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ABSTRACT

Orthonormal wavelet )
ments of lemperature z:mc‘f vapor concentration under unstable and stable a
expansions were used to investigate both the statistical and spectral struct ulence simultancously in
space and scale using two tracers: temperature and speeific humidity. It was found that at small wavenumbers,
both temperature and specific humidity Fourier and wavelet spectra exhibit a —1 power law behavior consistent
with other atmospheric boundary-layer experiments. The mean values of the ene  obtained from the
wavelet analysis are in agreement with the classical Fourier counterparts. Thie Wavelet Hatness Tactors (values
up to 10) lnd(aamm; deviation from Gaussian statistics in space for the temperature fluctuations as the
wavenumber increases. In contrast, the spatial wavelet flatness factor for the specific humidity exhibits near
Gaussian statistics (values up to 4) for all wavenumbers. The wavelet skewness in space indicates that the
specific humidity attains a near-isotropic state with increasing wavenumber for both stability conditions. Unlike
the specific humidity, the temperature wavelet skewness in space did not decay with increasing wavenumber,
indicating the presence of large eddy anisotropy in space. Land surface heating/cooling inhomogeneity appears
to affect the local structure of turbulence, and therefore, at small scales temperature behaves as an active scalar
when compared to specific humidity. The active role of temperature was also analyzed within the framework of
Balmnus spectral thﬂory Deviations from Bolgiano’s theory for the temperature specttum were observed at
ibers with measured energy power law behavior of |1.2|, which is less than the theoretical value of
[7/5]. Conditional wavelet analysis was developed and used to investigate the nature of these deviations from
Bolgiano’s scaling law for 1he temperature measurements. It was found that by suppressing energy-containing
and intermittent events, | *ssealing law for the temperature spectrum held under stable stability condi-
tions. The effect of different wavelet basis functions on the statistical and spectral description of atmospheric

nsions were derived and applied to atmospher measure-
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turbulence was also considered.

1. Introduction

Transport mechanisms in the atmospheric surface
layer responsible for the removal of water vapor and
heat close to the ground surface are strongly influenced
by the large-scale eddy motion. In a recent study, Kader
and Yaglom (1991) suggested that the large-scale tur-
bulence spectrum should scale with variables that affect
the mean flow (see also Tennekes and Lumley 1972,
p. 264 ) and are given by

-E(i = F.-(kz. E)
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where k is the wavenumber, E; is the spectrum of ve-
locity components u; (u,; is the longitudinal velocity
fluctuation along the mean horizontal wind speed U, u,
is the lateral velocity fluctuation, and u; is the vertical
velocity fluctuation), E; is the temperature fluctuation
spectrum, E, is the specific humidity spectrum, z is the
height above the ground surface, uy = (—(u,u3))""? is
the friction velocny Ty = ((aTHuy), g = ({usg)/
Uy ), L= —uy/[(k,g/T,){u:T)]is the Obukhov length,
k, = 0.4 is von Karman's constant, g is the gravitational
acceleration, g is the specific humidity fluctuation, T is
the temperature fluctuation, 7, is the mean temperature
of the surface layer, and () is the averaging operator.
One of the main difficulties with the application of
Fourier transforms to study the statistical and spectral
properties of large-scale turbulence simultaneously in
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space and scale is the global nature of the Fourier trans-
form in which spatial information becomes implicit in
the phase angle. A flow decomposition is required in
which contributions from different scales, as well as
different locations, are explicit. Hence, it is preferable
to employ kernels that operate as localized pulses rather
than extended waves. Conditions of self-similarity of
these kernels yield special functions called *‘wavelets”’
that are generated by translation and dilation of a single
function (Grossmann et al. 1989). Wavelet transforms
are recent mathematical tools based on group theory of
square integrable functions that allow decomposition
of signals, functions, or operators into space and scale.
Continuous wavelet transforms were introduced by
Grossmann and Morlet (1984, 1985) and have been
applied to turbulence by many investigators (e.g.,
Farge 1992a.,b; Everson et al. 1990; Argoul et al. 1989;
Liandrat and Moret-Bailly 1990). It should be pointed
out that Lumley’s eddy, which is associated with many
Fourier modes and the phase relation among them, has
the desired property of being compact in physical space
as well as wave space and can be considered to be a
continuous wavelet (Tennekes and Lumley 1972, p.
259). Discrete wavelet transforms constructed from or-
thonormal wavelets are now being developed and ap-
plied to turbulence (Daubechies 1988; Mallat 1989a.b;
Meneveau 1991a,b; Mahrt 1991). The orthonormal
wavelet expansion method differs from the continuous
case in that it forms a complete orthonormal basis,
while the continuous wavelet transform forms an over-
complete basis, which can bring about undesired rela-
tionships between the wavelet coefficients (Yamada
and Ohkitani 1990, 1991a,b; Meneveau 1991a; Kumar
and Foufoula-Georgiou 1993). Orthonormal wavelet
expansions conserve signal information; that is, a dis-
cretely sampled turbulent signal at N points yields N
wavelet coefficients, while in the continuous case, the
transform can yield up to N coefficients. Note that the
orthonormal wavelet expansion is different from the
method of *‘proper orthogonal decomposition™ (POD)
used by Lumley (1970). POD, also known as the Kar-
hunen—Loeve expansion, is a procedure for decom-
posing a stochastic field in an L* optimal sense. The
POD allows the construction of basis functions that
maximize the amount of turbulent energy contained in
a minimum number of modes in the average sense
(Berkooz 1992; Lumley 1981, 1970, p. 57). In con-
trast, orthonormal wavelet decomposition does not op-
timize or minimize the number of modes, so that the
number of wavelet coefficients needed for turbulence
analysis is very large. However, this large number of
wavelet coefficients is essential to obtain reliable spa-
tial statistics of instantaneous realizations of turbulent
flows.

In this study, we make use of orthonormal wavelet
transformations to analyze the structure of turbulence
in space and scale close to the land surface. Rapid mea-
surements of temperature and specific humidity are col-
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lected at 80 cm over a uniform and dry bare soil surface
under different atmospheric stability conditions. The
similarity in spatial statistics of the temperature and
vapor transport at production as well as near production
wavenumbers is investigated. We note that close to the
ground surface, large inhomogeneity in heating or cool-
ing of the ground surface may significantly influence
the turbulence transport mechanisms of heat (Kader
and Yaglom 1990). Since the soil surface was rela-
tively dry, the inhomogeneity in the specific humidity
at the ground surface was much smaller than the tem-
perature variation. Statistical tools are used in this sim-
ilarity investigation since they do not depend on any
specific model underlying the structure of turbulence
or energy cascading. Within this framework, ‘‘dual
spectra’’ proposed by Meneveau (1991a,b) are used
for both measured temperature and specific humidity
measurements. Dual spectra are wavelet spectra in
which an estimate of the mean as well as the spatial
standard deviation of the energy at different wavenum-
bers can be quantified. The localization in physical
space amplifies time or space differences in the wavelet
transformed measurements so that rapid changes (such
as sharp edges of main events) are magnified at differ-
ent scales. Therefore, statistical measures such as
wavelet skewness and flatness factors of the wavelet
transformed measurements, at a certain scale, are
strongly affected by the horizontal gradients in the orig-
inal signal. These statistical measures are to detect the
similarity/dissimilarity between temperature and spe-
cific humidity fluctuations. We also investigate the in-
fluence of the wavelet basis function on the spatial and
spectral statistics of atmospheric turbulence.

2. Wavelet transforms

Wavelet transforms have become popular since they
allow the decomposition of data, functions, or operators
into different frequency or scale components. Each
component can then be studied with a resolution that
matches its scales (i.e., at high frequency the wavelet
is very narrow, while at low frequency the wavelet is
broad). As a result, wavelet transforms are better ca-
pable, compared to windowed Fourier transforms, to
“*zoom in”" on short-lived high-frequency phenomena,
such as transients or singularities in signals (see Dau-
bechies 1992, chapter 1). There are many types of
wavelet transforms, and for the purpose of this study
they are classified under two broad categories: (1) con-
tinuous wavelet transforms and (i1) discrete wavelet
transforms (Chui 1992; 13-22). Daubechies ( 1992, p.
7) further classified the discrete wavelet transforms as
(i) redundant discrete systems (also known as frames )
and (ii) orthonormal wavelet expansions. For actual
turbulence measurements of some turbulence flow
property f( x), discrete wavelet transforms are desired
since f( x) is generally known at only discrete points x;
depending on the resolution of the sensor and the sam-
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pling frequency. Also, as shown by Yamada and Ohk-
itani (1990, 1991a,b), orthonormal wavelet transforms
are preferable since the orthogonality condition can
suppress undesired relations between the wavelet co-
efficients. Therefore, it is necessary to discretize the
scale and space domain to conserve the amount of
information in the signal (Daubechies 1988). As
shown by Daubechies (1988, 1992, p. 10) and Mallat
(1989a.b), a logarithmic uniform spacing for the scale
discretization with increasingly coarser spatial resolu-
tion at larger scales allows a complete orthogonal
wavelet basis to be constructed. These basis functions
are defined by

m — it ) 2 b 'b)am
i!l:j|l(_!’) = au"”lﬂ’( Jm[ _n) 5 (2)

Ay

where m and j are variable scale and position indexes,
respectively, ay is the base of the dilation, and by, is the
translation length in units of ag. The simplest and most
efficient case for practical computations is the dyadic
arrangement resulting in a, = 2 and by = 1 (Daubechies
1992, p. 10; Chui 1992, p. 4). All scales along octaves
2™ and translations along 2™j contribute to the con-
struction of f( x;) = f( j) using

M=% j=+=

f(p=1X T WLilg™(i-2"j],

m=1 ===

(3)

where ¢'"'[i] is a discrete version of the continuous
wavelet if(x) at scale m. Details regarding the discret-
ization of continuous wavelets (x) are discussed in
section 2a. The discrete function ¢'”'[{] satisfies the
orthogonality condition

k=0

2 gtnn[k _ ijlg'"’[k — 2"_]-] = ézjémn.

k= —=

(4)

where ¢; is the Kronecker delta. The discrete wavelet
coefficients at scale index m and position index i can
be obtained by the following convolution,

i=+=

Wi] = Z & = 2271FCD,

==

(5)

and they satisfy the conservation of energy condition

m=+m j=4x

Z E (W“")[f])z.

m=1 i=—=

Y fj)2=

j=—ue

(6)

which is similar to Parseval’s identity in Fourier series
(Chui 1992, p. 12).

In general, the number of observations are finite and
the summations in the above equations do not extend
to infinity. If N = 2" is the number of observations
(i.e., N is an integer power of 2), the scale index m
then varies from 1 to M = log,(N) and the position
index at scale m varies from 1 to N X 27", Note that
as the scale increases, the spatial resolution becomes
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much coarser (e.g., at m = 1, we have N/2 coefficients,
at m = 2 we have N/4 coefficients, at m = M we have
I coefficient). Note also that the above arrangement
conserves the number of wavelet coefficients (=N
— 1) required to decompose a signal defined over N
points. Finally, this dyadic arrangement is suitable for
turbulence studies since the small-scale features of the
turbulent flow, which can change rapidly compared to
the large-scale features, are characterized by more
wavelet coefficients.

a. Multiresolution analysis

In this section, multiresolution analysis as developed
by Mallat (1989a,b) is briefly discussed. This review
is intended to illustrate how both g'"'[i] is obtained
from the continuous wavelet ¢s(x) and how the com-
putation of the discrete wavelet coefficients is car-
ried out.

In general, turbulence measuring devices can only
sample a continuous process f( x) at finite resolution
(assumed unity for normalization purposes). Follow-
ing Meneveau ( 1992a) and Kumar and Foufoula-Geor-
giou (1993), it can be shown that there exists a set of
orthonorrnal basis functions ¢ '(x — i) that, by trans-
lation only, generate f( x) using

=40

flx)= % sVl (x — i)dx, (7)
where s"~"[{] is given by the convolution
400
§™=] =f f(x)d(x — i)dx. (8)

In practice ¢(x) is selected to have a fast decay away
from the origin and satisfies the orthonormality con-
dition

f (f)m'(x—l‘)(b(m(.t*j)(ixiéq (9)
so that s""~”[i] represents discrete samples of f( x) at
unit resolution (s = 0) on a mesh i of unit size. Con-
sider f(x) at coarser resolution R, = 2" denoted by
f(x) [which can be completely extracted from
JS(x)]. Analogous to (7), f"'(x) is computed from the
convolution

f‘lm)(x) - z s"’”li]qb‘"”(x— zmi)1

i=—0

(10)
where s'"'[ ] is given by
blm)l"]:f f(,\‘)(b“"'(xfB"'i)dx (l])

and ¢ " (x) is the dilated version of ¢ ‘', which is
given by

(brm)(x} = zmﬂd)(l)!(i) . (]2)

2m
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Consider the basis function at scale (m + 1), which
is completely embedded in scale (m ). Mallat ( 1989a,b)
showed how the coarse-grained version s "'[i] can
be obtained from 5[ j] using the convolution

j=+=

srmrll“] = z h[j — 2i}st"”[j}-

j:—:_

where h[u] is defined by

(13)

hlu] = 2"”_'. qb“'% °(y —wydy.  (14)

Similarly, the wavelet coefficients at scale (m + 1) can
be obtained from s by

J=+m

W] = z glj — 2i)s'™[ 4],

j=—m=

(15)

where g[u] is defined by

g[u]:2"”2J- w"(‘—;-):b”(y—u)dy, (16)

which corresponds to the wavelet function (x) dilated
by a factor of 2 and sampled by the smoothing function
¢(x). The filters h(u) and g(u) are called the quad-
rature mirror filter (QMF) and have been used in con-
nection with filter banks (Rioul and Duhamel 1992;
Basseville et al. 1992). Notice that in Eqgs. (15) and
(17), the coarse-grained version and the wavelet co-
efficients at a certain scale can be computed from the
preceding scale. Figure | illustrates Mallat’s (1989a,b)
multiresolution algorithm for obtaining the wavelet co-
efficients and the coarse-grained series. Note in Fig. |
that 2 (u) acts as a low-pass filter that smooths the orig-
inal series. The information lost in the smoothing is
conserved by the bandpass filter g (1), which conserves
the difference in signal information between two con-
secutive octave scales. Another smoothing operation is
then applied to the low-pass filtered signal, and the dif-
ference in information between the current scale and
the next larger scale is conserved by the band-pass filter
again (through the wavelet coefficients ). This pyram-
idal scheme ends when the signal becomes a constant
line and the low-pass filter yields a zero coefficient. In
appendix A, a modification to the algorithm of Fig. |
is presented to yield a fast algorithm (order N) that
computes the Haar wavelet coefficients as well as the
coarse-grained version of the signal at various scales.
Appendix B presents some of the important properties
of these orthonormal wavelets.

b. Wavelet statistics of turbulence

One of the primary tools in the characterization of
turbulence is the power spectral density function E(k)
that represents the energy density contained in the
wavenumber bandwidth dk (Tennekes and Lumley
1972; Monin and Yaglom 1975). Because of the global
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MALLAT'S MULTIRESOLUTION ALGORITHM

sM
*hlu) o
| ;-—LSS SRS S
*hlu)
\ = = [
¥ ‘§2_ wM|
*hlu)
*glu) -
' *;l.. |
s0 ‘ w2
*olu) l Sample every other value
I i I 1 1 * hl{u) = Convolution with Filter h
\ w ‘ + glu) = Convolution with Filter g
*glu) ~ sM = Signal at resolution M

wM=Wavelet Coefficients at resolution M

FiG. 1. Mallat’s multiresolution pyramidal algorithm to obtain the
coarse-grained signal s( ) and the wavelet transformed signal w( )
at different scales. The coarse-grained signal is obtained by a con-
volution with the #( ) filter, which is analogous to a low-pass filter,
while the wavelet transformed signal is obtained by a convolution
with the g( ) filter, which is the discrete version of the continuous
wavelet.

nature of this transform, all information related to po-
sition is lost. In this section, the wavelet dual spectrum
as well as other statistical measures are presented that
allow information regarding position to be preserved.

1) WAVELET SPECTRA

For normalization purposes and for comparisons
with Fourier transforms, the time average is subtracted
from the original signal so that each signal has a zero
mean value. In addition, it is assumed that the obser-
vations are sampled every (dy) meters instead of at unit
length. The variance of the signal, in terms of the wave-
let coefficients, is deduced from (6) using

m=M i=N

o?=N"3 X (W™[LD?,

m=1 =1

(17)

where N is the number of observations (multiples of
2), M is log:(N), m is the scale index, and i is the
position index. The total energy Ty contained in scale
R, = (2™dy) is given by

Te=N"'" Y (W"[i])2 (18)
i=|
The wavenumber corresponding to scale R, is
2n
k=" 19
"SR (19)

The power spectral density function is (18 ) divided by
the change in wavenumber (Ak,,), which is equal to
(2m)2 ™(dy) " In(2), or
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FiG. 2. The evolution of the turbulent intensity at 80 cm and the
turbulent kinetic energy (TKE) at 3 m during the Julian days 280
and 285 of 1992.

d
E(k,) = “W""’““”m'

(20)
where (-) is the averaging in space over all values of i
(see Meneveau 1991a). The standard deviation about
this spatially averaged energy at k,, can also be com-
puted from the wavelet coefficients using

e _.d—y (myyr 2 4
SDg(k,) = 27 In(2) (W™

— (W)Y,

Following Meneveau (1991a.b), a plot of E(%,) and
E(k,) + SDg(k,) gives a compact representation of
the energy and its spatial variability at each scale, re-
ferred to as the ‘‘dual spectrum.”

(21)

2) WAVELET SKEWNESS AND FLATNESS FACTORS

In addition to the standard deviation, one can com-
pute the skewness SF(k,) and the flatness factors
FF (k,,) of the spatial distribution of the energy at each
scale using

KATUL AND PARLANGE
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((W{ul)lil)l>3f2 2
(WD)
(w22

SF(k,) = (22)

FF(krrr) = (23)

3. Experimental setup

Experiments were carried out at the University of
California, Davis, Campbell Tract Research Facility.
The site is a 500 m X 500 m uniform bare soil field
with an average momentum roughness height (z,) of 2
mm ( Katul and Parlange 1992). A Campbell Scientific
one-dimensional sonic anemometer, a krypton hygrom-
eter, and a fine-wire thermocouple were installed at 80
cm above the ground surface. Measurements of water
vapor density fluctuations were made with the krypton
hygrometer (pathlength = 1.105 ¢cm) while tempera-
ture fluctuations were measured with a 0.0127-mm
chromel constantan thermocouple. Two I-hour sets of
measurements with a sampling frequency of 10 Hz
were carried out using the krypton hygrometer and the
fine-wire thermocouple. The first experiment was car-
ried out on day of year 280/1992 at 1:32 p.Mm., and the
second experiment was carried out on day of year 285/
1992 at 10:39 p.M. The wind speed at 80 cm was sam-
pled every 1 second with a 3-cup photochopper ane-
mometer (sensitivity = +0.2 ms ') and averaged
every 20 minutes. Figure 2 shows the 20-minute av-
eraged turbulent intensity as well as the turbulent ki-
netic energy (TKE) throughout days 280 and 285. Dur-
ing the experiments the turbulent intensities were less
than (.5, and Taylor’s hypothesis was used to convert
time measurements to space measurements (e.g., Tay-
lor 1938; Lumley 1965; Powell and Elderkin 1974;
Willis and Deardorff 1976; Wyngaard and Clifford
1977). Table 1 summarizes some meteorological and
turbulence statistics also measured in these two exper-
iments.

4. Spectral properties of turbulence at small
wavenumbers

As shown in (1), the spectrum of turbulence is de-
pendent on two dimensionless groups, kz and z/L. In
this study, z = 0.8 m, which is smaller than | L|, so

TaBLE 1. Meteorological and turbulence statistics during the two experiments. The standard deviation (o) for the temperature (T) and
specific humidity (g), the friction velocity (i), and the sensible (H) and latent heat flux (LE) are also shown. The integral time scale (L)
was computed from the area under the autocorrelation function up to the first zero crossing as discussed in Sirivat and Warhaft (1983).

Day/time L, Uy LE H L
(1992) Variable a (s) (ms" (Wm™) (Wm?) (m)
T 1.201°C 2.0
280/1332 q 0.151 gm™ 166 0.16 as 173 —24
T 0.105°C 572
285/2139 q 0.123 gm™ 1.77 0.064 -9 -5 +5.1
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that z/L may not be as important as kz. Also, following
Kader and Yaglom (1991), it seems reasonable to as-
sume that the statistical regime of the large eddies close
to the ground surface is independent of height z so that

E(k) _C
wi ke
Er(k) _ Gy
grz kz
Eb) _C, o)
9% kz

and the power spectra of velocity, temperature, and hu-
midity fluctuations are given by

E (k)= Cuik™
Ex(k) = C;T2k™
(k)= Cigiak™". (25)

The —1 power law spectrum for small wavenumbers
was originally derived for the longitudinal velocity by
Perry and Abell (1975) in pipe flow, and for atmo-
spheric flow by Kader and Yaglom (1991).

5. Results and discussion

Wavelet and Fourier analyses are applied to the tem-
perature and specific humidity signals measured under
unstable and stable atmospheric conditions. Figures 3a
and 3b display the temperature variation, while Figs.
3c and 3d display the specific humidity fluctuations in
time (N = 4096 points in all four signals). In this anal-
ysis, the classical Fourier spectra are discussed first and
then the wavelet spectrum is considered. Comparisons
between the Fourier and the wavelet spectra are carried
out. Results on the statistical description of spatial in-
termittency are presented, and the influence of the basis
function using various wavelets is discussed.

a. Fourier power spectra

For the temperature and specific humidity signals un-
der unstable and stable conditions, the Fourier power
spectrum is computed and presented in Figs. 4a, 4b, 4c,
and 4d. Windowing every 1024 points, cosine tapering
5% at each edge, and then averaging were used to gen-
erate the power spectrum. The wavenumber was given
by 27 /(NdtU), where dt is the sampling time (=0.1 s)
and U is the 20-min mean horizontal wind speed. Since
the mean horizontal wind speed for the stable and un-

FiG. 3. The measured temperature fluctuations at 80 cm above the
ground surface for (a) Julian day 280 at 1332 (PST) and (b) Julian
day 285 at 2139 (PST); (c) and (d) the specific humidity measure-
ments on the respective days.



I Aucust 1994

KATUL AND PARLANGE

3 a E Fourler
* e ‘ e Haar Wavelet
100 |
= = o
L
o 10
©
N
& 2
102
2
103
L L
2 3 2 3 2 3 2 3
10-2 104 100 10
Kz
- > T~ ~
T
3 /l“ S Fourler
\ Ll > ®  Haar Wavelet
T v =m= A
W/ b ]
X \
=10 |
b
]
ur 2
102
2
103
23 ] 3
102 10
“a s
= ~
3 P Fourler
Aol YT ®  Haar Wavelet
100 N, / | - --=- 4

103

Fourler
Haar Wavelet

2187
stable cases differed by only 0.1 ms™', an average
value of U = 1.7 m s ' was used for both stability
conditions for the purpose of comparison. The exis-
tence of a —1 power law in which the energy density
behaves as a power law function of wavenumber is
observed for wavenumbers between 0.05 m™' and
I m ' for the temperature signal under unstable con-
ditions (see Fig. 4a). This production range is com-
parable to the wavenumber corresponding to the inte-
gral length scale = 1.85 m™' (see Table 1). For stable
stability (see Fig. 4b), the temperature signal exhibits
a longer —1 production range (0.03 m™', 2 m™") that
includes the wavenumber corresponding to the integral
length scale (=0.994 m™'; see Table 1). The spectral
characteristics of the specific humidity fluctuations un-
der unstable conditions (see Fig. 4c) are analogous to
that of the temperature signal for the same stability (see
Fig. 4a). The wavenumber corresponding to the inte-
gral length scale under unstable stability for the specific
humidity signal is 2.23 m™', which is in agreement
with the temperature wavenumber (1.85 m™') under
unstable stability conditions (see Table 1). As for sta-
ble conditions ( see Fig. 4d ), a shorter specific humidity
production spectrum with a —1 power law was noted
(0.4m', 2m"). The wavenumber corresponding to
the integral length scale for the specific humidity under
stable stability is 2.09 m~' (see Table 1). The wave-
numbers for these integral length scales were computed
from the integral time scales of Table 1 using the
method of Sirival and Warhaft (1983) and converted
to length scales using Taylor’s hypothesis

b. Multiresolution decomposition

The wavelet coefficients using the Haar ( 1910) basis
function were computed for all four signals. For illus-
tration purposes, the square of the wavelet coefficients
for the temperature signal under stable conditions is
shown in Fig. 5 as a function of space and scale. The
sum of all these coefficients in space and scale is the
variance of the measurements. Note how the number
of coefficients increases and how the energy decreases
as the scale decreases. The total energy content at each
scale can be obtained by summing all the coefficients
in space. These coefficients are also used to generate
the wavelet power spectrum discussed next.

c. Wavelet spectra and comparison with Fourier
SPE'(.'UTHHT

The Haar spectrum for the temperature and specific
humidity measurements under unstable and stable con-

Fic. 4. A comparison between the Fourier (solid line) and the
wavelet (open circles) power spectra for the temperature fluctuations
collected on (a) Julian day 280 at 1332 and (b) Julian day 285 at
2139; (c¢) and (d) the specific humidity fluctuations on the respective
days. The —1 power law is also shown.
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FiG. 5. The distribution of the square of the wavelet coefficients in space and scale for the Haar
basis. The sum of the coefficients at all scales and positions yields the variance of the temperature

measurements for Julian day 280 at 1332.

ditions is compared to the Fourier spectrum in Figs. 4a,
4b, 4c, and 4d. The two spectra agree; however, they
are not identical since the Haar wavelet has finite lo-
cality in wave space (see appendix B). There is no
unique turbulent spectrum per se since the signal is
being decomposed into extended waves for the Fourier
case and localized pulses for the Haar wavelet case ( see
Farge 1992a; Meneveau 1991a,b). Note the loss in
scale resolution due to the dyadic arrangement of the
wavelet spectrum in relation to the Fourier spectrum.
The Haar wavelet spectrum appears to illustrate scaling

laws better than the Fourier spectrum ( see also Yamada
and Ohkitani 1990; Benzi and Vergassola 1991 ). This
is due to the fact that at each discrete scale, many wave-
let coefficients are used to obtain the power content
(see Fig. 5), and therefore, the wavelet spectrum is
generally smoother than the Fourier spectrum. Nofe
that in order to obtain a reliable estimate of the Fourier
spectrum, the windowing and averaging procedures are
necessary (see Shumway 1988, pp. 68—73; Press et al.
1990, pp. 420-429); therefore, the Fourier power
spectrum does not extend to very small wavenumber

TABLE 2. Validation of the —1 Haar wavelet energy power law for temperature (T') and vapor (¢) fluctuation. The range of wavenumber
used to determine the slope is also shown. The regression statistics shown are for the model log[£ (k)] = A log(k,) + B. The coefficient of
determination (R*) and the standard error of estimate (SEE) are also displayed. The coefficient (C) for the production spectrum models £y

= CTyk "and E, = Cgyk ' are also shown.

Wavenumber
Day/time range Slope Intercept Coefficient
(1992) Variable (m ") R? SEE (A) (B) (C)
28071332 T 0.0723-2.31 0.93 0.154 —0.91 0.58 0.41
q 0.2888-2.31 0.99 (.04 —1.00 —2.43 .49
2852139 T 0.009—-18.48 0.99 0.079 —1.03 —2.90 0.35
q 0.018-0.0722 0.97 0.066 -0.95 -2.75 0.56
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FiG. 6. The coefficient of energy dispersion at various wavenum-
bers for the temperature and specific humidity during both experi-
ments using the Haar wavelet. Notice the similarity between the spe-
cific humidity and temperature at the large scales and the differences
at the small scales.

when compared to the wavelet spectrum. The wavelet
spectrum assigns the largest scale to the length of the
record. For the Haar wavelet spectra, the —1 power law
is clearly demonstrated (see Table 2) for the temper-
ature and specific humidity measurements and for both
stability conditions.

d. Wavelet statistics

As noted earlier, the wavelet decomposition permits
the investigation of the spatial distribution of energy in
space and scale. To study the distribution of energy in
space, we modify Meneveau’s (1991a,b) concept of
dual spectra and propose a dimensionless energy dis-
persion measure given by

SDE ( kra: )

CV(ka) = E(k.)

5 (26)

where CV (k) is the coefficient of energy variation at
wavenumber k,,. The coefficient of variation measures
the contributions of local events to the energy disper-
sion at wavenumber k,,. Due to their nonlocal behavior,
Fourier specira assume that the energy is uniformly dis-
tributed in space at all wavenumbers [i.e., CV(k,)
= 0]. A plot of the coefficient of variation as a function
of k,, is shown in Fig. 6 for the temperature and specific
humidity under unstable and stable stability. For the
production wavenumbers (the —1 power law range),
the energy dispersion is in excess of 100%, indicating
that the variability of energy in space is large in relation
to the mean value. Also. at smaller and smaller scales,
the turbulent energy dispersion for the temperature
fluctuations increases monotonically (see Fig. 6). This
energy dispersion was not observed in the specific hu-
midity measurements (see Fig, 6). At the small wave-
numbers, which correspond to the —1 energy power
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law, the temperature and specific humidity measure-
ments under unstable conditions appear to exhibit more
energy dispersion when compared to the measurements
obtained under stable conditions (see Fig. 6). How-
ever, the difference is not very large (at least for k,
< 2), which justifies the usual similarity assumptions
between temperature and specific humidity as invoked
by Monin and Obukhov (1954 ) surface-layer similarity
theory. Also from Table 2, the coefficient C; of the —1
production spectrum for temperature is nearly equal to
that of C,, indicating that both temperature and specific
humidity act as passive tracers for the production wave-
number range. However, at larger wavenumbers (k,,
> 4), the dissimilarity between temperature and spe-
cific humidity fluctuations becomes clear (see Fig. 6).
It appears that the small-scale structure of temperature
is more active (i.e., increased spatial variability in the
turbulent energy) compared to the specific humidity.
This is exposed more clearly by considering the Haar
wavelet flatness factor shown in Fig. 7. Since the Haar
wavelet is a localized jump in physical space, it am-
plifies events with the strongest spatial differences in
the signal as opposed to the magnitude of events (see
Mahrt 1991). Therefore, the Haar wavelet flatness fac-
tor measures the importance of the tails of the proba-
bility distribution of localized events (such as sharp
edges) at wavenumber k,,. For the —1 energy power
law range, near-Gaussian flatness factor statistics are
computed (see Fig. 7). For large wavenumbers, how-
ever, the wavelet transformed temperature measure-
ments are far from Gaussian, with flatness factors up
to 15 (see Fig. 7). The wavelet-transformed specific
humidity measurements, for both stability conditions,
are nearly Gaussian at all wavenumbers, which is con-
sistent with the coefficient of energy dispersion results
of Fig. 6. Following Mahrt ( 1991), we use the wavelet
skewness to measure the sign preference for strong hor-
izontal gradients as well as their contribution to the
overall anisotropy at that wavenumber. Figure 8 dis-
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FiG. 7. Similar to Fig. 6 but for the Haar wavelet flatness factor.
The flatness factor for a Gaussian distribution is 3.
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FiG. 8. Similar to Fig. 6 but for the Haar wavelet skewness.

plays the Haar wavelet skewness for the temperature
and specific humidity as a function of wavenumber for
both stability conditions. For stable stability, the ani-
sotropy is negative at all production wavenumbers in-
dicating that shear-induced asymmetry prevails, while
for unstable stability the wavelet skewness is positive
due to possible updraft—downdraft events (see Fig. 8).
Also, marked differences between temperature and spe-
cific humidity statistics at large wavenumbers were
measured. The specific humidity measurements, for
both stability conditions, appear to attain a near-isotro-
pic state (i.e., SF = 0) as the wavenumber increases
(see Fig. 8). This near-isotropic state was not observed
in the temperature signal, again pointing to the dynam-
ically active role of temperature at small scales (see
Fig. 8). We note that the temperature and specific hu-
midity measurements were carried out at 80 cm over a
dry bare soil field in which the heating or cooling at
the ground surface is very inhomogeneous, and this
nonhomogeneity can influence the turbulence transport
of heat in the lower atmosphere. That the temperature
statistics are similar to the specific humidity statistics
at the larger scales, and the integral length scales of
temperature and specific humidity are comparable, ap-
pears to indicate that close to the ground surface, tem-
perature behaves like an active scalar at large wave-
numbers compared to the specific humidity.

e. Local characteristics of temperature fluctuations
under stable atmospheric conditions

It is assumed in (1) that the temperature behaves as
a passive admixture that does not affect the dynamics
of turbulence. It appears from the wavelet analysis that
this assumption is reasonable since the spatial temper-
ature statistics, at production wavenumbers and small
| z/L|, resembles the specific humidity spatial statistics.
Differences between temperature and vapor fluctua-
tions appear at the large wavenumbers. This was in-
vestigated by Bolgiano (1959) for temperature fluctu-
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ations at large wavenumbers. Bolgiano (1959) gener-
alized Kolmogorov's (1941) first hypothesis and
assumed that for scales [ < L,, the temperature differ-
ence statistics can be uniquely determined from e, Ny,
g/T,, v, and x, where ¢ is the dissipation rate, Ny
= ¢ 7/2, o is the standard deviation of the temperature
fluctuations, v is the viscosity of air, and x is the ther-
mal diffusivity. Analogous to the Obukhov length in
the Monin—Obukhov surface-layer similarity theory
(Monin and Obukhov 1954), Bolgiano (1959) pro-
posed a length scale Ly given by

(6)5,4

This length scale measures the relative importance of
the turbulence temperature dissipation relative to the
turbulence temperature production. For stable atmo-
spheric conditions, Bolgiano ( 1959) proposed that the
energy transferred from disturbances of length [ > L,
to smaller disturbances should be much greater than
{e), since most of this energy is used to overcome
buoyancy, and only a small fraction of this energy cas-
cades to the Kolmogorov microscale where it is dissi-
pated. On this basis, Bolgiano argued that {¢) will not
influence the shape of the temperature spectrum in the
region where k <€ 1/L,. This led Bolgiano to propose
an asymptotic form for the temperature spectrum for k
< 1/L, since the temperature spectrum depends only
on Nyand g/T,, yielding

(27)

=215
Ep= C,,N-}"(_I'_i) kS, (28)

o

where C, is a universal constant (see Monin and Yag-
lom 1975, p. 392). Monin and Yaglom (1975, p. 393)
indicate that the applicability of Bolgiano’s theory is
restricted to heights larger than 100 m due to order of
magnitude estimates that suggest Ly, decreases as z />
while the external disturbances of length [ increase as
z. In this study, the temperature measurements were at
80 cm and the L; ~ 6 m, so it is unlikely that Bolgiano’s
scaling law holds, at least for the range of wavenum-
bers measured, due to 1) the large anisotropy injected
from the inhomogeneous cooling at the ground surface
and 2) the continued production of turbulence at large
wavenumbers (see Fig. 4b). If the influence of these
inhomogeneities and production effects is suppressed
by suppressing local events that are intermittent, energy
containing, and anisotropic, then there could exist a
wavenumber range in which Bolgiano’s scaling law is
obeyed. This hypothesis is tested using conditional
wavelet spectra, which is discussed next.

f. Conditional wavelet spectra and the recovery of
Bolgiano’s scaling law

In order to suppress the anisotropic and energy con-
taining eddies at a certain wavenumber k,,, we intro-
duce the conditional wavelet spectrum defined by
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FiG. 9. The conditional Haar wavelet spectra for the three condi-
tioning events. Notice how the spectrum approaches Bolgiano's scal-
ing law (—7/5) as more and more energetic events are suppressed
(i.e., F. decreases).

d
E(ky) = (W 1)) 5 -2 (29)

7 In(2)"’

where ((-)) is the averaging over nonzero values and
I, is the indicator function defined by

Wur[i]Z EF
(W"Li1*) '

0 otherwise,

I if

I= (30)

where F, is some conditioning event. This conditional
formulation eliminates the events that are F, times
larger than the mean value. Using the Haar wavelet, we
computed the conditional wavelet spectrum for the
temperature signal under stable conditions for F, = 3,
5, and 10. Figure 9 shows the conditional wavelet spec-
tra in relation to the —7/5 scaling law. Bolgiano’s scal-
ing law appears for nearly one full decade for F, = 3
and 5 (see Table 3). In Table 3, the unconditioned
decade yielded a slope of —1.23 which lies between the
—1 (production scaling law) and Bolgiano’s — 1.4 scal-
ing law. Therefore, the energy containing eddies appear
to “‘contaminate’’ Bolgiano’s scaling law within the
wavenumber decade of Table 3. The conditional spec-
trum allowed us to suppress the influence of these ed-
dies and obtain Bolgiano’s scaling law. As discussed

Wavenumber K (m-1)

FiG. 10. A comparison between the conditioned and unconditioned
wavelet skewness for the three conditioning events. Notice how the
wavenumber range corresponding to Bolgiano's scaling law attains
a near-isotropic state.

by Monin and Yaglom ( 1975), Bolgiano’s theory also
assumes that the turbulence achieves a locally isotropic
state. In order to study whether local isotropy is at-
tained within the decade in which Bolgiano’s scaling
law holds, we make use of the conditional skewness
and flatness factors defined by

(WD ™))
<<(1fw<m)“])2>>3/2 2

(AW L))
(WL

where ((-)) is again averaging over nonzero values and
I;is the indicator function. For local isotropy the wave-
let skewness, which measures the sign preference of
strong horizontal gradients at that wavenumber, should
be zero. Figure 10 shows the wavelet skewness as func-
tion of wavenumber for the three conditional events F,
= 3, 5, and 10. Clearly the unconditioned signal is not
locally isotropic (given the large SF). The two condi-
tioned events (F. = 3, 5) in which Bolgiano’s scaling
law was reproduced appear to exhibit zero wavelet
skewness in space, indicating that local isotropy is at-
tained (Fig. 10). Figure 11 indicates that near-Gaussian
statistics, as measured by the conditioned wavelet flat-

SF.(k,) = (31)

FF(' ( k”l ) =

(32)

TasLE 3. Conditional spectra for temperature measurements at 80 cm under stable stability conditions for various conditioning events (F,).
The regression model used to determine the scaling laws is log[£(4,)] = A log[k,,] + B. The coefficient of variation (R*) and the standard
error of estimate (SEE) are also shown. The regression model was applied over the displayed wavenumber range.

Wavenumber
F, range (m ') Slope A Intercept B R? SEE
3 2.31-9.24 —1.42 —=5.18 0.999 0.021
5 2.31-9.24 -1.39 —-1.39 0.994 0.039
10 2.31-9.24 —-1.33 —=5.11 0.994 0.046
(Unconditioned) 2.31-9.24 =1.23 =505 0.997 0.031
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FiG. 11. Same as Fig, 10 but for the wavelet flatness factor.

ness factor, are associated with these two conditioning
events. Note that the unconditioned event is much more
intermittent, with wavelet flatness factors up to 12 (see
Fig. 11). Note that for F. = 3 the wavelet skewness
and flatness factors (Figs. 10 and 11) are nearly iden-
tical to the unconditioned statistics of the specific hu-
midity under stable stability conditions (Figs. 7 and 8).
It is possible that the conditioning criteria (i.e., F. = 3,
5) suppressed the influence of the ground temperature
nonhomogeneity. This may explain the similarity be-
tween the conditioned temperature statistics and the un-
conditioned specific humidity wavelet statistics for sta-
ble atmospheric conditions.
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g. Influence of the basis function

Unlike Fourier transforms, there is no unique basis
function for the orthonormal wavelet transforms.
Therefore, to assess the influence of the basis function
on the spectral and statistical behavior of turbulence,
we used the Daubechies wavelets with various vanish-
ing moments ( see Daubechies 1992, p. 195). The Dau-
bechies wavelets are constructed so that the length of
the wavelet is twice the number of vanishing moments
in the wavelet. The wavelet spectra are compared in
Fig. 12 for the temperature measurements under stable
stability conditions. Except for the largest scale, all
wavelets yielded identical spectral results. This indi-
cates that the orthonormal wavelet spectrum is not very
sensitive to the choice of the analyzing wavelet, For the
sensitivity of the spatial statistics to the choice of the
analyzing wavelet, we considered the wavelet flatness
factor. Figure 13 compares the wavelet flatness factor
for the temperature measurements under stable condi-
tions. Note that even though the values do not compare
as well as the spectra, the overall trend for all wavelets
is essentially the same. The Haar wavelet appears to
produce higher wavelet flatness factors compared to the
Daubechies wavelets due to better localization in phys-
ical space.

6. Conclusions

Wavelet analysis is a useful way of quantifying at-
mospheric surface layer turbulence since ‘‘flow-inde-
pendent eddies’” are used in the decomposition of the
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FiG. 12, The influence of the basis function on the spectral description of the temperature
fluctuations for stable stability. The wavelets used are of the Daubechies type with various lengths
and vanishing moments. For the Daubechies wavelet the filter length is twice the number of

vanishing moments shown in the figure.
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measurements. These transforms allow the decompo-
sition of turbulent scalar fields such as temperature and
humidity into space and scale, and information related
to spatial statistics can be extracted. Wavelet spectra
were computed and compared to the classical Fourier
spectrum. It was shown that Fourier power spectra pro-
vide more scale information in relation to the ortho-
normal wavelet spectra; however, the wavelet spectrum
appears to be smoother and capable of revealing energy
scaling laws for atmospheric turbulence. At small
wavenumbers, both the Fourier and Haar wavelet
power spectra follow a —1 power law, consistent with
measurements reported by Kader and Yaglom (1990).
Simple dimensional argument, within the framework of
surface-layer similarity theory for the large-scale ed-
dies, demonstrated that such a scaling exists for near-
neutral and height-independent conditions. The mean
behavior of the wavelet spectrum matched the Fourier
spectrum; however, large spatial fluctuations, as quan-
tified by the coefficient variation about the mean val-
ues, were noted. Generally, due to the global nature of
the Fourier transform, energy is distributed uniformly
in space at all scales. For orthonormal wavelets, these
nonuniformities in the energy distribution in space at
various wavenumbers can be quantified. For that pur-
pose, we introduced the coefficient of energy disper-
sion that measures how the energy is distributed in
space at some wavenumber.

For the temperature fluctuations measurements, the
energy dispersion around the mean value increased as
the wavenumber increased indicating increased activity
at the smaller scales. This was not observed in the spe-
cific humidity. The wavelet statistics for these scales
indicate a similarity between the vapor and tempera-

ture, even though at the larger wavenumbers, a clear
dissimilarity exists. The dissimilarity between vapor
and temperature statistics at large wavenumbers is
probably due to nonuniform heating and cooling at the
ground surface that directly contributes to the active
role of temperature in the dynamics of small-scale tur-
bulence.

Conditional wavelet spectra were introduced and
applied to the temperature measurements for stable
stability conditions. Bolgiano’s scaling law is ob-
tained if conditional wavelet spectra are used with
appropriate conditioning criteria. It was also shown
that the wavelet skewness associated with the con-
ditioned spectra had a value near zero, indicating that
the conditioning criteria recovered the local isotropy
structure.

The influence of the basis function on the spatial and
spectral turbulence statistics was analyzed within the
framework of the Daubechies wavelets. The turbulence
power spectrum is not very sensitive to the choice of
the analyzing wavelet. The wavelet statistics are more
sensitive to the choice of the analyzing wavelet,
namely, the fourth-order statistics. Nevertheless, the
overall trend was the same for all ten wavelets consid-
ered.
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APPENDIX A
Fast Wavelet Transform

In this appendix, a simple and fast algorithm to com-
pute the Haar wavelet coefficients is reviewed. More
details are found in Beylkin et al. (1991, 1992) and
Zubair et al. (1992). The Haar basis with h;,(x)
= 277p(2 7 x — k) with j, k € Z, with

I for 0<x<

S RIES

h(x) =3 —1 for sx<| (33)

|-

0 elsewhere.

The wavelet coefficients WY*D (k) and the coarse-
grained signal §Y*"'(k) at scale j + 1 can be deter-
mined from the signal § at scale j using

WU (k) = ”‘/L [S(2k — 1) — §(2k)]  (34)
2

SN kY= . [SP(2k — 1) + 8Y(2k)] (35)
V2

forj=0toM— 1, k=0to2"/ ' — |, and M
= log,(N); N is the number of samples. The above
procedure, which is the basis for fast wavelet trans-
forms, requires about N computations in comparison
with the N log,N computations for fast Fourier trans-
forms (FFT). Also, as can be noted from Fig. Al, this
arrangement ensures orthonormality since the support
of the smaller wavelet is completely embedded in the
support of the larger wavelet.

APPENDIX B
Properties of Orthonormal Wavelets

The orthonormal wavelets used obey specific con-
ditions:

FiG. Al. Orthogonality of the Haar wavelet. Note how orthogon-
ality ensures no overlap of wavelets at differents scales since the
smaller wavelets are completely embedded in the larger wavelets.
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1) All wavelet basis are orthonormal so that
+2

f P (x = 270D " (x — 2" )dx = 80, (36)

2) The wavelet basis are perpendicular to the
smoothing or sampling function so that

Joo
J. ¢(au)(x . 2mi)!!llm)(x . 2n|j)dx = {. (37)

3) The smoothing or sampling function is orthon-
ormal to itself at any scale m so that

f ¢tm)(-r - Zmi)d,(m)(x — 2n'j)d-l' o éaj- (38)

Note that condition (2) suppresses undesired relations
between the sampling function and the mother wavelet.
The Haar and the Daubechies wavelets all satisfy the
above conditions; however, different wavelets have dif-
ferent localities in physical and Fourier domain. It
should be noted that spatial localization and wavenum-
ber localization are complementary (Zubair et al.
1992); that is, some loss of localization in one domain
is required to improve the localization in the other do-
main.
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