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Abstract. The interaction of a wetting front with an impervious layer is described by adding a reflected 
solution to the incoming solution for a semi-infinite medium. It is shown and checked by comparison 
with a numerical solution that the result is accurate during the early times of the interaction between 
the front and the impervious surface. This superposition principle is quite general and should prove 
especially useful to initiate numerical schemes by this analytical approximation as in the early times 
singularities are difficult to describe numerically. 
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1. Introduction 

The aim of  this paper is to discuss a superposition principle which can be used to 
describe the short t ime behaviour of  solutions to Richards' equation. This principle 
should be especially useful to describe events of  short duration. For this reason the 
principle will be presented and illustrated by considering the interaction of  a wetting 
front with an impervious interface. It is of  course trivial to apply this superposition 
of  solution for linear governing equations. However, Richards' equation is strongly 
nonlinear and exact linearisation techniques, e.g. using B~cklund transformations, 
apply only for Fujita diffusivities (Rogers et al., 1983). Most systematic studies 
based on group classification and transformation properties of  the equation (Lisle 
and Parlange, 1993) still lead to generalized Fujita-type diffusivities, Here on the 
contrary the method applies to arbitrary soil-water diffusivities, but the result is 
only approximate. 
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Fig. 1. Illustration of the Superposition principle: The incoming front for a semi-infinite 
medium is shown by a solid line. The reflected part ending in F', shown by a dashed line is 
added to the incoming front, resulting in the solution ending at/9 -- Oz and x = L. 

Natural soils are usually stratified and the interaction of the wetting front with 
the interface is difficult to handle mathematically because of the usually large 
gradients in water concentration at the front. These, in turn, cause water content 
and potential to increase very rapidly at the interface (Braddock et al., 1982; 
Parlange et al., 1982; Hornung et al., 1987). The situation is illustrated in Figure 
1. The solid line shows the incoming water profile that would exist in the absence 
of an interface at x = L. Due to the interaction with the interface the water content 
increases from the point F "  to the position z = L, as shown by the dashed curve. 
Another difficulty occurs if there is no well-defined wetting front, but instead a long 
'tail' (Braddock and Parlange, 1980). With a well defined wetting front, there is a 
well-defined transition time such that, in early times, water infiltrates as in a semi- 
infinite medium (Hornung et al., 1987). If not, some small interaction between the 
front and the interface takes place at once. 

In this paper we consider the early stages of interaction before any significant 
amount of water has crossed the interface. This is obviously the case when the 
interface is impervious to water movement. More importantly, this is also the case 
when the second layer is coarser than the first. Then water will not penetrate the 
interface until the potential at the interface has reached some critical value: 'the 
water entry pressure'. This concept is fundamental, for instance, to understand the 
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formation of fingers in the coarse layer (Hillel and Baker, 1988; Baker and Hillel, 
1990). 

2. Superposition Principle 

The initial water content is taken as ~)i and the surface water content as | which 
could be below saturation. In the following, we shall use a reduced water content 

e =  ( o - ~ ) i ) / ( ( ~ s - ~ ) i ) .  (1) 

Water transport obeys Richards' equation which is a nonlinear diffusion equation 

a e / o t  = O [ D O e / O . ] / &  - O K / & ,  (2) 

where t is the time and the distance x is measured from the surface of the first 
layer. Equation (2) is to be solved with the initial and boundary conditions 

0 = O, t < O, 0 < x < L, (3) 

O0/Ox = O, x = L, (4) 

O = l, x = 0 ,  t > O, (5) 

where L is the thickness of the layer. Equation (4) obviously holds only until water 
crosses the interface. The two parameters D and K are the soil-water diffusivity 
and conductivity, respectively. The effect of K,  i.e. gravity, affects the shape of 
the incoming front before interaction with the wall takes place. However, during 
the interaction, the short time behaviour is unaffected by gravity because the 
rapid changes of large gradients are dominated by the time derivative and the 
second derivative in x. Thus gravity is not essential to understand the superposition 
principle and for that reason gravity is ignored in the following, i.e. the front is 
moving horizontally. 

For linear equations, two independent solutions can be added to obtain a new 
solution. As is well known, this is a powerful technique to solve Laplace's equation, 
especially with the use of images when surfaces are present, as here. Of course, it 
is the nature of Equation (1) to be nonlinear because of D and K. 

In a fundamental paper, Gardner (1958) pointed out that the steady-state equa- 
tion, dropping O0/Ot in Equation (1), can be linearized using fDdO as independent 
variable if In 1( is a linear function of the soil-water potential. In a series of papers 
beginning in 1971 (see Parlange (1971)) it was pointed out that even for unsteady 
problems, the term O0/Ot introduces only secondary corrections to the shape of 
the water profile. Thus we expect that the superposition principle should hold as an 
approximation, and as explained above the exact relationship between K and the 
soil-water potential will need be crucial if short time processes are discussed. 
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We also expect that the approximation will be best if the interaction of a wetting 
front with a surface introduces small corrections, so that the error on those cor- 
rections is negligible, which is another reason to apply the principle for relatively 
short times only. 

Note that the superposition principle should hold whatever the dimensionality 
of the problem (it is not limited to one dimension as in Equation (2)) and whatever 
the initial and boundary conditions. The only requirement is that the superposition 
should be used for short times only. However, we must emphasize that this is a 
limited and approximate principle. The correction added by superimposition must 
remain small so that errors in the correction are truly negligible. 

3. Application 

We shall now check the existence and validity of a superposition principle for 
the problem summarized in Equations (2) to (5), with the further simplification 
of dropping the gravity term. This does not change significantly the qualitative 
features of the incoming front as long as the layer is not too thick (Parlange, 1993). 
Specifically, the two main features of the solutions, i.e. the presence of an abrupt 
front and a long tail, result from the nonlinear behavior of D and not from gravity. 
Hence, the accuracy of the superposition principle should not be affected by gravity, 
especially in the short time. However, the main reason for dropping gravity at this 
stage is that to check the accuracy of the theory, we need an (essentially) exact 
numerical solution with which to compare the theory, and the only one available is 
without gravity (Braddock et al., 1982; Parlange et al., 1982). To be specific, we 
consider an exponential soil-water diffusivity 

D = Do exp nO, (6) 

which gives an excellent correlation for many soils with n _~ 8 (Reichardt et al., 
1972). Note that the term O0/Ot in Equation (2) is less important as n increases 
(in general, as D approaches a delta function). It is in that limit that the method 
introduced by Parlange (1971) is more accurate, and hence when the superposition 
principle will hold better. The value n "~ 8 is large and thus it is critical of the 
method to consider lower values of n since, if it is accurate at one value, it is 
always more accurate for larger n's. Another reason for using lower n's is that the 
accurate numerical solution is more difficult for larger n as the increasingly large 
gradients in the incoming front become more difficult to describe. Braddock et al. 
(1982) estimate that there are increasing numerical errors if n is higher than four. 
Thus, as an illustration, we shall use n = 4 as an upper limit where the numerical 
results are very accurate. Good agreement for n = 4 will ensure that the analytical 
method can be relied on for all realistic soils which have n > 4. It is somewhat 
paradoxical that Equation (2) can be truly linear with D constant, and linearized 
when D approaches a delta function. Only for those two extremes is superposition 
of solutions accurate. 
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To describe the incoming front we start with the approximation (Parlange et al., 
1992): 

f0 
1 

2 D0 -1 d0 = S r  A / 2 r  2, (7) 

which is simple and yet extremely accurate (0 is the variable of integration). Here 
r is defined as 

r = (8) 

Mathematical details justifying Equation (7) can be found in Parlange et al. 
(1992). 

Alternatively the slightly less convenient but equally accurate Equation (13) in 
Parlange et al. (1993) could be used instead of Equation (7) above. 

Equation (7) is the solution when the layer is infinitely thick (Parlange et al., 
1993). In the original paper (Parlange, 1971), the r term in Equation (7) was 
not included. The coefficient S is the usual sorptivity, which, for an exponential 
diffusivity, is known exactly (Braddock etal., 1981) and in general can be calculated 
with any degree of accuracy very simply (Parlange, 1975; Elrick and Robin, 1981). 
The coefficient A is calculated so that Equation (7) satisfies the exact integral 
condition: 

f01 ~01 ~2 2 D dO = dO, (9) 

or 

~o 1 S 2 -- 2 D d0(1 - A / 2 ) .  (lO) 

Equation (7) provides us with a solution which obviously cannot satisfy Equa- 
tion (4) at any time, since r ~ In 0 -1 for 0 small, i.e. the profile extends to infinity 
due to the tail (Parlange, 1972). The superposition principle is quite obvious: We 
take the mirror image of the solution given by Equation (7) for x > L and add it to 
the solution for x < L (see Figure 1). By construction, Equation (4) is now satis- 
fied and a composite profile is created. We are now going to estimate its accuracy. 
First, it is clear that, as time progresses, the point F in Figure 1, which represents 
the wetting front (ignoring the tail), moves further right and F I (its mirror image) 
moves further left. When U is at the origin, the boundary condition 0 = 1 at 
x = 0 will not be satisfied accurately and the solution will fail. In a similar vein, 
the constructed solution gives for water intake I 

= (11) 
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Fig. 2. Cumulative infiltration given as the reduced mass I/L, where I = f :  0 dx, as a 

function of the square root of the reduced time V / ~ / L  2. S = 4.8331 ~ and A = 0.1284. 

as for a semi-infinite medium. Clearly, at some time, I must fall below Sv//. 
Similarly, OL = O(x = L) is twice the value of 0 at x = L given by Equation 
(7). This must lead to a Or which increases too fast with time, and may reach 
values above one and the superposition fails. Figure 1 shows very simply why the 
superposition principle is more accurate when D approaches a delta-function. In 
that limit, the profile is a step function, so that there is no interaction at all with the 
wall at x = L until it reaches it and then the process stops suddenly (Equation (11) 
holds exactly until that time and then I remains constant). 
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Figure 2 gives I(t) obtained numerically for n = 4 (Braddock et al., 1982). 
Remarkably, Equation (11) holds for a long time, in agreement with the superposi- 
tion principle. A more critical feature is 8L(t). Figure 3 shows that #L is essentially 
zero until the dimensionless time Dot/L 2 is about 0.015. Then the increase is rather 
slow (interaction with the tail), until it increases very rapidly (interaction with the 
main wetting front). Up to times of 0.025, the superposition principle yields a very 
accurate OL. Only for greater times is #L increasing less rapidly. This accuracy is 
surprising, considering how simple the analytical solution is. Solving Equation (7) 
at z = 1 gives, at once, 0 --- 8L/2 as a function of time. To obtain O(z, t) for 
z < 1 simply requires solving a quadratic equation, Equation (7). Figure 4 gives a 
few profiles for reduced times up to 0.0245. Again, the accuracy is excellent. We 
notice that the area under the curves is exact, i.e. I = Sv/t. Thus the higher value 
for the analytical 8L results in a profile crossing very slightly under the numerical 
results away from the wall. The prediction of OL is crucial: It is at z = L that the 
prediction of 0 is the worst. 
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construction of Figure 1 are shown by the solid lines. Numerical profiles are shown by the 
dashed lines. Reduced times are indicated alongside each profile. 

4. Conclusion 

From the superposition principle, we have been able to obtain very simply some 
valuable information about a wetting front interaction with a surface. The analytical 
solution was shown to be extremely accurate in the early stages of  the interaction 
when the principle is accurate. It is also at that stage that numerical analysis is 
difficult due to rapid changes in space and time. In general, the superposition 
principle might be most practical to initiate numerical solutions accurately by the 
use of the analytical solution for short times, 
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