  o f  the K o l m o g o r o v -  

O b u k h o v  structure funct ion equation,  and with D 2 ( r )  related to the K o l m o g o r o v  

constant  f rom K41,  S can be related to C1 by 

D3(r) 5 
S -  [/92(r)]3/2 = (4C1) -3 /2  --~ 0.1C~ 3/2. (23) 

Hence ,  for  Ct  = 0.55 (see Kairnal  and Finnigan,  1994), IS I = 0.25, which  is less 

than the accepted  0.4 value. 
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